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Testing Value vs Waiting Value

in Environmental Decisions under Uncertainty

Abstract This paper introduces the concept of the Testing Value into the analysis of

environmental decisions under uncertainty and irreversibility. This value emerges in situ-

ations where the probability of receiving information concerning future economic bene�ts

and costs of development depends on the level of development carried out. We show

that when information may be acquired also exogenously, the Testing Value could push a

risk-neutral decision maker to preserve more in the present and eventually in the future.

The reason is that the Testing Value often leads to a only partial development of the

environmental asset; on the contrary, the Waiting Value (a generalization of the quasi-

option value à la Arrow and Fisher (1974)) always leads to corner solutions. Although

its existence stems from endogenous information, surprisingly enough, the Testing Value

is positively related to the probability of acquiring information exogenously.

JEL references: C61; D81; Q32.

Keywords: Testing value; Waiting value; Exogenous and Endogenous Information;

Irreversibility.
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1 Introduction

The issue of irreversibility and uncertainty in environmental decisions has been broadly

analyzed by economic theorists. Since the �rst de�nition of the quasi-option value given

by Arrow and Fisher (1974), the key concept has been developed in several articles,

including Henry (1974), Freixas and La¤ont (1984), Hanemann (1989) and Fisher (2000).

The concept of quasi-option value is introduced by Arrow and Fisher (1974) in a

two-period model of the choice of the optimal preservation level of a natural resource.

Development can take place either �now�or �in the future�but, once undertaken, the

resource cannot be restored to its original state of preservation. The future bene�ts of

preservation and development are uncertain. The expected net bene�ts of preservation

in the future period are conditional upon the current choice. They also assume risk

neutrality of theDecisionMaker (DM henceforth) and independent learning (exogenous

information). The latter implies that the DM can receive information about the future

bene�ts of her current choice only by letting time pass. Information before the future

choice is acquired by �waiting�: it is independent from the current choice.

More speci�cally, there are two alternative information scenarios. In the �rst sce-

nario, exogenous information is available with certainty between the current and the

future choice. In this scenario, the prospect of future information is fully recognized

and explicitly incorporated in the current decision. In the second information scenario,

information is not available before the future decision. Therefore, the DM sets both the

current and the future level of development without knowing the realized values of the

future net bene�ts.

Consider an extension of the �rst information scenario of Arrow and Fisher (1974).

Assume that exogenous information is available with a given probability q 2 [0; 1]: q is

the probability that information will be acquired exogenously between the current and

the future decision. Thus, q 2 [0; 1] in the �rst scenario and q = 0 in the second one.
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Denote by c� the amount of environmental resource preserved at time � = 1; 2, where

� = 1 and � = 2 indicate �now�and �in the future� respectively. The total amount

of environmental resource is normalized to 1, so that c1 2 [0; 1] and c2 2 [0; c1] because

of irreversibility. Let EVexo(c1; c2) be the expected value of the two-period net bene�ts

of preserving c1 at � = 1 and c2 at � = 2 in the �exogenous information�scenario and

EVno(c1; c2) the same expected value in the �no information�scenario. Under speci�c

assumptions over EV (c1; c2), Arrow and Fisher (1974) show that the current optimal

development decision is con�ned to a binary choice between full development (c�1 = 0)

and no development at all (c�1 = 1).1 Let EV (c1) := max
c22[0;c1]

EV (c1; c2). De�ne the

Quasi-Option V alue à la Arrow-Fisher (QOV henceforth) as

QOV =
�
EVexojq=1(1)� EVexojq=1(0)

�
� [EVno(1)� EVno(0)]

where q = 1 because in the Arrow-Fisher framework exogenous information is available

�with certainty�between � = 1 and � = 2. It can be rewritten as

QOV =
�
EVexojq=1(1)� EVno(1)

�
�
�
EVexojq=1(0)� EVno(0)

�
and interpreted as a correction factor:

�
EVexojq=1(1)� EVno(1)

�
is the value of �certain�

(q = 1) exogenous information conditional on having chosen to preserve the whole en-

vironmental area at � = 1; similarly,
�
EVexojq=1(0)� EVno(0)

�
is the value of �certain�

(q = 1) exogenous information conditional on having chosen to destroy the whole envi-

ronmental area at � = 1. The QOV is the di¤erence between these two values. Nonethe-

less, irreversibility creates a choice asymmetry: if the DM decides to develop everything

1Henry (1974) assumes that development is indivisible, so that c1 2 f0; 1g. Arrow and Fisher (1974)
instead consider a continuous choice set and assume that the expected bene�ts are EV (d1; d2; �) =
B1(d1)+B2(d1+d2; d2; �), with B1(�)+B2(�) being linear functions of the development levels d1 = 1�c1;
d1 + d2 = 1� c2 and d2; uncertainty is represented by the random variable �. The maximization of the
expected bene�ts leads to a corner solution with c�1 2 f0; 1g, which coincides with Henry�s choice set.

4



now (c1 = 0), the decision cannot be reversed in the future and any subsequent infor-

mation she may receive has no economic value. Hence, EVexojq=1(0) = EVno(0) and the

expression of the quasi-option value à la Arrow-Fisher becomes

QOV = EVexojq=1(1)� EVno(1) (1)

Since exogenous information is not �dangerous�, it is EVexojq=1(1) � EVno(1), and so

the QOV is always non-negative. This does not mean that developing now should never

be optimal: it may happen that EVexojq=1(1) < EVexojq=1(0), in that case (c�1)exojq=1 = 0.

This rather means that the case for preservation is strenghtened when one recognizes

the prospect of further information about the future consequences of development: the

amount of environmental resource preserved when there is exogenous information is

equal or greater, i.e. (c�1)exojq=1 � (c�1)no.2 This means that learning favors more �exible

decisions (�irreversibility e¤ect�).3

A broader look at (1) shows that the QOV can be thought of as a particular �Waiting

Value�, i.e. a value emerging when the DM �stands by� in the present, moving her

decision to the future, when exogenous information may be available. Broadly speaking,

it is the money the DM is willing to pay in order to shift the decision from now to the

future. Conrad (1980) suggests that the QOV is identical to the unconditional expected

value of information at � = 1. Hanemann (1989) subsequently clari�es that this identity

holds only if the value of information is conditional to having set c1 = 1. Miller and

2As in Arrow and Fisher (1974) and Henry (1974), assume that c�1 2 f0; 1g and that EV (c1; c2) are
addictive with respect to the two-period bene�ts, i.e. EV (c1; c2) = B1(c1) +EV [B2(c1; c2)]. It follows
that (c�1)exojq=1 < (c

�
1)no is impossible. This inequality would require (c

�
1)exojq=1 = 0 and (c

�
1)no = 1,

hence respectively B1(1)+EV
�
B2(1; (c

�
2)exojq=1)

�
� B1(0)+EV [B2(0; 0)] and B1(1)+EV [B2(1; 1)] �

B1(0) +EV [B2(0; 0)], which would imply EV
�
B2(1; (c

�
2)exojq=1)

�
� EV [B2(1; 1)], i.e. (c�2)exojq=1 = 1,

which is incompatible with (c�1)exojq=1 = 0.
3Epstein (1980) and later Hanemann (1989) and Ulph and Ulph (1995) show it is not always the

case that (c�1)exojq=1 � (c�1)no. In particular, Epstein (1980) states a set of su¢ cient conditions on
the expected net bene�ts function so that the Arrow and Fisher�s (1974) irreversibility e¤ect appears.
Graham-Tomasi (1995), Mäler and Fisher (2006) and Salanie and Treich (2009) further clarify this
speci�c issue.
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Lad (1984) underline that this option value stems from the �exibility of the sequential

decision when information can arrive before � = 2, whereas irreversibility per se accounts

only for its �quasi�quali�cation. Therefore, in the Arrow-Fisher framework, among the

two optimal decisions, only c�1 = 1 preserves �exibility in the exogenous information

scenario, and the QOV is the value of such �exibility. This value is a �quasi�-option

because it vanishes if c�1 = 0. The cost of this option is the economic loss generated by

the non-development of the resource at � = 1.

Following this line of reasoning, one can de�ne a more general Waiting Value (WV

henceforth), relying on the di¤erence between the expected value of the optimal �exible

sequential decision and that of the optimal �xed once-and-for-all decision, i.e.

WV = EVexo((c
�
1)exo)� EVno((c�1)no) (2)

where EVexo(c1) and EVno (c1) are, respectively, the expected value of the net bene�ts

of preserving c1 2 [0; 1] at � = 1, when exogenous information arrives with probability

q 2 [0; 1] before � = 2, and when no information arrives at all (q = 0). We indicate

with (c�� )exo and (c
�
� )no the optimal level of preservation at � = 1; 2 in the �exogenous

information�and in the �no information�scenario, respectively. TheDM chooses (c2)exo

at � = 2 after having received, with a given probability q 2 [0; 1], information about the

relative bene�ts of the second period (�exible sequential decision). Instead, in the �no

information�scenario, where there is no possibility of acquiring information before � = 2,

for the DM it is equivalent to choose (c2)no already at � = 1, by setting (c2)no = (c1)no

(�xed once-and-for-all decision).

Our de�nition of theWV di¤ers from the Arrow-Fisher QOV in three aspects. First,

in the Arrow-Fisher framework, exogenous information is �certain�(q = 1), while in our

formulation q 2 [0; 1]. Second, in the QOV; it is (c1)exo = (c1)no = 1, while in the WV

it can be (c�1)exo 6= (c�1)no; (c�1)exo 6= 1 and (c�1)no 6= 1. Third, the arguments of the WV
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are the DM�s optimal choices of (c1)exo and (c1)no (i.e., (c�1)exo and (c
�
1)no). These two

choices are taken in two situations that are identical except for the information available.

On the contrary, the argument of the QOV is the hypothetical value (c1)exo = (c1)no = 1.

Therefore, QOV = WV only if q = 1 and (c�1)exo = (c
�
1)no = 1. In section 4.1 we show

that the QOV has to be intended as an upper bound of the WV , since QOV � WV .

As discussed above, the conclusions drawn by Arrow and Fisher (1974), Henry (1974)

and the related literature on the optimality of a complete preservation of an environ-

mental resource when its development is irreversible are derived in a very particular

framework of independent learning, i.e. with exogenous information about the net bene-

�ts of preservation. This result does not hold if the information is endogenous (dependent

learning).

Miller and Lad (1984) and Freeman (1984) show that if information concerning future

e¤ects of the irreversible depletion of an environmental resource can be obtained only

by carrying out depletion itself at � = 1, then it is optimal to develop (at least) a small

portion of the environmental asset in the current period. In other words, the policy of

postponing the choice in order to enable theDM to pro�t from the incoming information

is sub-optimal when this information is endogenous.

Consider a third information scenario. Freeman (1984) assumes that full information

is provided by any amount of development, i.e. for any c1 2 [0; 1). Moreover, no exoge-

nous information arrives. De�ne �endo 2 [0; 1] as the probability of acquiring information

endogenously in Freeman�s scenario. Let EVendoj�endo=1(c1) denote the expected value of

the two-period net bene�ts of preserving c1 at � = 1 when only endogenous information

is available and it arrives �with certainty�, i.e. �endo = 1. Fisher and Hanemann (1987)

clari�es that EVendoj�endo=1 is equivalent to the expected value function in the �no infor-

mation�scenario, EVno, in the event that no development is undertaken, and to that in

the �exogenous information�(with certainty) scenario, EVexojq=1, in the event that any

development is undertaken. In symbols,
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EVendoj�endo=1(c1) =

8><>: EVno(1) if c1 = 1

EVexojq=1(c1) if c1 2 [0; 1)

Several results follow from this speci�c formulation of the problem. First of all, in

Freeman�s �endogenous information� scenario it can never be optimal to preserve the

whole amount of the environmental resource in the current period, i.e. (c�1)endo 6= 1.

Secondly, there is again a corner solution for the level of development at � = 1, in the

sense that one either develops fully now, i.e. (c�1)endo = 0, or engages in an in�nitesimal

amount " > 0 of development, i.e. (c�1)endo = 1�". Finally, Fisher and Hanemann (1987)

introduce a QOV of the minimum feasible development ("� development), de�ned as

QOV" = EVendojj�endo=1(1� ")� EVno(1� ") (3)

which always is non-negative.

Notice that this speci�c de�nition raises some problems about the meaning of QOV".

First of all, as in the QOV , the argument of the QOV" is a hypothetical level of preser-

vation. Moreover, the hypothetical preservation level c1 = 1�" is generally4 not optimal

in the �no information�scenario, where instead (c�1)no 2 f0; 1g: only total preservation

or total development is an optimal choice in � = 1 when there is no possibility to obtain

information between � = 1 and � = 2. Finally, the speci�city of Freeman�s (1984) and

Fisher and Hanemann�s (1987) results raises doubts as to whether the environmental

policy implications of the endogenous information arrival could depend on the precise

manner in which development generates information, i.e., on the form of the information

production function.

For all these reasons, we try to model endogenous information in a more general

4In the �no information�scenario there can be an internal solution in � = 1 (and so also in � = 2)
only when the current net bene�t and the expected future net bene�t have opposite sign and are equal
in absolute value. In this trivial case, each preservation level c1 2 [0; 1] leads to the same expected value
of the two-period net bene�ts (see section 3.3.3).
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framework (section 2). There is a large number of environmental problems in which

the possibility of acquiring information endogenously could depend on the size of the

development the DM chooses to perform. In the case of oil extraction in a country,

for example, there may be uncertainty about whether and where the land contains

oil in commercial quantities. If this is the case, it is likely that the uncertainty can

be solved by undertaking some development. But it is doubtless that if you drill the

land (by destroying a part of the natural resource), the deeper you drill the higher the

probability of discovering whether there is or is not an oil well in that country. Another

example: if you �destroy� only a few trees of a forest, little information is obtained

about the possible extinction of a particular species. If you keep on destroying a larger

portion of the forest, you can obtain greater information about the pervasive e¤ects of

the development activity.

Thus, in many environmental decision problems it seems plausible that, if informa-

tion about future net bene�ts of preservation depends on the current development of

the natural resource, the probability of obtaining information in the future must be in-

creasing in the level of development currently carried out, i.e. inversely related to c1.

We make this assumption in our model. Moreover, di¤erently from Fisher-Hanemann�s

QOV", when dealing with endogenous information we introduce a Testing Value (TV

henceforth), de�ned as

TV = EVexo&endo((c
�
1)exo&endo)� EVexo((c�1)exo) (4)

where EVexo&endo(c1) is the expected value of the two-period net bene�ts of preservation

when there is both exogenous (arriving with probability q) and endogenous (arriving

with probability �, depending negatively on c1) information;5 (c�1)exo&endo is the opti-

5Notice that in our more general formulation of dependent learning, even when choosing to destroy
the entire amount of the environmental resource in � = 1, it can happen that no endogenous information
arrives before � = 2.
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mal preservation level in the current period, under the �exogenous and endogenous�

information scenario. Again, it can be that (c�1)exo&endo 6= (c�1)exo.

According to our de�nition, the TV is the additional value attached to endogenous

information, additional with respect to information arriving exogenously. It is the gain

the DM obtains when she can receive, with some probability, information regarding

future bene�ts also by developing in the current period (compared to the case in which

there is only independent learning à la Arrow-Fisher).6

The QOV" in (3) becomes a particular TV that emerges when the following four

conditions are simultaneously satis�ed: exogenous information is completely absent (q =

0); the level of information endogenously arriving is the same for every c1 2 [0; 1);

information arrives with certainty (�endo = 1) for every c1 2 [0; 1); the optimal choice

at � = 1 in both information scenarios (without exogenous information) should be

(c�1)endo = (c
�
1)no = 1 � ". As anticipated above, it can never be (c�1)no = 1 � ". Thus,

leaving aside the last condition (c�1)endo = (c
�
1)no = 1 � ", whenever (c�1)endo = 1 � ", it

should be that (c�1)no = 0.

The remaining part of the paper is structured as follows. In section 2 we present

our two-period model of environmental choice under uncertainty and irreversibility. In

section 3 we analyze theDM�s maximization problem and optimal environmental choices

in the di¤erent information scenarios. In section 4 we calculate the WV and the TV as

functions of the parameters of the environmental decision problem. Moreover, we show

the main features of the TV in comparison to those of theWV . In section 5 we conclude

by discussing some policy implications of our theoretical predictions.

6Obviously, if (c�1)exo&endo = 1, there is only exogenous information, then EVexo&endo � EVexo,
(c�1)exo&endo = (c�1)exo and TV = 0. Attanasi and Montesano (2008) show that if there is strategic
interaction between two decision makers, the TV can be positive even for the decision maker choosing
(c�1)exo&endo = 1.

10



2 The Model

2.1 Assumptions and notation

Consider a two-period model of environmental decision. The risk neutral DM chooses

the amount of environmental resource to preserve at two subsequent times (� = 1; 2).

We call period 1 the time period between � = 1 and � = 2 and period 2 the time period

after � = 2. At � = 1 the DM chooses the amount of environmental resource to be

preserved in period 1, i.e. until � = 2. At � = 2 she chooses the amount of resource

to be preserved in period 2. Given the assumption that development is irreversible, the

DM�s options at � = 2 are constrained by the decision taken at � = 1. Normalizing

the level of the environmental resource to 1, c1 2 [0; 1] denotes the amount preserved at

� = 1. By irreversibility, the amount preserved at � = 2 cannot be greater than c1.

We de�ne the two-period expected net bene�ts adopting the same separable and

linear functional form used by Arrow and Fisher (1974). Let the net bene�t be directly

proportional to the amount of preserved resource, with b1 representing the net bene�t

per unit of resource preserved in period 1.7 We assume that the current net bene�t from

preservation is known to the DM at � = 1 and it is negative, i.e. b1 < 0; thus, the

unique incentive to choose c1 6= 0 at � = 1 is given by the possibility to obtain a positive

future net bene�t from preservation in period 2.8

This future net bene�t is uncertain, depending on two possible states of the world.

With probability �, the state is revealed to the DM in period 1, i.e. before she takes

her decision at � = 2. With probability 1 � �, the DM does not know the state of

the world when she chooses the optimal level of c2 at � = 2: this state will be revealed

7In Dasgupta and Heal (1979) and Chichilnisky and Heal (1993), b� represents the bene�t of preser-
vation in period � , with � = 1; 2. We interpret it as the di¤erence between the bene�t of preservation
and the bene�t of development in period � .

8We choose not to contemplate in the analysis the case b1 = 0, since it makes the choice of c1
irrelevant concerning the net bene�t in period 1.
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in period 2, after this decision has been taken. We indicate with bj2 the net bene�t

per unit of resource still preserved in period 2, when the state of the world is sj;with

j = u; f . The future net bene�t from preservation is negative if the state of the world is

su (unfavorable state), and positive if the state of the world is sf (favorable state), i.e.

bu2 < 0; b
f
2 > 0. We indicate with p 2 [0; 1] the probability of the unfavorable state su.

Let us normalize the net bene�ts in terms of bf2 by de�ning x := � b1
bf2
; y := � bu2

bf2
and

by putting bf2 = 1. Notice that both x and y are positive, with x representing the relative

weight of the loss from preservation in period 1 with respect to the gain in the favorable

state of the world in period 2; and y representing the relative weight of the loss from

preservation in period 2 in the unfavorable state of the world, with respect to the gain

in the favorable one.

We indicate with c2 the amount of environmental resource preserved at � = 2 when

the state of the world has not been revealed in period 1 and with cj2 the amount of

environmental resource preserved at � = 2 when the DM knows the revealed state of

the world is sj. The structure of the decision problem is represented in �gure 1. It can

be summarized as follows:

� � = 1: the DM chooses the amount of the resource to be preserved in period 1;

� period 1: the state of the world is either revealed or not;

� � = 2: the DM chooses the amount of the resource to be preserved in period 2;

� period 2: the state of the world is revealed, given it was not revealed in period 1.

Therefore, when the DM receives information in period 1, in � = 2 she is in the

upper part of the decision tree and she chooses the optimal preservation level at � = 2,

(cu2)
� or (cf2)

�, knowing the state of the world, su or sf , respectively. Otherwise, in � = 2

she is in the lower part of the decision tree and the optimal choice at � = 2, c�2, is

independent from the state of the world, that will be revealed only in period 2.
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Figure 1. The decision tree

2.2 Modelling uncertainty

In our framework, when choosing at � = 1, the DM does not know if the state of the

world will be known or not when she will choose again at � = 2. The key parameter is

� 2 [0; 1], the probability that the state will be revealed in period 1, i.e. the probability

that information (exogenous and/or endogenous) will arrive before � = 2. We distinguish

di¤erent �degrees of certainty� of receiving information: it can arrive with certainty

(� = 1), with some probability (� 2 [0; 1]) or may certainly not arrive (� = 0).

Moreover, according to the components inside �, we distinguish di¤erent �kinds of

information�. Information can be (only) exogenous, (only) endogenous, or both. In the

�rst case, � does not depend on (1�c1), the amount of environmental resource developed
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at � = 1. In the second case, � depends only on (1� c1), the level of development. Here,

as anticipated in section 1, we assume that in case of dependent learning the probability

of information arrival depends on the level of development carried out. In the third

case, a part of the information arrives exogenously and the rest arrives according to

(1 � c1); hence, � = q + �f(1 � c1), with q 2 [0; 1] being the probability of acquiring

exogenous information and �f(1 � c1) 2 [0; 1� q] being the probability of acquiring

endogenous information through the information production function f : [0; 1]! [0; 1],

with f 0(:) > 0, i.e. strictly decreasing in c1. In particular, we analyze the linear case

f(1� c1) = 1� c1.

We identify the third case, in which both exogenous and endogenous information

may occur, as the general case, namely (exo&endo), represented by

� = q + �(1� c1) for c1 2 [0; 1]

with q 2 [0; 1] ; � 2 [0; 1� q] :

The other relevant information scenarios are derived by imposing speci�c restrictions

on the key parameters:

(exo) only exogenous information: � = 0 for c1 2 [0; 1] ;

(endo) only endogenous information: q = 0 for c1 2 [0; 1] ;

(no) no information: � = q = 0, for c1 2 [0; 1].

In this framework, the scenario �information arriving with certainty�can be derived

by imposing � = 1�q: information arrives with certainty if q = 1 or if q < 1 and c1 = 0.

This condition in subcase (exo) implies q = 1 and in subcase (endo) implies � = 1 and

c1 = 0. This scenario has been frequently analyzed in the environmental option values

literature: it enables us to make comparisons and to show that our results also hold

under the restriction of information arriving with certainty.
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3 Optimal Preservation Choices

3.1 Two preliminary results

In this section, for each information structure described in section 2.2, we �nd the DM�s

optimal preservation level at � = 1, c�1, and at � = 2 when the state of the world is not

revealed in period 1, c�2. First of all, we state two basic results which hold independently

from the kind of information structure we deal with, i.e. independently from the way in

which � is de�ned. Referring to �gure 1:

Result 1. If the state of the world is revealed in period 1, then (cu2)
� = 0 and

(cf2)
� = c1.

Result 2. If the state of the world is not revealed in period 1,

- case (i): if the expected second-period net bene�t of preservation (pbu2 + (1� p)b
f
2)

is positive, i.e. y 2
�
0; 1�p

p

�
, where y = � bu2

bf2
, with bf2 = 1 (see section 2.1), then c2

� = c1;

- case (ii): if the expected second-period net bene�t of preservation is negative, i.e.

y 2
�
1�p
p
;+1

�
, then c2� = 0;

- case (iii): if the expected second-period net bene�t of preservation is null, i.e.

y = 1�p
p
; then c2� 2 [0; c1].

3.2 General case (exo&endo): both Exogenous and Endogenous

Information

Let us write and solve the DM�s utility maximization problem in the general case, in

which both exogenous and endogenous information are available with some probability

(respectively, with q 2 [0; 1] and �(1 � c1) 2 [0; (1� q) (1 � c1)]) in period 1. Given

Result 1, the realized payo¤s are as indicated in �gure 2.
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Figure 2. Exogenous and Endogenous information scenario

The DM�s expected value of net bene�ts of preservation in both periods is:

EVexo&endo(c1; c2j cu2 = 0; c
f
2 = c1 ) = [q + �(1� c1)]

h
b1 + (1� p)bf2

i
c1 +

f1� [q + �(1� c1)]g
h
b1c1 + pb

u
2c2 + (1� p)b

f
2c2

i

By analyzing the lower part of the compound lottery in �gure 2, one can distinguish

three cases, according to the expected value of the second-period net bene�t (Result 2):

Case (i). Given that y 2
�
0; 1�p

p

�
, the optimal preservation level at � = 2 when the

state of the world is not known is (c�2)exo&endo = (c
�
1)exo&endo, with

(c�1)exo&endo =

8>>>>>>>>>>><>>>>>>>>>>>:

1 if
y 2

�
0; 1�p

p
1

1�q+�

�
and

x 2 (0; 1� p� (1� q + �)py)

(1�p�x)�(1�q��)py
2�py

if
x 2[max f0; 1� p� (1� q + �)pyg ;

1� p� (1� q � �)py]

0 if x 2 (1� p� (1� q � �)py;+1)
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and the optimal expected value function is:

EV �exo&endo(x; y) =

8>>>>>>>>>>><>>>>>>>>>>>:

(1� p� x)� (1� q)py if
y 2

�
0; 1�p

p
1

1�q+�

�
and

x 2 (0; 1� p� (1� q + �)py)

[(1�p�x)�(1�q��)py]2
4�py

if
x 2[max f0; 1� p� (1� q + �)pyg ;

1� p� (1� q � �)py]

0 if x 2 (1� p� (1� q � �)py;+1)

Case (ii). Given that y 2
�
1�p
p
;+1

�
, the optimal preservation level at � = 2 when

the state of the world is not known is (c�2)exo&endo = 0, and

(c�1)exo&endo =

8>>>><>>>>:
1 if q > � and x 2 (0; (1� p)(q � �)]
(1�p)(q+�)�x

2(1�p)� if x 2 ((1� p)max f0; q � �g ; (1� p)(q + �)]

0 if x 2 [(1� p)(q + �);+1)

and the optimal expected value function is:

EV �exo&endo(x; y) =

8>>>><>>>>:
(1� p)q � x if q > � and x 2 (0; (1� p)(q � �)]
[(1�p)(q+�)�x]2

4(1�p)� if x 2 ((1� p)max f0; q � �g ; (1� p)(q + �)]

0 if x 2 [(1� p)(q + �);+1)

Case (iii). Given that y = 1�p
p
, the previous results on (c�1)exo&endo and onEV

�
exo&endo(x; y)

apply. The only di¤erence is that in this case (c�2)exo&endo 2 [0; (c�1)exo&endo].

In general, notice that for y 2
�
1�p
p
;+1

�
, (c�1)exo&endo = 1 only if q > �, while for

y 2
�
0; 1�p

p

�
it can be that (c�1)exo&endo = 1 also if q < �.
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3.3 Speci�c information scenarios

Let us specify the previous results in the three subcases introduced in section 2.2.

3.3.1 Subcase (exo): Only Exogenous Information

Since � = 0, the DM at � = 1 knows that, independently from the preservation level

chosen at � = 1, with probability q 2 [0; 1] she will know the realized value of the net

bene�t bj2 in period 1. The optimal levels of preservation are:
9

((c�1)exo ; (c
�
2)exo) =

8>>>>>>><>>>>>>>:

(1; 1) if y 2
�
0; 1�p

p

�
and x 2 (0; 1� p� (1� q) py)

(0; 0) if y 2
�
0; 1�p

p

�
and x 2 (1� p� (1� q) py;+1)

(1; 0) if y 2
�
1�p
p
;+1

�
and x 2 (0; (1� p)q)

(0; 0) if y 2
h
1�p
p
;+1

�
and x 2 [(1� p)q;+1)

and the optimal expected value function EV �exo(x; y) is equal to:

8>>>>>>><>>>>>>>:

(1� p� x)� (1� q)py if y 2
�
0; 1�p

p

i
and x 2 (0; 1� p� (1� q) py)

0 if y 2
�
0; 1�p

p

i
and x 2 (1� p� (1� q) py;+1)

(1� p)q � x if y 2
h
1�p
p
;+1

�
and x 2 (0; (1� p)q]

0 if y 2
h
1�p
p
;+1

�
and x 2 [(1� p)q;+1)

When q = 1 (exogenous information arrives with certainty), we have the traditional

case of Arrow and Fisher (1974), as de�ned in section 1. However, in section 4.1 we

clarify that their de�nition of QOV as in (1) restricts the analysis to the subset of pairs

(x; y) for which (c�1)exo = (c
�
2)exo = 1:

9In the limit cases, we �nd that8>>>><>>>>:
(c�1)exo = 1; (c

�
2)exo 2 [0; 1] if y = 1�p

p and x 2 (0; (1� p)q)
(c�1)exo = (c

�
2)exo 2 [0; 1] if y 2

�
0; 1�pp

�
and x = 1� p� (1� q) py

(c�1)exo 2 [0; 1] ; (c�2)exo 2 [0; (c�1)exo] if y = 1�p
p and x = (1� p)q

(c�1)exo 2 [0; 1] ; (c�2)exo = 0 if y 2
�
1�p
p ;+1

�
and x = (1� p)q
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3.3.2 Subcase (endo): Only Endogenous Information

Since q = 0, the DM can obtain information in period 1 with probability �(1 � c1),

where � 2 [0; 1], only if at � = 1 she destroys a portion of the environmental resource.

Hence, when choosing at � = 1, she knows that the probability of information arriving in

period 1 depends negatively on c1. The optimal levels of preservation ((c�1)endo ; (c
�
2)endo)

are equal to:10

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

(1; 1) if y 2
�
0; 1�p

p
1
1+�

�
and x 2 (0; 1� p� (1 + �)py]

(1�p�x)�(1��)py
2�py

� (1; 1) if y 2
�
0; 1�p

p

i
and

x 2[max f0; 1� p� (1 + �)pyg ;

1� p� (1� �)py]

(0; 0) if y 2
�
0; 1�p

p

i
and x 2 [1� p� (1� �)py;+1)�

1
2
� x

2(1�p)� ; 0
�

if y 2
h
1�p
p
;+1

�
and x 2 (0; (1� p)�]

(0; 0) if y 2
h
1�p
p
;+1

�
and x 2 [(1� p)�;+1)

and the optimal expected value function EV �endo(x; y) is equal to:8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

(1� p� x)� py if y 2
�
0; 1�p

p
1
1+�

i
and x 2 (0; 1� p� (1 + �)py]

[(1�p�x)�(1��)py]2
4�py

if y 2
�
0; 1�p

p

i
and

x 2[max f0; 1� p� (1 + �)pyg ;

1� p� (1� �)py]

0 if y 2
�
0; 1�p

p

i
and x 2 [1� p� (1� �)py;+1)

[(1�p)��x]2
4(1�p)� if y 2

h
1�p
p
;+1

�
and x 2 (0; (1� p)�]

0 if y 2
h
1�p
p
;+1

�
and x 2 [(1� p)�;+1)

Notice that when the relative weight of the loss from preservation in period 2 in the

unfavorable state of the world with respect to the gain in the favorable one is high

enough
�
y > 1�p

p

�
, the expected value of the second-period net bene�t of preservation

is negative. In this case, it is never optimal to preserve completely the environmental

10If y = 1�p
p and x 2 [0; (1� p)�], then (c�1)endo = 1

2 �
x

2(1�p)� and (c
�
2)endo 2 [0; (c�1)endo].
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resource in either of the two periods. In particular, it is never optimal to preserve

a positive amount of the resource at � = 2 and the highest possible amount of the

resource that it is optimal to preserve at � = 1 is limited by half. Instead, when the

expected value of the second-period net bene�t of preservation is positive, preservation

of the whole amount of the resource can occur, thus renouncing the possibility to obtain

information.

In our framework, when q = 0, information can �arrive with certainty�(�(1�c1) = 1)

only under the condition that all the resource is destroyed at � = 1 (c1 = 0). This di¤ers

from Freeman�s endogenous information scenario, the one in which Fisher and Hanemann

(1987) de�ne the QOV" as in (3). Their assumption that full information is provided

by any amount of development would imply in our endogenous information setting that

� = 1 for every c1 6= 0:

3.3.3 Subcase (no): No Information

Since � = 0, the DM cannot obtain information in period 1. Hence, it is equivalent for

her to choose c1 and c2 simultaneously at � = 1. The optimal preservation levels are:11

((c�1)no ; (c
�
2)no) =

8>>>><>>>>:
(1; 1) if y 2

�
0; 1�p

p

i
and x 2 (0; 1� p� py)

(0; 0) if y 2
�
0; 1�p

p

i
and x 2 (1� p� py;+1)

(0; 0) if y 2
h
1�p
p
;+1

�
and the optimal expected value function is:

EV �no(x; y) =

8>>>><>>>>:
(1� p� x)� py if y 2

�
0; 1�p

p

i
and x 2 (0; 1� p� py]

0 if y 2
�
0; 1�p

p

i
and x 2 [1� p� py;+1)

0 if y 2
h
1�p
p
;+1

�
11If x = 1 � p � py, then (c�1)no 2 [0; 1] and (c�2)no 2 [0; (c�1)no]. More precisely, this happens when

the expected value of the second period net bene�t of preservation is positive and equal to the absolute
value of the �rst period net bene�t, i.e. pbu2 + (1� p)b

f
2 = �b1, given that b1 < 0.
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4 Environmental option values analysis

In this section, we express the WV and the TV as functions of the decision problem

parameters, using the results on the DM�s optimal behavior obtained in sections 3.2

and 3.3. Then, we describe the main features of each of the two option values and their

e¤ects on the DM�s optimal behavior.

First of all, let us represent graphically the results on the optimal preservation level

at � = 1 and at � = 2 in the four information scenarios, when the state of the world is

not revealed in period 1. Consider again �gure 1. The DM chooses c1 optimally, taking

into account the possibility that information could emerge in period 1.

If this occurs, when choosing at � = 2, the DM knows the state of the world (she

is in the upper part of the decision tree). Then, by Result 1, the optimal preservation

levels are (cu2)
� = 0 and (cf2)

� = c�1: she develops everything if the unfavorable state of

the world comes out in period 1 and preserves everything she has preserved at � = 1

otherwise. Therefore, in this case, the optimal choice at � = 2, namely (cj2)
� for j = u; f ,

is uniquely determined by c�1 in every scenario except the �no information�one, where,

obviously, it is not possible to obtain information in period 1.

If information does not emerge, the DM is in the lower part of the decision tree in

�gure 1. Also in this case the possibility of acquiring information (exogenously and/or

endogenously) in period 1 in�uences the DM�s choice at � = 2, since, by irreversibility,

the choice of c1 constrains the set of possible c2.

We compare the DM�s behavior in the di¤erent information scenarios, by indicating,

for each of them, the optimal pair (c�1; c
�
2). Recall that c

�
2 is the optimal amount of

environmental resource preserved at � = 2 given that information does not arrive in

period 1.

Let us look at �gures 3-7, where the values of (c�1; c
�
2) are indicated for all possible pairs

of relative bene�ts (x; y) 2 R2++, for each of the four information scenarios introduced
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in section 2.2. When we move towards the south-east (north-west) of the set of possible

pairs of relative bene�ts, preservation in both periods becomes more (less) convenient.

Figures 3, 4 and 5, in which, respectively, the three information scenarios (no), (exo)

and (endo) are represented, are drawn for the same values of the relevant parameters,

namely (p; q; �) = (1=2; 1=2; 1=2). In �gures 6 and 7 the (exo&endo) scenario is repre-

sented, with (p; q; �) = (1=2; 1=2; 1=2) and (p; q; �) = (1=2; 1=2; 1=3) respectively. Figure

8 represents the di¤erence in terms of (c�1; c
�
2) between the (exo&endo) scenario repre-

sented in �gure 7 and the (exo) scenario represented in �gure 4.

Consider now all the possible values of the pair (c�1; c
�
2) in the four information scenar-

ios represented in �gures 3-7. We are able to distinguish �ve di¤erent regions in terms

of (c�1; c
�
2):

� (w1; w2) region: the DM preserves everything (she waits) at � = 1 and also at

� = 2 when information does not arrive in period 1;

� (w1; d2) region: the DM preserves everything (she waits) at � = 1 and destroys

everything at � = 2 when information does not arrive in period 1;

� (t1; t2) region: the DM preserves only a part of the resource (she tests it) at � = 1

and preserves the same amount at � = 2 when information does not arrive in period 1;

� (t1; d2) region: the DM preserves only a part of the resource (she tests it) at � = 1

and destroys everything at � = 2 when information does not arrive in period 1;

� (d1; d2) region: the DM destroys everything at � = 1, hence also at � = 2.

Notice that the two regions in which the DM �tests�the environmental resource at

� = 1 are possible only when there is endogenous information (�g. 5, 6, 7).
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Figure 3. No Info,

(p; q; �) =
�
1
2
; 0; 0

� Figure 4. Exo Info,

(p; q; �) =
�
1
2
; 1
2
; 0
� Figure 5. Endo Info,

(p; q; �) =
�
1
2
; 0; 1

2

�

Figure 6. Exo&Endo Info,

� = q, (p; q; �) =
�
1
2
; 1
2
; 1
2

� Figure 7. Exo&Endo Info,

� < q, (p; q; �) =
�
1
2
; 1
2
; 1
3

� Figure 8. Exo&Endo (�g. 7)

vs Exo (�g. 4)
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4.1 Analysis of the Waiting Value

Let us calculate the Waiting Value according to the way it has been de�ned in (2). We

calculate the di¤erence between the optimal expected value of net bene�ts of preservation

in the (exo) scenario and in the (no) scenario. We are interested about how this di¤erence

varies according to x and y. In the regions in which this di¤erence is positive, the WV

is equal to

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

qpy if
y 2�
0; 1�p

p

i and x 2 (0; 1� p� py] (ww)1;2

(1� p� x)� (1� q)py if
y 2�
0; 1�p

p

i and
x 2 [1� p� py ;

1� p� (1� q) py]
(wd)1;2

(1� p)q � x if
y 2h
1�p
p
;+1

� and x 2 (0; (1� p)q] (wd)1

and equal to zero otherwise.

Compare �gure 4 to �gure 3. The region (ww)1;2 := �waiting both at � = 1 and

� = 2 with and without exogenous information�includes the values for (x; y) such that

(c�� )exo = (c
�
� )no = 1 for � = 1; 2. The regions (wd)1 := �waiting instead of destroying

at � = 1� and (wd)1;2 := �waiting instead of destroying both at � = 1 and � = 2�

include values for (x; y) such that the level of preservation is higher in the (exo) scenario,

respectively at � = 1; and also at � = 2 when information does not arrive in period 1.

Notice that theWV , whenever positive, is increasing with the probability of receiving

information exogenously; it is decreasing (or constant) with the level of x. As for the

probability p of the unfavorable state, the WV is decreasing in it in (wd)1 and (wd)1;2

and increasing in (ww)1;2, where both x and y are quite low; notice, however, that region

(ww)1;2 shrinks as long as p increases. In (ww)1;2, when information does not arrive in

period 1, theDM�s optimal behavior is the same in both information scenarios. However,
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the WV is positive even in this region. This is because, when exogenous information

arrives (with probability q) in period 1 and the unfavorable state (whose probability

is p) is revealed, the DM develops the whole resource at � = 2, i.e. (cu2)
� = 0, hence

obtaining the net bene�t y, so that the WV is qpy. This advantage occurs in (ww)1;2

and disappears when x and/or y becomes so large that we fall into (wd)1;2: in this case,

if information does not arrive in period 1 and the unfavorable state occurs in period

2; the decision to preserve at � = 2 is disadvantageous: it would have been better to

develop the resource at � = 2, as done by the DM in the (no) scenario. Consequently,

the WV is reduced by py, becoming (1� p� x) + qpy � py.

Generally speaking, theWV re�ects the main conclusion of Arrow and Fisher (1974)

about the QOV as de�ned in (1): with information exogenously arriving, the WV leads

the DM to choose a higher level of preservation of the environmental area for every

� . We extend this result to the case when exogenous information does not arrive with

certainty, hence for every q 2 [0; 1]. In fact, it is (c1�)exo � (c1�)no and (c2�)exo � (c2�)no,

independently from q 2 [0; 1]. The �rst inequality is trivial. The second can be easily

proven: because of irreversibility, it is always c2� � c1�, but since (c1�)exo � (c1�)no, the

DM in the (exo) scenario has, at � = 2; a larger choice interval, (c�2)exo 2 [0; (c1�)exo],

with respect to the (no) scenario, where (c�2)no 2 [0; (c1�)no]. Since the objective function

is the same in each information scenario, the choice (c2�)no is possible in both information

scenarios and so (c2�)exo cannot be lower than (c2�)no. This result can be observed by

comparing �gure 4 to �gure 3.

Lastly, notice that in the (exo) scenario we generically have corner solutions for c1 and

c2, for any q 2 [0; 1].12 Recall that theWV is non-decreasing with respect to q. However,

even for q = 1, the WV is never larger than the quasi-option value à la Arrow-Fisher,

i.e. 0 � EVexojq=1 ((c�1)exo)�EVno ((c�1)no) =WVjq=1 � QOV = EVexojq=1 (1)�EVno (1) :
12However, there are singular cases (speci�ed in footnote 9) in which we can have indeterminate

choices (c�1)exo 2 [0; 1] and/or (c�2)exo 2 [0; (c�1)exo].
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The two values coincide only if (c�1)exo = (c
�
1)no = 1 and EVno (1) = max

c22[0;1]
EVno(1; c2) =

EVno(1; 1). This happens only in region (ww)1;2, when both x and y are so low that it

is convenient to preserve everything for every � even in the (no) scenario.

4.2 Analysis of the Testing Value

The Testing Value has been de�ned in (4) as the di¤erence between the optimal expected

value of net bene�ts of preservation in the (exo&endo) scenario and in the (exo) scenario.

Hence, de�ning our �Quasi-Option V alue of exogenous and endogenous information�

as

QOVexo&endo = EV
�
exo&endo � EV �no (5)

and taking into account de�nitions (2) and (4), we �nd that

QOVexo&endo = WV + TV (6)

Thus, we introduce the Testing Value as an additional value of endogenous to exogenous

information. This value is always non-negative. In the regions in which the TV is

positive, it is equal to

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

[(1�p�x)�(1�q+�)py]2
4�py

if
y 2�
0; 1�p

p

i and
x 2(max f0; 1� p� (1� q + �)pyg ;

1� p� (1� q)py]
(tw)1;2

[(1�p�x)�(1�q��)py]2
4�py

if
y 2�
0; 1�p

p

i and
x 2[1� p� (1� q)py;

1� p� (1� q � �)py)
(td)1;2

[(1�p)(q��)�x]2
4(1�p)� if

y 2h
1�p
p
;+1

� and
x 2((1� p)max f0; q � �g ;

(1� p)q]
(tw)1

[(1�p)(q+�)�x]2
4(1�p)� if

y 2h
1�p
p
;+1

� and
x 2[(1� p)q;

(1� p)(q + �)]
(td)1
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and equal to zero otherwise.

Let us concentrate on �gure 8, where the di¤erence in terms of (c�1; c
�
2) between

the (exo&endo) scenario in �gure 7 and the (exo) scenario in �gure 4 is represented.

The regions (tw)1 := �testing instead of waiting at � = 1� and (tw)1;2 :=�testing

instead of waiting both at � = 1 and � = 2� include values for (x; y) such that the

level of preservation is lower in the (exo&endo) scenario than in the (exo) scenario,

respectively at � = 1; and also at � = 2 when information does not arrive in period

1. The regions (td)1 := �testing instead of destroying at � = 1�and (td)1;2 :=�testing

instead of destroying both at � = 1 and � = 2�include values for (x; y) such that the

level of preservation is higher in the (exo&endo) scenario than in the (exo) scenario,

respectively at � = 1; and also at � = 2 when information does not arrive in period 1.

Intuitively, given that the TV is linked to endogenous information, it should be

always increasing in the probability that this kind of information emerges (�). However,

this intuition is misleading. The TV depends positively on � only for high values of x,

i.e. when the acquisition of information through the development of the environmental

resource at � = 1 is relatively costly (region (td)1 and region (td)1;2).
13 When instead x is

low (region (tw)1 and region (tw)1;2), in the (exo&endo) scenario the DM faces a trade-

o¤. On the one hand, the higher the probability to obtain information endogenously,

the higher the �temptation�to develop in order to obtain information at � = 1. On the

other hand, it would be optimal to preserve at � = 1, given that the cost of preservation

at � = 1 is low and/or the bene�t in the favorable state of the world at � = 2 is high.

This is exactly what the DM does in the (exo) scenario. She does not face a trade-o¤

when information is only exogenous: it is optimal to �wait�both from an economic point

of view and from the point of view of acquiring and exploiting exogenous information.

13TV is increasing in � in region (td)1;2, since TV = [(1�p�x)�(1�q��)py]2
4�py for 1 � p � x 2

[(1� q � �)py; (1� q)py], so that, putting 1 � p � x = (1 � q � �)py + ��py with � 2 [0,1], we �nd
TV = �2�py

4 : Analogously, in region (td)1, putting x = (1� p)(q + �)� �(1� p)� with � 2 [0,1].
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This result is con�rmed by looking at �gure 8. The two regions in which, with only

exogenous information, the level of preservation is higher at � = 1, (tw)1 , and for every

� , (tw)1;2 , compared to the scenario in which also endogenous information is potentially

available, are also those in which the TV depends negatively on �. Notice that as long

as � increases, both regions (tw)1 and (tw)1;2 enlarge towards the left in �gure 8, hence

the set of net bene�ts of preservation for which endogenous information leads to less

preservation becomes greater. In particular, for � � q the region (w1; d2) in the north-

west of �gure 7 disappears. In fact, in the (exo&endo) scenario in �gure 6, in which it is

� = q = 1
2
, it is never optimal to preserve everything at � = 1 when y > 1. In this case,

in the second period the negative net bene�t of preservation in the unfavorable state of

the world is greater in absolute value than the positive net bene�t in the favorable state

of the world, given that both states are equally likely (p = 1
2
). The necessary condition

for the region (w1; d2) to emerge in the (exo&endo) scenario is that � < q; in other

words, it has to be more likely that information in period 1 arrives exogenously rather

than endogenously.

Notice, however, that for many values of the net bene�ts of preservation in the current

period and in each of the two states of the world in the future, the possibility of acquiring

information endogenously (added to the possibility of acquiring it exogenously) leads the

DM to preserve more at � = 1 (and often also at � = 2) with respect to the case in

which only exogenous information is potentially available. The reason is that endogenous

information often leads to internal solutions, i.e. to a only partial development of the

environmental resource. On the contrary, exogenous information alone generically leads

to corner solutions, i.e. to destroy completely or preserve completely the environmental

asset.14

Therefore, when the vector of relative net bene�ts of preservation belongs to region

(td)1 or to region (td)1;2 , the TV pushes the risk-neutral DM towards a higher level

14If the DM is risk averse, internal solutions could also emerge when information is only exogenous.
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of preservation of the environmental resource. Given that x is high in both (td)1 and

(td)1;2 , acquiring information through destroying at � = 1 is relatively costly for the

DM . Indeed, in correspondence of those values of x, the optimal choice both in the (no)

and in the (exo) scenario would be destroying the environmental resource at � = 1, hence

also at � = 2 (the DM does not face a trade-o¤). Instead, in the (exo&endo) scenario

the DM optimally chooses to �test�the environmental resource at � = 1: she destroys

only a small part of it, allowing herself to choose again (being potentially informed)

whether to destroy or preserve at � = 2 everything she has not �tested� at � = 1.

If information does not emerge in period 1 and y is high (region (td)1), she destroys

everything at � = 2, because the net bene�ts of preservation in the unfavorable state

of the world are high (in absolute value) with respect to those in the favorable state of

the world; if instead y is low (region (td)1;2), at � = 2 she preserves everything she has

preserved at � = 1.

This explains why disregarding the TV when the pair of relative net bene�ts be-

longs to regions (td)1 and (td)1;2 in �gure 8, would mean underestimating the potential

bene�cial role of dependent learning in terms of both present and future preservation.

Although its existence stems from endogenous information, surprisingly enough, the TV

is positively related to the probability of acquiring information exogenously. Indeed, in

all regions in which it is positive (hence also when additional endogenous information

leads to less preservation) the TV is increasing in q.

This result stresses the complementarity between endogenous and exogenous informa-

tion. Let us look for a moment at the problem from the other angle. When endogenous

information is available, the possibility to acquire information also exogenously ham-

pers the DM from destroying too much in order to acquire information endogenously.

Therefore, when both endogenous and exogenous information are available, their com-

plementarity seems to counterbalance their substitutability, hence reinforcing the e¤ect

of the TV on environmental preservation, at the same time moderating its natural �in-
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centive to destroy�to get (endogenous) information.

The importance of exogenous information for the nature itself of the TV that we have

de�ned in (4) is even more clear if we compare our TV to the one emerging without ex-

ogenous information. Consider the (endo) scenario, where only endogenous information

is available (exogenous information is completely absent). Recall the de�nition of the

QOVexo&endo in (5) and the relation (6). Intuitively, because of the assumption of risk

neutrality of the DM , one could de�ne the Testing Value as the di¤erence between the

optimal expected value function in the (endo) scenario and in the (no) scenario, i.e.

TV 0 = EV �endo � EV �no (7)

Given the results above and comparing �gure 5 to �gure 6, it is easy to see that

generally TV 0 6= TV : the latter depends on q, while the former is perforce independent.

Notice that, compared to the (no) scenario, the potential emergence of only endogenous

information leads to a lower level of resource preservation for every � in some regions

(x; y). This can be easily seen by comparing �gure 5 to �gure 3. Instead, we have shown

that, when � � q, the simultaneous presence of exogenous and endogenous information

always leads the DM to preserve more with respect to the (no) scenario (compare �gure

6 or 7 to �gure 3). However, when � > q, it is possible to destroy more with respect to the

(no) scenario. This happens only if, when destroying everything at � = 1, endogenous

information is more likely than exogenous information.

The di¤erence between the nature itself of the TV and of the TV 0 is even more

clear if one compares the (endo) scenario to the (exo) scenario, under the condition

that the probability of getting information is the same in the two scenarios, i.e. q̂ =

�̂ [1� (ĉ�1)endo], where (ĉ�1)endo is the optimal preservation level in the (endo) scenario

given �̂. It is easy to check that for no triple (x; y; p) the preservation level in the (endo)

scenario is larger than in the (exo) scenario (in �gures 4 and 5 the limit case q = � is
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represented for the (exo) and the (endo) scenario respectively).

5 Conclusions

In this paper, we have extended Arrow and Fisher (1974) two-period model in order

to analyze the e¤ects of the simultaneous presence of endogenous and exogenous in-

formation on the optimal preservation choices of a risk-neutral decision maker. First

of all, in this more general framework we replaced the quasi-option value (QOV ) à la

Arrow-Fisher with theWaiting V alue (WV ) attached to the increase in expected utility

due to the possibility of exogenously acquiring information about future net bene�ts of

preservation. We have shown the main features of the WV and that it plays a role sim-

ilar to the QOV in pushing the decision maker towards a higher level of preservation of

the environmental area, in the case of exogenous information potentially arriving. The

WV is the benchmark that we use to measure the importance of additional endogenous

information in leading the decision maker to an even higher level of preservation with

respect to the case in which only exogenous information is available. The main part of

the paper is devoted to the analysis of this �unexpected�role of dependent learning.

Miller and Lad (1984), Freeman (1984) and Fisher and Hanemann (1987) have shown

that in the Arrow-Fisher framework the policy of postponing the choice in order to

enable the decision maker to pro�t from the incoming information is sub-optimal when

this information is endogenous. In other words, if information can be acquired only

by developing any portion of the environmental resource in the current period, the

decision maker would never preserve the whole environmental resource in this period;

moreover, it can happen that the level of preservation is lower than in the scenario

where no information is available before the future choice. These intuitive conclusions

should apply a fortiori in the �only endogenous information�scenario we adopt in this

paper, in which we assume that the probability of information arrival is increasing in
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the level of development carried out. Nevertheless, we prove the counterintuitive result

that the possibility of acquiring information both endogenously and exogenously could

push the decision maker towards a higher level of preservation with respect to the case

where information arrives only exogenously. By generalizing Freeman (1984) and Fisher

and Hanemann (1987) analysis, we have introduced a Testing V alue (TV ), de�ned as

the additional value attached to endogenous information, when information arrives both

exogenously and endogenously. It is the additional gain the decision maker obtains when

she can receive information regarding future bene�ts by developing the environmental

resource in the current period, compared to the case in which she can only wait for the

information to arrive exogenously. We have shown that the TV is always non-negative

and that, if the probability of acquiring endogenous information is not higher than the

probability of acquiring it exogenously, it pushes the decision maker in the same direction

as the WV (i.e. towards a higher level of preservation) compared to the case in which

no information is available. Moreover, in many cases the TV pushes the decision maker

towards preservation of environmental resources more than the WV does. With regard

to the level of preservation in the �exogenous and endogenous�information scenario, we

�nd that, compared to the scenario in which only exogenous information is available, in

many cases accounting for additional endogenous information leads the decision maker

to preserve more in both periods. The reason is that the TV can lead the decision

maker to only partially develop the environmental resource; on the contrary, the WV

generically leads to corner solutions: Finally, whether additional endogenous information

leads to more or less preservation, the TV is increasing in the probability of acquiring

information exogenously. This result is evidence of a form of complementarity between

endogenous and exogenous information.

Our framework can be used to investigate some crucial environmental policy is-

sues. When both exogenous and endogenous information are available, it is not obvious

that preserving the whole amount of an environmental resource is the optimal choice.
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Nonetheless, it is not obvious that the possibility of acquiring information endogenously

leads to the development of a larger amount of the environmental resource. If it is the

case, disregarding the TV would mean understating the potential positive e¤ect of de-

pendent learning in terms of both present and future preservation. We show that this

happens especially when the cost of preservation in the current period is high. In this

case, in the presence of only exogenous information, it should be optimal to destroy

entirely the environmental resource. Instead, the possibility of acquiring information

also endogenously and the consequent emergence of the TV leads the decision maker to

destroy less of an environmental resource, with respect to the case in which she takes

into account only the WV . When preservation in the current period is relatively costly,

the choice to �test� the environmental resource, by destroying only a portion of it in

the current period, maximizes the decision maker�s intertemporal expected utility. Such

a choice at the same time minimizes the amount of environmental resource destroyed

in both periods: because of irreversibility, destroying a small part of the environmental

resource in the present often induces the decision to destroy less in the future.
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