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account by the regulator when setting the transport charge. We consider

various forms of competition in this market and derive the corresponding
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1 Introduction

The last two decades have witnessed a marked interest worldwide for the

introduction of competition in the natural gas industry. In the European

Union, the gas market has experienced since the second half of the nineties

a large-scale complex liberalization/deregulation process.1 The European

Commission (EC), under the terms of the 2003 EC gas directive, has com-

mitted to the establishment of a single market throughout Europe scheduled

to be fully open by July 2007.2 Although a large number of gas consumers in

Europe are now able to choose their suppliers and many steps have been taken

towards the harmonization of national legislation following the EU directives,

barriers to competition still remain. These primarily relate to market struc-

ture, national attitudes towards liberalization, access to gas supplies, and

access to key infrastructure facilities.3

Historically, natural gas has payed an important role in the European

energy economy. Various factors including high population density, extensive

urbanization, and availability of local gas production have contributed to the

development of intensive gas use within western Europe. This phenomenon

is reinforced by the fact that natural gas has a great potential for being

the most preferred choice of input for power generation in the European

Union since it is a “clean” fuel with higher efficiency levels than those of

its close competitors such as coal or fuel oil. However, in most European

countries, gas production is expected to significatively decline over the next

decade as existing gas fields are reaching maturity and new discoveries are

generally small. Thus, the European gas market will most probably become

increasingly dependent on imports from outside the region.4

1For an overview of these reforms, see Cremer et al. (2003).
2European Union Member States have all, except when specifically exempt from the

liberalization requirements, similar levels of market opening targets. Note, however, that
security of supply, an issue of great importance for the EU, might affect the rhythm at
which the liberation policies should be implemented.

3Overall, by the end of 2004, no less than 56% of gas consumed within Europe was
supplied to end-users who were legally able to choose their suppliers.

4Almost all European countries are net exporters of gas and many, including major
users such as France or Spain, are close to being totally independent on gas imports.
Moreover, Europe is expected to be the largest world market for imported natural gas

2



Norway is Europe’s only major gas exporter supplying about 14% of

European gas consumption. Russia supplies more than 60% of the gas im-

ported into Europe and is expected to remain its largest external supplier for

decades. Algeria supplies more than 25% of the gas imported into Europe

by pipeline to southern Europe and as liquefied natural gas (LNG) to several

countries including France, Belgium, Greece, and Portugal. The need for

supply diversification is thus strong and European gas importers are indeed

willing to diversify their sources and LNG provides a way to accomplish this.5

LNG imports currently represent 11% of total imports into the region and

are expected to steadily grow in the future.

Recently made demand and supply projections for Europe, even when

based on moderate expectations of future demand for natural gas, have shown

the existence of a substantial gap between demand and the potential supply

from outside Europe. The network extensions and new gas connections that

need to be put in place in order to meet demand in 2020 mainly involve new

pipelines from Russia, Algeria, and the Caspian sea Area as well as new LNG

terminals to receive LNG from Egypt and the Middle East.6

Given these specific features of demand and supply, the European gas sys-

tem raises important “investment” questions that might not be found in the

US. Although the European Union has clearly set an objective of introducing

competition, the market is likely to remain for some time dominated by a

few large producers. Thus, the issue of the impact of transport capacity on

market structure and market power certainly deserves some attention. While

a great number of papers has analyzed the way upstream transport networks

affect the working of downstream markets, to the best of our knowledge, the

major part of this literature has taken as given the capacity of the transport

network and the charge applied for its use.7 In this paper, both of these

factors are considered as endogenous.

between 2000 and 2020 (Cayrade, 2004).
5Note that while the LNG solution is feasible, it is relatively costly.
6A rough estimate of the bill for these infrastructure projects lies between 150 and 200

billion US dollars. See Sagen and Aune (2004) for more details.
7See, among others, De Vany and Walls (1994), Doane and Spulber (1994) in gas, and

Borenstein et al. (2000), Léautier (2001) in electricity.
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The plan of this paper is as follows. The next section discusses some

related literature. In section 3, we develop a model of an upstream firm pro-

viding a marketer with transport capacity at a regulated price. The regulator

sets the transport charge taking as given competition in output between an

incumbent and the marketer in a downstream gas commodity market. The

outcome of the downstream firms’ interaction is synthesized by generic equi-

librium output responses to changes in the transport charge.8 Section 4

applies this general setting to specific forms of market conduct with a vary-

ing degree of competition. Section 4 performs a comparative analysis of the

various regulatory policies considered, in particular, an attempt is made to

assess their relative welfare performance. The last section summarizes the

main lessons to be drawn from the analysis and gives some directions for

further research. The appendix contains technical proofs.

2 Transport network and market structure -

an overview of the literature

The issue of the impact of transport capacity on market structure and market

power has been addressed in both the institutional/empirical and the theo-

retical literature on energy. In the electricity sector, competitive strategies

in deregulated markets have become a very active area of research. Most of

the published literature (see, e.g., Green and Newbery, 1992, Von der Fehr

and Harbord, 1993, Borenstein and Bushnell, 1999, Rudkevich et al., 1998,

and Green, 1999) examines strategic behavior in a static setting. Concerning

imperfect competition in generation, many authors have proposed models in

which generators take advantage of transmission constraints to exert local

market power (Oren, 1997, Cardell et al. 1997, Borenstein et al., 2000, and

Nasser, 1998). These studies have either abstracted from the details of trans-

mission or used a variant of a standard transportation model to describe the

geographic differences among markets. The choice of possible strategies fol-

lows the common Cournot quantity approach. A general finding is that the

role of the transmission segment goes beyond that of simply bringing power

8In this paper, we abstract away from information problems.
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from competitive sources.

More relevant to the European power market, Smeers and Wei (1999)

propose an oligopoly model where both power generators and consumers

are spatially dispersed. The generators compete à la Cournot in a context

where transmission prices are regulated, i.e., they take their rivals’ output

and the prices for transmission services as fixed when deciding about profit-

maximizing output. The transmission firm takes the quantities of transmis-

sion services demanded by the generators as fixed when it determines the

transmission prices according to certain regulatory rules. In this framework,

they analyze the impact of the market power retained by the generators af-

ter the restructuring of the electricity industry. They also assess the effect

of pricing of transmission services on the generation segment and the in-

vestment in ransmission assets. A similar issue was analyzed in Smeers and

Wei (1997) where they consider two-stage models for the electricity industry

where the second stage (the energy market) and the first stage (investment)

behaviors obey different competition paradigms.

From a regulatory perspective, Nasser (1998) describes how generation

and transmission of power have been unbundled to foster the introduction

of competition in the electricity industry. The author identifies the impor-

tance of designing institutions that lead to “optimal” network expansion.

He describes alternative arrangements that have been proposed which can

be classified as follows: planning by a government entity, regulation of the

network operator, and decentralization of investment decisions supported by

pricing of congestion of the network.9 He shows that the socially optimal

network expansion is such that the marginal cost of capacity equals its so-

cial marginal value. This value is given in terms of the congestion reduction

brought about by a marginal increase of capacity.

Léautier (2000) highlights the importance of the optimal design of regula-

tory contracts for the operators of power transmission networks in the United

States. He examines the regulation of a for-profit transmission company in

charge of bringing competitive power to wholesale power markets. Such con-

9Brazil has opted for the first solution, the UK for the second, and Argentina for the
third.
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tracts should ensure financial viability of the transmission activity, promote

adequate usage of the service, induce productive efficiency, and encourage

optimal expansion of the network. This last feature is considered by the

author as critical for the development of efficient wholesale power markets.10

Similarly, Léautier (2001) identifies two important effects of transmission

expansion. First, part of market demand will be met by cheap power in-

stead of expensive local power, the so-called “substitution effect.” Second,

competition among power generators is increased, the so-called “strategic ef-

fect.” The author finds that while the substitution effect is always welfare

improving, the welfare impact of the strategic effect is not unambiguous, i.e.,

it might be the case that consumers pay a lower price but generators earn

lower profits.

In the natural gas sector, for the case of the US gas industry and mainly

on the empirical front, a large stream of the literature has examined the im-

pact of interconnecting sub-networks on the degree of market integration and

competition (see, e.g., Doane and Spulber, 1994, and De Vany and Walls,

1994).11 Some of the earlier efforts at characterizing various aspects of the

European natural gas market include Tzoannos (1977) and Haurie et al.

(1987). Mathiesen et al. (1987) screen the European market with respect

to three scenarios, namely, perfect competition, Cournot competition, and

collusion among producers. Other applications of the Cournot-type compet-

itive framework have since been developed for the purpose of analyzing the

European gas market. A three-level Stackelberg game has been developed

by Grais and Zheng (1996) to study the transport of natural gas from Russia

to Western Europe.

The potential impact of the possible introduction of open access in the

European gas system was also studied by means of a Cournot framework in

Golombek et al. (1995). The authors explore the impact of open access on

10Léautier (2000) argues that insufficient transmission capacity creates four costs: higher
than optimal congestion, higher than optimal power losses, lower than optimal reliability,
and imperfect competition in generation.

11For a review of the literature related to the impact of third-party access to pipelines
in the natural gas industry see Cremer et al. (2003).
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market power exerted by natural gas producers through the development of

marketers. Using a numerical model where producers behave in a Cournot

fashion and face a competitive fringe of marketers, they show that this com-

petitive effect is indeed significant. In a more elaborated model, Golombek

et al. (1998) study the impact on the imperfectly competitive supply side of

the natural gas industry of policies that introduce competition in the demand

side. They show that these pro-competitive demand measures will generate

incentives to break up national gas producers into several independent do-

mestic producers.

De Wolf and Smeers (1997) adopt a Stackelberg game perspective for

their work on the European natural gas market. Breton and Zaccour (2001)

concentrate on analyzing a duopoly of producers under a security constraint

but in a somewhat abstract form. More recently, Boots et al. (2004) model

a successive oligopoly applied to the European natural gas market. In this

numerical model, Cournot producers are also Stackelberg leaders with respect

to traders, who may be Cournot oligopolists or price takers. They obtain that

successive oligopoly yields higher prices and lower consumer welfare than

an oligopoly with only one level. Moreover, due to the high concentration

of traders, prices are distorted more by market power in trading than in

production. Finally, they show that when traders increase in number, prices

approach competitive levels.12

Even though the literature shows the abundance of models supposed to

represent the European natural gas market, these models are meant to be

short-term models where there is no place for capacity expansion decisions.

This constitutes a severe handicap when it comes to analyzing the norma-

tive implications of capacity expansion and its impact on market structure.

Recently, an approach has been followed in which capacity expansion is ex-

plicitly considered as a means to improve the efficiency of gas markets.13 One

of the objectives of this stream of the literature is to explore the possibility

of having to build “excess” transport capacity when the latter is an instru-

12Egging and Gabriel (2005) extend the model of Boots et al. (2004) by considering the
role of storage and transmission both assumed to be perfectly competitive.

13See Cremer and Laffont (2002), Cremer et al. (2003), Gasmi et al. (2005), and Gasmi
and Oviedo (2005).
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ment among a set of others available to control regional market power. The

question of interest is then what types of policies, including imports, are to

be implemented by network operators concerned by the exercise of market

power by incumbent local monopolies. The basic theoretical setting used

to analyze this issue consists of a simple model in which a “local” market is

dominated by a single firm and is linked to an alternative competitive market

by a transport line.

Gas produced in the competitive market at some relatively low marginal

cost can be imported to the regional market through the transport line.

The capacity of this line is under the control of the network owner/operator

whose objectives are assumed to coincide with those of a social planner.

Within this basic framework, capacity control can be motivated in two ways.

First, it can act as a remedy to any possible productive inefficiency due to

the incumbent monopolist’s use of a low efficiency technology by allowing for

access to a more efficient source of natural gas. Second, by the mere fact that

the building of capacity allows to import cheaper gas into the regional market,

competitive pressure can be put on the local firm in order to mitigate the

exercise of its market power and hence to alleviate the allocative inefficiency

it entails.

In addition to capacity, Gasmi et al. (2005) introduce the possibility

for the social planner to set price and use transfers between consumers and

the firm. However, in the simplest framework considered, price control and

transfers are both intended to exclusively deal with the allocative inefficiency

associated with the exercise of market power. The goal then is to study the

degree to which transport capacity and the two alternative control instru-

ments substitute or complement each other as instruments to maximize social

welfare in this second-best environment. The authors seek to investigate this

substitutability relationship under complete information and both for a fixed

and a variable set of control instruments available to the network operator.14

A natural extension of this complete information analysis is to introduce

14In particular, the authors consider a progressive reduction of the set of control in-
struments available to the social planner to account for the progresses achieved in the
deregulation of the gas industry.
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incomplete information, and this is undertaken in Gasmi and Oviedo (2005).

There are various ways to incorporate information incompleteness in the

simple framework considered and the authors choose to introduce adverse

selection by assuming that the local monopoly privately knows its marginal

cost and that the regulator has only some beliefs on it described by a prob-

ability that it takes on either a low or a high value. The authors investigate

then how this asymmetric information affects capacity planning for a given

control scheme.

While Gasmi et al. (2005) and Gasmi and Oviedo (2005) analyze the

role of transport capacity as an instrument available to the regulator to mit-

igate the effect of gas suppliers’ market power, in this paper we take a step

further and study the case where, because of the advances made in the lib-

eralization/deregulation process, the regulator looses the ability of himself

building transport capacity. Since the natural gas industry combines ac-

tivities possessing natural monopoly characteristics (pipeline transport and

distribution) with those that are potentially competitive (production and

commodity supply), it is natural to see a combination of regulation of price

and non-price behavior coexisting with competition. We assume that trans-

port capacity is provided by a vertically separated private firm (upstream)

and used in the commodity gas market by a trading agent, the marketer

(downstream), which competes in quantities with an incumbent firm. How-

ever, since pipeline transportation and distribution have natural monopoly

characteristics, regulation of price and non-price behavior is required. In this

paper, we focus on the impact of the regulation of the upstream transport

charge on the competitive performance of the downstream gas commodity

market.

We assume that a perfectly informed regulator sets the transport charge

taking as given competition in output between an incumbent and the mar-

keter in a downstream gas commodity market. The outcome of the down-

stream firms’ interaction is synthesized by generic equilibrium output re-

sponses to changes in the transport charge. We then apply this general set-

ting to specific forms of market conduct with a varying degree of competition,

namely, no competition, Stackelberg competition, Cournot competition, and
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competition exercised by a fringe of gas traders. Once we have studied the

impact of price regulation on the alternative downstream equilibria consid-

ered, we proceed to perform a comparative analysis of the optimal transport

charge policies with the objective of assessing their relative welfare perfor-

mance by means of simulations. While the simulations confirm the general

wisdom that more competition is preferred to less from the consumers and the

social welfare points of view, they also show some less expected results about

the ordering of key policy variables, such as the capacity of pipelines and its

price, across different competitive scenarios that reveal some redistribution

conflicts.

3 Transport charge regulation for a general

downstream market equilibrium

Consider a regional natural gas commodity market, market B, in which an

incumbent firm, firm I, produces gas with a technology described by a cost

function CI(qI) where qI is output. We assume that the institutional frame-

work allows a marketer M to import gas from an alternative market, market

A, at a constant unit commodity price c provided a regulated transport

charge pK is paid to a transporter T that builds a pipeline of capacity K

linking the two markets at cost CT (K) + FT .15 Consumption takes place in

market B according to an inverse demand function p(·) assumed to be linear.

Figure 1 pictures this simple industry structure.16

15The incumbent’s cost function is assumed to be increasing, strictly convex, and twice
continuously differentiable with C

′′′
I = 0. The transporter’s variable cost function is in-

creasing convex.
16Although this framework shares some features with that typically used to study access

to an essential facility such as the local loop in telecommunications, two important aspects
specific to the case of natural gas considered here are worth mentioning. First, the essential
facility (the pipeline) is used only by the entrant (the marketer). Second, the incumbent
supplier of the final good (natural gas) is completed separated from the owner of the
essential facility (the capacity builder).
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I : CI(qI), p(·)
M : c, pK , p(·)

T : CT (K), FT , pK

I

Figure 1: Industry configuration

We assume that the transporter is regulated. More specifically, the reg-

ulator determines the transport charge pK anticipating equilibrium behavior

in the downstream gas commodity market B. Our main objective then is to

investigate the relationship between the level of this transport charge (and

of the implied social welfare) and firms’ conduct in this market.

Let us analyze the regulator’s problem of setting the price of transport

capacity pK . Total supply in the downstream gas commodity market Q, com-

posed of qI units produced locally by the incumbent and K units imported

by the marketer, brings consumers a net surplus CS given by

CS = S(qI + K)− p(qI + K)[qI + K] (1)

where S(·) represents gross consumer surplus. The profit function of the

upstream firm T , the transporter, is given by17

ΠT = pKK − CT (K)− FT (2)

In the downstream market, firms I and M compete in output and their

profit functions are respectively given by18

ΠI = p(qI + K)qI − CI(qI) (3)

ΠM = [p(qI + K)− pK − c]K (4)

Since capacity is an input for the marketer, equilibrium levels of output

(and hence price) in this downstream market are going to depend on the

level of the transport charge set by the regulator. This is formalized by

17The cost structure of this upstream firm reflects the fact that natural gas transporta-
tion is highly capital-intensive and typically considered as a natural monopoly.

18We assume that in equilibrium both firms are active.
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writing downstream levels of output as functions qI(pK) and K(pK), where

the specific forms of these functions will be determined by the precise nature

of the interaction between firms. So, as far as timing, first the regulator

sets pK , second the transporter builds K, and third the marketer uses K to

compete with the incumbent.

Using (1)-(4), the utilitarian social welfare function W is given by19

W (pK) = S(qI(pK) + K(pK))

−CI(qI(pK))− cK(pK)− CT (K(pK))− FT (5)

The regulator’s program consists in maximizing (5) under the participation

constraint of the transporter20

ΠT (pK) = pKK(pK)− C(K(pK))− FT ≥ 0 (6)

Letting φT designate the Lagrange multiplier associated with (6) and using

the fact that ∂S(·)
∂qI

= ∂S(·)
∂K

= p(·), we obtain the following first-order condi-

tions:

(p− C ′
I)

dqI

dpK

+ (p− c− C ′
T )

dK

dpK

+φT

[
K + (pK − C ′

T )
dK

dpK

]
= 0 (7)

φT [pKK − CT (K)− FT ] = 0 (8)

When the transporter’s participation constraint is not binding, (φT = 0), the

second-order conditions which are necessary and sufficient for a unique local

maximum are given by

(p− c− C ′
T )

d2K

dp2
K

+ (p− C ′
I)

d2qI

dp2
K

+(p′ − C ′′
T )

(
dK

dpK

)2

+ (p′ − C ′′
I )

(
dqI

dpK

)2

< 0 (9)

When it is binding (φT > 0), second-order conditions are always satisfied.

Rewriting the first-order conditions (7)-(8), we obtain:

19This social welfare is merely the unweighted sum of net consumer surplus and firms’
profits.

20We assume that the set defined by this participation constraint is convex which insures
that the regulatory program is concave. A sufficient condition is concavity of the profit
function (2), obtained if 2 dK

dpK
+ (pK − C ′T )d2K

dp2
K
− C ′′T ( dK

dpK
)2 ≤ 0.
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Proposition 1 For a given equilibrium in the downstream market described

by the six-tuple (K(pK), qI(pK), dK
dpK

, dqI

dpK
, d2K

d2pK
, d2qI

d2pK
), at the optimum, trans-

port charge, outputs, price and shadow cost of the transporter’s participation

constraint satisfy the following condition:

(1 + φT )(pK − C ′
T )

dK(pK)

dpK

+ φT K(pK) =

−
(

(p− pK − c)
dK(pK)

dpK

+ (p− C ′
I)

dqI(pK)

dpK

)
(10)

When the transporter’s participation constraint is binding, φT > 0, we

obtain standard average-cost transport pricing pK = CT (·)+FT

K(·) satisfying (10).

When this constraint is not binding, φT = 0, we obtain that the transport

charge is distorted away from marginal cost with a bounded distortion, pK−
C ′

T (·) ≤ (p − C ′
I)(−dqI/dpK

dK/dpK
). The interpretation of this distortion becomes

easier if one assumes that | dK
dpK

| > | dqI

dpK
|, in which case an interior solution

satisfies C ′
I < c + C ′

T , i.e., the cost of a marginal unit produced by the

incumbent is less than the net cost of a marginal imported unit, (c + pK)−
(pK − C ′

T ).21

The equation stated in Proposition 1 shows at the left-hand side the social

marginal effect in the upstream market of an increase in the transport charge.

More precisely, this is the impact on both the marginal and infra marginal

units of capacity built by the regulated transporter. At the right-hand side,

it shows the effect of this increase of pK in the downstream market, namely,

on the marginal profitability of both the marketer and the incumbent. At

the optimum, these two effects should be balanced. Clearly, their respective

magnitude will depend on the specific nature of the downstream firms’ in-

teraction. The next section considers capacity pricing policies under various

assumptions about this interaction.

21The condition | dK
dpK

| > | dqI

dpK
| holds in all of our formal representations of downstream

competition.
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4 Transport charge regulation for specific down-

stream market equilibria

We consider four scenarios of downstream firms’ behavior with a decreas-

ing degree of competition, namely, no competition between firms I and M ,

Stackelberg competition, Cournot competition, and the case in which the

incumbent faces a competitive fringe represented by firm M .

4.1 No downstream competition

In this section, we consider the polar case in which there is no competition

in the downstream market, i.e., the incumbent and the marketer behave as

if they were a single entity.22 These firms maximize then joint profits given

by

ΠI + ΠM = p(qI + K)(qI + K)− CI(qI)− (pK + c)K (11)

For a given transport charge pK , solving the joint profit-maximization prob-

lem yields the following first-order conditions:23

[p(qI + K)− pK − c] + (qI + K)p′ = 0 (12)

[p(qI + K)− C ′
I ] + (qI + K)p′ = 0 (13)

The profit-maximizing levels of output (Km(pK), qm
I (pK)) in this market

are found by solving the system of first-order conditions (12)-(13).24 How

these outputs respond to changes in the transport charge pK set by the

regulator can be seen from the formulas provided in the next lemma.

22Alternatively, one can think of the marketer as being an affiliate of the incumbent and
although the firms maximize joint profits, they have to comply with some strict accounting
separation rule.

23The second-order condition is 2p′C ′′I < 0 and is satisfied for our linear demand and
convex cost function.

24Note that (12) and (13) imply pK = C ′I−c. Existence and uniqueness of the maximum
of the joint profit function for K, qI > 0 is guaranteed in our industry configuration by
the strict convexity of the incumbent’s cost function.
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Lemma 1 The no downstream competition profit-maximizing outputs

(Km(pK), qm
I (pK)), satisfy:

dKm

dpK

=
1

2p′
− 1

C ′′
I

dqm
I

dpK

=
1

C ′′
I

d2Km

dp2
K

=
C
′′′
I

C ′′
I

(
dqm

I

dpK

)2

d2qm
I

dp2
K

= −C
′′′
I

C ′′
I

(
dqm

I

dpK

)2
(14)

An increase in the transport charge leads to a decrease in transport capacity

and an increase in incumbent’s output. However, the reduction in transport

capacity dominates the increase in incumbent’s volume, and the net effect is a

reduction of total output and hence an increase in market price. Substituting
dKm

dpK
and

dqm
I

dpK
from this lemma into Proposition 1 allows us to characterize the

optimum when there is no competition in the downstream gas commodity

market.25

Proposition 2 Assuming no competition in the downstream market, at the

optimum, transport charge, outputs, price and shadow cost of the trans-

porter’s participation constraint satisfy the following conditions:

−(1 + φm
T )(pm

K − C
′m
T )(2p′ − C

′′m
I )

2p′C ′′m
I

+ φm
T Km =

(
(pm − pm

K − c)(2p′ − C
′′m
I )− 2(ps − C

′m
I )p′

2p′C ′′m
I

)
(15)

[pm − pm
K − c] + (qm

I + Km)p′ = 0 (16)
[
pm − C

′m
I

]
+ (qm

I + Km)p′ = 0 (17)

When the transporter’s participation constraint is binding, we obtain stan-

dard average-cost transport pricing pm
K = CT (·)+FT

Km satisfying (15)-(17). When

25The regulator’s maximization program is well behaved since the participation con-
straint of the transporter when there is no downstream competition defines a convex set.
Indeed, replacing the results shown in Lemma 1 into the condition guaranteeing the con-
cavity of the transporter’s profit function (see footnote 20) yields that it is always true
since we assume C

′′′
I = 0.
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this constraint is not binding, φm
T = 0, we obtain that pm

K < C
′m
T (·) +

2(pm−C
′m
I )p′

(2p′−C
′′m
I )

and C
′m
I < c + C

′m
T .26 The detailed argument behind the ex-

istence of this bound is presented at the end of the proof of Proposition 2

in the appendix.27 Let us now study transport capacity policies when down-

stream competition prevails.

4.2 Stackelberg downstream competition

In this section, we assume that competition in the downstream market is à la

Stackelberg where the incumbent and the marketer are respectively the leader

and the follower. For a given transport charge pK , solving the marketer’s

profit-maximization problem yields the following first-order condition:28

[p(qI + K)− pK − c] + Kp′ = 0 (18)

This first-order condition is solved for K to yield the marketer’s reaction func-

tion. The latter is substituted into the incumbent’s profit function which is

then maximized with respect to qI . The first-order condition of this maxi-

mization problem is

[p− C ′
I ] +

qIp
′

2
= 0 (19)

The equilibrium (KsI (pK), qsI
I (pK)) of this Stackelberg game is obtained

as the solution to the system of first-order conditions (18) and (19).29 Some

26From Lemma 1, |dKm

dpK
| > |dqm

I

dpK
|, which as discussed in section 2, implies C

′m
I <

c + C
′m
T . Given this condition, second-order conditions are always satisfied. Indeed,

when φT = 0, replacing the results obtained in this lemma into condition (9), yields
−C ′′T C ′′I

3 + p′C ′′I
2[4C ′′T +C ′′I ]− 4p′2C ′′I [C ′′T +C ′′I ]− 4p′2C

′′′
I [c+C ′T −C ′I ] < 0, which is true.

27This is done for all of the other propositions corresponding to the competitive scenarios
considered in this paper.

28The second-order condition is 2p′ < 0, which is true given our linear demand. It is well
known that log-concavity of demand and convexity of the cost function of the incumbent
imply that the best response function of the marketer is monotone and decreasing with
slope belonging to the interval (-1,0). In our case, since demand is linear this slope is equal
to − 1

2 .
29Existence and uniqueness of this equilibrium is guaranteed by our assumptions on

demand and incumbent’s cost function. It corresponds to the tangency point between the
marketer’s reaction function and a level curve of the incumbent’s profit function in the
positive quadrant.

16



formulas that allow us to see how these equilibrium outputs vary with the

regulated transport charge pK are presented in the next Lemma.

Lemma 2 The Stackelberg equilibrium (with the incumbent as a leader) in

the downstream market, (KsI (pK), qsI
I (pK)), satisfies:

dKsI

dpK

=
1

2

[
1

p′
+

1

2(p′ − C ′′
I )

]

dqsI
I

dpK

= − 1

2(p′ − C ′′
I )

d2KsI

dp2
K

= − C
′′′
I

2(p′ − C ′′
I )

(
dqsI

I

dpK

)2

d2qsI
I

dp2
K

=
C
′′′
I

(p′ − C ′′
I )

(
dqsI

I

dpK

)2
(20)

Lemma 2 shows that under Stackelberg competition, an increase in the trans-

port charge leads to a decrease in transport capacity and an increase in in-

cumbent’s output. However, the reduction in transport capacity more than

offsets the increase in incumbent’s volume, yielding a reduction of total out-

put and hence an increase in market price. Substituting dKsI

dpK
and

dq
sI
I

dpK
from

this lemma into Proposition 1 allows us to characterize the optimum when

there is downstream Stackelberg competition with the incumbent as a leader.

Proposition 3 Assuming downstream Stackelberg competition with the in-

cumbent as a leader, at the optimum, transport charge, outputs, price and

shadow cost of the transporter’s participation constraint satisfy the following

conditions:

(1 + φsI
T )(ps

K − C
′sI
T )(3p′ − 2C

′′sI
I )

4p′(p′ − C
′′sI
I )

+ φsI
T Ks =

−
(

(psI − psI
K − c)(3p′ − 2C

′′sI
I )− 2(ps − C

′sI
I )p′

4p′(p′ − C
′′sI
I )

)
(21)

[psI − psI
K − c] + KsIp′ = 0 (22)

[psI − C
′sI
I ] +

qsI
I p′

2
= 0 (23)
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When the transporter’s participation constraint is binding, we obtain stan-

dard average-cost transport pricing psI
K = CT (·)+FT

KsI
satisfying (21)-(23). When

this constraint is not binding, we obtain that psI
K < C

′sI
T (·) +

2(psI−C
′sI
I )p′

(3p′−2C
′′sI
I )

and

C
′sI
I < c + C

′sI
T .

The case with the marketer as a leader is treated as follows. The Stack-

elberg equilibrium (KsM (pK), qsM
I (pK)) is obtained by solving the first-order

conditions

[p(qI + K)− C ′
I ] + qIp

′ = 0 (24)

[p(qI + K)− pK − c] + K

(
1− p′

2p′ − C ′′
I

)
p′ = 0 (25)

The next lemma provides useful information on the relationship between this

equilibrium and the transport charge.

Lemma 2’ The Stackelberg equilibrium (with the marketer as a leader) in

the downstream market, (KsM (pK), qsM
I (pK)), satisfies:

dKsM

dpK

=
1

2

[
1

p′
+

1

(p′ − C ′′
I )

]

dqsM
I

dpK

= − 1

2(p′ − C ′′
I )

d2KsM

dp2
K

= 0

d2qsM
I

dp2
K

= 0

(26)

Cross-examining Lemmas 2 and 2’, we see that when leadership is transferred

to the marketer, the slope of the incumbent’s equilibrium output function re-

mains unchanged. This is so because the transport charge has only a second-

order effect on the incumbent’s profits which is zero given our assumption

of linear demand. As to the marketer, because the transport charge has a

first-order effect on its profits, switching from the role of a follower to that

of a leader, it sees the slope of its equilibrium output (capacity) function

increased in absolute value.

Lemma 2’ shows that an increase in transport charge has opposite effects

on capacity and incumbent’s output but the net effect on aggregate output

is negative. Substituting dKsM

dpK
and

dq
sM
I

dpK
from this lemma into Proposition 1
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allows us to characterize the optimum when there is downstream Stackelberg

competition with the marketer as a leader.

Proposition 3’ Assuming downstream Stackelberg competition with the mar-

keter as a leader, at the optimum, transport charge, outputs, price and shadow

cost of the transporter’s participation constraint satisfy the following condi-

tions:

(1 + φsM
T )(psM

K − C
′sM
T )(2p′ − C

′′sM
I )

2p′(p′ − C
′′sM
I )

+ φsM
T KsM =

−
(

(psM − psM
K − c)(2p′ − C

′′sM
I )− (psM − C

′sM
I )p′

4p′(p′ − C
′′sM
I )

)
(27)

[psM − psM
K − c] + KsM

(
1− p′

2p′ − C
′′sM
I

)
p′ = 0 (28)

[psM − C
′sM
I ] + qsM

I p′ = 0 (29)

When the transporter’s participation constraint is binding, we obtain stan-

dard average-cost transport pricing psM
K = CT (·)+FT

KsM
satisfying (27)-(29). When

this constraint is not binding, we obtain that psM
K < C

′sM
T (·) +

(psM−C
′sM
I )p′

(2p′−C
′′sM
I )

and C
′sM
I < c + C

′sM
T .

4.3 Cournot downstream competition

In this section, we assume that competition in the downstream market is à

la Cournot. For a given transport charge pK , the marketer and the incum-

bent simultaneously maximize own profits yielding the following first-order

conditions:30

[p(qI + K)− pK − c] + Kp′ = 0 (30)

[p(qI + K)− C ′
I ] + qIp

′ = 0 (31)

30The second-order conditions for the marketer’s and incumbent’s problem are respec-
tively 2p′ < 0 and 2p′ − C ′′I < 0, which are always satisfied under our demand and cost
assumptions.
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Solving these first-order conditions yields the Cournot equilibrium (Kc(pK),

qc
I(pK)) and the next lemma provides useful information on the relationship

between this equilibrium and the transport charge.31

Lemma 3 The Cournot equilibrium (Kc(pK), qc
I(pK)) in the downstream mar-

ket, satisfies:

dKc

dpK

=
1

2

[
1

p′
+

1

3p′ − 2C ′′
I

]

dqc
I

dpK

= − 1

3p′ − 2C ′′
I

d2Kc

dp2
K

= − C
′′′
I

3p′ − 2C ′′
I

(
dqc

I

dpK

)2

d2qc
I

dp2
K

=
2C

′′′
I

3p′ − 2C ′′
I

(
dqc

I

dpK

)2
(32)

Assuming Cournot competition, an increase in the transport charge leads to

a decrease in transport capacity and an increase in incumbent’s output with

a net negative effect on aggregate output.32 Substituting dKc

dpK
and

dqc
I

dpK
from

this lemma into Proposition 1 allows us to characterize the optimum when

there is downstream Cournot competition.

Proposition 4 With Cournot competition in the downstream market, at

the optimum, transport charge, outputs, price and shadow cost of the trans-

porter’s participation constraint satisfy the following conditions:

(1 + φc
T )(pc

K − C
′c
T )(2p′ − C

′′c
I )

p′(3p′ − 2C
′′c
I )

+ φc
T Kc =

−
(

(pc − pc
K − c)(2p′ − C

′′c
I )− (pc − C

′c
I )p′

p′(3p′ − 2C
′′c
I )

)
(33)

[pc − pc
K − c] + Kcp′ = 0 (34)

[pc − C
′c
I ] + qc

Ip
′ = 0 (35)

31Existence and uniqueness of this equilibrium is guaranteed by our assumptions on
demand and incumbent’s cost function. It corresponds to the crossing point of the firm’s
reaction functions derived from (30) and (31).

32This corresponds to the general result in Industrial Organization saying that with
strategic substitutes and a unique Cournot equilibrium, a firm’s output decreases with its
marginal cost and increases with its competitor’s (Tirole, 1988, p. 220). In this paper, we
find that this result also holds for the other forms of imperfect competition considered.
Moreover, we find that an increase in one firm’s marginal cost decreases industry output.
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When the transporter’s participation constraint is binding, we obtain stan-

dard average-cost transport pricing pc
K = CT (·)+FT

Kc satisfying (33)-(35). When

this constraint is not binding, we obtain that pc
K < C

′c
T (·) +

(pc−C
′c
I )p′

(2p′−C
′′c
I )

and

C
′c
I < c + C

′c
T .

4.4 Downstream competitive fringe

Now, assume that the incumbent faces a competitive fringe of gas traders

represented by the marketer M . For a given transport charge pK , this com-

petitive fringe maximizes profits taking market price as given by ordering

from the transporter capacity K such that its marginal cost is equal to mar-

ket price:

p(qI + K)− pK − c = 0 (36)

The incumbent maximizes own profits over the residual demand and hence

sets its marginal revenue equal to its marginal cost:

[p(qI + K)− C ′
I ] + qIp

′ = 0 (37)

The market equilibrium (Kf (pK), qf
I (pK)) is obtained by solving (30) and

(31) and useful information on this equilibrium are provided in the next

Lemma.

Lemma 4 The equilibrium (Kf (pK), qf
I (pK)) obtained when the incumbent

faces a competitive fringe in the downstream market satisfies:

dKf

dpK

=
1

p′
+

1

p′ − C ′′
I

dqf
I

dpK

= − 1

p′ − C ′′
I

d2Kf

dp2
K

= − C
′′′
I

p′ − C ′′
I

(
dqf

I

dpK

)2

d2qf
I

dp2
K

=
C
′′′
I

(p′ − C ′′
I )

(
dqf

I

dpK

)2
(38)
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Again, we see from this lemma that an increase in transport charge has

opposite effects on capacity and incumbent’s output but the net effect on

aggregate output is negative. Substituting dKf

dpK
and

dqf
I

dpK
from this lemma

into Proposition 1 allows us to characterize the optimum when there is a

competitive fringe of gas traders in the downstream market.

Proposition 5 when the incumbent faces a competitive fringe, at the opti-

mum, transport charge, outputs, price and shadow cost of the transporter’s

participation constraint satisfy the following conditions:

(1 + φf
T )(pf

K − C
′f
T )(2p′ − C

′′f
I )

p′(p′ − C
′′f
I )

+ φf
T Kf =

−
(

(pf − pf
K − c)(2p′ − C

′′f
I )− (pf − C

′f
I )p′

p′(p′ − C
′′f
I )

)
(39)

pf − pf
K − c = 0 (40)

[pf − C
′f
I ] + qf

I p′ = 0 (41)

When the transporter’s participation constraint is binding, we obtain stan-

dard average-cost transport pricing pf
K = CT (·)+FT

Kf satisfying (39)-(41). When

this constraint is not binding, we obtain that pf
K = C

′f
T (·) +

(pf−C
′f
I )p′

(2p′−C
′′f
I )

and

C
′f
I < c + C

′f
T .

5 A comparative analysis through simulations

So far, we have characterized individual transport charge policies associated

with various assumptions about the competitive behavior of firms in the

downstream market. Our objective is to compare these policies. While the

complete analytical comparison of these second-best policies is beyond the

scope of this paper, this is however possible with specific functional forms

and simulations. Let us then assume that

p(qI + K) = γ − (qI + K), CI(qI) =
θ

2
q2
I , CT (K) = ωK + FT (42)
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A straight application of Lemmas 1-5 allows us to derive the slopes of the

equilibrium output functions under the corresponding assumptions about

downstream competition. The results are shown in Table 1 where the indices

m, sI , sM , c, and f designate the five forms of competition considered.

Table 1: Slopes of equilibrium output functions

Market
Assumption

dK

dpK

dqI

dpK

dQ

dpK

m −2+θ
2θ

1
θ

−1
2

sI − 3+2θ
4(1+θ)

1
2(1+θ)

− 1+2θ
4(1+θ)

sM − 2+θ
2(1+θ)

1
2(1+θ)

−1
2

c − 2+θ
3+2θ

1
3+2θ

- 1+θ
3+2θ

f −2+θ
1+θ

1
1+θ

-1

These slopes convey information on the downstream firms’ output re-

sponses to changes in pK . The magnitude of these responses are ranked as

follows:

For 0 < θ < 1, we have
∣∣∣∣
dKc

dpK

∣∣∣∣ <

∣∣∣∣
dKsI

dpK

∣∣∣∣ <

∣∣∣∣
dKsM

dpK

∣∣∣∣ <

∣∣∣∣
dKf

dpK

∣∣∣∣ <

∣∣∣∣
dKm

dpK

∣∣∣∣ (43)

and for θ > 1, we have
∣∣∣∣
dKc

dpK

∣∣∣∣ <

∣∣∣∣
dKsI

dpK

∣∣∣∣ <

∣∣∣∣
dKsM

dpK

∣∣∣∣ <

∣∣∣∣
dKm

dpK

∣∣∣∣ <

∣∣∣∣
dKf

dpK

∣∣∣∣ (44)

Whereas for any θ, we obtain
∣∣∣∣
dqc

I

dpK

∣∣∣∣ <

∣∣∣∣
dqsI

I

dpK

∣∣∣∣ =

∣∣∣∣
dqsM

I

dpK

∣∣∣∣ <

∣∣∣∣∣
dqf

I

dpK

∣∣∣∣∣ <

∣∣∣∣
dqm

I

dpK

∣∣∣∣ (45)

∣∣∣∣
dQsI

dpK

∣∣∣∣ <

∣∣∣∣
dQc

dpK

∣∣∣∣ <

∣∣∣∣
dQsM

dpK

∣∣∣∣ =

∣∣∣∣
dQm

dpK

∣∣∣∣ <

∣∣∣∣
dQf

dpK

∣∣∣∣ (46)
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With the functional forms described in (42), we see from Table 1 that

the equilibrium output functions are linear in the transport charge. The

equilibrium capacity functions are negatively sloped across the five forms of

competition considered while those of the incumbent’s output are positively

sloped. However, as stated in section 3, the net effect on aggregate out-

put is always negative, i.e., an increase in pK will be accompanied by an

unambiguous increase in gas commodity price.

From (43) and (44) we see that irrespective of the degree of convexity of

the incumbent’s cost function, θ, when competition prevails, i.e., under mar-

ket assumptions sI , c, sM , and f , the response of equilibrium capacity to an

increase in pK are unambiguously ranked as |dKc

dpK
| < |dKsI

dpK
| < |dKsM

dpK
| < |dKf

dpK
|.

This says that the more rigorous the level of competition is in the downstream

market, the more responsive capacity is to changes in pK .33 As mentioned

above, since this (negative) capacity effect dominates the (positive) effect

on the incumbent’s output, aggregate output decreases. From (46), we see

that under market assumptions m (no competition) and sM (marketer as a

Stackelberg leader), an increase in pK leads to decreases in aggregate output

of the same magnitude. This result is driven by the fact that pK has a direct

effect on the marketer’s profits (it directly affects its marginal cost) and our

demand and cost assumptions.34

While these slopes of the equilibrium outputs are instructive by them-

selves, recall from the theory presented in the previous sections that they

feed the regulator’s decision. More specifically, these slopes need to be sub-

stituted into the conditions that characterize the optimal capacity pricing

rules derived in Propositions 2-5. Let us state next these rules for each of

the five forms of downstream competition in turn.

pm
K − ω =

(
φm

T

1 + φm
T

)
2θKm

(2 + θ)
−

(
1

1 + φm
T

)
θQm

(2 + θ)
(47)

33We view Stackelberg leadership by the marketer as representing more vigorous com-
petition than Stackelberg leadership by the incumbent.

34The indirect effect corresponds to the impact of pK on equilibrium output levels and
the subsequent effect on profits.
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psI
K − ω =

(
φsI

T

1 + φsI
T

)
4(1 + θ)KsI

(3 + 2θ)

+

(
1

1 + φsI
T

)
[qsI

I − (3 + 2θ)KsI ]

(3 + 2θ)
(48)

psM
K − ω =

(
φsM

T

1 + φsM
T

)
2(1 + θ)KsM

2 + θ

+

(
1

1 + φsM
T

)
[qsM

I − (1 + θ)KsM ]

(2 + θ)
(49)

pc
K − ω =

(
φc

T

1 + φc
T

)
(3 + 2θ)Kc

(2 + θ)

+

(
1

1 + φc
T

)
[qc

I − (2 + θ)Kc]

(2 + θ)
(50)

pf
K − ω =

(
φf

T

1 + φf
T

)
(1 + θ)Kf

(2 + θ)
+

(
1

1 + φf
T

)
qf
I

(2 + θ)
(51)

In order to compare the performance of these five policies we ran simu-

lations with the following parameters values: γ = 1, θ = 0.67, c normalized

to zero, ω and FT continuously varying in [0, 0.13] and [0, 0.012] respec-

tively. Figures 2(a-b), 3, 4(a-b), and 5(a-b) exhibit regions in the {FT , ω}-
space within which we obtained different ranking of K, qI , pK , ΠI , ΠM ,

CS, ΠI + ΠM , and W . The region with dashed lines contours represents the

(FT , ω) pairs for which there does not exist a real root to the regulator’s max-

imization program when there is no competition in the downstream market.
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Figure 2a: Ranking of K Figure 2b: Ranking of qI

Figures 2a and 2b show the ranking of optimal capacity and incumbent’s

output, respectively, in the {FT , ω}-space. We see that when the down-

stream market is competitive, the more rigorous the level of competition, the

higher (the lower) the capacity (the incumbent’s output). Hence, competi-

tion “demands” transport capacity. The capacity levels without downstream

competition cannot be unambiguously ranked relative to those achieved with

some downstream competition. As to the incumbent’s output, an unambigu-

ous ranking is obtained when we restrict ourselves to market assumptions

f , m, and c. In such a case, going from either no competition or Cournot

competition to a competitive fringe market structure lowers the incumbent’s

output. However, moving from no competition to Cournot competition in-

creases it. This suggests that a high level of competition in trading might be

an effective means of reducing the incumbent’s market share.

26



0.002 0.004 0.006 0.008 0.01 0.012

0.02

0.04

0.06

0.08

0.1

0.12

TF

1
2

3

4

56

7

8

9

10

11

12

13

14

15

IM

IM

IM

IM

IM

IM

IM

IM

IM

IM

IM

IM

IM

IM

IM

s

K

c

K

m

K

s

K

f

K

s

K

c

K

m

K

f

K

s

K

s

K

c

K

f

K

m

K

s

K

s

K

f

K

c

K

m

K

s

K

f

K

s

K

c

K

m

K

s

K

s

K

m

K

c

K

s

K

f

K

s

K

m

K

c

K

f

K

s

K

s

K

m

K

f

K

c

K

s

K

s

K

f

K

m

K

c

K

s

K

f

K

s

K

m

K

c

K

s

K

m

K

s

K

c

K

s

K

f

K

m

K

s

K

c

K

f

K

s

K

m

K

s

K

f

K

c

K

s

K

m

K

f

K

s

K

c

K

s

K

f

K

m

K

s

K

c

K

s

K

ppppp:

ppppp:

ppppp:

ppppp:

ppppp:

ppppp:

ppppp:

ppppp:

ppppp:

ppppp:

ppppp:

ppppp:

ppppp:

ppppp:

ppppp:

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Figure 3: Ranking of pK in regions 1-15

Figure 3 shows that if there is competition in the downstream market but

it is not excessive (hence, market assumptions m and f are excluded), the

transport charge decreases as the marketer plays a more important competi-

tive role in the downstream market, psI
K > pc

K > psM
K . This result is consistent

with the unambiguous ordering KsI < Kc < KsM of the marketer’s output

which suggests that as the marketer’s ability to compete becomes stronger

(going from sI to c and to sM) society finds it worthwhile to provide it with

more capacity. When the two excluded market structures are put back as

possible options, the optimal transport charges achieved cannot be unam-

biguously ranked between them and relative to market assumptions sI , c,

and sM .35 Despite this somewhat unstable behavior of the optimal trans-

port charge and corresponding output levels across the various assumptions

about the downstream market structure, it turns out that the ordering of

social welfare and its components, i.e., consumer surplus and firms’ profits,

is much less surprising as we now show.

35One would have expected the general result that as competition becomes more aggres-
sive, the optimal transport charge would be lower (and optimal capacity would be higher).
Our simulations do not, however, support this conjecture. Even more surprising is the
result that pf

K and pm
K cannot be unambiguously ordered.
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Figure 4a: Ranking of ΠI Figure 4b: Ranking of ΠM

Figure 4a shows that under some competition, the incumbent is always

better off being a Stackelberg leader than a Cournot competitor, a Stackel-

berg follower or a dominant firm facing a competitive fringe, its least preferred

option (Πf
I < ΠsM

I < Πc
I < ΠsI

I ). Between excessive competition and no com-

petition at all, the choice is obvious since Πf
I < Πm

I is always true. As to

the marketer, Figure 4b shows that when the marketer is not merely a price

taker and it is independent from the incumbent (this excludes f and m), its

profits become larger as one moves from sI to c and to sM . When merging

with the incumbent is a possibility, the marketer prefers it to a situation

where it is an independent follower (Πm
M > ΠsI

M).
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Figure 5a: Ranking of CS Figure 5b: Ranking of W

Figures 5a and 5b confirm the basic economic principle that more com-

petition should benefit consumers and society as a whole (CSm < CSc <

CSsI < CSsM < CSf and Wm < W c < W sI < W sM < W f ), although we

find in our simulations a small region where, because the capacity build-

ing technology is characterized by a (very) high fixed cost and a (very)

low marginal cost, society is better off under Cournot competition than un-

der Stackelberg leadership of the incumbent. Given that the welfare levels

achieved are available, we now examine the preferences of the agents over the

different scenarios.36 Table 2 shows the outcome of pairwise contests based

on these welfare levels. Each cell of this table shows the choice of the agent

indicated in the column in the contest indicated in the row.37

36Note that the transporter is indifferent among scenarios as regulation always bind
its participation constraint. Moreover, it is obvious that under market structure f the
marketer makes zero profits.

37A cell showing two choices corresponds to a case where the agent’s welfare ordering is
not unambiguous.
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Table 2: Pairwise contests
Contest Consumers Incumbent Marketer Society

m vs. sI sI m, sI m sI

m vs. sM sM m, sM m, sM sM

m vs. c c m, c m, c c
m vs. f f m m f
sI vs. sM sM sI sM sM

sI vs. c sI sI c sI , c
sI vs. f f sI sI f
sM vs. c sM c sM sM

sM vs. f f sM sM f
c vs. f f c c f

Three implications of this table are worth mentioning.38 First, it appears

that having the marketer as a follower is generally a “poor” policy. Second, a

close examination of the regions of the parameter space indicates that there

is no room for a Pareto-improvement, i.e., a move that will make all agents

better off. Third, there is a conflict between consumers (and society) and the

downstream firms in the choice between no or some competition (m, sI , c, sM)

and strong competition (f). Indeed, downstream firms will always oppose

an extreme strengthening of competition in the downstream market.

6 Conclusion

Traditionally, regulation and competition have been viewed as substitutes

for improving the efficiency of some specific markets. Regulation has been

typically applied to industries where competition is not sustainable; the so-

called “natural monopolies.” This was, and still is to some extent, the case

of public utilities for decades, most notably the telecommunications, electric-

ity and natural gas industries. Since the eighties, however, following major

changes in technology and industry structure, these two mechanisms have

come to increasingly complement each other. These industries have moved

38The reader should realize that before drawing conclusions from this table, compati-
bility among the regions of the parameter space over which the choice(s) is (are) made
should be checked.
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from what essentially was a vertically integrated structure subject to heavy

regulation to one in which the natural monopoly portion is separated from

segments deemed ready for competition. In gas, transport remains largely

under a regulated monopoly while commodity supply has been progressively

open to competition.39 This paper has attempted to assess the relative mer-

its of policies that combine upstream regulation with alternative approaches

to downstream competition.

This paper has considered the relationship between the regulated portion

of the gas industry (transport) and the segment that has been subject to

liberalization (commodity supply).40 We have modeled the role of pricing of

transport capacity in the determination of the equilibrium in the commodity

market served by an incumbent and a marketer. We have first character-

ized the optimal transport capacity pricing rule assuming a “generic” form

of downstream competition. This social welfare maximization program has

shown that the regulator should balance the impact of the transport charge

between the marginal and infra marginal units of capacity built by the trans-

porter (upstream), on the one hand, and the marginal profitability of the

marketer and the incumbent (downstream), on the other hand. We have

then proceeded to analyze this tradeoff under alternative assumptions about

the strategic interaction between firms in the downstream market. In order to

compare these second-best policies we have relied on numerical simulations.

While the simulations have confirmed the general wisdom that more com-

petition is preferred to less from the consumers and the social welfare points

of view, they have also shown some less expected results about the ordering

of key policy variables, such as the capacity of pipelines and its price, across

different competitive scenarios. These results have also revealed some redis-

tribution conflicts. In particular, although desirable from a social welfare

point of view, a reform that supports high entry in the gas trading segment

39The deregulation experience of the UK gas industry provides a good illustration of
this interaction between regulation and competition (Waddams Price, 1997).

40We should mention the analogy with the electricity industry in which transmission is
regulated and generation is open to competition. However, while the approach followed in
this paper might be applicable to electricity, the specificities of this sector, in particular,
non storability of electricity and network externalities (implied by kirchhoff’s laws), should
be carefully taken into account.
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has been found to make both the incumbent and the existing marketer worse

off.41 The comparative analysis has also shown the important role played by

the transporter’s technology which, in this paper, has been assumed to be

perfectly known by the regulator.

This work raises a whole set of open questions to be investigated in the

future. The results obtained so far in our simple industry configuration have

shown that transport capacity plays a major role in the shaping of the indus-

try. Indeed, it affects its horizontal structure, its regional developments, and

its degree of vertical integration. Adequate regulation is crucial for the net-

works to follow an “optimal” expansion path and to be financially viable, and

for the capacity building activity to be efficient. Concerning the latter, an im-

mediate extension of the model considered here would consist in introducing

in the regulator-transporter relationship the assumption that the transporter

is privately informed about some aspect of its technology. One would expect

this asymmetry of information to have an important impact on the capacity

pricing schedules and hence on the functioning of the downstream market.42

Our model can also be used to analyze the role of temporary initiatives such

as gas release measures. Under gas release programs, the incumbent in the

downstream gas commodity market is mandated to release a share of its sup-

ply, i.e., long-term contracts, to its competitors. In effect, these measures

are short-term substitutes to investments in capacity and hence could foster

effective competition in the short run.

41This is clearly an instance where the strategic affect dominates the substitution effect
(see Léautier, 2001).

42Gasmi and Oviedo (2005) have explored the impact on transport capacity of asym-
metric information on technology of gas commodity supply when the downstream market
is a monopoly.
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Appendix

Proof of Proposition 1 Condition (1) in the proposition is just the first-order condition
(7) rewritten in such a way that at the left-hand side we obtain the terms that show the
impact of pK on the profitability of the transporter, and at the right-hand side the terms
that show the impact on the incumbent and the marketer. ¥

Proof of Lemma 1 Differentiate the first-order conditions (12) and (13) with respect to
pK to obtain dK(·)

dpK
= 1

2p′ − dqI

dpK
, dqI(·)

dpK
= ( 2p′

C′′I −2p′ )
dK
dpK

, and d2K(·)
dp2

K
= −d2qI

dp2
K

= Ωm[2d2K
dp2

K
p′−

2( dqI

dpK
)2C

′′′
I ], where Ωm ≡ [(2p′−C ′′I )]−1. Then solve the system of equations composed of

the first-order derivatives to obtain dKm

dpK
= 1

2p′ − 1
C′′I

< 0 and dqm
I

dpK
= 1

C′′I
> 0 which are

rewritten as shown in the first column of (14). Solve the system of equations composed of

the second-order derivatives to obtain d2Km

dp2
K

= C
′′′
I

C
′′
I

( dqm
I

dpK
)2 and d2Km

dp2
K

= −C
′′′
I

C
′′
I

(dqm
I

dpK
)2 which

are rewritten as shown in the second column of (14). ¥

Proof of Proposition 2 First, substitute the results (14) from Lemma 1 into condition
(10) from Proposition 1, to obtain (15). Next, rewrite the first-order conditions (12) and
(13) evaluated at the optimum. This yields (16) and (17).

When φm
T > 0, the capacity pricing rule described by (15) is equivalent to standard average-

cost pricing. When φm
T = 0, from (15) we obtain that pm

K = C
′m
T (·) + (pm − pm

K − c) +
2(pm−C

′m
I )p′

(2p′−C
′′m
I )

. From (16) we obtain (pm − pm
K − c) > 0 which implies pm

K < C
′m
T (·) +

2(pm−C
′m
I )p′

(2p′−C
′′m
I )

and C
′m
I < c + C

′m
T . ¥

Proof of Lemma 2 The slopes and the convexity of the incumbent’s and marketer’s
equilibrium outputs, Ks and qs

I , under Stackelberg competition are obtained in a similar
way to those under the assumption of no downstream competition. Differentiate the first-
order condition (18) with respect to pK to obtain dK(·)

dpK
= 1

2 ( 1
p′− dqI

dpK
) and d2K(·)

dp2
K

= − 1
2

d2qI

dp2
K

.

Similarly, differentiate (19) to get dqI(·)
dpK

= ( 2p′

2C′′I −3p′ )
dK
dpK

and d2qI(·)
dp2

K
= −Ωs

1[2
d2K
dp2

K
p′ −

2( dqI

dpK
)2C

′′′
I ], where ΩsI

1 ≡ [(3p′ − 2C ′′I )]−1. Solve the system of equations given by the

first-order derivatives to obtain dKsI

dpK
= 1

2p′ + 1
4(p′−C′′I ) < 0 and dq

sI
I

dpK
= − 1

2(p′−C′′I ) > 0
which are rewritten as shown in the first column of (20). Next, solve the system of second-
order derivatives and obtain d2KsI

dp2
K

= −Ω
sI
2
2 [ dqI

dpK
C
′′′
I ] dqI

dpK
and d2q

sI
I

dp2
K

= ΩsI
2 [ dqI

dpK
C
′′′
I ] dqI

dpK
,

where ΩsI
2 ≡ [(p′ −C ′′I )]−1, which are rewritten as shown in the second column of (20). ¥

Proof of Proposition 3 First, substitute the results (20) from Lemma 2 into condition
(10) from Proposition 1, to obtain (21). Next, rewrite the first-order conditions (18) and
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(19) evaluated at the optimum. This gives (22) and (23).

When φsI

T > 0, the capacity pricing rule described by (21) is equivalent to standard average-
cost pricing. When φsI

T = 0, from (21) we obtain that psI

K = C
′sI

T (·) + (psI − psI

K −
c) + 2(psI−C

′sI
I )p′

(3p′−2C
′′sI
I )

. From (22) we get (psI − psI

K − c) > 0 which implies psI

K < C
′sI

T (·) +

2(psI−C
′sI
I )p′

(3p′−2C
′′sI
I )

and C
′sI

I < c + C
′sI

T . ¥

Proof of Lemma 2’ Differentiate the first-order conditions (24) and (25) with respect
to pK , which since C

′′′
I = 0 imply dqI(·)

dpK
= ( p′

C′′I −2p′ )
dK
dpK

, dK(·)
dpK

= 2p′−C′′I
p′(2C′′I −3p′) [p

′ dqm

dpK
− 1],

and d2K(·)
dp2

K
= d2qI

dp2
K

= 0. Solve the system of first-order derivatives to get dKsM

dpK
= 1

2p′ +
1

2(p′−C′′I ) < 0 and dq
sM
I

dpK
= − 1

2(p′−C′′I ) > 0 which are rewritten as shown in the first column
of (26). ¥

Proof of Proposition 3’ Substituting the results (26) from Lemma 2’ into condition (10)
from Proposition 1, we obtain (27). Next, rewrite the first-order conditions (24) and (25)
evaluated at the optimum,. This yields (28) and (29). The rest of the proof is omitted as
it closely follows the proof of Proposition 3. ¥

Proof of Lemma 3 Differentiate the first-order condition (30) with respect to pK to obtain
dK(·)
dpK

= 1
2 ( 1

p′ − dqI

dpK
) and d2K(·)

dp2
K

= − 1
2

d2qI

dp2
K

(see the proof of Lemma 2). Next, differentiate

(31) with respect to pK to get dqI(·)
dpK

= ( p′

C′′I −2p′ )
dK
dpK

and d2qI(·)
dp2

K
= −Ωc

1[
d2K
dp2

K
p′−( dqI

dpK
)2C

′′′
I ],

where Ωc
1 ≡ [(2p′ − C ′′I )]−1. Solve the system of first-order derivatives to get dKc

dpK
= 1

2p′ +
1

(3p′−2C′′I ) < 0 and dqc
I

dpK
= − 1

(3p′−2C′′I ) > 0 which are rewritten as shown in the first column

of (32). Solve the system of second-order derivatives to obtain d2Kc

dp2
K

= −Ωc
2[

dqI

dpK
C
′′′
I ] dqI

dpK

and d2qc
I

dp2
K

= 2Ωc
2[

dqI

dpK
C
′′′
I ] dqI

dpK
, where Ωc

2 ≡ [(3p′ − 2C ′′I )]−1, which are rewritten as shown
in the second column of (32). ¥

Proof of Proposition 4 Substitute the results (32) from Lemma 3 into condition (10)
from Proposition 1, to obtain (33). Next, rewrite the first-order conditions (30) and (31)
evaluated at the optimum. This yields (34) and (35).

When φc
T > 0, the capacity pricing rule described by (33) is equivalent to standard average-

cost pricing. When φc
T = 0, from (33) we obtain that pc

K = C
′c
T (·)+(pc−pc

K−c)+ (pc−C
′c
I )p′

(2p′−C
′′c
I )

.

From condition (34) we get (pc − pc
K − c) > 0 which implies pc

K < C
′c
T (·) + (pc−C

′c
I )p′

(2p′−C
′′c
I )

and

C
′c
I < c + C

′c
T . ¥
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Proof of Lemma 4 Differentiate the first-order condition (36) with respect to pK to get
dK(·)
dpK

= ( 1
p′ − dqI

dpK
) and d2K(·)

dp2
K

= −d2qI

dp2
K

. Next, from the proof of Lemma 3 we know the

values of dqI(·)
dpK

and d2qI(·)
dp2

K
. Solve the system of first-order derivatives to obtain dKf

dpK
=

1
p′ + 1

(p′−C′′I ) < 0 and dqf
I

dpK
= − 1

(p′−C′′I ) > 0 which are rewritten as shown in in the first

column of (38). Next, solve the system of second-order derivatives to get d2Kf

dp2
K

= −d2qf
I

dp2
K

=

−Ωf
2 [ dqI

dpK
C
′′′
I ] dqI

dpK
, where Ωf

2 ≡ [(p′−C ′′I )]−1 which are rewritten as shown in in the second
column of (38). ¥

Proof of Proposition 5 Substitute the results (38) from Lemma 4 into condition (10)
from Proposition 1, to obtain (39). Next, rewrite the first-order conditions (36) and (37)
evaluated at the optimum. This yields (40) and (41).

When φf
T > 0, the capacity pricing rule described by (39) is equivalent to standard average-

cost pricing. When φf
T = 0, from (39) we get pf

K = C
′f
T (·) + (pf − pf

K − c) + (pf−C
′f
I )p′

(2p′−C
′′f
I )

.

From condition (40), we obtain (pf − pf
K − c) = 0 which implies pf

K = C
′f
T (·) + (pf−C

′f
I )p′

(2p′−C
′′f
I )

and C
′f
I < c + C

′f
T . ¥
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