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Abstract
What preferences will prevail in a society of rational individuals when preference

evolution is driven by their success in terms of resulting payoffs? We show that when
individuals’preferences are their private information, a convex combinations of self-
ishness and morality stand out as evolutionarily stable. We call individuals with such
preferences homo moralis. At one end of the spectrum is homo oeconomicus, who acts
so as to maximize his or her material payoff. At the opposite end is homo kantiensis,
who does what would be “the right thing to do,” in terms of material payoffs, if all
others would do likewise. We show that the stable degree of morality - the weight
placed on the moral goal - equals the index of assortativity in the matching process.
The motivation of homo moralis is arguably compatible with how people often reason,
and the induced behavior appear to agree with pro-social behaviors observed in many
laboratory experiments.
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1 Introduction

Most of contemporary economics is premised on the assumption that human behavior is
driven by self-interest. This assumption provides predictive power in many areas of eco-
nomics. Moreover, economists have used it to identify conditions under which self-interest
leads to the common good. However, in the early history of the profession, it was common to
include moral values in human motivation, see e.g. Smith (1759) and Edgeworth (1881), and
for more recent examples, Arrow (1973), Laffont (1975), Sen (1977), and Tabellini (2008).1

Moreover, in recent years many economists, particularly within behavioral and experimental
economics, have begun to question the predictive power of pure selfishness in certain inter-
actions and turned to social, or “other-regarding”preferences. Our goal is here to clarify
the evolutionary foundation of human motivation. Like many others before us, but now in a
more general setting, we investigate whether pure self-interest is favored by evolution. With
virtually no restrictions on the class of potential preferences that may be selected for, our
main result is that natural selection leads to a certain one-dimensional spectrum of moral
preferences, a spectrum that sprang out from the mathematics. At one end of this spectrum
is pure self-interest and at the other is pure ethical reasoning in line with Kant’s categorical
imperative.

It is well-known that it may be advantageous in strategic interactions to be commit-
ted to certain behaviors, even if these appear to be at odds with one’s objective self-interest
(Schelling, 1960). Likewise, certain other-regarding preferences such as altruism, spite, recip-
rocal altruism, or inequity aversion, if known or believed by others, may be strategically
advantageous (or disadvantageous). For example, a proposer in ultimatum bargaining may
be more generous if the responder is known or believed to be inequity averse rather than
solely interested in own monetary gains. This raises the further question whether evolution
would favor such preferences.

In the literature addressing this issue, usually called the indirect evolutionary approach,
pioneered by Güth and Yaari (1992), much work has been devoted to the case where individ-
uals are uniformly randomly matched and know each others’preferences.2 Usually, evolution
then favors other preferences than those of homo oeconomicus (see Heifetz, Shannon, and
Spiegel, 2007, for a particularly general such result). By contrast, when individuals are uni-
formly randomly matched and preferences are private information, evolution leads to the
self-interested homo oeconomicus, see Ok and Vega-Redondo (2001), and Dekel, Ely and
Yilankaya (2007). We here propose a theory for why evolution may lead to preferences that

1See Binmore (1994) for a game-theoretic discussion of ethics.

2See Frank (1987), Robson (1990), Güth and Yaari (1992), Ellingsen (1997), Bester and Güth (1998),
Fershtman and Weiss (1998), Koçkesen, Ok and Sethi (2000), Bolle (2000), Possajennikov (2000), Ok and
Vega-Redondo (2001), Sethi and Somanathan (2001), Heifetz, Shannon and Spiegel (2006, 2007), Dekel, Ely
and Yilankaya (2007), Alger and Weibull (2010, 2011), and Alger (2010).
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differ from those of homo oeconomicus even when preferences are private information. The
reason for our different result is that we permit assortativity in the matching process that
brings individuals together.

More exactly, we analyze the evolution of preferences in a large population where individ-
uals are randomly and pairwise matched to interact. In each interaction, individual behavior
is driven by (subjective) utility maximization, while evolutionary success is driven by some
(objective) payoff. The key element in our theory is that the matching process may be more
or less assortative, that is, individuals with the same preferences may be more or less likely
to be matched with each other. Such assortativity arises as soon as there is some probability
that the individuals inherited their preferences from some common ancestor (be it a genetic
or a cultural ancestor). Assortativity is arguably common, because of a tendency to inter-
act with kin, with people in the same geographical area or from the same school, or with
people with the same culture, religion, or values (see e.g. Eshel and Cavalli-Sforza, 1982).
By contrast, existing models of preference evolution assume that individuals are uniformly
randomly matched.3 The matching process is here exogenous, and, building on Bergstrom
(2003), we identify a single parameter, the index of assortativity, as a key parameter for the
population-statistical analysis. We generalize the definition of evolutionary stability to allow
for arbitrary degrees of assortativity in the matching process, and apply this to preference
evolution when each matched pair plays a (Bayesian) Nash equilibrium of the associated
game under incomplete information, that is, as if they each knew the statistical preference
distribution in their matches, but not the preferences of the other individual in the match
at hand.

With a minimum of additional assumptions, this leads to a remarkable result: a certain
convex combination of selfishness – “maximization of own payoff”– and a certain form
of morality – “to do what would lead to maximal payoff if everybody else did likewise”–
stands out as evolutionarily stable. Individuals with preferences in this one-dimensional class
will be called homo moralis and the weight attached to the moral goal the degree of morality.
A special case is the familiar homo oeconomicus, whose utility function coincides with the
objective payoff function. At the other extreme one finds homo kantiensis, who strives to
maximize the payoff that would result should everybody behave in the same way.

Our main finding is that evolution selects that degree of morality which equals the index
of assortativity in the matching process. In a resident population, such preferences turn out
to provide the most effective protection against rare mutants, since they induce their carriers
to behave in such a way that the same behavior is then also payoff-optimal for rare mutants,
should such appear. Hence, it is as if moral preferences with the right weight attached to
the moral goal preempt mutants; a rare mutant can at best match the payoff of the resident
population.

3Exceptions are Alger and Weibull (2010, 2011) and Alger (2010).
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This result has dire consequences for homo oeconomicus in many situations. In particular,
homo oeconomicus is selected against as soon as an individual’s payoffdepends on the other’s
action and the matching process has a positive index of assortativity. Arguably, these two
features are common, implying that we should expect a positive degree of morality, rather
than the pure selfishness of homo oeconomicus, to prevail in many settings.

It is beyond the scope of this paper to provide a comprehensive analysis of the behavior of
homo moralis. We do, however, show that homo moralis’behavior in interactions commonly
studied in laboratory experiments is compatible with observation (as reported in, e.g., Fehr
and Gächter, 2000, Gächter, Herrmann and Thöni, 2004, Henrich et al., 2005, and Gächter
and Herrmann, 2009). In particular, homo moralis gives positive amounts in dictator games,
may reject positive amounts in ultimatum games, and contributes more to public goods
than would be motivated by material self-interest.4 For further analyses of the behavioral
implications of preferences similar to those of homo moralis, see Laffont (1975), Brekke,
Kverndokk, and Nyborg (2003), and Huck, Kübler and Weibull (2011).5

As a side result, we obtain a new interpretation of evolutionary stability of strategies
(here under random matching with arbitrary degree of assortativity), namely, that these are
precisely the behaviors one will observe in Nash equilibrium play under incomplete informa-
tion, when evolution operates at the level of preferences, rather than directly on strategies.
This sharpens and generalizes the result in Dekel et al. (2007) that preference evolution un-
der incomplete information and uniform random matching in finite games implies symmetric
Nash equilibrium play and is implied by strict symmetric Nash equilibrium play (in both
cases with Nash equilibrium defined in terms of payoffs).

The model is set up in the next section. In Section 3 we establish our main result and show
some of its implications. Section 4 discusses applications to commonly studied games, and
Section 5 is devoted to finite games. In Section 6 we study a variety of matching processes.
Section 7 discusses related literature, morality and altruism, and empirical testing. Section
8 concludes. Longer mathematical proofs have been relegated to an appendix.

2 The model

Consider a population where individuals are matched into pairs to engage in a symmetric
interaction with the common strategy set, X. While behavior is driven by (subjective) utility
maximization, evolutionary success is determined by the resulting payoffs. An individual
playing strategy x against an individual playing strategy y gets payoff , or fitness increment,

4However, we do not here carry out a full-fledged analysis of experimental data. See Section 7 for a
suggestion for how such an analysis could be done.

5See Bacharach (1999) for “team reasoning”and Roemer (2010) for an approach to “Kantian equilibrium.”
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π (x, y), where π : X2 → R. We will refer to the pair 〈X, π〉 as the fitness game. We assume
that X is a non-empty, compact and convex set in a topological vector space, and that π
is continuous.6 Each individual is characterized by his or her type θ ∈ Θ, which defines a
continuous utility function, uθ : X2 → R. We impose no mathematical relation between a
utility function u and the payoff function π. A special type is homo oeconomicus, by which
we mean individuals with the special utility function u = π.

For the subsequent analysis, it will be suffi cient to consider populations with at most
two types present. The two types and the respective population shares together define
a population state s = (θ, τ , ε), where θ, τ ∈ Θ are the two types and ε ∈ [0, 1] is the
population share of type τ .7 If ε is small we will refer to θ as the resident type, and call τ
the mutant type. The set of population states is thus S = Θ2 × [0, 1].

The matching process is random and exogenous, but we allow it to be assortative. More
exactly, in a given state s = (θ, τ , ε), let Pr [τ |θ, ε] denote the probability that a given indi-
vidual of type θ will be matched with an individual of type τ , and Pr [θ|τ , ε] the probability
that a given individual of type τ will be matched with an individual of type θ. In the special
case of uniform random matching, Pr [τ |θ, ε] = Pr [τ |τ , ε] = ε.

For each state s = (θ, τ , ε) ∈ S, and any strategy x ∈ X used by type θ and any strategy
y ∈ X used by type τ , the resulting average payoff, or fitness, to the two types are:

Fθ (x, y, ε) = Pr [θ|θ, ε] · π (x, x) + Pr [τ |θ, ε] · π (x, y) (1)

Fτ (x, y, ε) = Pr [θ|τ , ε] · π (y, x) + Pr [τ |τ , ε] · π (y, y) . (2)

Turning now to the choices made by individuals in a population state, we define (Bayesian)
Nash equilibrium as a pair of strategies, one for each type, where each strategy is a best
reply to the other in the given population state:

Definition 1 In any state s = (θ, τ , ε) ∈ S, a strategy pair (x∗, y∗) ∈ X2 is a (Bayesian)
Nash Equilibrium (BNE) if{

x∗ ∈ arg maxx∈X Pr [θ|θ, ε] · uθ (x, x∗) + Pr [τ |θ, ε] · uθ (x, y∗)

y∗ ∈ arg maxy∈X Pr [θ|τ , ε] · uτ (y, x∗) + Pr [τ |τ , ε] · uτ (y, y∗) .
(3)

Evolutionary stability is defined under the assumption that the resulting payoffs are
determined by this equilibrium set. With potential multiplicity of equilibria, one may require
the resident type to withstand invasion in some or all equilibria. We have chosen the most
severe criterion.8

6To be more precise, we assume X to be a locally convex Hausdorff space, see Aliprantis and Border
(2006). The subsequent examples are all carried out in the special but important case of Euclidean spaces.

7In particular, in the population state s = (θ, τ , 0) only type θ is present.

8The least stringent criterion would be to replace “all Nash equilibria”by “some Nash equilibrium.”
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Definition 2 A type θ ∈ Θ is evolutionarily stable against a type τ ∈ Θ if there exists
an ε̄ > 0 such that Fθ (x∗, y∗, ε) > Fτ (x∗, y∗, ε) in all Nash equilibria (x∗, y∗) in all states
s = (θ, τ , ε) with ε ∈ (0, ε̄). A type θ is evolutionarily stable if it is evolutionarily stable
against all types τ 6= θ in Θ.

This definition formalizes the notion that a resident population with individuals of a given
type would withstand a small-scale “invasion”of individuals of another type. It generalizes
the Maynard Smith and Price (1973) concept of an evolutionarily stable strategy, a property
they defined for mixed strategies in finite and symmetric two-player games under uniform
random matching.

In a rich enough type space Θ, no type is evolutionarily stable, since for each resident type
θ there then exist mutant types τ who respond with the same strategy, in which case both
types earn the same average payoff. However, many types will turn out to be vulnerable, as
residents, to invasion by better-performing mutant types. We will use the following definition
to describe this possibility:

Definition 3 A type θ ∈ Θ is evolutionarily unstable if there exists a type τ ∈ Θ such
that for each ε̄ > 0 there exists an ε ∈ (0, ε̄) such that Fθ (x∗, y∗, ε) < Fτ (x∗, y∗, ε) in all
Nash equilibria (x∗, y∗) in state s = (θ, τ , ε).

This is also a stringent criterion, namely, there should exist some mutant type against
which the resident type achieves less payoff in every equilibrium in some population states
when the mutant is arbitrarily rare.

This completes the description of the model. The most closely related work on preference
evolution under incomplete information, Ok and Vega-Redondo (2001), or OVR for short,
and Dekel, Ely and Yilankaya (2007), or DEY for short. In all three models, the preference
space is very general and interactions are symmetric. In OVR the population is finite whereas
in DEY and our model it is a continuum. In OVR each interaction may involve more than two
individuals, whereas in DEY and our model interactions are pairwise. In OVR, individual
use pure strategies, the pure-strategy set is a continuum and the payoff function is strictly
concave, whereas DEY focus on mixed strategies in finite games. We analyze both cases and
do not require strict concavity. All three papers study evolutionary stability, although the
definitions differ slightly from one another. A key difference between our model and OVR
and DEY is that they assume uniform random matching, whereas we allow for assortative
matching.

The next subsection describes the algebra of assortative encounters introduced by Bergstrom
(2003). This algebra facilitates the analysis and clarifies the population-statistical aspects.
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2.1 Algebra of assortative encounters

For given types θ, τ ∈ Θ, and a population state s = (θ, τ , ε) with ε ∈ (0, 1), let φ (ε) be
the difference between the conditional probabilities for an individual to be matched with an
individual with type θ, given that the individual him- or herself either also has type θ, or,
alternatively, type τ :

φ (ε) = Pr [θ|θ, ε]− Pr [θ|τ , ε] . (4)

This defines the assortment function φ : (0, 1) → [−1, 1]. Using the following necessary
balancing condition for the number of pairwise matches between individuals with types θ
and τ ,

(1− ε) · [1− Pr [θ|θ, ε]] = ε · Pr [θ|τ , ε] , (5)

one can write both conditional probabilities as functions of ε and φ (ε):{
Pr [θ|θ, ε] = φ (ε) + (1− ε) [1− φ (ε)]

Pr [θ|τ , ε] = (1− ε) [1− φ (ε)] .
(6)

We assume that φ is continuous and that φ (ε) converges to some number as ε tends to zero.
Formally:

lim
ε→0

φ (ε) = σ

for some σ ∈ R, the index of assortativity of the matching process. This extends the domain
of φ from (0, 1) to [0, 1], and it follows from (6) that σ ∈ [0, 1]. The extreme case σ = 0

corresponds to uniform random matching and the opposite extreme case σ = 1 to perfectly
correlated matching (each type only meets itself). In Section 6 we calculate the index of
assortativity for a variety of matching processes.

2.2 Homo moralis

Definition 4 An individual is a homo moralis (or HM) if her utility function is of the
form

uκ (x, y) = (1− κ) · π (x, y) + κ · π (x, x) , (7)

for some κ ∈ [0, 1], the degree of morality.9

It is as if homo moralis is torn between selfishness and morality. On the one hand, she
would like to maximize her own payoff, π (x, y). On the other hand, she would like to “do
the right thing”in terms of payoffs, i.e., choose a strategy x that would be optimal, in terms
of the payoff, if both players would choose one and the same strategy. This second goal can

9We thus adopt the notational convention that types θ that are real numbers in the unit interval refer to
homo moralis with that degree of morality.
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be viewed as an application of Kant’s categorical imperative to the goal of enhancement of
everyone’s (objective) payoff (or fitness).10 Torn by these two goals, homo moralis will take
an action that maximizes a convex combination of them.11 If κ = 0, the definition of homo
moralis coincides with that of homo oeconomicus.

Remark 1 It is clear from (7) that the behavior of homo moralis is unaffected by positive
affi ne transformations of payoffs. However, if x and y are mixed strategies (say, in a finite
game), then the preferences of homo moralis, for κ > 0, are not linear, but quadratic, in the
own mixed strategy x. Thus homo moralis’preferences do not, in general, satisfy the von
Neumann-Morgenstern axioms. See Section 4 for a detailed analysis.

A special kind of homo moralis is homo hamiltoniensis (or HH ), whose degree of morality
equals the index of assortativity, κ = σ:

uσ (x, y) = (1− σ) · π (x, y) + σ · π (x, x) . (8)

The following remark explains the etymology:

Remark 2 The late biologist William Hamilton (1964a,b) noted that for interactions be-
tween related individuals, genes driving the behavior of one individual are present in the
relative with some probability, and argued that fitness had to be augmented to what he called
inclusive fitness. (1− σ) · π (x, y) + σ · π (x, x) can be interpreted as the population average
inclusive fitness of an infinitesimally small mutant subpopulation playing x in a resident
population playing y. For recent analyses of various aspects of inclusive fitness, see Rousset
(2004) and Grafen (2006).

3 Analysis

We first make three observations that will be useful and then proceed to analyze evolutionary
stability properties of preferences. First, since the strategy set is non-empty and compact
and each type’s utility function is continuous, each type has at least one best reply to each

10Kant’s (1785) categorical imperative can be phrased as follows: “Act only on the maxim that you would
at the same time will to be a universal law.”To always choose a strategy x that maximizes π (x, x) is the
maxim which, if upheld as a universal law in the population at hand, leads to the highest possible payoff
among all maxims that are categorical in the sense of not conditioning on any particular circumstance
that would permit role-specific strategies. See Binmore (1994) for a critical discussion of Kant’s categorical
imperative.

11Note, however, that homo moralis is not irrational. Individuals with such preferences do have (continu-
ous) utility functions, and these are defined over the (compact) set X2 of strategy pairs.
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strategy. More precisely, for each type θ ∈ Θ the best-reply correspondence βθ : X ⇒ X,
defined by

βθ (y) = arg max
x∈X

uθ (x, y) ∀y ∈ X,

is nonempty- and compact-valued (by Weierstrass’s maximum theorem) and upper hemi-
continuous by Berge’s maximum theorem (see, e.g., Section 17.5 in Border and Aliprantis,
2006).

Second, by Definition 1, a (Bayesian) Nash equilibrium (x∗, y∗) in the limit population
state s = (θ, τ , 0) is defined by{

x∗ ∈ arg maxx∈X uθ (x, x∗)

y∗ ∈ arg maxy∈X (1− σ) · uτ (y, x∗) + σ · uτ (y, y∗) .
(9)

The first line in this condition requires the strategy of the resident type θ to be a best reply
to itself, in terms of its own utility function. For each type θ ∈ Θ, let Xθ ⊆ X be the set of
strategies with this fixed-point property:

Xθ = {x ∈ X : x ∈ βθ (x)} . (10)

In particular, let Xσ be the fixed-point set of homo hamiltoniensis, the set of Hamiltonian
strategies.

Third, letting BNE (s) ⊆ X2 denote the set of (Bayesian) Nash equilibria in population
state s = (θ, τ , ε), that is, all solutions (x∗, y∗) of (3), one may show the following by standard
arguments (see Appendix for a proof):

Lemma 1 BNE (θ, τ , ε) is compact for each (θ, τ , ε) ∈ S. BNE (θ, τ , ε) 6= ∅ if uθ and uτ are
concave in their first arguments. The equilibrium correspondence BNE (θ, τ , ·) : [0, 1] ⇒ X2

is upper hemi-continuous.

We henceforth assume that the type space Θ contains homo hamiltoniensis. Let Θm
σ be

the set of types τ that, as vanishingly rare mutants, respond to a resident playing some
Hamiltonian strategy by the same token:

Θm
σ = {τ ∈ Θ : (xσ, xσ) satisfies (9) for some s = (θ, τ , 0) and xσ ∈ Xσ} . (11)

The type space will be said to be rich if, for each strategy there is some type for which
this strategy is (strictly) dominant. Formally, for each x ∈ X there exists some θ ∈ Θ such
that

uθ (x, y) > uθ (x′, y) ∀x′ 6= x, y ∈ X. (12)

Such a type θ will be said to be committed to its strategy x.12

12For example, uθ (x′, y′) = − (x− x′)2 for all x′, y′ ∈ X.
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Theorem 1 If βσ (x) is a singleton for all x ∈ Xσ, then homo hamiltoniensis is evolution-
arily stable against all types τ /∈ Θm

σ . If Θ is rich, Xθ ∩Xσ = ∅ and Xθ is a singleton, then
θ is evolutionarily unstable.

Proof: Given any population state s = (θ, τ , ε), the definitions (1) and (2) of the
associated average payoff functions Fθ and Fτ may be re-written in terms of the assortment
function φ as

Fθ (x, y, ε) = [1− ε+ εφ (ε)] · π (x, x) + ε [1− φ (ε)] · π (x, y) (13)

and
Fτ (x, y, ε) = (1− ε) [1− φ (ε)] · π (y, x) + [ε+ (1− ε)φ (ε)] · π (y, y) (14)

Since π and φ are continuous by hypothesis, so are Fθ, Fτ : X2 × [0, 1]→ R.

For the first claim, let (x∗, y∗) be a Nash equilibrium in population state s = (σ, τ , 0).
Then x∗ ∈ Xσ. In particular, uσ (x∗, x∗) ≥ uσ (y∗, x∗), and if βσ (x) is a singleton for all
x ∈ Xσ, this inequality holds strictly if τ /∈ Θm

σ : uσ (x∗, x∗) > uσ (y∗, x∗), or, equivalently,
π (x∗, x∗) > (1− σ) · π (y∗, x∗) + σ · π (y∗, y∗). By definition of Fσ and Fτ , we thus have

Fσ (x∗, y∗, 0) > Fτ (x∗, y∗, 0) (15)

for all (x∗, y∗) ∈ BNE (σ, τ , 0) and any τ /∈ Θm
σ . By continuity of Fσ and Fτ , this strict

inequality holds for all (x, y, ε) in a neighborhood U ⊂ X2 × [0, 1] of (x∗, y∗, 0). Now
BNE (θ, τ , ·) : [0, 1] ⇒ X2 is closed-valued and upper hemi-continuous. Hence, if (xt, yt) ∈
BNE (θ, τ , εt) for all t ∈ N, εt → 0 and 〈(xt, yt)〉t∈N converges, then the limit point (x0, y0)

necessarily belongs to BNE (θ, τ , 0). Thus, for any given ε̄ > 0 there exists a T such that for
all t > T : 0 < εt < ε̄ and (xt, yt) ∈ U , and thus Fσ (xt, yt, εt) > Fτ (xt, yt, εt), establishing
the first claim.13

For the second claim, let θ ∈ Θ be such that Xθ = {xθ} and xθ /∈ Xσ. Then uσ (xθ, xθ) <

uσ (x̂, xθ) for some x̂ ∈ X. If Θ is rich, there exists a type τ̂ ∈ Θ committed to x̂. Since x̂ is
dominant for τ̂ , individuals of this type will always play x̂. Consequently, for any ε ∈ [0, 1],
(x∗, y∗) ∈ BNE (θ, τ̂ , ε) iff y∗ = x̂ and

x∗ ∈ arg max
x∈X

[1− ε+ εφ (ε)]uθ (x, x∗) + ε [1− φ (ε)]uθ (x, x̂) .

In particular, BNE (θ, τ̂ , 0) = {(xθ, x̂)}, since xθ is the unique solution to the first condition
in (9). Moreover, uσ (xθ, xθ) < uσ (x̂, xθ) is equivalent with

π (xθ, xθ) < (1− σ) · π (x̂, xθ) + σ · π (x̂, x̂)

13Under the hypothesis of the theorem, it is not excluded that BNE (σ, τ , 0) = ∅. By upper hemi-
continuity of BNE (σ, τ , ·) : [0, 1] ⇒ X2, there then exists an ε̄ > 0 such that BNE (σ, τ , ε) = ∅ ∀ε ∈ (0, ε̄).
By definition, θ is evolutionarily stable against τ also in this case.
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which in turn is equivalent with Fθ (xθ, x̂, 0) < Fτ̂ (xθ, x̂, 0). In other words, in the limit
when ε = 0, the mutant τ̂ earns a higher payoff than the resident θ. By continuity of Fθ and
Fτ̂ , this strict inequality holds for all (x, x̂, ε) in a neighborhood U ⊂ X2× [0, 1] of (xθ, x̂, 0).
Now BNE (θ, τ̂ , ·) : [0, 1] ⇒ X2 is closed-valued and upper hemi-continuous. Hence, if
(xt, yt, t) ∈ BNE (θ, τ̂ , εt) for all t ∈ N, εt → 0 and 〈(xt, yt)〉t∈N converges, then the limit
point (x∗, y∗) necessarily belongs to BNE (θ, τ̂ , 0), which, in the present case is a singleton,
so (x∗, y∗) = (xθ, x̂). Moreover, yt = x̂ for all t. Thus, for any given ε̄ > 0 there exists a T
such that for all t > T : 0 < εt < ε̄ and (xt, x̂) ∈ U , and thus Fθ (xt, x̂, εt) < Fτ̂ (xt, x̂, εt),
establishing the second claim. Q.E.D.

Theorem 1 establishes that homo hamiltoniensis is favored by evolution and that certain
other types are selected against. The first claim expresses that homo hamiltoniensis resists
“invasions”by all types who do not, as mutants, respond by playing homo hamiltoniensis’
own strategy. The intuition is that the unique “evolutionarily optimal”mutant response
(that is, in terms of the mutant population’s average payoff) to a resident Hamiltonian
strategy, is that same strategy. The second claim expresses that if the type space is rich, then
any type that has a unique resident strategy is vulnerable to invasion if its resident strategy
is non-Hamiltonian. The uniqueness hypothesis is made for technical reasons and it seems
that it could be somewhat relaxed, but at a high price in terms of analytical complexity.14

However, the intuition is clear: since the resident type does not play a Hamiltonian strategy,
there exists a better reply to it in terms of homo hamiltoniensis’preferences. Because of the
nature of those preferences, such a better reply, if used by a mutant, results in higher payoff
to the mutants than to the residents. Since the type space is rich, there is a mutant type
who is committed to such an evolutionarily superior strategy, and thus will use it against
any resident, who will then lose out in terms of payoffs.15 It follows immediately from the
second claim in Theorem 1 that a necessary condition for evolutionary stability of any type
with a unique resident strategy is to behave like homo hamiltoniensis:

Corollary 1 If Θ is rich, θ ∈ Θ is evolutionarily stable and Xθ = {xθ}, then xθ ∈ Xσ.

Note that the theorem does not require existence of Nash equilibria in the population
states under consideration (though existence follows from standard assumptions, see Lemma
1). Stability is defined, and proved, by imposing and verifying conditions on the payoffs in

14For a type θ that does not have a unique resident strategy, the Nash equilibrium correspondence may
“explode”at ε = 0. If this happens, the resident’s payoff advantage when ε = 0 need no longer remain when
ε > 0. However, if the correspondence is lower hemi-continuous at ε = 0, then it does not explode at that
point. We conjecture that the present proof, mutatis mutandis, will then go through.

15In some applications homo hamiltoniensis would also be a successful mutant. However, since little is
known in general about equilibrium behavior of homo hamiltoniensis in population states where it is a rare
mutant, its success as a mutant here is not guaranteed.
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those Nash equilibria that do exist. Hence, if for some types θ, τ ∈ Θ there would exist
no Nash equilibrium in any state (θ, τ , ε) with ε small, then θ will be deemed evolutionarily
stable against τ according to our definition by “walk over.”If this turns out to be a real issue
in some application, one can of course restrict the type space to concave utility functions,
since this guarantees the existence of Nash equilibria in all population states.

Example 1 As an illustration of Theorem 1, consider a canonical public-goods situation.
Let π (x, y) = B (x+ y)−C (x) for B,C : [0,m]→ R twice differentiable with B′, C ′, C ′′ > 0

and B′′ < 0 and m > 0 such that C ′ (0) < B′ (0) and C ′ (2m) > 2B′ (2m). Here B (x+ y) is
the public benefit and C (x) the private cost from one’s own contribution x when the other
individual contributes y. Played by two homo moralis with degree of morality κ ∈ [0, 1],
this interaction defines a game with a unique Nash equilibrium, and this is symmetric. The
equilibrium contribution, xκ, is the unique solution in (0,m) to the first-order condition
C ′ (x) = (1 + κ)B′ (2x). Hence, Xκ = {xκ}. We note that homo moralis’ contribution
increases from that of the selfish homo oeconomicus when κ = 0 to that of a benevolent
social planner when κ = 1. Moreover, it is easily verified that βκ (y) is a singleton for all
y ∈ [0,m]. Theorem 1 establishes that homo hamiltoniensis, that is homo moralis with degree
of morality κ = σ, is evolutionarily stable against all types that, as vanishingly rare mutants,
would contribute y 6= xσ. Moreover, if Θ is rich, and θ ∈ Θ is any type that has a unique
resident strategy and this differs from xσ, then θ is evolutionarily unstable.

3.1 Homo oeconomicus

Theorem 1 may be used to pin down evolutionary stability properties of homo oeconomicus.
The most general formulation is as follows:

Corollary 2 If σ = 0 and β0 (x) is a singleton for all x ∈ X0, then homo oeconomicus
is evolutionarily stable against all types τ /∈ Θm

0 . If σ > 0 and Θ is rich, then homo
oeconomicus is evolutionarily unstable if it has a unique resident strategy and this does not
belong to Xσ.

The first part of this result says that a suffi cient condition for homo oeconomicus to be
evolutionarily stable against mutants who play other strategies than homo oeconomicus is
that the index of assortativity be zero. This result is in line with Ok and Vega-Redondo
(2001) and Dekel et al. (2007), who both analyze the evolution of preferences under incom-
plete information and uniform random matching.

The second part says that if the index of assortativity is positive, then homo oeconomicus
is evolutionarily unstable when it has a unique resident strategy and this is not Hamiltonian.
To further clarify the implications of this result, we distinguish two classes of interactions,
according to whether or not an individual’s payoffdepends on the other individual’s strategy.
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First, consider payoff functions with no dependence on the other individual’s strategy.
For each individual it is then immaterial what other individuals do, so “the right thing to
do,”irrespective of the index of assortativity, is simply to choose a strategy that maximizes
one’s own payoff, or, in other words, to act like homo oeconomicus. As a result, homo
oeconomicus can thrive even if the index of assortativity is positive, σ > 0.

Corollary 3 Suppose that π (x, y) is independent of y. Then homo oeconomicus is evolu-
tionarily stable against all types τ /∈ Θm

0 for all σ ∈ [0, 1].

In fact, in such interactions homo moralis with any degree of morality κ ∈ [0, 1] is
evolutionarily stable against types who fail to maximize their payoff. The reason is clear:
such interactions, are, in effect, isolated decision problems.

Secondly, consider situations in which one’s payoff does depend on the other individual’s
strategy and exhibits decreasing returns to one’s own. Then the behavior of homo oeconomi-
cus differs from that of homo moralis with any positive degree of morality. As a result, homo
oeconomicus is in dire straits when the index of assortativity is positive. Assuming that π is
twice differentiable:

Corollary 4 Suppose that X0 is a singleton, π11 < 0 and π2 (x, y) 6= 0 for all x, y ∈ X. If
Θ is rich and homo oeconomicus is evolutionarily stable, then σ = 0.

3.2 Strategy evolution

Our model differs from classical evolutionary game theory in two ways. First, classical
evolutionary game theory views strategies, not preferences or utility functions, as the repli-
cators, the objects that spread in populations of pairwise interacting individuals. Second,
the background hypothesis in the standard set-up is that matching is uniform. To assume
that strategies are the replicators can be formulated within the present framework as the
assumption that each type is committed to some strategy and that the type space is rich. In
such situations one may identify each type with a strategy and vice versa, and hence write
Θ = X. We call this setting strategy evolution, since it is, in effect, as if evolution operated
at the level of strategies in the underlying game in payoffs.16

Identifying types with strategies, our general definition of evolutionary stability, under
random matching with assortment function φ, applies. For any pair of strategies x, y ∈ X,
hence types, and any ε ∈ [0, 1], the average payoffs are as in equations (1) and (2), with

16While classical evolutionary game theory concerns mixed strategies in finite games, it is here immaterial
if the stratgies are pure or mixed, and we focus on mixed strategies in finite games in a separate section
below.
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θ being the type committed to x and τ the type committed to y. The difference function
Sx,y (ε) ≡ Fθ (x, y, ε)− Fτ (x, y, ε) (with θ committed to x and τ to y) is a generalization of
what in standard evolutionary game theory is called the score function of strategy x against
strategy y.17 Applied to the present setting of strategy evolution, the stability definition in
Section 2 boils down to:

Definition 5 Let Θ = X (strategy evolution) and consider random matching with assort-
ment function φ. A strategy x ∈ X is evolutionarily stable against a strategy y ∈ X if
there exists an ε̄ ∈ (0, 1) such that Sx,y (ε) > 0 for all ε ∈ (0, ε̄). A strategy x is evolution-
arily stable if it is evolutionarily stable against all y 6= x in X.

We immediately obtain from Theorem 1:18

Corollary 5 Let Θ = X (strategy evolution). Every strategy xσ ∈ Xσ for which βσ (xσ) is
a singleton is evolutionarily stable. Every strategy x /∈ Xσ is evolutionarily unstable.

Proof: For the first claim, let xσ ∈ Xσ and y 6= xσ. In a population state s = (xσ, y, ε),
the expected payoff to xσ is

Fxσ (ε) = [1− ε+ εφ (ε)] · π (xσ, xσ) + ε [1− φ (ε)] · π (xσ, y)

and that to y is

Fy (ε) = [ε+ (1− ε)φ (ε)] · π (y, y) + (1− ε) [1− φ (ε)] · π (y, xσ)

(see equations (13) and (14)). It follows that Fxσ , Fy : [0, 1] → R are continuous. Hence, a
suffi cient condition for xσ to be evolutionarily stable against y is that Fxσ (0) > Fy (0), or,
equivalently,

π (xσ, xσ) > (1− σ) · π (y, xσ) + σ · π (y, y) ,

or uσ (xσ, xσ) > uσ (y, xσ). If βσ (xσ) is a singleton, the last inequality holds for all y 6= xσ.
This establishes the first claim.

For the second claim, let x /∈ Xσ. Then uσ (x, x) < uσ (x̂, x) for some x̂ ∈ X. Equiva-
lently,

π (x, x) < (1− σ) · π (x̂, x) + σ · π (x̂, x̂) ,

17In the standard theory (Bomze and Pötscher, 1989, and Weibull, 1995), φ ≡ 0, so that
Sx,y (ε) = (1− ε)π (x, x) + επ (x, y)− επ (y, y)− (1− ε)π (y, x) .

18Note that here homo hamiltoniensis is not included in the type space. Homo hamiltoniensis is instead
represented by one type for each Hamiltonian strategy. The theorem nonetheless refers to the best-reply
correpondence βσ. This is because we allow for a very general class of assortment functions φ. In Proposition
1 we dispense with the assumption of a singleton-valued βσ because we there impose more structure on φ.
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or, equivalently, Fx (0) < Fx̂ (0). By continuity of Fx, Fx̂ : [0, 1] → R, this implies that x is
evolutionarily unstable. Q.E.D.

In other words, every Hamiltonian strategy which is its own unique best reply is evolu-
tionarily stable, and all non-Hamiltonian strategies are evolutionarily unstable. In the special
case of uniform random matching, σ = 0, the Hamiltonian strategies are simply those that
are best replies to themselves in terms of payoffs. In the opposite extreme case, σ = 1, the
Hamiltonian strategies are those that, when used by both players, result in Pareto effi ciency
in terms of payoffs.

Remark 3 For payoff functions such that homo hamiltoniensis has a unique best reply to all
Hamiltonian strategies, Theorem 1 and Corollary 5 establish that preference evolution under
incomplete information induces the same behaviors as strategy evolution.

For certain payofffunctions π, the Hamiltonian best-reply correspondence is not singleton-
valued. The following characterization is a generalization of Maynard Smith’s and Price’s
(1973) original definition and does not require singleton-valuedness. The hypothesis is in-
stead that the degree of assortment is independent of the population share ε, a property that
holds in certain kinship relations, see Section 7.

Proposition 1 Let Θ = X (strategy evolution) and assume that the assortment function is
a constant, φ (ε) ≡ σ. A strategy x ∈ X is evolutionarily stable if and only if

π (x, x) ≥ π (y, x) + σ · [π (y, y)− π (y, x)] ∀y ∈ X (16)

and

π (x, x) = π (y, x) + σ · [π (y, y)− π (y, x)] (17)

⇒ π (x, y) > π (y, y) + σ · [π (y, y)− π (y, x)] .

Proof: Suppose that φ (ε) = σ ∈ [0, 1] for all ε ∈ (0, 1). Then

Sx,y (ε) = (1− ε+ εσ) · π (x, x) + ε (1− σ) · π (x, y)

− [ε+ (1− ε)σ] · π (y, y)− (1− ε) (1− σ) · π (y, x) ,

which defines Sx,y (for given x and y 6= x) as an affi ne function of ε. A strategy x is
evolutionarily stable iffSx,y (ε) > 0 on some non-empty interval (0, ε̄). A necessary condition
for this is clearly Sx,y (0) ≥ 0, or, equivalently, (16). If the latter holds with equality, then it
is necessary that the slope of Sx,y be positive, or, equivalently, (17). Conversely, if (16) and
(17) both hold, then Sx,y (0) ≥ 0, and, in case Sx,y (0) = 0, the slope of Sx,y is positive, so x
is evolutionarily stable. Q.E.D.
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The necessary condition (16) can be written as x ∈ Xσ, that is, the strategy must be
Hamiltonian. Further, condition (17) may be written

π (x, x) = π (y, x) + σ · [π (y, y)− π (y, x)]

⇒ π (x, y) + π (y, x)− π (x, x)− π (y, y) > 0,

a formulation that agrees with Hines’and Maynard Smith’s (1979) analysis of ESS for games
played by relatives. See also Grafen (1979, 2006).

4 Applications to much studied interactions

It follows from the analysis above that preference evolution under incomplete information
leads to play of Hamiltonian strategies, and that these are also the evolutionarily stable
strategies under strategy evolution. It is thus of some interest to identify the fixed-point
set Xκ, for all degrees of morality κ ∈ [0, 1], since these are the candidates for evolutionary
stable behaviors.

4.1 Public-goods provision

What would a pair of homo moralis, with the same degree of morality, κ, do in a one-shot
simultaneous public-goods game? Let

π (x, y) = (x+ y)b − cx2/2 (18)

for b, c ∈ (0, 1], and let X = [0, 4b/c]. Here x is the individual’s contribution to the public
good, and y the contribution of the other individual. The utility function of homo moralis
is

uκ (x, y) = (1− κ) · (x+ y)b + κ · (2x)b − cx2/2,

a strictly concave function of x.19 Hence, βκ (y) is a singleton for all y ∈ X, and the necessary
first-order condition for x ∈ βκ (y) is

(1− κ) (x+ y)b−1 + 2κ (2x)b−1 = cx/b. (19)

The set Xκ is thus characterized by the equation

(1− κ) (2x)b−1 + 2κ (2x)b−1 = cx/b,

which has the unique solution

xκ =
[
(b/c) (1 + κ) 2b−1

]1/(2−b)
.

19uκ (x, y) is strictly concave because it is the sum of three strictly concave functions.

16



The equilibrium contribution xκ is strictly increasing in κ, from the low contribution of
homo oeconomicus, x0 =

[
(b/c) 2b−1

]1/(2−b)
, to the “right thing to do”, the more generous

contribution of homo kantiensis, x1 =
(
2bb/c

)1/(2−b)
. The contribution of homo moralis takes

a particularly simple form in the special case of linear production of the public good, b = 1,
then xκ = (1 + κ) /c.

Experimental evidence suggests that many individuals tend to contribute more than had
they cared solely about their own material welfare. For instance, in a meta-analysis of linear
public goods experiments in which homo oeconomicus would contribute nothing, Zelmer
(2003) reports that on average subjects contributed 38% of their laboratory endowments.

4.2 Helping others

Situations where individuals have the opportunity to help others are common. The dictator
game is a stylized such situation studied in laboratory experiments. In such an interaction,
two individuals are randomly drawn from the subject pool and an amount of money is
handed to one of these, the dictator, who is then given the opportunity to share any part
of this amount with the other individual. Homo oeconomicus would give nothing in such a
situation. By contrast, many subjects in laboratory experiments give positive amounts. In
a meta-analysis of 129 papers on dictator-game experiments, with over 40,000 observations
in total, Engel (2010) reports that on average subjects give about 28% of their endowment.
Furthermore, while 36% of subjects give nothing, about 17% give away half their endowment.
We will now examine whether such behaviors are compatible with those of homo moralis. In
some recent experiments, all transfers are multiplied by some factor, and this is known in
beforehand by both parties.

Our model, although designed for symmetric interactions, is easily applied to the asym-
metric dictator game if one includes the random draw of player roles. More precisely, assume
that with probability 1/2, player 1’s initial wealth is wH and 2’s is wL ≤ wH , and with prob-
ability 1/2 it is the other way around. Further, assume that the wealthier individual may
transfer any amount of his or her wealth to the other. Let x be player 1’s transfer when rich
and y 2’s transfer when rich, with x, y ∈ X =

[
0, wH

]
. Moreover, let each transferred unit

be multiplied by some factor λ ≥ 1 when it arrives to the recipient. We may then write the
payoff function in the form

π (x, y) =
1

2

[
v
(
wH − x

)
+ v

(
wL + λy

)]
for some differentiable function v : [0, 1] −→ R with v′ > 0 and v′′ < 0. Here v (w) can be
thought of as the fitness or well-being that results from wealth w (from, say, consumption).
Homo moralis has the following utility function:

uκ (x, y) =
1

2

[
v
(
wH − x

)
+ κv

(
wL + λx

)
+ (1− κ) v

(
wL + λy

)]
.
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We see from this formula that homo moralis’ equilibrium transfer is independent of
the other individual’s strategy, y. It is not diffi cult to show that the unique equilibrium
strategy of homo moralis in this dictator game is xκ = 0 if v′

(
wH
)
≥ λκv′

(
wL
)
, xκ = wH if

v′ (0) ≤ λκv′
(
wL + λwH

)
and otherwise xκ ∈

(
0, wH

)
is the unique solution to the first-order

condition
v′
(
wH − x

)
= λκv′

(
wL + λx

)
(20)

At one extreme, κ = 0, we have homo oeconomicus, who will give nothing. At the
opposite extreme, κ = 1, we have homo kantiensis, who will give away at least so much that
the other individual ends up with at least as much wealth. When λ = 1, homo moralis will
transfer half of their initial wealth difference, xκ =

(
wH − wL

)
/2, so that they both end

up with wealth
(
wH + wL

)
/2. This is not because of fairness, but because of risk aversion,

following from the concavity of the value function v. Indeed, when λ = 1 it is ex ante optimal
to split the difference in half, so that final wealth is the same in both player roles. Thus,
the reason why homo moralis gives a positive amount, for κ large enough, is that, from an
ex ante perspective – behind the veil of ignorance of who will become rich and who will
become poor (here a matter of luck only) – the “right thing to do”is to give something to
the poor when rich, a kind of informal insurance driven by the risk aversion expressed by
the concavity of the value function v. We note that a higher degree of morality implies more
effi cient risk sharing, from an ex ante perspective.

The following numerical example gives a hint of the order of magnitude of the transfers,
in a case where λ = 1.

Example 2 Let wH = 11, wL = 1, and v (w) ≡ ln (w). Then xκ = max {0, (11κ− 1) / (1 + κ)}
and hence

κ 0 0.1 0.25 0.5 0.75
xκ 0 0.09 1.4 3 4.14

A popular explanation for why people in laboratory experiments give away positive
amounts in dictator fitness games is that people dislike inequality (Fehr and Schmidt, 1999,
Bolton and Ockenfels, 2000). Indeed, to make a positive transfer in a dictator fitness game
does reduce inequality. However, Charness and Rabin (2002) and Cox and Sadiraj (2011)
report experimental results that cast doubt on whether it is inequality aversion that is the
main motive behind such giving.20 In their experiments, about half (or more) of the subjects
reduce their own payoff in order to increase inequality, in situations where this behavior
also increases the total pie size. Is such behavior consistent with the preferences of homo
hamiltoniensis? That is, can it be explained by a positive degree of morality?

The following numerical example is tailored to enable a rough comparison with experi-
mental results in Charness and Rabin (2002), who report that around half of the subjects

20See also Blanco, Engelmann, and Normann (2011).
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chose the allocation (375, 750) over the allocation (400, 400), where the first number is own
“wealth”and the second number is the other’s “wealth”– in terms of the monetary payoffs
in the laboratory. In this experiment, then, it is as if wH = wL = 400, λ = 14, and half
the subject pool, when in the donor role, gave the transfer x = 25.21 The table below shows
that with v (w) ≡ ln (w), a κ of 0.15 gives rise to a transfer of x = 27.32, about the same as
in the experiment.

Example 3 Suppose that wH = wL = 400, λ = 14 and that v (w) ≡ ln (w). Then xκ =

max {0, (400κ− 200/7) / (1 + κ)}, and hence

κ 0 0.1 0.15 0.5 0.75
xκ 0 10.4 27.3 114.3 155.1

The next numerical example is tailored to fit Cox and Sadiraj (2011), who report that
63% gave a positive amount in a dictator game-protocol where wH = wL = 15 and λ = 3.

Example 4 Suppose that wH = wL = 15, λ = 3 and that v (w) ≡ ln (w). Then xκ =

max {0, (15κ− 5) / (1 + κ)}, and hence

κ 0 0.2 0.4 0.5 0.75
xκ 0 0 0.7 1.7 3.6

Remark 4 The numerical examples are just meant to give a hint of the order of magnitude
of donations made by homo moralis. The exact size will of course in part depend on the
value (fitness) function v and, in applications to laboratory data, on assumptions about the
heterogeneity of the subject pool etc.

4.3 Ultimatum bargaining

In ultimatum bargaining games, one individual proposes a transfer, and the responder either
accepts or turns down the offer. As with the dictator game, our model can encompass such
asymmetric interactions if one includes a random draw of player roles. In order to simplify
the notation, we here normalize wL to zero and wH to unity. Consider the following scenario:

1. Nature gives a monetary unit either to player 1 or to player 2, with equal probability.

21The experiment in Charness and Rabin (2002) referred to here was designed in such a way that the choice
of (375, 750) over (400, 400) could have been motivated by a desire to reciprocate the opponent’s generous
behavior. However, in experiments where such confounding effects were removed, Engelmann and Strobel
(2004) also find evidence in favor of social effi ciency (and selfishness).
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2. The party who received the monetary unit, called the proposer, proposes a transfer
t ∈ [0, 1] to the other party.

3. The other party, the responder, either accepts or rejects the proposal. If accept, then
the responder receives t and the proposer 1− t. If reject, both parties receive nothing.

A strategy now consists of a pair of numbers, x = (x1, x2) ∈ X = [0, 1]2, where the first
number, x1, is the amount to propose in the proposer role, and the second number, x2, is the
smallest transfer to accept in the responder role, the “acceptance threshold”.22 An individual
playing strategy x against an individual playing strategy y obtains the expected payoff

π (x, y) = v (0) +
1

2
· 1{x1≥y2} · [v (1− x1)− v (0)] +

1

2
· 1{y1≥x2} · [v (y1)− v (0)] ,

where v is as in subsection 4.2.23 This is not a continuous function. Moreover, homo moralis’s
best reply to a strategy y ∈ X is in general not unique, since if it is a best reply for HM
to accept a positive transfer, then it is also a best reply to accept any lower transfer: if
x ∈ βκ (y) and 0 < x2 ≤ y1, then x′ ∈ βκ (y) for all x′ = (x1, x

′
2) with x

′
2 ∈ [0, x2]. By way

of fairly involved but elementary calculations (see appendix), one can verify that, for any
given κ ∈ [0, 1], there is a whole continuum of homo-moralis strategies, and that the lowest
proposal/acceptance threshold is (c.f. (20)):

τ (κ) = min {x ∈ [0, 1] : v′ (1− x) ≥ κv′ (x)} . (21)

Proposition 2 The set of homo-moralis strategies in this ultimatum-bargaining game, Xκ,
is of the form

Xκ =
{
x ∈ [0, 1]2 : either x2 ≤ x1 = τ (κ) or τ (κ) < x1 = x2 ≤ ρ (κ)

}
where τ (κ) ≤ 1/2 is defined in (21) and ρ (κ) ≥ 1/2 is continuous and increasing in κ.

0.5 1.0

0.5

1.0

x1

x2

Figure 1: The set of hamiltonian strategies in the ultimatum-bargaining fitness game.

22We thus restrict the responder’s strategies to be monotonic and deterministic.

23Here 1A is the indicator function that takes the value 1 on the set A and zero outside it.
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The proposition establishes that ultimatum bargaining, when played by a pair of homo
moralis, typically admits multiple equilibrium outcomes. The lower bound on the range
of equilibrium transfers, τ (κ), is the same as homo moralis’s equilibrium transfer in the
dictator game (for wL = 0, wH = λ = 1); it maximizes the weighted sum of the proposer’s
and the responder’s (fitness) value from wealth, where the former is given a weight of 1 and
the latter a weight of κ. However, here the ability to commit to a high acceptance threshold
allows for even higher equilibrium transfers. In particular, the 50/50 split is an equilibrium
transfer for all κ ∈ [0, 1].24 From an ex ante viewpoint, the 50/50 split is again the “right
thing to do” because of the concavity of the value function v. This theoretical result is
compatible with experimental evidence (see, e.g., Henrich et al., 2005).

5 Finite games

The classical domain for evolutionary stability analyses is mixed strategies in finite and
symmetric two-player games, a domain to which we now apply the above machinery. Let
thus A be an m×m matrix, that to each row i ∈ S and column j ∈ S assigns the payoff aij
obtained when pure strategy i is used against pure strategy j, for all i, j ∈ S = {1, ..,m}.
Permitting players to use mixed strategies, X is now the (m− 1)-dimensional unit simplex
∆ (S) =

{
x ∈ Rm+ :

∑
i∈S xi = 1

}
, a compact and convex set in Rm. The continuous, in fact

bilinear function π : X2 → R assigns the expected payoff, π (x, y) = x · Ay to each strategy
x ∈ X = ∆ (S) when used against any strategy y ∈ X = ∆ (S).

5.1 Strategy evolution

According to the standard definition in evolutionary game theory (Maynard Smith and Price,
1973, Taylor and Jonker, 1978), based on uniform random matching, a strategy x ∈ ∆ (S)

is evolutionarily stable if there for each y ∈ ∆ (S) with y 6= x exists an ε̄ ∈ (0, 1) such that

x · A [(1− ε)x+ εy] > y · A [(1− ε)x+ εy] (22)

for all ε ∈ (0, ε̄). In the present framework, this generalizes to arbitrary random matching
processes as follows: a mixed strategy x ∈ ∆ (S) is evolutionarily stable under random
matching φ if there for each y ∈ ∆ (S) with y 6= x exists an ε̄ ∈ (0, 1) such that

x · A [(1− ε)x+ εy + εφ (ε) (x− y)] > y · A [(1− ε)x+ εy + (1− ε)φ (ε) (y − x)] (23)

for all ε ∈ (0, ε̄). We note that the new terms, εφ (ε) (x− y) and (1− ε)φ (ε) (y − x), both
vanish in the special case of constant and uniform random matching (φ (ε) ≡ 0), so then the
generalized definition boils down to the standard one. More precisely and generally:

24This result is compatible with Huck and Oechssler (1999), who analyze evolutionary dynamics of strat-
agies in an ultimatum-bargaining game, under uniform random matching.
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Proposition 3 Let Θ = X = ∆ (S) (strategy evolution in symmetric finite games) and
assume that the assortment function is constant, φ ≡ σ. A strategy x ∈ X is evolutionarily
stable if and only if there for each y ∈ X with y 6= x exists an ε̄ ∈ (0, 1) such that

x · A [(1− ε+ σε)x+ (ε− σε) y] > y · A [(1− ε+ σε− σ)x+ (ε− σε+ σ) y] .

5.2 Preference evolution

Applying our general machinery for preference evolution under incomplete information to
finite games, for each type θ ∈ Θ let uθ : X2 → R be some continuous function, where
X = ∆ (S). In particular, the utility function of homo moralis, of arbitrary degree of
morality κ ∈ [0, 1], is quadratic in the individual’s own strategy, x, and linear in the other
individual’s strategy y:

uκ (x, y) = (1− κ) · xAy + κ · xAx = xA [(1− κ) y + κx] . (24)

For κ > 0, the utility functions permitted here generically violate the expected-utility
hypothesis – which requires linearity with respect to probability distributions. Hence, when
we below examine the stability of preferences, this is not only against preferences that meet
the von Neumann-Morgenstern axioms, but against preferences in a much wider class. A
general stability analysis appears to be a daunting task, while insights and technical diffi -
culties may appear already in simple fitness games, so we here focus on the more restrictive
task of identifying the set of homo-moralis strategies in 2× 2 fitness games.

For this purpose, it is convenient to use the notation x, y ∈ [0, 1] for the probabilities
attached to the first pure strategy. For each κ ∈ [0, 1], the associated set Xκ ⊆ X = [0, 1] of
homo-moralis strategies is then the solution set to the following fixed-point condition:

xκ ∈ arg max
x∈[0,1]

(x, 1− x) ·
(
a11 a12
a21 a22

)(
xκ + κ (x− xκ)

1− xκ − κ (x− xκ)

)
. (25)

Depending on whether the sum of the diagonal elements of A exceeds, equals or falls short
of the sum of its off-diagonal elements, the utility of homo moralis is either strictly convex,
linear, or strictly concave in his/her own strategy, so that the following result obtains:

Proposition 4 Let

x̂ (κ) = min

{
1,

a12 + κa21 − (1 + κ) a22
(1 + κ) (a12 + a21 − a11 − a22)

}
. (26)

(a) If κ > 0 and a11 + a22 > a12 + a21, then Xκ ⊆ {0, 1}.
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(b) If κ = 0 and/or a11 + a22 = a12 + a21, then

Xκ =


{0} if a12 + κa21 < (1 + κ) a22
[0, 1] if a12 + κa21 = (1 + κ) a22
{1} if a12 + κa21 > (1 + κ) a22

(c) If κ > 0 and a11 + a22 < a12 + a21, then

Xκ =

{
{0} if a12 + κa21 ≤ (1 + κ) a22
{x̂ (κ)} if a12 + κa21 > (1 + κ) a22

Proof : The maximand in (25) can be written as

κ (a11 + a22 − a12 − a21) · x2 + (1− κ) (a11 + a22 − a12 − a21)xκ · x
+ [a12 + κa21 − (1 + κ) a22] · x+ (1− κ) · (a21 − a22)xκ + a22.

For κ (a11 + a22 − a12 − a21) > 0, this is a strictly convex function of x, and hence the
maximum is achieved on the boundary of X = [0, 1]. This proves claim (a).

For κ (a11 + a22 − a12 − a21) = 0, the maximand is affi ne in x, with slope a12 + κa21 −
(1 + κ) a22. This proves (b).

For κ (a11 + a22 − a12 − a21) < 0, the maximand is a strictly concave function of x, with
unique global minimum (in R) at

x̃ =
a12 + κa21 − (1 + κ) a22

(1 + κ) (a12 + a21 − a11 − a22)
.

Hence, Xκ = {0} if x̃ ≤ 0, Xκ = {x̃} if x̃ ∈ [0, 1], and Xκ = {1} if x̃ > 1, which proves (c).
Q.E.D.

Remark 5 It is seen in (26) that the set of homo-moralis strategies is invariant under
positive affi ne transformations of payoffs. More generally, if A is any n × n payoff-matrix
and A∗ = λA+γE, where λ is any positive scalar, γ any positive or negative scalar, and E is
the n×n-matrix with all entries equal to 1, then the best-reply correspondence βκ associated
with uκ in (24) is unaffected if A is replaced by A∗.

5.3 Prisoners’dilemmas

Over the past 60 years, social scientists have poured interest over one-shot and repeated
prisoners’dilemma games, and a large number of experiments show that many human sub-
jects, unlike homo oeconomicus, cooperate in finitely repeated and one-shot interactions (see,
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e.g., Cooper et al., 1996). We here identify the set Xκ of homo-moralis strategies, for each
κ ∈ [0, 1], in a one-shot prisoners’dilemma with payoff matrix

A =

(
R S

T P

)
(27)

for T > R > P > S. Three cases arise, depending on how the cost of cooperating (playing
pure strategy 1) when the opponent cooperates, T − R, relates to the cost of cooperating
when the opponent defects (plays pure strategy 2), P − S.

If these two costs are identical, T − R = P − S, a case often studied in the literature
(especially in biology), we are in case (b) in the above proposition, and the graph of the
correspondence that maps κ to the associated set of homo-moralis strategies looks like in
Figure 2. The set “explodes” from a singleton to the whole strategy space when κ is such
that S + κT = (1 + κ)P .

If T − R > P − S, then we are in case (c) of Proposition 4 for all κ > 0 and an interior
solution, x̂ (κ) ∈ (0, 1), obtains for intermediate values of κ. More precisely, Xκ = {0} for
all κ ≤ (P − S) / (T − P ), Xκ = {1} for all κ ≥ (T −R) / (R− S), and Xκ = {x̂ (κ)} for all
κ between these two bounds. See Figure 3 below.
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Figure 2: The set of homo-moralis strategies, when (T,R, P, S) = (5, 4, 3, 2).
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Figure 3: The (singleton) set of homo-moralis strategies for (T,R, P, S) = (7, 5, 3, 2).

Finally, in the case P −S > T −R, we are in case (a) of Proposition 4. Then 0 ∈ Xκ for
all κ ≤ (P − S) / (R− S) and 1 ∈ Xκ for all κ ≥ (T −R) / (T − P ), see Figure 4.

In sum: when played by a pair of homo moralis with the same degree of morality, a
prisoner’s dilemma in payoffs is a prisoner’s dilemma game only for certain combinations of
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payoffs and degrees of morality. In particular, this is the case when the degree of morality
is not too high. However, for certain payoffs and positive degrees of morality (those in case
(c) in Proposition 4) homo moralis randomizes between the two pure strategies, with an
increasing probability attached to “cooperate”as the degree of morality increases. For high
enough such values, HH cooperates with probability one. Full cooperation also obtains for
high κ-values in case (a) of Proposition 4. Interestingly, for an intermediate range of κ-
values, homo moralis can either sustain full cooperation, or, alternatively, get stuck in the
ineffi cient equilibrium where both players “defect.”
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Figure 4: The set of homo-moralis strategies, for (T,R, P, S) = (5, 4, 3, 1).

5.4 Hawk-dove games

This is the original example when the notion of an ESS was first introduced, see Maynard
Smith and Price (1973). The payoff matrix was then

A =

(
(v − c) /2 v

0 v/2

)
for 0 < v < c, see also Grafen (1979). In terms of payoffs, this game has a unique symmetric
Nash equilibrium, and in this equilibrium both players use their first pure strategy (“hawk”)
with probability x∗ = v/c. Moreover, x∗ is the unique ESS of this game. These fitness games
clearly belong to case (c) in Proposition 4, and we obtain Xκ = {xκ}, where

xκ =
1− κ
1 + κ

· v
c
.

The probability for the aggressive and wasteful strategy hawk is thus strictly decreasing in
κ, from its “classical”value, v/c, when κ = 0 to zero when κ = 1.

5.5 Coordination games

Finally, consider payoff matrices of the form

A =

(
a 0

c b

)
(28)
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for a > b > 0 and a > c > 0. In terms of payoffs, this game has three symmetric Nash
equilibria, two strict and one mixed, and the strict equilibrium (1, 1) is Pareto dominant
in terms of payoffs. Such fitness games clearly fall into case (a) in Proposition 4, so no
homo-moralis strategy is mixed. It is not diffi cult to verify that for κ suffi ciently small, both
pure strategies belong to Xκ while for higher κ only the first pure strategy does. To see this,
note that the maximand in (25) becomes

κ (a+ b− c) · x2 + (1− κ) (a+ b− c)xκ · x+ [κc− (1 + κ) b] · x+ (1− κ) · (c− b)xκ + b.

If xκ = 1, then x = 1 is a maximizer for all parameter values.25. By contrast, if xκ = 0, then
x = 0 is a maximizer if and only if κ ≤ b/a. Hence, for a pair of homo moralis with degree
of morality κ > b/a, this is a dominance solvable game, and not a coordination game . We
note that the payoff c has no influence on the set of homo-moralis strategies. Consequently,
risk dominance is here irrelevant. See Figure 5.
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Figure 5: The set of homo-moralis strategies, for a = 2b.

6 Matching processes

Most of the literature on preference evolution has focused on the case of when all matchings
are equally likely.26 Under such uniform randommatching, Pr [θ|θ, ε] = Pr [θ|τ , ε] = 1−ε, and
hence there is no assortativity: φ (ε) = 0 for all ε ∈ (0, 1). Arguably, positive assortativity
arises naturally in many, if not most, human interactions, due to socioeconomic population
structure, limited social or geographical mobility, habitat preferences, local customs and
cultures etc., see Eshel and Cavalli-Sforza (1982) and Bergstrom (1995, 2003). In this section
we explore a variety of such possibilities, and identify the associated index of assortativity,
σ.

25To see this, note that the maximand then vanishes at x = 0 and obtains a positive value at x = 1 if and
only if a > σb+ (1− σ) c, which holds by assumption.

26Exceptions are Alger and Weibull (2010, 2011), and Alger (2010), who allow for assortativeness when
analyzing the evolution of preferences under complete information. Hines and Maynard Smith (1979), Grafen
(1979), Bergstrom (1995, 2003) and Day and Taylor (1998) allow for assortativeness in models of strategy
evolution. See Gardner and West (2004) for an account of how negative assortativity may arise.
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Broadly speaking, whether preferences are transmitted genetically or culturally, assorta-
tivity is positive as soon as there is a positive probability that both parties in an interaction
have inherited their preferences (or moral values) from a common “ancestor” (genetic or
cultural).

6.1 Interactions between kin

While the following arguments can readily be adapted to interactions between other kin (see
Alger and Weibull, 2011), here we study pairwise interactions between siblings, for which
preferences are not gender specific. Consider a population of grown-ups where a proportion
1 − ε have preferences of type θ ∈ Θ and the residual proportion has preferences of type
τ ∈ Θ, the same proportion among men as among women, and suppose that couples are
formed randomly with respect to their preference types – “random mating”. We here show
how the index of assortativity between siblings then depends on whether a child inherits
his/her type from the parents or from others in society, and if the former case, whether the
siblings have the same parents.

6.1.1 Vertical transmission

Assume that each child is equally likely to inherit each parent’s preference type (and these
random draws are statistically independent). The inheritance mechanism could be genetic
or cultural.27 Suppose, first, that siblings have the same parents.

Proposition 5 Under random mating and monogamy, φ (ε) = 1/2 for all ε ∈ (0, 1).

Proof: Consider a population where a proportion ε ∈ (0, 1) of the adult population
carries type τ , and a proportion 1− ε carries type θ. A θ-child necessarily has at least one
θ-parent. With probability 1−ε, the other parent also has type θ, in which case both siblings
must have type θ. If the other parent has type τ , which happens with probability ε, the
other sibling has type θ with probability 1/2 and type τ with probability 1/2. Hence, the
probability that a θ-child’s sibling also is a θ-child is Pr [θ|θ, ε] = 1−ε/2. Similarly, a τ -child
has at least one τ -parent. With probability 1− ε the other parent has type θ, in which case
the probability that the sibling has type θ is 1/2. Hence, the probability that a τ -child’s
sibling has type θ is Pr [θ|τ , ε] = (1− ε) /2. We obtain φ (ε) = Pr [θ|θ, ε]− Pr [θ|τ , ε] = 1/2.
Q.E.D.

27In biological terms, we here focus on sexual reproduction in a haploid species. Thus, each child has
two genetic parents, and each parent carries one set of chromosomes, and this determines heredity. Humans
are a diploid species, with two sets of chromosomes, which complicates matters because of the distinction
between recessive and dominant genes. For calculations of assortativeness in diploid species, see Bergstrom
(1995, 2003). See further Michod and Hamilton (1980).
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Note that σ = 1/2 is the coeffi cient of relatedness between siblings (Wright, 1922).

Second, suppose, still, that there is random matching among parents, but that siblings
always have different fathers.28

Proposition 6 Under random mating and polyandry, φ (ε) = 1/4 for all ε ∈ (0, 1).

(A proof is given in the appendix.) As in the case with full siblings, here σ = 1/4 is the
coeffi cient of relatedness between half-siblings (Wright, 1922).

These results can be combined to calculate the index of assortativity between siblings
in a population where some parents remain monogamous while others divorce after the first
child and get a new child with their new partner.

Proposition 7 Suppose that a fraction λ ∈ [0, 1] of couples divorce. Then φ (ε) = 1/2 −
λ/4 for all ε ∈ (0, 1).

Proof: For children whose parents did not divorce, φ (ε) = 1/2, see Proposition 5. For
children whose parents did divorce, φ (ε) = 1/4, see Proposition 6. On average, then, in the
child population: φ (ε) = (1− λ) /2 + λ/4 = 1/2− λ/4. Q.E.D.

6.1.2 Oblique transmission

The above examples apply to both genetic and cultural transmission from parents to children.
But “cultural parents”(or role models) other than the parents can also be encompassed in
the framework, along the lines suggested by Bisin and Verdier (2001). This may happen
when social values spread through institutions other than the family, such as schools, media,
religious institutions etc.

Proposition 8 Assume monogamy, but suppose now that each child inherits a parent’s pref-
erences with probability ρ ∈ [0, 1], that otherwise the child takes on the preferences of a uni-
formly randomly drawn grown-up, from the population at large, and that the siblings’choices
of role model are statistically independent. Then σ = ρ2/2.

Proof: Let ε ∈ (0, 1). For a child born into a family where both children inherited their
preferences from their parents, φ (ε) = 1/2, as in Proposition 5. This is the case for the
fraction ρ2 of all sibling pairs. For a child born into a family where at least one child’s type
was drawn from a random grown-up in the population, φ (ε) ≈ ε. Q.E.D.

28The same result holds under polygyny, that is, when (half-)siblings always have the same father but
different mothers.
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6.2 Interactions among non-kin

For a variety of interactions among non-kin, education, population structure, social struc-
ture, culture, ethnicity, geography, networks, customs and habits, may all lead to various
deviations from uniform randomness in the pairwise matchings.

6.2.1 Education

Assortativity may arise in business partnerships. To see this, consider a large population
engaged in pairwise business partnerships, represented by a symmetric fitness game 〈X, π〉.
Suppose that each individual acquires her preferences concerning business strategies in school
and enters a new two-person business partnership upon finishing school. Now and then, a
school changes the business values they teach.

Proposition 9 Let υ ∈ [0, 1] be the probability that a newly minted graduate forms a busi-
ness partnership with a former schoolmate, and suppose that otherwise the graduate forms a
partnership with a graduate uniformly randomly drawn from the whole pool of newly minted
graduates in society at large. Then σ = υ.

Proof: Consider a large collection of schools, where the proportion 1−ε teach a business
value system θ ∈ Θ and a proportion ε teaches a business value system θ. Let ε → 0. For
graduates pairing up with a former schoolmate, σ = 1. For all other graduates, σ = 0. Since
there is a fraction υ of graduates who pair up with a schoolmate, on average, then, in the
population of newly minted graduates, σ = υ. Q.E.D.

6.2.2 Migration

In pre-historic societies, assortativity may have come about as a result of migration patterns.
Consider a society in which individuals grow up in small communities, where each community
has a hunting team consisting of two men from the community, where each community
teaches some values system for how to act in a hunting team to their youngsters, and that
some young men migrate from one community to another after their training but before they
become members of a hunting team (for example because of marriage).

Proposition 10 Suppose that a fraction γ ∈ [0, 1] of the young men migrate from their
native community to a uniformly randomly drawn community in society at large, while the
others remain in their native community. Then σ = 1− γ.

Proof: Consider a large collection of communities, where the proportion 1 − ε teaches
hunting values θ and the proportion ε teaches hunting values τ . For men who remained
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in their native community, σ = 1 − γ, while for men who moved, σ = 0. Since there is a
fraction 1− γ of young men who remain in their native community, on average, then, in the
population of young men, σ = (1− γ). Q.E.D.

In traditional societies, migration is often linked to marriage, and typically tradition
dictates whether the bride or bridegroommigrates. Thus, our model suggests that differences
in marriage customs may have affected the evolution of preferences within each gender.

7 Discussion

7.1 Related literature

The idea that moral values may have been formed by evolutionary forces is evidently not
new, and there is a substantial literature on this theme. The idea can be traced back to at
least Darwin (1871). More recent treatments include, to mention a few, Alexander (1987),
Nichols (2004) and de Waal (2006). The latter claims that there is evidence that moral codes
also exist in other primates. In this literature, mathematical analyses are rare, however.
An exception is the work by Bergstrom (1995, 2009). Bergstrom (1995) studies strategy
evolution in sibling interactions, where strategies are genetically transmitted from parents to
children. He finds that evolution favors strategies that are as though individuals had Kantian
preferences under asexual reproduction, and “semi-Kantian preferences”under sexual diploid
reproduction with recessive genes. This is exactly in line with our findings, since σ = 1 under
asexual reproduction and σ = 1/2 under sexual diploid reproduction with recessive genes.
Bergstrom (2009) extends this reasoning to arbitrary degrees of relatedness, and also provides
a thought-provoking discussion and interpretation of various moral maxims.29

7.2 Morality vs. altruism

There is a large body of theoretical research on the evolution of altruism (e.g., Becker,
1976, Hirshleifer, 1977, Bester and Güth, 1998, Bolle, 2000, Possajennikov, 2000, Alger
and Weibull, 2010, 2011, and Alger, 2010). Altruism towards another individual is often
represented in parametric form by letting the utility function of the altruist be the sum of
two terms, where the first term is his or her own payoff and the other term is the other
individual’s payoff multiplied by a factor α ∈ [0, 1]. In the present context,

uα (x, y) = π (x, y) + απ (y, x) , (29)

29Unlike us, however, Bergstrom (1995, 2009) bases his analysis on pure strategies in finite games, rather
than on mixed strategies, as we here do.
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for some degree of altruism α ∈ [0, 1]. By contrast, our homo moralis has preferences of the
form

uκ (x, y) = (1− κ)π (x, y) + κπ (x, x) (30)

for some degree of of morality κ ∈ [0, 1]. Hence, while an altruist cares about the other’s
payoff, homo moralis cares about what is the “right thing to do,” irrespective of what the
other party actually does or is expected to do. We first show that while in some situations,
morality and altruism lead to the same behavior, in others the contrast is stark. Second, we
discuss a situation where the behavior of homo moralis can be viewed as less “moral”than
that of an altruist, or even than that of homo oeconomicus.

7.2.1 Behavioral consequences of morality and altruism

The necessary first-order condition for an altruist at an interior symmetric equilibrium,

[π1 (x, y) + απ2 (y, x)]|x=y = 0,

is identical with that for a homo moralis,

[(1− κ) π1 (x, y) + κπ1 (x, x) + κπ2 (x, x)]|x=y = 0,

if α = κ. As an illustration, suppose that the pairwise interaction in question is a public-
goods game of the type studied in subsection 4.3, and let α = κ = 1/2. Figure 6 below shows
the best-reply curve of homo moralis (solid) and the altruist (dashed) (both for b = 0.5 and
c = 1). We see that the altruist is more willing to make up for low contributions than homo
moralis. This is not surprising; the altruist is partly motivated by the well-being of the other,
while homo moralis is not. Homo moralis is instead partly motivated by what is “the right
contribution.”We also see in the diagram that the two best-reply curves intersect on the
diagonal. Hence, the equilibrium contribution in a monomorphic population of altruists is
identical with the equilibrium contribution in a monomorphic population of homo moralis.
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Figure 6: Best-reply curves in a public goods game with b = 0.5 and c = 1, for a homo
moralis with κ = 0.5 (solid) and an altruist with α = 0.5 (dashed).
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Nonetheless, there is an important qualitative difference between homo moralis and al-
truists, namely, that their utility functions are in general not monotonic transformations
of each other. This is seen in equations (29) and (30): for non-trivial payoff functions π
and strategy sets X, and for any α, κ 6= 0, there exists no function T : R → R such that
T [uα (x, y)] = uκ (x, y) for all x, y ∈ X. This is seen most clearly in the case of finite games.
Then uα is linear in x while uκ is quadratic in x:{

uα (x, y) = x · Ay + αy · Ax
uκ (x, y) = (1− κ)x · Ay + κx · Ax

Consequently, the best-reply correspondence βα of an altruist in general differs qualitatively
from the best-reply correspondence βκ of homo moralis, even when α = κ. Indeed, the
equilibria among altruists may differ from the equilibria among homo moralis also when
α = κ.

7.2.2 Anti-coordination games

We further illustrate the tension between moralists and altruists, now in a finite game, an
example suggested to us by Ariel Rubinstein. Let

A =

(
δ 2

1 0

)
for some δ ∈ (0, 1). Consider a homo kantiensis (κ = 1), the “most moral” among homo
moralis. Such a creature will always play

xκ=1 =
3

6− 2δ
.

Suppose now that such an individual visits a country where everyone always plays the
first pure strategy, thus earning payoff δ in each encounter with each other. When homo
kantiensis interacts with a citizen in that society, the matched native earns more than when
interacting with other natives. However, if the visitor instead were a homo oeconomicus
(κ = 0), then this new visitor would play the second pure strategy. Consequently, the
other individual in the match would earn more than in a meeting with homo kantiensis. In
fact, this lucky citizen would earn the maximal payoff in this game. Hence, citizens in this
country would be even more delighted to interact with homo oeconomicus than with homo
kantiensis. Should then homo oeconomicus be deemed “less moral”than homo kantiensis in
this situation? What if we would instead replace homo kantiensis by a full-blooded altruist,
someone who maximizes the sum of payoffs (α = 1)? Given that all citizens always play
the first pure strategy, the best such an altruist could do would be to play the second pure
strategy, just as homo oeconomicus would.

This example illustrates that homo kantiensis is not necessarily “more moral” in an
absolute sense and in all circumstances, than, say homo oeconomicus or an altruist. However,
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homo kantiensis is more moral in the sense of always acting in accordance with a general
principle that is independent of the situation and identity of the actor (moral universalism),
namely to do that which, if done by everybody, maximizes everybody’s payoff.

Remark 6 Suppose that the citizens of the country imagined above would like to achieve
the highest possible payoff but are not even aware of the second pure strategy. Then homo
kantiensis would, by his own example, show them its existence and thus how they can increase
their payoff in encounters amongst themselves. Indeed, an entrepreneurial and benevolent
visitor to the imagined country could go one step further and suggest a simple institution
within which to play this game, namely an initial random role allocation, at each pairwise
match, whereby one individual is assigned player role 1 and the other player role 2, with
equal probability for both allocations. This defines another symmetric two-player game in
which each player has four pure strategies (two for each role). In this “meta-game” G′,
homo kantiensis would use any of two strategies x′κ=1, each of which would maximize the
payoff π′ (x′κ=1, x

′
κ=1), namely to either always play the first (second) pure strategy in the

original game when in player role 1 (2), or vice versa. In both cases, π′ (x′κ=1, x
′
κ=1) = 3/2, a

higher payoff than when homo kantiensis meets himself in the original game: π (xκ=1, xκ=1) =

(2− 2δ/3)−1 · 3/2.

7.3 Empirical testing

An interesting empirical research challenge is to find out how well homo moralis can explain
behavior observed in controlled laboratory experiments. Consider, for example, an experi-
ment in which (a) subjects are randomly and anonymously matched in pairs to play some
two-player game in monetary payoffs (or a few different such games), (b) after the first few
rounds of play, under random re-matching, subjects receive some information about aggre-
gate play in these early rounds, and (c) are then invited to play some more rounds (again
with randomly drawn opponents). One could then analyze their behavior in these later
rounds as if they played a (Bayesian) Nash equilibrium under incomplete information, where
each individual is a homo moralis with an individual-specific and presumed fixed degree of
morality (presumably given from that individual’s background, experience and personality).
How much of the observed behavior could be explained this way? If one were to embed the
simple preferences of homo moralis in a more general class of other-regarding preferences,
how much more explanatory power would then be gained? Supposing that the subjects be-
have as they usually do in similar real-world interactions, one could compare estimates of the
degrees of morality in different subject pools and see if this seems to map relevant cultural
and socioeconomic differences, in line with homo hamiltoniensis.30

30If there is uniform random matching in the lab, then presumably many individuals will gradually, perhaps
quickly for some and slowly (or not at all) for others, change their behavior, during long sessions in the lab,
towards one where they behave more like homo oeconomicus, as it will in our theory if σ = 0.
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Remark 7 Although in the model above individuals play only one game, the model has
clear implications for the more realistic situation where each individual engages in multiple
interactions. Indeed, the degree of morality that will be selected for will simply correspond to
the index of assortativity in the matching process for the interaction at hand. For instance,
if individuals are recurrently both engaged in some family interaction with a high index of
assortativity and also in some market interaction with a low index of assortativity, then
the above theory says that one and the same individual will tend to exhibit a high degree
of morality in the family interaction and be quite selfish in the market interaction. More
generally, the type of an individual engaged in multiple interactions will be a vector of degrees
of morality, one for each interaction, adapted to the matching processes in question (but
independent of the nature of the interaction).

8 Concluding remarks

Economic analysis is based upon assumptions about human motivation. Presumably, higher
predictive power can be achieved the better the assumptions reflect the actual motivation. In
order to enhance the predictive power of economic models, a deeper understanding of both
proximate and ultimate causes of human motivation is necessary. Our research contributes
to the understanding of ultimate causes, by proposing a theoretical model of the evolution of
preferences.31 We follow a long tradition in the literature by asking whether evolution will
select preferences whereby individuals selfishly maximize their individual fitness payoff.32

So far, the leading theory for why deviations from such preferences may survive evolution
is that, if known or believed by others, such preferences may give its carrier a strategic
commitment advantage in terms of payoff consequences. By contrast, we here show that
deviations from selfish preferences will typically be evolutionarily stable also when preferences
are private information, as long as the matching process that governs interactions involves
some assortativity.33 Our theory thus delivers new, testable predictions, regarding human

31Our theory is, however, silent as to which proximate causes may come into play, and whether it applies
only to humans. Proximate causes may include culture (Gächter and Herrmann, 2009), genes (Cesarini et
al., 2008), and hormones and neural circuitry (Eisenegger et al, 2010, Fehr and Camerer, 2007, Harbaugh
et al., 2007, Moll et al., 2006, Rilling et al., 2002). Pro-social behavior has been observed in other animals,
such as rats (Bartal et al., 2011).

32In a related literature, on cultural evolution, altruistic parents can, at some cost, influence their childrens’
preferences and values; see, e.g., Bisin and Verdier (2001), Hauk and Saez-Martí (2002), Bisin, Topa and
Verdier (2004), and Lindbeck and Nyberg (2006). In our model, evolution is an exogenously given process,
and parents (be they cultural of genetic parents), do not need to be altruistic for non-selfish preferences to
be favored by evolution.

33This paper complements our work in Alger and Weibull (2010, 2011), and Alger (2010), where we
studied evolutionary stability of preferences under assortative matching and complete information. In that
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motivation.

Although we permit virtually any preferences (as long as they can be represented by
continuous functions), we find that a particular one-dimensional parametric family, the pref-
erences of homo moralis, stands out in the analysis. A homo moralis acts as if he or she
had a sense of morality: she maximizes a weighted sum of own payoff, given her expecta-
tion of the other’s action, and the payoff that she would obtain if both individuals were to
take the same action. A certain member of this family, homo hamiltoniensis, is particularly
viable from an evolutionary perspective. The weight that homo hamiltoniensis attaches to
the second goal is the index of assortativity in the matching process. The viability of homo
hamiltoniensis stems from the fact that the best a mutant can do, in order to “invade”such
a resident population, is to choose the same strategy. Moreover, any resident type that does
not play a Hamiltonian strategy is vulnerable to invasion by mutants.

These results have important implications regarding homo oeconomicus. We show that
homo oeconomicus, who seeks to maximize his own payoff, does well in situations where
there is no assortativity in the matching process and where each individual’s payoff does not
depend on others’behavior. By contrast, natural selection wipes out homo oeconomicus in
all other situations.34

As is common in the literature, in our model evolutionary success is determined by
behavior in a symmetric interaction. As illustrated by our analyses of the dictator and
ultimatum-bargaining games, the symmetry assumption does not need to apply in a literal
sense, however. The model applies to interactions where there is some asymmetry between
the individuals’ situations (say, helping interactions where one individual happens to be
rich and the other poor), as long as from an ex ante perspective it is not known which
individual will be in which situation. In such cases, evolution selects preferences that favors
the individual, behind the veil of ignorance regarding which situation the individual will
eventually end up in.

While the predictive power of preferences à la homo moralis remains to be analyzed
carefully, we argue that at first glance the behavior of homo moralis seems to be broadly
compatible with experimental evidence. What’s more, homo moralis may explain why many
subjects justify their behavior in the lab by saying that they wanted to “do the right thing”
(see, e.g., Dawes and Thaler, 1988, Charness and Dufwenberg, 2006). While we leave the-
oretical analyses of the policy implications of such moral preferences for future research,
we note that in our model the degree of morality, that is, the weight attached to the sec-

setting, other factors in the environment (in particular the structure of the payoffs in the interactions driving
evolution) may also affect the evolution of preferences.

34It is important to point out that maximizing own fitness payoff involves acting in an other-regarding
manner if breeding is cooperative or reproduction involves mate competition. For analysis of this, see Weibull
and Salomonsson (2006).
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ond goal, is independent of the interaction at hand. Hence, the degree of morality cannot
be “crowded out” in any direct sense by economic incentives or laws. For instance, if one
were to change an interaction (for example public goods provision) by way of paying people
for “doing the right thing” (say, contributing the socially optimal amount), or by way of
punishing them for doing otherwise, this would change the payoff function, and thus also
the behavior of homo moralis, but in an easily predictable way, since homo moralis cares
neither about other’s opinion of her, nor about other’s actual payoffs. Moreover, our theory
predicts that if one and the same individual is engaged in multiple pairwise interactions of
the sort analyzed here, perhaps with a different index of assortativity associated with each
interaction (say, one interaction taking place within the extended family and another one in
a large anonymous market), then this individual will exhibit different degrees of morality in
these interactions, adapted to the various indices of assortativity.

Some new ground has been covered here, but many deep and important questions about
ultimate causes behind human motivation remain unanswered. For instance, what are the
effects of group size? Can the theory be generalized so as to explain stable preference het-
erogeneity in populations? What happens in truly asymmetric interactions, such as between
parents and children, men and women, or individuals in hierarchies?
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9 Appendix

9.1 Proof of Lemma 1

By hypothesis, uθ and uτ are continuous and X is compact. Hence, each right-hand side in
(3) defines a non-empty and compact set, for any given ε ∈ [0, 1], by Weierstrass’s maximum
theorem. For any (θ, τ , ε) ∈ S, condition (3) can thus be written in the form (x∗, y∗) ∈
Bε (x∗, y∗), where Bε : C ⇒ C, for C = X2 and ε ∈ [0, 1] fixed, is compact-valued, and, by
Berge’s maximum theorem, upper hemi-continuous. It follows that Bε has a closed graph,
and hence its set of fixed points, BNE (θ, τ , ε) = {(x∗, y∗) ∈ X2 : (x∗, y∗) ∈ Bε (x∗, y∗)} is
closed (being the intersection of graph (Bε) with the diagonal of C2). This establishes the
first claim.

If uθ and uτ are concave in their first arguments, then so are the maximands in (3).
Hence, Bε is then also convex-valued, and thus has a fixed point by Kakutani’s fixed-point
theorem. This establishes the second claim.

For the third claim, fix θ and τ , and write the maximands in (3) as U (x, x∗, y∗, ε)

and V (y, x∗, y∗, ε). These functions are continuous by assumption. Let U∗ (x∗, y∗, ε) =

maxx∈X U (x, x∗, y∗, ε) and V ∗ (x∗, y∗, ε) = maxy∈X V (y, x∗, y∗, ε). These functions are con-
tinuous by Berge’s maximum theorem. Note that (x∗, y∗) ∈ BNE (θ, τ , ε) iff{

U∗ (x∗, y∗, ε)− U (x, x∗, y∗, ε) ≥ 0 ∀x ∈ X
V ∗ (x∗, y∗, ε)− U (y, x∗, y∗, ε) ≥ 0 ∀y ∈ X. (31)

Let 〈εt〉t∈N → εo ∈ [0, 1] and suppose that (x∗t , y
∗
t ) ∈ BNE (θ, τ , εt) and (x∗t , y

∗
t ) → (xo, yo).

By continuity of the functions on the left-hand side in (31),{
U∗ (xo, yo, εo)− U (x, xo, yo, εo) ≥ 0 ∀x ∈ X
V ∗ (xo, yo, εo)− U (y, xo, yo, εo) ≥ 0 ∀y ∈ X

and hence (xo, yo) ∈ BNE (θ, τ , εo). This establishes the third claim.

9.2 Proof of Proposition 2

A homo moralis who plays x = (x1, x2) ∈ [0, 1]2 against y = (y1, y2) ∈ [0, 1]2 gets utility

uκ (x, y) = v (0) + κ · 1{x1≥x2} ·
[

1

2
v (1− x1) +

1

2
v (x1)− v (0)

]
1− κ

2

[
1{x1≥y2} · [v (1− x1)− v (0)] + 1{y1≥x2} · [v (y1)− v (0)]

]
.

Let Vκ : [0, 1]→ R be defined by

Vκ (t) = v (1− t) + κ · v (t) . (32)
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It is not diffi cult to prove:

Lemma 2 For each κ ∈ [0, 1], Vκ is strictly concave in t, decreasing over the interval
[τ (κ) , 1], where τ (κ) is defined in (21), and achieves the intermediate value w (κ) = (1− κ) v (0)+

2κv (1/2) at a unique point ρ (κ) ∈ [1/2, 1].

The following claim is trivial, given that v is increasing:

Claim 1 For any x ∈ βκ (y), x2 ≤ min {y1, x1}.

Claim 2 For any x ∈ βκ (x), x1 ≥ τ (κ).

Proof: The claim is trivial if τ (κ) = 0. Assume now that τ (κ) > x1 ≥ 0, where x2 ≤ x1
(by virtue of Claim 1). Then a deviation to x′ = (τ (κ) , x2) leads to utility change

uκ (x′, x)− uκ (x, x) =
1

2
[v (1− τ (κ))− v (1− x1)] +

κ

2
[v (τ (κ))− v (x1)] ,

which is strictly positive since τ (κ) = arg maxt∈[0,1] v (1− t) + κv (τ (κ)) and v is strictly
concave (so that also v (1− t) + κv (τ (κ)) is strictly concave). Q.E.D.

Clearly:

Claim 3 If x ∈ βκ (x) and x1 = τ (κ), then x2 ≤ x1.

The following claim requires a proof:

Claim 4 If x ∈ βκ (x) and x1 > τ (κ), then x1 = x2.

Proof: Suppose x ∈ βκ (x) and x1 > τ (κ). By virtue of Claim 1, x1 ≥ x2. Hence, to
prove the claim at hand, we only need to rule out any x = (x1, x2) such that x1 > x2.

Thus, suppose that x1 > x2. Then a deviation to x′ = (x′1, x2) where x
′
1 = max {τ (κ) , x2}

leads to utility change

uκ (x′, x)− uκ (x, x) =
1

2
[v (1− x′1)− v (1− x1)] +

κ

2
[v (x′1)− v (x1)] ,

which is strictly positive, since τ (κ) = arg maxt∈[0,1] v (1− t)+κv (τ (κ)), v is strictly concave
(so that also v (1− t) + κv (τ (κ)) is strictly concave), and x1 > x′1 ≥ τ (κ). Q.E.D.

The preceding claims provide a lower bound for x1. We now derive an upper bound.
Thus, assume that x ∈ βκ (x) for some x1 ≥ τ (κ) and x2 = x1. We first show that there
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exists no viable deviation x′ = (x′1, x2) such that x
′
1 > x1. Indeed, such a deviation would

lead to utility change

uκ (x′, x)− uκ (x, x) =
1

2
[[v (1− x′1)− v (1− x1)] + κ · [v (x′1)− v (x1)]] ,

which is strictly negative since τ (κ) = arg maxt∈[0,1] v (1− t) + κv (τ (κ)), and v is strictly
concave (so that also v (1− t) + κv (τ (κ)) is strictly concave), and x′1 > x1 ≥ tκ.

Second, we analyze deviations x′ = (x′1, x
′
2) where x

′
2 = x′1 ∈ [0, x1). (We consider only

deviations such that the deviator would accept the amount that he or she proposes; indeed,
deviating to some x′1 that will be turned down by the opponent– because x

′
1 < x1– would

stand no chance of being viable.) Such a deviation would lead to utility change

uκ (x′, x)−uκ (x, x) =
1− κ

2
[v (0)− v (1− x1)]+

κ

2
[v (1− x′1) + v (x′1)− v (1− x1)− v (x1)] .

We note that this is maximized for x′1 = 1/2. Hence, there exists a deviation x′1 such that
uκ (x′, x)− uκ (x, x) > 0 if and only if uκ (x′, x)|x′1=x′2=1/2

− uκ (x, x) > 0, or

0 <
1− κ

2
[v (0)− v (1− x1)] +

κ

2
[v (1/2) + v (1/2)− v (1− x1)− v (x1)]

⇔ 2κ · v (1/2) + (1− κ) v (0) > v (1− x1) + κ · v (x1) ,

which holds if and only if x1 > ρ (κ), where ρ (κ) is defined in Lemma 2.

9.3 Proof of Proposition 6

Suppose that in the adult population there is a fraction 1 − ε that has the type θ, and a
fraction ε that has the type τ . Suppose further that each adult woman has two different
partners (and couples form randomly, the type distribution is the same among men and
women, types are not gender-specific, a child inherits the mother’s type with probability 1/2
and the father’s type with probability 1/2, and each formed couple has one child). Let a
family be the mother, her two partners, and their two children (thus, each adult man belongs
to two families). Then there are five kinds of families, depending on which types the children
may have:

1. Both children have type θ with certainty. A fraction f1 = (1− ε)3 of families are of
this kind.

2. Both children have type τ with certainty. A fraction f2 = ε3 of families are of this
kind.

3. One child has type θ with certainty, while the other child has type θ with probability
1/2 and type τ with probability 1/2. A fraction f3 = 2 (1− ε)2 ε of families are of this
kind.
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4. One child has type τ with certainty, while the other child has type θ with probability
1/2 and type τ with probability 1/2. A fraction f4 = 2 (1− ε) ε2 of families are of this
kind.

5. Both children have type θ with probability 1/2 and type τ with probability 1/2. A
fraction f5 = (1− ε) ε2 + (1− ε)2 ε of families are of this kind.

Draw a random child in this population. To calculate σ (ε), we calculate the probability
that this child’s half-sibling has type θ, conditional on he himself having type θ, and also the
probability that this child’s half-sibling has type θ, conditional on he himself having type
τ . With a slight abuse of notation (because we are not keeping track of the individual’s
identity), let c denote a child’s own type, and h the type of the half-sibling. Then:

σ (ε) = Pr [h = θ|c = θ]− Pr [h = θ|c = τ ] .

We proceed in several steps to calculate each conditional probability. First, since

Pr [h = θ|c = θ] =
Pr [c = h = θ]

Pr [c = θ]
,

we start by determining Pr [c = θ].

Letting ni denote the average number of children with type θ in family of type i, and mi

the average number of children with type τ in family of type i, we obtain the expected mass
N of children with type θ in this population as follows:

N =
5∑
i=1

ni · fi

= 2 (1− ε)3 +
3

2
· 2 (1− ε)2 ε+

1

2
· 2 (1− ε) ε2 + 1 ·

[
(1− ε) ε2 + (1− ε)2 ε

]
= 2 (1− ε)3 + 4 (1− ε)2 ε+ 2 (1− ε) ε2

= 2 (1− ε)
[
(1− ε)2 + 2 (1− ε) ε+ ε2

]
= 2 (1− ε)

[
1− 2ε+ ε2 + 2ε− 2ε2 + ε2

]
= 2 (1− ε) .

Since the total expected mass of children is 2, the expected mass M of children with type τ
is

M = 2−N = 2− 2 (1− ε) = 2ε.

Hence:

Pr [c = θ] =
N

N +M
=

2 (1− ε)
2

= 1− ε,

and
Pr [c = τ ] = 1− Pr [c = θ] = ε.
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Next we calculate the fraction of children who will have type θ and also have a half-sibling
who has type θ:

Pr [c = h = θ] = (1− ε)3 · (1 · 1)

+ ε3 · (0 · 0)

+ 2 (1− ε)2 ε ·
(

1

2
· 1

2
+

1

4
· 1
)

+ 2 (1− ε) ε2 ·
(

0 · 1

2
+

1

2
· 0
)

+
[
(1− ε) ε2 + (1− ε)2 ε

]
·
(

1

2
· 1

2

)
.

Each line in this formula is the product of the probability of being born into a certain kind of
family, and the probability of having type θ and having a half-sibling with type θ, conditional
on being born into such a family. Thus, in the first line, the probability of being born into a
family of kind 1 is (1− ε)3; in such families all children have type θ, and so the probability
of having type θ is 1, and the probability of then having a half-sibling with type θ is also 1.
In the second line, the probability of being born into a family of kind 2 is ε3; in such families
all children have type τ , and so the probability of having type θ is 0, and the probability
of then having a half-sibling with type θ is also 0. In the third line, the probability of
being born into a family of kind 3 is 2 (1− ε)2 ε; in such families half of the children have
type θ with certainty, and such children have a half-sibling with type θ with probability
1/2; and half of the children have type θ with probability 1/2, and such children have a
half-sibling with type θ with certainty. In the fourth line, the probability of being born
into a family of kind 4 is 2 (1− ε) ε2; in such families half of the children have type θ with
probability 0, and such children have a half-sibling with type θ with probability 1/2; and
half of the children have type θ with probability 1/2, and such children have a half-sibling
with type θ with probability 0. Finally, the probability of being born into a family of kind 5
is (1− ε) ε2 + (1− ε)2 ε; in such families all children have type θ with probability 1/2, and
such children have a half-sibling with type θ with probability 1/2.

Simplifying the expression, we obtain

Pr [c = h = θ] = (1− ε)3 + (1− ε)2 ε+
1

4

[
(1− ε) ε2 + (1− ε)2 ε

]
= (1− ε)

[
(1− ε)2 + (1− ε) ε+

1

4
· ε
]

= (1− ε)
(

1− 3

4
ε

)
,

and hence:

Pr [h = θ|c = θ] =
(1− ε)

(
1− 3

4
ε
)

1− ε = 1− 3

4
ε.
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Similarly, the fraction of children who will have type τ and have a half-sibling who has
type θ is:

Pr [c = τ ∧ h = θ] = (1− ε)3 · (0 · 1) + ε3 · (1 · 0)

+2 (1− ε)2 ε ·
(

0 · 1

2
+

1

4
· 1
)

+ 2 (1− ε) ε2 ·
(

1

2
· 1

2
+

1

4
· 0
)

+
[
(1− ε) ε2 + (1− ε)2 ε

]
·
(

1

2
· 1

2

)
Simplifying the expression, we obtain

Pr [c = τ ∧ h = θ] =
3

4
(1− ε) ε,

and hence:

Pr [h = θ|c = τ ] =
3 (1− ε) ε

4ε
=

3

4
(1− ε) .

We finally obtain

σ (ε) = Pr [h = θ|c = θ]− Pr [h = θ|c = τ ] = 1− 3

4
ε− 3

4
(1− ε) =

1

4
.
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