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Abstract
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1 Introduction

When experts communicating with decision makers, the latter is rarely sure about the former’s
underlying motives. In ancient dynasties, emperors suspect their ministers’ unrighteousness and
loyalty. In stock markets, investors doubt about the analysts’ hidden incentives. In bureaucracies,
clerks are cautious about the potential conflicts with their colleagues. In these situations, the expert
will feel uncertain about the decision maker’s belief if the latter has no credible device to signal
trustE

I study the impact of higher order uncertainty to cheap talk communication (Crawford and Sobel
[1982]) when the sender can have two possible preferences: either she is good, i.e. her preference
is perfectly aligned with the receiver’s; or she is bad, and simply aims to maximize the receiver’s
action. The receiver can have various beliefs and higher order beliefs on the sender’s preference, and
the sender can have various higher order beliefs over the receiver’s beliefs. 1 adopt the universal
type space formulation (Mertens and Zamir [1985]) and show that when the two players’ type
spaces satisfy a ‘richness condition’, then in every equilibrium, there is a positive probability that
the good sender cannot fully transmit her information, even though she does not pool with the bad
ones (good senders pool within themselves). Furthermore, under a ‘contagion condition’, no good
sender can fully reveal her information in any equilibrium.

My model has a broad range of economic implications, especially in the situation where com-
munication is harassed by rumors. In the above examples, rumors can be deliberately spread by
political enemies, competing analysts, discontented former co-workers, etc. They may also arise
inadvertently among the public. The subtle thing is, whether the decision maker trust the rumor
or not mainly depends on his subjective evaluation, other than the informativeness of the rumor
on the sender’s true preference.

My ’no full communication’ result is in sharp contrast with the case in which the sender does not
face higher order uncertainty (Morgan and Stocken [2003]): a good sender can fully communicate
her information as long as she can fully separate herself from the bad ones. However, when injecting
higher order uncertainty into the game, the marginal good sender’s expected loss is strictly positive
in every equilibrium, since she is unsure about the receiver’s action after receiving her equilibrium
message. Therefore, the largest equilibrium action below the marginal type must be bounded away

from it, and the receiver’s sequential rationality condition forces some good senders to pool within

In my model, the receiver cannot credibly convey his prior belief through cheap talk.
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themselves.
Under the richness condition which leads to my main result, the players’ posterior beliefs cannot
be originated from the same prior, i.e. they ‘agree to disagree’ (Aumann [1976]). Intuitively, in

context of rumors, my condition implies that:

1. Rumors have an impact, even when they are unfounded. Historical evidence ranges from the

Great Purge of Joseph Stalin, to...

2. Rumors affect everyone, and almost equally. If it is possible that a good sender has a kind
of belief, then it is also possible for a bad one to have that belief. This means, even when
the sender is congruent, it does not give her more confidence that the receiver will not trust
the rumor. When rumors prevail, everyone has a reason to fear that he or she is going to be

distrusted.

3. Anticipating that the receiver has heard a rumor, the sender is very uncertain about what is
in the receiver’s mind, i.e., the receiver may have a potentially rich set of beliefs, and such

beliefs cannot be communicated credibly to the sender via cheap talk.

As a direct application to my model, I revisit delegation problem when a better informed
agent faces higher order uncertainty. I show that higher order uncertainty decreases the receiver’s
expected welfare, and there is no cross-type compensation. Delegating decision rights to the agent
brings an additional benefit to the principal: eliminating the welfare losses caused by higher order
uncertainty, since the principal’s belief and higher order beliefs are no longer relevant when decision

rights are being delegated.

Related Literature: This paper revisits the main insight of Crawford and Sobel (1982), that
in general, the sender’s information can be fully transmitted via cheap talk messages if and only
if her preference is fully aligned with the receiver’s. In a complementary paper, Pei (2012) shows
that when the sender needs to acquire information at a cost, then she must communicate all her
information in any equilibrium, regardless of the conflict of interests between the players. This
paper examines the case in which the sender cannot fully communicate her information, even
though there is no conflict of interest.

This paper is related to two strands of literature: strategic communication when the receiver has
private information; and when the sender’s preference is uncertain. Starting from Watson (1996),

many papers analyzed situations where the receiver has private information on the state of the
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world, and examine how this private information improves or hinders communication. Olszewski
(2004) shows that when the sender has honesty concerns, then information can be fully revealed
when the receiver also receives a private signal. In contrast, many recent papers describe various
environments in which the receiver’s private information makes communication less informative
In contrast, my paper focus on the receiver’s private information on the sender’s preference, and
allows for more general forms of uncertainty and higher order uncertainty.

On the uncertain sender-preference side, this paper is closest to Morris (2001) in formulating
the senders’ preferences, where the good sender’s preference is fully aligned with the receiver’s,
and the bad sender simply wishes to maximize the receiver’s action. The main differences are:
whether or not the receiver has private information, and whether the game lasts for 1 period or 2
periods. Another related paper is Blume and Board (2012), where they assume both the sender and
the receiver are uncertain about each other’s language competence. They show that informative
equilibrium still exists, and the optimal communication protocol will try to make use of all the

messages available.

2 A Motivating Example

An emperor (receiver) needs his minister’s (sender) advice on how much to spend on a construction
project. Let 6 be the most appropriate amount, which is distributed uniformly on [0, 1], and a be
the emperor’s decision. The minister knows the 6, and can be either upright (good) or corrupted

(bad). An upright minister’s preference is fully aligned with the emperor’s:
UI=U" = —(a—0)>

A corrupted minister would always like the emperor to spend more, so that he can divert more
money into his own pocket.
Ul=a

2For example, Galeotti et.al. (2009) studies communication in networks, and shows that a sender is less likely to
report information truthfully to a receiver if the latter has too many other sources of information. Lai (2009) studies
a context where the amateur receiver can tell the difference between high and low states, but the cut-off threshold
is private information. Chen (2009), Moreno de Barreda (2010), Ishida and Shimizu (2012) identify situations where
the receiver receives a private signal about the fundamentals, and examine how it hinders communication and make
some equilibria not monotone. Goltsman and Pavlov (2011) examine the case in which the sender talks to multiple
receivers and characterize the equilibria of the game.
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I assume that the emperor does not know the minister’s type, and believes that the minister is

corrupted with probability 7. Let us consider the following two cases separately:
1. The minister knows the emperor’s belief, i.e., there is only ‘1st order uncertainty’.

2. The minister feels unsure about how the emperor perceives of him, perhaps he is uncertain
about whether the emperor has believed in the rumors his political enemies have spread, or
he does not know whether the emperor is suspicious or credulous. In this case, the minister

also faces ‘2nd order uncertainty’.
In the first case, there exists an equilibrium where the good minister fully reveals 6 if and only if:

1
1+n

0 <

(2.1)

When information is fully revealed, the emperor takes the most appropriate action. If 8 is above

this threshold, the good minister pools with the bad one, which induces action a = ;7 +1 = In this

S

example, the good minister fully reveals his information with probability ﬁm

In the second case, suppose the minister believes that n € {n1,n2} and n = n; with probability
p1 and 1 = ne with probability ps, where p; € (0,1), then the qualitative features of the equilibrium
completely changes. Next, I show the following claim, which explains the qualitative differences

between the equilibria with or without higher order uncertainty.
Claim 1. The good minister can never fully reveal his information.

Proof of the Claim: For any message m? sent by the bad type with positive probability in equi-
librium:

pra! (m") + paa*(m") € arg max { pra’ (m) + pa*(m) }
me

where M is the set of messages. Define a subset M? as:

M = {m|pra’(m) + paa*(m) = ma {pra’ (') + p2a*(m')}

the bad type will always send a message in M?.

Next, a good sender with type 6 sends message m? € M? only if:

Z pi(a’(m”) = 0)? < arg max Z pi(a’(m) — 0)? (2.2)
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which can be re-written as:

So there exists a threshold #, such that the good sender sends a message in M? if and only if
0 > 0.
For any two messages m,m’ € M, both messages are sent with positive probability by good

types if and only if:
Zpiai(m/)Z — Zpiai(m)Q
A %

If this is not the case, let the LHS of the above equality larger than the RHS, then no good sender
sends m’, which means it is only sent by the bad types. Hence, it implies that all receivers take the

same action upon receiving m’. This contradicts the fact that

> pial(m') = 3 pia(m)

and
> pid(m')? > > pia’(m)”

we have assumed before. So equality must hold. This implies that all types of senders are indifferent
between m and m/.

Suppose there exists a message m € M? such that a’(m) = 6y for i = 1,2. Then, good senders
with any 6 prefer m than other messages in M?, which implies that all bad senders send m. Since
different types of receivers have different beliefs over the sender’s distribution, their reactions upon
receiving m cannot be the same, which leads to a contradiction. So there does not exist a message
which makes the expected loss of the marginal good sender 6 = 6y equal to 0. If type 6y — € good
sender can fully separate himself, then type 6y 4 ¢ prefers to induce a = 6y — ¢ than any message in
M? if we make € small enough. This means, there does not exist a type arbitrary close to fy who
can fully separates himself.

Let a; be the largest equilibrium action induced by good senders with 6 < 6y, 89 —a; > 0. The
receiver’s sequential rationality condition requires that good senders with 6 € [01, 6] induces action
a1, where 01 = 2a1 — 6y. Since type 61 good sender has to be indifferent between a; and the next

equilibrium action: aq, as — 01 = 61 — ay. Iterating this process, the equilibrium is characterized by
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0=0 0 0=1 0 0=0 6 0=1 0

Figure 1: Good sender’s equilibrium strategy with or without second order uncertainty.

a partition of equal-lengths intervals within [0, fp]. Good senders within each interval pool within
themselves, although not being joint by any bad senders. In any equilibrium, no good sender can

fully reveal his information. O

The comparison of the good minister’s equilibrium strategy with or without second order un-
certainty is shown in the graph, where the red line is the range in which good ministers pools with
bad one, the green line is the fully separating range, and the blue line is the range where good

ministers pool within themselves.

3 Cheap Talk Under Higher Order Uncertainty

Let 0 € [0,1] be the state of the world and @ € A = R be the receiver’s action| The sender knows 6
and can be either ‘good’ or ‘bad’. The good sender’s preference is fully aligned with the receiver’s:
u(a, 0), which depends on the latter’s action and the state of the world. The bad sender’s preference
is given by u® = a. I assume that u € C? and

9% -0 9%
0adl ’

902 < 0, wu(6,0)= rcrbleaj(u(a, 0)

The receiver’s prior on 6 is F'(#), which is absolutely continuous, has full support over © and adopts

pdf f().

31t is obvious that all our results can be carried over to the case where © is a convex bounded subset of R.
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Remark: I assume there is no conflict of interest between her and the receiver, in order to isolate

the effect of higher order uncertainty on full information revelation.

3.1 Types and Beliefs

For higher order beliefs, T adopt the implicit formulation of Mertens and Zamir (1985), in which
a ‘type’ is characterized by its belief on the joint distribution of the fundamentals and the oth-
er players’ typeﬁ In this paper, the sender and the receiver’s type spaces are characterized by
(U, 4,0, 7) and (®,7) respectively. The sender’s type is ¢ € ¥, which is described by her preference
@() € {g,b}, her belief on : A(v)) € A(O), and her belief over the receiver’s type #(¢) € A(®).
The receiver’s type is ¢ € ®, which is described by his belief over the sender’s type 7(¢) € A(V).
For convenience, I assume both ¥ and & are finite, and there is no higher order uncertainty if ® is
a singleton, and ¥ has only 2 elements.

I introduce several definitions on the players’ types as well as their type spaces, which are
essential to my analysis. First, in order to capture the fact that ‘rumors affect everyone almost

equally’; 1 define ‘companion type’:

Definition 1 (Companion Type). ¢ and ¢’ are ‘companions’ if and only if i(v) # (') and
T (Y) = #().

Intuitively, two sender types are companions if their beliefs over the receiver’s type are the

same, even though their preferences differ. Next, I define the ‘richness’ condition on ¥ and &:

Definition 2 (Richness). ¥ is ‘rich’ if any ¥ € VU has a companion type. ® is ‘rich’ if for any
e, u(y') =0, there exists 0" € U, u(¢)") = g as well as ¢, ¢ € ®, such that 7(¢)[] = 7 (¢')[¢]
for any o # ' A" and 7(§) W] # 7 () [W] for ¥ = ¢ or Y.

The richness of ® implies that the sender faces ‘sufficient amount’ of higher order uncertainty,
and the richness of ¥ captures the fact that both good senders and bad senders can have the same
kind of belief after anticipating a rumor. Under this assumption, I use the following expression for

sender and receiver’s type space:

U= {gla "'7gn7b17 "'abn}7 ¢ = {¢17 sney ¢k}

4Mertens and Zamir (1985) show that any implicit type space that has no redundant types and satisfies some
topological restrictions is a belief-closed subset of the universal type space. Brandenburger and Dekel (1993) show
the relationship between this formulation and the coherency condition on the belief hierarchies.
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where g; and b; are companions. I make the following assumptions:
Assumption 1. ¥ and ® are rich.

Assumption 2 (Full Support). 7(¢) assigns positive probability to all ¢ € . 7 (¢p) assigns
positive probability to all ¢ € V.

3.2 Equilibrium

The sender’s message is denoted by m € M, and her communication strategy is m : ¥ x A(©) —
A(M). For simplicity, let m(v,0) be the message sent when her type is ¢ and the state is 6. After
receiving the message, type ¢ receiver updates his belief, and his action rule is given by:

ap(m) € argma}/gu(a, 0)dF(O|m, o)

ac

where F(-|m,®) is type ¢ receiver’s posterior belief on 6 after receiving m. The concavity of u
ensures that he will always use a pure strategy. The solution concept in this paper is Perfect

Bayesian Equilibrium (PBE, or ‘equilibrium’ for short). I define ‘fully revealing’ as follows:

Definition 3. Type g; sender fully reveals herself at 0 if and only if:

ag(m(g;,0)) =0

for any ¢ € .

Also, as defined in Crawford and Sobel (1982), an equilibrium is ‘babbling’ if all types of
receivers choose

a € argmax/u(a,@)dF(G)
a 0

Apparently, this equilibrium always exits. Next, I introduce two classes of equilibria through the

degree of separation they achieve:

Definition 4 (Maximal Separating Equilibrium). An equilibrium is ‘maximal separating’ if it
is not babbling, and type g; fully reveals herself at 0 if and only if m(g;,8) = m(b;) for anyi,j.

Definition 5 (Minimal Separating Equilibrium). An equilibrium is ‘minimal separating’ if
there exists a positive measure set ©g C © and g; € ¥, such that type g; fully reveals herself if

0 € 0O.

Obviously, if an equilibrium is maximal separating, then it must be minimal separating.
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3.3 Benchmark

In this subsection, I prove some benchmark results when there is no higher order uncertainty. I
show that a maximal separating equilibrium always exists, and it maximizes the expected welfare of
the receiver. Moreover, it takes the form of ‘low separating high pooling’ (Kartik [2009]), in which
a good sender fully reveals her information when 6 is small, and pools with bad senders when 8 is

large (Morgan and Stocken [2003]).

Lemma 3.1. When ® s a singleton, there exists a mazximal separating equilibrium in which
the good sender fully reveals herself if and only if 6 < 6y. The bad sender and good senders above

Oy send a message which induces a = 0.

Let 6y be the ‘threshold point’, which characterizes a maximal separating equilibrium. Let 6

be the maximum threshold point under u and F', then we have the following welfare property:

Lemma 3.2. The maximal separating equilibrium characterized by threshold point 0j is the ex

ante welfare highest equilibrium for the receiver.

3.4 Maximal Separating Equilibrium

Obviously, ® is not rich in the benchmark case. In this subsection, I impose the richness condition
on both type spaces, and prove my main result, which shows that rumors make some good senders
not being able to fully communicate their information, even though they are not being joint with

the bad ones.
Proposition 1. If ¥ and ® are rich, there exists no maximal separating equilibrium.

Proof of Proposition 1: The proof is done by contradiction. Assume that a maximal separating
equilibrium exists. Given the equilibrium behavior strategies of each type of sender as well as
receiver, two different types of senders agree on what action a given type of receiver will take after
receiving a message m. They only disagree on the probability distribution over different types of
receivers. If type g; can fully separate herself at # by sending message m(g;,0), then gy (i' # i)
also can fully separate herself by sending m(g;, 6).

So, in any maximal separating equilibrium, there exists ©1, 5 C © such that all types of good
senders fully separate if § € ©1 and pool with bad ones if § € ©5. According to the definition of
maximal separating, ©1 ) ©2 = ©. Let ©; denote the closure of a set, then ©1 | JOy = ©. Since ©
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is connected under the Euclidean Topology on R, it cannot be written as the union of two disjoint

closed sets. So:

ARy

Next, I show that ©1 () ©2 must have a unique element. If not, let 6y, 6} € ©1() Oz with by < 6).
There exists {6;;}52; and {0];}72; (j = 1,2) such that:

lim 6;; =6 lim 6, = 6
1—>00 “ 0 isoo W 0

and

{0ij321 C 05, {012, € 9,

So for any € > 0, there exists N such that ||0;7 — 6;2]] < € when ¢ > N. Type 6;5 good sender
must prefers an action in the pooling range to a = ;. Let M® be the set of messages which
are sent with positive probability by bad types in equilibrium. So there exists m € M? such that
llag(m) — Bo|| < v(e) where v is strictly increasing with ¢ and lim._,ov(e) = 0. The same is true
for 6. Find e such that 2v(e) < 6, — 6y, then all bad senders strictly prefers to send a message
in M? which induces actions around 6, rather than 6y. So only good senders send message which
induces action around . Let 6y = inf ©1 () O, we get a contradiction.

Let {00} = ©1()©2. In a maximal separating equilibrium, the good sender fully separates if
and only if § < 6. Consider good sender with § = 6y + €, when ¢ is small enough, she has no
incentive to deviate to induce action a = 6y — ¢ (in the fully separating range) unless there exists
a message m* € M? such that ap(m*) = 6 for any ¢ € ®; or there exists a sequence of messages
{m;}2, such that

lim [|ag(m;) — 6Ool] = 0
1— 00

for any ¢ € ®. I rule out these two possibilities through contradiction, and once this is done, the

proposition is proved.

1. If there does not exist m™*, but exists {m;}°,, since each message must be sent by some types
of bad senders with positive probability, then there exist a bad type: b1, which sends infinite
amount of messages within this set: {m1,;}2; (C {m;}). Let (p{,...,p}) be her belief vector

over @, then

k
mi; € arg max Zp%aqgj (m) > 0o
j=1
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for any ¢. From the definition of {m;}:

k k
. 1 BT § 1 )
zlggo Z 1pja¢j (ms) = Zlggo , 1pja¢j (m1i) = bo
Jj= J=

for any belief vector. So 2?21 pjl-%j (m1;) = 6.

Next, I claim that her companion type: g;, cannot send any message in {m; ;} in equilibrium,

no matter what is the value of . This is because:
k k
ijlu(a% (m),0) < u( ijla% (m), 9> = u(bp,0)
j=1 j=1

u(6o, 0) — Z?Zl p}u(ad)j (m),0) must have a strictly positive lower bound in 6 € [0, 1] due to

compactness. So there exists €9 > 0, such that when ||as(mo) — 0o|| < eo,

for any 6 € [0y, 1]. Since for any ¢g, there exists a message in {m;;} which satisfies this.
This mean, for any message in {mj,}, there always exists another message in {m;;} which

g1 sender strictly prefers as long as 6 € [0y, 1].

Then, I claim that g; cannot send any other messages either as long as 6 > 6y. For any

message, if:

k
> pjulag;(m),0) < 6y
=1

then:

k k
ijlu(a(ﬁj (m),0) < u(Zp}aqgj (m), 0) < u(bp, )
j=1 j=1

for any 6 € [6p,1]. So g1 sender always has a profitable deviation in {m; ;}. If

k
Zp}-u(ad,j (m'),0) > 6
j=1
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for m" ¢ {m4 ;}, this is also a contradiction since:

K k
> pjulag,(m'),0) < piulag,(mis),6) = bo
i=1 =1

J

This implies that such an infinite sequence of messages cannot exists once W is rich.

2. If there exists m™*, then, all types of good senders must send m* with positive probability.
This is because otherwise, there exist a sequence of messages described above, which can
lead to a contradiction. Also, there exists at least one type of bad sender who sends m* with
positive probability. From the richness of ®, it can never be the case that all types of receivers

choose a = 6y upon receiving m*, which leads to a contradiction.
O

The main message from Proposition 1 is that higher order uncertainty is another reason for
information not to be fully transmitted in cheap talk communication. When the sender is uncertain
about the receiver’s belief about herself, some good types must pool together even though they were
not joint with the bad ones. The companion type assumption is critical for my reasoning, since
this rule out the existence of an infinite sequence of messages, where the actions induced by them
converges to the marginal type 6*.

To illustrate this point, I construct a maximal separating equilibrium when this condition is
violated. Let n be the probability that the receiver assigns to a bad sender. n € {n1,n2}, where
m < n2. Good sender believes that 1 = n; with probability p, and bad sender believes that 1 = 1
with probability py,, with p; > p,. When p, and p;, are common knowledge, players’ beliefs can be

originated from a common prior if and only if:

oz pg(1—m) (3.1)

(I=pe)m (1 =pg)(L —m)

Proposition 2. In the setting described above, there exists a maximal separating equilibrium.

The idea of the construction is described below (the detailed proof is in the Appendix): From
the proof of Proposition 1, there exists a maximal separating equilibrium if and only if there exists
an infinite sequence of messages {m;};°, such that for any € > 0, there exists NV such that for any
>N

[laj(mi) — 6Ool| < e
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where 6 is unique intersection between the fully separating range and the pooling with bad type

range. From the bad type’s indifference condition:
al(ai) =0y + (1 — pb)Ei

az(e;) = 0o — pves

FEach message in the sequence is sufficiently characterized by e; where g; > ¢;41 and lim;_,, &; = 0.

Let ; be the threshold type who is indifferent between €; and €;41, which satisfies:

pglai(e) —%)* + (1 = pg)(as(es) — %) = pglar(eiy1) — 7)) + (1 — pg)(az(cis1) —v)*  (3.2)

which gives:
Y — 0o = x(g; + €it1) (3.3)
where

pg(1 —pp)? + (1 — py)p?
2(pg — pv)

X

(3.4)

Good senders between [v;,v;—1] sends message ¢;, where 79 = 1. The length of the interval which
induces ¢; for any ¢ > 2 is x(g;—1 — €;+1). Let ¢; be the probability of the bad sender sending

message ;. The receiver’s sequential rationality constraint is given by:

mai + (1 —m)x(eim1 — giv1) (0o + Z(gim1 + 255 + €i41))
maq; + (1 —n)z(ei-1 — €iy1)

al (El) =

sm2¢i + (1 —m2)x(gim1 — £i41) (00 + %(gi—1 + 26; + €i41))
(lg(&i) = (3'6)
m2qi + (1 — m2)z(gim1 — €iy1)

The two equations above give rise to the ‘consistency condition’.

A maximal separating equilibrium is characterized by the following three elements:
o A strictly decreasing positive sequence {e,,}°2, with £, — 0.
e A positive sequence {g,};>; where ) ¢, = 1.

e Oy € (%, 1).

1—0g
1-pp

which satisfies €1 < and the consistency condition. To find such an equilibrium we introduce

the following algorithm:
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e Fix (6p,e1). This pins down a;(m) and as(mq);

e Find (q1,£2) such that ¢ > 0, 0 < g2 < &1 and the consistency condition with respect to

a1(mq) and ag(m;y) are satisfied.

e Iterate the process, find (gn,en+1) such that ¢, > 0, 0 < e,41 < €, and the consistency

condition with respect to aj(my,) and az(my,).

e Check whether €,, = 0 and ), ¢, = 1. If not, modify (6p,e1) and repeat the above procedure.

3.5 Minimal Separating equilibrium

In this section, I identify a condition under which no minimal separating equilibrium exists. For
simplicity, I focus on the case where there is only second order uncertainty, where the receiver’s
assigns probability 7 to a bad sender. The sender knows F' and n € {1, ...,n, }, but does not know
true value of UEI She believes that n = n; with probability p;, where >""" ; p; = 1. p; is common
knowledge among the players. So uncertainty ends at the second order. The receiver is of ‘type i’
if his belief is n = n;.

I also assume that u is symmetric, which means that there exists function v such that: u(a, ) =

v(Ja — 0]). The next shown below is based on the assumptions just made:

Proposition 3. When u is symmetric and f(6) is non-decreasing in 6, then there exists no

minimal separating equilibrium.

Proposition 3 identifies a ‘contagion property’ of the distribution function F(6), i.e. under this
family of prior distributions, as long as there is pooling in an arbitrary small interval, it makes the
good senders of different types to pool within each other throughout the support of the distribution.

This completely rule out full revealing, even for € arbitrarily small (the example in section 2).

4 Delegation under Higher Order Uncertainty [unfinished..]

In this section, I apply my model to study the delegation problem. To ensure tractability, I adopt
the setup in Section 2, except that n € {n,...,n,}, where 1 < ... < n,. The agent believes that
n = n; with probability p;. The following benchmark result states that the principal never has any

incentive to delegate decision rights without higher order uncertainty:

5For simplicity, we assume the support of 7 is a finite set. All our results can be carried over if the support of 7
is a non-singleton measurable set.
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Lemma 4.1. When there is no uncertainty over uncertainty, the principal never has an incen-

tive to delegate.

Proof. When n € (0,1), under delegation, principal’s ex ante expected loss when he has belief
n is g, which is strictly larger than his expected loss under the welfare highest equilibrium in

centralization:

Lin) = %(1 ﬂ/ﬁ)2

O]

Back to the ‘information loss’ versus ‘loss of control’ trade-off in Dessein (2002), the former

effect is being strictly dominated by the latter one in my setting.

5 Discussions

In this section, I discuss the robustness of the results in various situations. For convenience, I only
examine the case where there is only second order uncertainty. First, I illustrate why our results on
the non-existence of maximal separating equilibria can be carried over when the sender also faces
higher order uncertainty on the distribution of #. Then, I extend the basic model to a more general
multi-dimensional setting and show the non-existence of maximal separating equilibria. Finally, 1
discuss the welfare implications of higher order uncertainty and the potential applications of my

model to the theory of delegation.

5.1 General Uncertainty about Uncertainty

In this subsection, I assume that the sender is also uncertain about F': the receiver’s prior belief on

0. F € {Fy,..., Fi,}. The following condition on the support of F' is useful in our discussions later:

Condition 5.1 (Clearly Ranked). The set {Fi, ..., F}.} is ‘clearly ranked’ if there exists k1, ko €
{1,2,...,k} such that for any 61 > 6y:

i (01) S iy (01)
frer(02) ~ fry(02)

This is just the ‘Monotone Likelihood Ratio Property’. Without loss of generality, we assume

that F} dominates Fy in likelihood ratio once we use this condition.
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In general, the receiver’s type can be summarized by (i, k), and the distribution of types is given

by ¥ € A(I x K). Under the following assumption, Proposition 1 still holds if n > 2:
Condition 5.2 (Full Support). ¢ has full support if for any (i, k), ¥ (i, k) > 0.

This conclusion is obvious. The next Corollary provides a condition under which no maximal

separating equilibria exists even if n = 1:

Proposition 4. If u is symmetric and {Fi, ..., F} is clearly ranked, then there exists no maz-

tmal separating equilibrium.

The intuition of this Proposition is that when there exists two beliefs, one dominates the other
in likelihood ratio, then the actions taken by the two types of receivers cannot be both equal to 6y
when they receive a message in M®. When the sender faces uncertainty at this margin, it prevents

him from fully disclose his information when 6 < 6.
5.2 Multi-Dimensional Cheap Talk
Let 6 € © € R" and a € A =R". O is compact and convexﬁ Let || - || be the length (L? norm) of
a vector in R™. The bad sender’s preference is given by:
0" =—lla—0'|
where 6* € © is his ‘ideal point’. The good sender and the receiver’s preferences are given by:

U9 =U" = u(||a - 0]])

while w is strictly concave and strictly decreasing with ||a — 9||E|

Let 1 be the receiver’s belief on the sender being bad and F'(-) is his prior belief about 6. F' is
a full support distribution and n € {ny,...,n,}.

I examine whether maximal separating equilibrium exists in a multi-dimensional setting. Let
©1 be the set where the good sender fully separates and ©2 be the set where they pool with bad

senders.

SThis implies that © is connected under the Euclidean Topology.
"Remember in the 1-dimensional case, I only require that u(a,0) is convex and reaches its maximum at a = 6.
But now, I require that the utility depends only on the distance between the action and the state.
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Lemma 5.1. In any mazimal separating equilibrium, there exists r > 0 such that the good
sender fully reveals himself if and only if ||0 — 6*|| > r. Furthermore, for any 6 € © such that

[0 — 0*|| = r and & > 0, there exists m(0,¢) € M® such that ||a*(m.) — 0|| < & for any i.

According to Lemma 5.1, the boundary for ‘pooling with bad types’ is an ‘equi-distance ball’
around the bad sender’s ideal point 6*. Also, there exists message in which every action induced
by this message is located within a small neighborhood of the boundary point: 6y. Next, I state

the main result in this subsection:
Proposition 5. If n > 2, then there exists no mazximal separating equilibrium.

Proposition 5 extends the non-existence of maximal separating equilibria to a multi-dimensional
setting with any arbitrary ideal point, without imposing the restriction that 6* € 90. Still, it is
true that for any 6 such that the good sender fully separates himself, there exists a minimum
distance between 6 and any ‘boundary point’ 0y. So, there exists a positive measure set such that
good senders pool only within themselves. This ‘non-fully separation’ is again, caused by the higher

order uncertainty faced by the good sender.

6 Conclusion

This paper points out that higher order uncertainty faced by the sender is another reason for

information not to be fully transmitted in a cheap talk game...
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A Appendix I: Proof in Section 3

Proof of Lemma 3.1: The receiver’s action when he believes that m is sent by bad senders as

well as good senders with 6 > 6 is:

1 1
a(f) < argmax {1 /0 w(a, 0)dF(6) + (1 — 1) /6 u(a, 0)dF(0) (A1)

where 7 is the receiver’s belief on the sender’s probability of being bad.
From the concavity of u, a(fy) is unique for any 6y and is continuous in 6y. When 6y = 0,
a(fp) = argmax, fol u(a,0)dF(0) > 6p; when 6y = 1, a(fy) = arg max, fol u(a,0)dF(0) < 6. So

there exists 6§ such that a(05) = 6;. O

Proof of Lemma 3.2: The receiver’s expected utility in the maximal separating equilibrium with

threshold point 6 is:

1

(1) /0 " u(0.0)ar(0) + E /0 (65, 0)4F(0) + (1 — ) / u(0, 0)dF (0)]

*

0

where 7 is defined as in the proof of Lemma 3.1.
In any equilibrium, bad types cannot induce an action larger than 6j. Given that a € [0, 6]

where 0y < 6;:
1

1
(1=) [ wla.0)ar®) < (1 =) [ ulbo0)ar(®)

o %
So
1 1
0)dF (0 1— 0),0)dF (0
s An [ v 0aro) 00 [ uao.0are)}
1 1
< max{n/ u(a,0)dF(0) + (1 — 77)/ u(a,H)dF(G)}
) 0 05
1 1
— 0 [ ul6,0)aF®)+ (1) [ u(6;.0)aF(6) (A2)
0 05
Also
0o 0o
/ u(0,0)dF(0) > / u(a(),0)dF(0)
0 0
for any a(0), so the the maximal separating equilibrium is welfare highest for the receiver. O

Proof of Proposition 2: Now I show the existence of maximal separating equilibrium following
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the algorithm described in the main text. I start with the Proposition below:

Proposition 6. For any 6y > %, there exists {(€;,¢i) }ien such that the consistency conditions

are satisfied.

Proof of Proposition: The consistency condition imply that:

(a1 (i) — %)QZ =z(1 —m)(ei-1 — €ir1) [90 + g(&;q +2e; +€iq1) — al(&)] (A.3)

n2(az(es) — %)QZ =z(1 —m2)(ei-1 — €i+1) [90 + g(&;ﬂ +2e; +€i41) — a2(5i)] (A.4)

Divide the first equation by the second one, I obtain an equation with only one unknown variable:

Ei+1- X
0o + 5(&_1 + 2¢i + €it1) — az(ei)
Alei) = (A2
T
0o + 5(51-71 + 2¢; + 5i+1) - al(ei)

where for any ¢ > 1,

1
m2(1 —mi)(az(ei) - 3)
Alg;) = I (A.6)
m(l—m)(aile) - 3)
I obtain a recursive expression for €;41:
. 2 A(si)al (61) — (ZQ(Q)
ar 5( Ale;) — 1 90) 28 — €1
_ 2 A(E—Zl)
- ;<‘A(ei> -1 ‘pb)el S Ei (A1)
for any ¢ > 2, and
_ 2 A(&l) (1 — 90)
2= (e e (4.8)

Next, I construct a sequence of {&;}?°; which is monotonic decreasing and converges to 0. If

gi+1 > 0, then A(g;) > 1, which gives rise to:

z (A.9)

. (1—00 (pg—pe)(bo—3)
1 < min R
b= {1—pb po(1 — pp) }
Let

_ &1

i
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From the expression above, we know that:

1

p)-2- L

- (AA(&) ki

kiy1=—
X

Conditional on A(g;) > 1, it is easy to verify that k;;1 is increasing in 5¢E| Since g; — 0, the steady

state value, k*, is given by:

1 2 A
42 ="— — Al
K +k*+ x(A—l pb) (A.10)
where
g A —m)
m(1—n2)

Now I show the existence of the sequence {&,}. I begin with the initial condition:

- A(Sl) 1—90
ko = 5(@ —m)1-

Since conditional on A(e1) > 1, the above equation is strictly increasing in e1: when £; —
(pg—pp)(B0—1)

, ko — 400; when £ — 0, ko = —occ. When g1 = 1=% e show that ka(e1) > 1. This

po(1—pp) I-py’
is equivalent to:
1 po(1 —py)
I+ —F—— 21+ 775
A(E) -1 2(pg — b)

and it holds under the CPA. From the arguments above and the continuity of the RHS with respect
to €; and applying the Intermediate Value Theorem, we know that for any k € (p*, 1) there exists
g1 such that ko(e1) = k.

Now, we examine the difference equation:

o 27 Als) ,
Akip1 = ki1 — ki = E(ﬁ —pb) — (ki +2+ (A.11)

Lemma A.1. k; < k* for any i € N.

Proof of Lemma: We prove by contradiction. If there exists k; > k*, then:

Akipy > (K +24 ) — (ki 42+ 2) 20

8This is because ﬁ is decreasing in A and

DA —6o + 3
= <0
Oe; (90 + (1 - pb)Ei — 5)2
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So ki1q1 > k*, and

1
)

kj+1*kj2(ki*+2+ *(k‘i+1+2+ )E(S>O

ki1

for any j > ¢+ 1. This implies that there exists j € N, such that kj > k* 4 (j' —¢—1)¢ > 1, which

leads to a contradiction. O

Lemma A.2. There exists a trajectory {(k;, e;)}52, with k; is strictly increasing and lim;_,o k; =

k*, such that:

k(e) +2+ k(lg) = i[Aé;?l - pb} (A.12)
. 1 21 A(e)

k(-) < k(-), with equality holds if and only if ¢ = 0 (k(0) = k(0) = k*) and both are strictly
decreasing with respect to €.
For any given ¢;, ki1 > k; if and only if k; > k(g;), and ki1 < k* if and only if k; < k(g;). Let

(1 be a graph, such that:
G1 = {(k,2)|k € [k(e), ()]0 < = <5}
I define {G,,}22, iteratively:

Gny1 = {(km‘i)

(Kit1,€i41) € Gn}

Gy C Gy since kiy1(k(ei),e:) = k(i) < k(eit1), k(e) < k* and k;4q is increasing with k;. Gni1 C
G, can be proved through induction.

From the continuity of k;;1, we can define a sequence of closed intervals:

£ (2), B (e)]
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such that (k,e) € G, if and only if k£ € [E(”)(a),ﬁ(n)(g)]. Also, k™ (e) < ECTD(e), E(n)(a) >
E(nﬂ) (¢) for any € and n. For each e, we construct an infinite sequence of shrinking intervals.

According to the Closed Interval Theorem, they have non-empty intersection. Define:
o)
G*=()Gn
n=1

which is non-empty for any intersection of €. 0

Since at the initial point, €y is increasing with kg, so there exists (k,e) € G* which satisfies

the consistency condition for ke and g1 = % ]
O

Proof of Proposition 3: Let ©1, ©2 and O3 be the sets where the good sender fully separates,

pools with bad senders and pools only among themselves. Obviously:

@1U@2U@3:@

Let M? be the set of messages sent by good senders in ©3 and MP be the set of messages sent
by good senders in ©3. Without loss of generality, I assume M®( MP? = {). Following the same

argument as the proof of Proposition 1, there exists:

0 € ©1() (©2U6%)

To reduce notations, let a’(m) be the receiver’s action when receiving m with belief = n;. The

rest of the proof is done through the following steps:

Lemma A.3. ) ¢ Os.

Proof. Obviously, ©1 () ©3 cannot have more than 1 element. If ©1 (02 = {6y}, then, there exists
mP € M? such that a’(m®) = 6 for any i.

Let ©% = ©3([fo, 1], which is a closed set.

1. If ©5 # 0, then, there exists 0; € ©5(O2 C [6p, 1] such that type 6; good sender must

induces a message m’ such that:

Z pia*(m') > 6y
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But from the Jensen’s Inequality:
> paula’(m'), 01) < u( Y- pia (), 01) < u(bo, 01) (A.14)

So type 61 good sender prefers to induce a = 6y by sending m®, contradiction.

2. If ©4 = 0, then, either ©y = [0y, 1] or there exists §; < 6y such that type 6; good sender
pools with bad types. In the former case, we can get similar contradiction as in Proposition
1. In the latter case, type 61 good sender prefers to induce the equilibrium action by type

0y — e € ©1 good sender instead of his own equilibrium action, which is also a contradiction.
The Lemma is then proved. O

From the Lemma, we know that in any minimal separating equilibrium, there exists 6y € (0, 1)
such that fully revealing exists only below 6y, and there exists a minimal distance between ‘pooling
with bad sender range’ and ‘fully separating range’, and in this range, there exists a sequence of
messages, such that |a;(m) — 0y| can be arbitrarily small. This ensures the existence of an interval
of good senders [z, 81] above 6y, such that they pool within each other in equilibrium.

Let 03 = 205 = 01. 1 show that:
u(as, 02) > u(aj, )

where
02

ay = argmax/ u(a, 0)dF(0)
e Jo

3

01
aj = argmax/ u(a, 0)dF(0)
0

a
2
If the sender weakly prefers aj to aj when 6 = 0, then in the equilibrium partition, |65 — 02| >
|#2 — 61]. If this relationship holds for any [f2, 6], then the lengths of the intervals must be non-
decreasing from right to left. If this is the case, then there never exists a positive threshold 6.

When the utility function is symmetric, I only need to show that a} + a3 > 205 to get this

contradiction. Let w(y) = %|Ia—9|=y' Since

ay—02 a3—03
/ w(y)dF (@} —y) = / w(y)dF(a} + )
0 0
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and f(#) is non-decreasing, a} — 02 = 02 — a3, a5 — 03 = 01 — aj so:

aj—02 a5—03
/0 w(y)dF(af — y) > /0 w(y)dF(a} + )

which concludes our proof. O

B Appendix III: Proof in Section 5

Proof of Proposition 4: Let m € M? be the message sent by good senders when 6 € [0, 1] and
m(0) be the receiver’s probability of sending m when the state is §. When F; dominates F, in

/fz
/f,

So F| dominates F} in likelihood ratio. Then since u(a, #) is symmetric:

1 8u(90,6’) 1 8u(00,9)

likelihood ratio. Define

! Ou(6o,0) ! Ou(6o,0)
/0 200 4 (0) > /0 o2 ary o)

So the actions taken by type Fj receiver must be strictly larger than the one taken by F5 receiver.

So they cannot be both equal to 6y, which is a contradiction. O

Proof of Lemma 5.1: Since © is connected and ©1 | O3 = O, similar to the argument in Lemma
3.2, ©1N O3 # 0. Let 0y € ©1() Oz, then there exists two sequences {0;}7°, and {7}, such
that:

Jim. 0 = 0o, {03372, C O

For any € > 0 there exists m(e,6p) such that ||a’(m.) — 0|| < e for any i.
Let
o*

{o]11o — 11 = 1160 — 011} N ©
o = {ofllo— 0"l <160 - "1} ) ©

o = {o|lo — 0"/ > 1160 — 0"/} () ©
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We prove that ©1 (03 = ©*. If not:

o If there exists
0’ € ©"((©1()02)
then bad types have an incentive to induce §” € B(#',¢) () ©1, contradiction.

o If there exists
I e @out ﬂ(@lﬂ@)
then there will be no bad type inducing action around #’, contradiction.

So int®; = ©°t and intOy = O where r = ||0y — 0*|| O

Proof of Proposition 5: Preserving the notations used in the proof of Lemma 5.1, and let [6, ¢’
denote the interval connecting points 6 and 6'.
First, we show that for any 6y € ©*, there exists m(fy) such that a’(m(fy)) = 0 for any i.
Define the following mapping: Ly, : © — [60*,00], such that: Lg,(0) € [0*, 6], and ||0 — 0*|| =
|[Lg, (0) — 6%||. Then, for any m’ € M® such that ||a’(m’) — 6o|| < & but:

Zlea —6p|| >0

From the bad sender’s incentive constraint:
szlla *9*H—||90*9*H—ZP1HL90 ‘(m')) — 6% (B.1)

Since for any 6 € [6*, ],

|| Loy (a*(m")) = 6]| < [|a’(m) — 6] (B.2)
So, we can we have:
u(|l6o —0|) = sz (I1Lgy (a*(m)) — 0]])
> Zpl (lla' (") — ) (B.3)

The first inequality comes from (A.15) and the Jensen’s Inequality; the second one comes from

(A.17). From the concavity of u, we know there exists ¢’ such that a message m” with ||a*(m”) —
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o|| < & for all 7 is strictly preferred by any good sender with type 6 € [#*,60y]. So there must exists
m for any 6y € ©* such that a’(m) = 6 for any i.

Since ©* is a connected n — 1 dimensional manifold, for any interior point 6y € ©*:

oo € g (o [ ullle=01)n" OaF )+ (1 =m) | alla=0l)a0)r @)} (B4)

feein

while 79(#) and 7°(6) is the probability of good (or bad) sender with type @ to induce action 6.

From Lemma 5.1, we know:

g {(1=0) [ ulla—0)n(0)aF(0)} € O
arg max {m /gu(Ha — 0||)7rb(0)dF(9)} € oot

If the (A.18) is satisfied for 7;, then for 7,11 > n;:

oo = ssgmax {nca | ulla=0l)a OFO)+(1=ner) [ ula=l)x"(0)aF(0)} € 07 (B

feOin

which is a contradiction. So there is no maximal separating equilibrium once the possible values of

7 is no fewer than 2. O
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