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Abstract

We consider the decentralized provision of global public good with local externalities in a

spatially explicit model. Communities (municipalities, cities, countries) decide on the localization

of a facility that benefits to all but exhibits costs to the host and its immediate neighbors. They

share the costs through transfers. We examine the cooperative game associated with this so-

called NIMBY problem (“Not In My Back-Yard") with communities located along a line. A core

solution is constrained by individual participation of communities and exclusion of all potentially

polluted neighbors. The former constraint set lower bounds on individual welfare while the later

defines upper bounds on the welfare of small coalitions. We provide necessary and sufficient

conditions for a core solution to exist. Next we generalize the game with local externalities in a

network. We show that the exclusion of the immediate neighbors of the facility still constrains

the core welfare distributions.
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1 Introduction

1.1 The NIMBY problem

In June 2008, the French government call for candidates for hosting a site for low-level radioactive

waste storage among 3115 technically eligible municipalities. About 40 of them, all located in North

Eastern France, showed their interest in the project. On June 2009, 24th, after detailed investigations,

the Government announced the selection of two municipalities for complete investigations: Pars-les-

Chavanges and Auxon. However, facing strong public opposition in surrounding municipalities and

pressure from intermediary political levels1, Pars-les-Chavanges withdrew from the process on July,

4th and Auxon followed on August, 11th. The ANDRA stated that "consistently to the approach

chosen by the Government and the Andra, based on the voluntary participation of municipalities, the

municipalities resorted to their right to withdraw from the project"2. The process for site selection

was then in a dead end.

In the Haute-Pyrénées département in Southwestern France, waste used to be stored in three

landfills that will be closed by July 2013. A public administration proposed three potential new

sites which would have the desired geological characteristics. One month before the announcement

an association was created by the 60 municipalities to oppose the decision of the administration. It

started organizing demonstration and was soon backed by all the local representatives of selected

areas. On December 2011, just before the closure of the second site of Lourdes-Mourles, all the

mayors had officially left the negotiations 3. At present, there remains little hope that any eligible

municipality would accept the project and, by 2013, the department is likely to be exporting all its

wastes to adjacent areas.

The two above cases are illustrations of the Not In My Backyard (NIMBY) phenomenon: a
1A letter from the President of the Region Champagne-Ardennes to the Minister issued on the 6th of March 2009

emphasizes the threat that such a project would impose on the Champagne economic activities, emphasizing then a

potentially significant externality from the candidating municipalities on the whole region.
2http://www.andra.fr/pages/fr/menu1/les-solutions-de-gestion/etudier-une-solution-de-gestion-pour-

les-dechets-favl/la-recherche-de-site-en-2008-et-2009-6717.html Accessed on March 2013, 4th.
3They mainly justifies their rejection on the ground of social costs and risks they deem have not been considered

seriously but also “because [their] territory encompasses a dense meshing of small villages what makes impossible to

construct such a project without having several municipalities impacted by the nuisances associated (odors, noise,

pests. . . )”. Whereas not firmly grounded, this point emphasizes the idea that externalities are perceived as spread

across several municipalities in this example.
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rejection that usually arises for facilities such as waste treatment plants, airports, prison, windmills,

nuclear or coal power plants. They share a common feature: although many agents (municipalities,

cities, consumers, states, countries,...) benefit from the use of the facility, few of them suffer from

local negative externalities such as air, water, noise or “landscape" pollution. This is the reason why

the localization of the facility is a sensitive issue. To make it accepted by municipalities, it should

be related to some form of compensation to the host of the facility and its immediate neighbors

(that are suffering from the negative externalities). The paper examines the problem of localizing an

undesirable facility and designing compensation for the negatively impacted agents simultaneously.

It relies on cooperative game theory applied to a spatially explicit model of public good provision

with localized negative externalities. We investigate the determinants of cooperation for a successful

solution to the problem.

The NIMBY problem is first embedded in the more simple spatial structure: a line. A set of

n communities are designing an agreement to localize an undesirable facility and perform transfers

among them. The damages from running the facility are incurred by the host and it immediate

neighbors. Each of them incur a damage of δ of the cost of hosting. Partial agreements by a

subgroup of communities can be designed or no agreement at all. This defines the outside option of

coalitions of communities in the negotiation described as a cooperate game associated to the problem.

We distinguish between excludable and non-excludable facilities. We show that the cooperative

game exhibits non-standard properties. It is a cooperative game with externalities in the sense

that the welfare that a group of communities can enjoy depends on the cooperative behavior of

communities outside the group as well as the localization of the facility they build on their own.

Yet externalities can be negative or positive: a group of communities can benefit or suffer from the

cooperation of others. Nevertheless, the best that can happen for a coalition of communities in the

non-excludable case is that the other communities are not cooperating. The highest welfare that a

coalition of communities can achieve if the others are not cooperating is called the “collapse in outside

cooperation" (CIOC) value. It is defined by the corresponding CIOC characteristic function. We

provide necessary and sufficient conditions for a core solution to the NIMBY problem to exists with

the CIOC characteristic function. It relies on two forces. First, individual rationality requires that

the communities located close the the facility enjoy a net benefit from it. It forces the externality

parameter δ (share of the hosting cost incurred by the neighboring communities) to be lower than

the ratio of the benefit of using the facility over the hosting cost. Second, communities are tempted
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to exclude the neighbors of the host of the facility to avoid compensating them from the pollution

damages. This deviation strategy by coalitions of size n− 1 or n− 2 sets also an upper bound on the

externality parameter δ. Next we generalize our model to richer spatial structures. Communities are

embedded in a graph. The links capture the spatial externalities: all communities connected to the

host of the facility suffers from a share of the cost of hosting the facility. We show that creating more

links in the graph without changing the total cost of the facility at the optimal location enlarges

the core. Intuitively, it means that when a facilities is hurting more neighboring communities if it is

located elsewhere than in the optimal location, reaching an agreement to solve the NIMBY problem

is easier. We found similar driving forces for the existence of the core in the graph than in the line:

individual rationality and exclusion of some neighboring communities.

1.2 Related literature

1.2.1 The core and the uncapacited facility location problem

Our paper considers the location choice and cost sharing of a single locally undesirable public project.

Such problem echoes to the uncapacited facility location problem (UFLP) in operational research. A

basic version of the UFLP is presented in Goemans and Skutella (2000). They consider N individuals.

The cost of opening a facility at i is yi and any customer j have to be connected to a facility to get

an access to the service. Cost of connection between i and j is cij . The first problem is to locate

facilities and allocate access such that each customer has access to one facility and total costs are

minimized. A second problem is to allocate the total costs such that core constraints are met i.e. no

subgroup of agents has an incentive to leave and design its own facility problem. For this class of

problems, the authors derive a necessary and sufficient condition for the non-emptiness of the core

and provide instances where such condition applies. However they show that the second problem is

NP-complete in the general case.

A noteworthy illustration of such results can be found in Lebreton and Weber (2003). Formally,

they consider a distribution of agents over a line and set opening cost to g and connexion costs cij to

an increasing function of the distance between agents d(|i− j|). In such setting, they show that the

core is never empty for efficient projects and that core allocations require partial equalization in the

sense that agents with high connection cost bear some, but not the whole, amount of these costs.

We see that transportation costs are central in such problems. Due to them, the core consists in

the choice of a central location and a partial compensation of remote agents. However, when locating
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a locally undesirable public project, an new force may play in the opposite direction, agents may want

to be connected to the facility but would rather have it located far from them. In order to isolate

the implication of such feature, we depart from the UFLP by setting connexion/transportation costs

to zero and introduce a nuisance cost that plays in the opposite direction. Such a cost differs from

connection cost in the sense that it is borne whether or not agents are connected. We further allow

for the option of no project and introduce a non-rival benefit b to any connected agent. In the formal

model of Le Breton and Weber, preference are single peaked in the sense that, in the absence of

transfers, agents are worse off the further from them the project. This feature is crucial for getting

their non-emptiness result. In our model, preferences over project location are single dipped in the

sense that the further the project the better off the agent is. With such modifications, existence of

core allocations is no longer guaranteed. We indeed show that non-emptiness is no longer guaranteed.

When applied to locating undesirable projects, the UFLP problem implicitly adopts a represen-

tation of a project which yields costs to a single community, implicitly assuming externalities are

concentrated within its territory. Such assumption may be doubtful as soon as we think of risks such

as watershed pollution, as communities are small or as we note that such projects may be located at

the borders of communities4. Following this criticism, we explicitly introduce space in our model in

order to emphasize the difficulties that may arise as soon as the costs are spread over more than a

single community.

1.3 Public good provision, externalities and the empty core

Most of the literature on the provision of a public good emphasizes the free-riding problem. Coop-

eration is undermined because individuals or small coalitions can benefit from public good provision

(e.g. pollution abatement) without paying the cost (see e.g. Carraro and Siniscalco, 1993; Yi, 1997

or Ray and Vohra, 2001 for recent analysis). Whereas the free-riding problem still arises for the non-

excludable facility case, it is absent in the excludable case. Our paper highlights another obstacle to

cooperation: the exclusion of the neighbors of the facility host from the agreement to avoid to pay
4Although - to our knowledge - no work documents a statistically significant uneven distribution of locally unde-

sirable land use on the borders of jurisdictions, anecdotal evidence are pervasive (“Approximately 2/3 of landfills in

Pennsylvania are located at or near county or state boundaries” (Ingberman, 1995, p.S24)). As an additional piece of

evidence, Helland et Whitfort (2003) show that US facilities located in counties that borders other states have sig-

nificantly higher levels of toxic release into the air and the water what suggests that pollution across national borders

are not internalized by local communities.
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for the damages caused in the neighborhood. It is present and condition the core solution in both

cases. The instability we disentangle from free-riding is a reminiscence of the one found in Shapley

and Shubik (1969) ’s garbage game for which a nice simple example is given in Moulin (2003, p.233).

In this game, three players have some garbage to drop somewhere. They can freely dispose their

garbage at other’s. In such a setting, two-player coalitions are beneficial since they coordinate their

dropping strategy to the third player’s. As a result, the grand coalition never forms and the core

is always empty. Similarly, in our set-up the exclusion of the polluted neighbors of the host is the

obstacle to cooperation at the global level. Nevertheless, a core solution that includes all players

does sometime exist.

The effect of externalities within the cooperative framework raises specific methodological issues.

In such setting, the worth of a coalition a priori depends on the cooperative behavior as well as on the

non-cooperative interaction among coalitions. A possible approach would be to exogenously specify

the cooperative behavior of outside member in response to the formation of a blocking coalition. This

gives rise to a specific value function and an associated notion of the core. With positive external

effects, this is for instance the approach adopted by Chander and Tulkens (1997) in the context of

pollution abatement negotiations. They adopts the view that outside members stop cooperating and

play their individual best reply strategy when a blocking coalition forms (γ-core concept) and study

how stable coalitions could emerge in such setting. Their study, as well as in Barrett (1994) and

Carraro and Siniscalco (1993), focuses on free-riding as a source of instability. They show that such

force may be overcome to some extent.

In the context of negative externalities, several contributions emphasize the potential relevance

of the concept of the core for the problem of locating a locally undesirable facility. Lejano and

Davos (2001) argue for coalition formation considerations in the design of compensation schemes.

With a simple numerical example of a cooperative game with transferable utility, they argue that a

compensation scheme that leaves the host indifferent may fail to be a core allocation. Such numerical

example implicitly steams from a cooperative game with externalities across communities. We further

emphasize that the core may actually be empty. Our argument is related to the criticism originally

addressed by Aivazian and Callen (1981) to the Coase theorem. Their argument lies on the idea

that, even with transferable utility, a cooperative game involving more than 2 agents may have

an empty core. From this simple observation, Aivazan and Callen conclude that Coase bargaining

may not occur or may lead to an inefficient and endless recontracting process. This argument is
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later developed by Stearns (1993) in the context of the siting of a hazardous waste facility. The

author constructs a simple example in which a Condorcet cycle arises in a situation where three

communities have to collectively decide where to site a noxious facility. Our argument follows these

lines but, instead of relying on ad hoc examples, we construct a case which shows that emptiness of

the core arises naturally when it comes to site a facility with inter-community negative externalities.

The rest of the paper is organized as follows. Section 2 introduces the NIMBY model over the

line. It defines partition function and characteristic functions from our set-up. It then identifies some

of their properties. Section 3 deals with the core and some notions of restricted core. In Section 4,

we investigate how our results extend to more general spatial structures. Section 5 discusses policy

insights. We conclude the paper in Section 6.

2 The NIMBY cooperative game on a line

2.1 The Model

We consider the linear NIMBY problem σ = (N, b, c, δ, q) where N = {1, ..., n} is a set of commu-

nities or agents (land owners, municipalities, cities, regions, countries,...) located along a line. They

might decide to launch a project consisting on building and running a public facility (e.g. waste

treatment plant), a utility (nuclear or coal power plant) or a polluting factory. Each community

i = 1, ..., n enjoys a benefit b from using the facility. However, the facility creates local nuisances.

Only the host and its immediate neighbors suffer from the inconvenience caused by the facility (pol-

lution, risk of accident or contamination,...). The damage for the host plus the technical cost of

the project amounts to c and the host’s neighbors face an additional damage δc with δ > 05. We
5The interpretation of δ is the share of a neighbor’s pollution cost as compared to total costs at the host’s. Formally,

total cost at the host’s is the sum of a technical cost ct (construction, management, etc.) and a pollution cost cp.

Denoting by α the multiplicative change in pollution cost at the immediate neighbors’, the additional cost at each of

them’s is αcp. Then we get δ = α
cp

ct+cp
. So δ captures both the evolution of pollution costs with distance and the

share of pollution costs in total costs at the host’s.
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distinguish between excludable (q = e) and non-excludable (q = ne) facilities. In the first case, the

communities which build the facility can exclude the others from using it: the benefit b is enjoyed

only by the owners. The facilities is then a club good: a non-rival but excludable good with private

costs. In the second case, they cannot exclude. The benefit is b for all communities provided that

at least one facility is built. The facility is a pure public good: non-rival and non-excludable. For

clarity reasons, we propose to focus on excludable facilities first. We will consider non-excludability

of benefits in a second time in order to assess the interplay between free-riding and the source of

instability we emphasize. ΣL denotes the set of such linear problems and Σe
L and Σne

L denote the

respective restrictions of the problem to the excludable and non-excludable case.

The total welfare induced by a facility shared by a set of k communities is kb− c, kb− (1 + δ)c or

kb− (1 + 2δ)c depending on the set and the location choice. A facility should be built if the benefits

exceed the costs when located at the optimal site. We assume b < c (a single community does not

build) and nb > (1 + δ)c (it is efficient to build a facility located efficiently in the grand coalition).

Of course, since a facility is non-rival, it is efficient to build only one of them and share it among

all communities and, to minimize the environmental damage, the facility is efficiently located at one

extreme of the line.

The communities agree on a location of the facility and a way to share the net benefit of using

it. It can be defined equivalently in terms of transfers among communities to pay for the total costs

of the facility (including environmental damage). A global agreement is an agreement among all

communities. In the excludable case, it is efficient to reach a global agreement and to build the

facility at one end of the line. Assume, without loss of generality, that it is built at 1. The total

welfare generated with such agreement is thus nb− (1 + δ)c. A global agreement is a distribution

x = (xi)i=1,...,n of the total welfare where xi denotes community i’s welfare with:∑
i∈N

xi = nb− (1 + δ)c.

An agreement can also be defined in terms of budget-balanced transfers t = (ti)i=1,...,n with
∑n

i=1 ti =

0. The host 1 enjoys a welfare of x1 = b− c+ t1 where t1 is the compensation received from hosting

the facility. Its only neighbor 2 obtains x2 = b − δc + t2. It is thus paid t2 for the nuisances. Each

community i = 3, ..., n gets xi = b+ ti, thereby paying −ti to finance the compensations t1 + t2.

Communities can sign partial agreements to build and share a facility or no agreement at all.

A partial agreement is an agreement among a subset of communities S ⊂ N .We need to figure out
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how much agents in a coalition S can achieve by signing their own agreement. The welfare that

a coalition S ⊂ N achieves depends not only on its own behavior but also on the behavior of the

communities outside coalition S. By agreeing to build a facility close to the members of S, the

communities outside S exert a negative externality on S which reduced the value of S. Technically,

the NIMBY cooperative game exhibit externalities: the worth or value of a coalition S depends on

the behavior of communities outside S. For instance, if the communities outside S agree to build a

facility, a member of S that is neighbor to the facility might suffer from a negative externality then S

would experience a welfare loss. Moreover, in the non-excludable case, all members of S can benefit

from the facility built by an outside coalition then experiencing a positive externality. In this case,

positive externalities are global while negative externalities are local. To summarize, the value of

any coalition S is determined by the cooperative behavior of communities outside S and the related

building strategies. The former concept is summarized by a partition P of N . The later should be

a Nash equilibrium building strategy of the non-cooperative game defined by the partition P. We

successively detail each object.

Partial agreements for building facilities define a partition P of the set of communities N . Let

us denote by P(N) the set of all partitions of N . Members of each S ∈ P are cooperating in their

facility building strategy. They jointly decide on whether to build a facility in S and its location.

Let us denote S’s building strategy by its location l ∈ S ∪ {0} where l = 0 if no facility is built. In

a partition P = {S1, ..., Sm}, each coalition of communities Si ∈ P picks its best building strategy

li given the building strategies of others coalitions Sj , j 6= i. A Nash equilibrium in partition P is a

vector l = (l1, ..., lm) where each strategy li is a best reply to the strategies played by others l−i for

i = 1, ...,m. Let us denote by E(P) the set of Nash equilibria in the non-cooperative game induced

by P.

Figure 1: 5 agent case with location at 1 and no compensation

For a given partition, the non-cooperative building game may exhibit multiple equilibria as shown
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in the following example. First, communities can be indifferent between two locations of the facility.

In the 5-community case represented on figure 1. Let us consider the partition P = {{1, 3}{2, 4, 5}}.

For any building decision of coalition {2, 4, 5}, coalition {1, 3} would build a facility as long as

2b > c. Yet it is indifferent between locating the facility in 1 and 3. However, such a decision

impact the welfare of coalition {2, 4, 5}: the externality cost is δc only on agent 2 while it is also

on agent 4 in the second case. Second, communities can coordinate on different Nash equilibria

when benefits are non-excludable. For instance, the partition {{1, 3}; {2, 4, 5}} exhibits three Nash

equilibria E(P) = {(1, 0); (3, 0); (0, 2)} when 2b > c. In the first two equilibria (1, 0) and (3, 0),

coalition {2, 4, 5} does not build because it benefits from the facility built by coalition {1, 3} who is

indifferent between locating it at 1 or 3. Symmetrically, in the last case, coalition {1, 3} free-rides on

the facility built by coalition {2, 4, 5} which locates it at 2.

A partition function (Thrall and Lucas, 1963) is a function that assigns to every coalition S,

partition P of N and equilibrium l ∈ E(P) a real number. For any problem σ ∈ ΣL, we denote such

function by vσ(S,P, l). It is the welfare achieved by coalition S embedded in the partition P with

the Nash equilibrium l of the non-cooperative building game defined by P.

A coalition S in a partition P blocks a global agreement x if it can achieve a higher welfare

in some Nash equilibrium l ∈ E(P). A global agreement is in the core of the cooperative game

associated to the NIMBY problem if it is not blocked by any coalition of N . Formally, the core is

defined as follows.

Definition 1. Let σ ∈ ΣL. An agreement x is in the core C(σ) iff it satisfies the following core

lower bounds:

∑
i∈S

xi ≥ vσ(S,P, l) (1)

for all P ∈ P(N), all S ∈ P and all l ∈ E(P).

The above definition of the core is somehow restrictive. The core lower bounds are defined for

any potential configurations in terms of partial agreements (or partition) and equilibrium decisions.

Yet some of those configurations might appear irrelevant because they are unlikely. Or they can be

discarded because they do not bind core lower bound. To address those issues we need to investigate

more the partition functions vσ.
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2.2 Restricted characteristic functions and restricted cores

A significant limit of our notion of a core appears with the following remark: if a blocking coalition is

to form, it may anticipate that the instability its very formation demonstrate, may also occur among

its own or among outside members. This is the criticism originally formulated by Ray (2007). As an

illustration in the 5-agent case in figure 1, if agent 2 is not compensated for the externalities it would

potentially bear, she gets b− δc. If b− δc < 0 and she expects outside members to stop cooperating

after her withdrawal, she would do so as nobody would build in such a configuration what would

result in a higher payoff 0. However, its leaving implies that the cost of the project perceived among

outside members dwindles to c which favors the hypothesis that they would build the project anyway.

Then, agent 2 may discard such expectation and stay in the project.

The intuition described above can be formally captured by restricting the partitions considered

to compute the value of a coalition. In a problem σ ∈ ΣL, we will define two characteristic functions

based on specific restrictions over possible partitions6. First, the non-cooperative or collapse in

outside cooperation (CIOC) characteristic function vcσ defines the highest welfare a coalition can

achieve if non-members fail to cooperate: vcσ(S) = vσ(S, {S, {i}i∈N\S}, l) for any S ⊂ N . When

deciding to deviate from the global agreement, a coalition S considers its non-cooperative or CIOC

value vcσ(S) if it expects that the communities outside S will not cooperate to build facilities. Note

that since communities outside S do not build, the equilibrium building strategy l boils down to a

single facility located inside S. Although they might be multiple optimal localization of the facility

in S, all those localizations lead to a unique value vcσ(S). Such approach corresponds to the γ−core

based on the idea that outside members play their individual best reply strategies (Chander and

Tulkens, 1997).

Second, the cooperative or Rational hostile outside cooperation (RHOC) characteristic func-

tion vrσ defines the welfare a coalition can achieve if all the non-members cooperate to sign a partial

agreement. The partition expected by coalition S is thus {S,N\S}. Moreover, coalition S expect

that if coalition N\S builds a facility, it will locate it at the worst place for S providing that it is a

Nash equilibrium (so that this strategy is credible). Formally, the RHOC characteristic function for

an arbitrary coalition S is defined by vrσ(S) = minl∈E({S,N\S})vj(S, {S,N\S}, l).

We now establish some properties of the partition function and the characteristic functions in the

excludable case.
6We develop a more general definition in the proof of proposition 3 in appendix.
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Proposition 1. For any problem σ ∈ Σe
L, for any S ⊂ N , P 3 S and l ∈ E(P),

(i) vcσ(S) ≥ vσ(S,P, l)

(ii) We might have vrσ(S) > vσ(S,P, l) or vrσ(S) < vσ(S,P, l) depending on P

(iii) We might have vσ(S,P, l) > vσ(S,P ′, l) or vσ(S,P, l) < vσ(S,P ′, l) when P ′ is a finer partition

of N including S.

The proof of (i) is provided in the appendix.

First, with excludable facilities, the CIOC value is the highest possible value that a coalition can

obtain by deviating from the global agreement. It is because, in the excludable case, a coalition gets

only the nuisances (if any) and not the benefits from facilities built by outsiders. So the best that

can happen for a coalition is that the outsiders do not build any facility which holds under CIOC. In

contrast, in the non-excludable case, the CIOC value might be lower than the value based on another

partition because a coalition can benefit from the facility built by others.

Second, the RHOC value can be lower or higher than the value with other partitions. An illus-

tration of such result can be provided in the 5 agent case represented in figure 1 with b < c ≤ b+ δc7:

the lowest value for coalition S = {2} would be achieved with P = {{2}; {1, 4}; {3, 5}} and Nash

equilibrium (0, 1, 3) because S would undergo the externalities linked to 2 projects instead of a single

one in the case P = {{2}; {1, 4, 3, 5}} . This remark emphasizes the fact that full cooperation of out-

side members is not the situation which would favor cooperation the most. It also emphasizes that,

in the excludable case, despite only negative externalities can arise across coalitions, the cooperative

game features ambiguous externalities from an increase in cooperation among outside members.

Third, a coalition does not necessarily benefit from the union of two other coalitions. For instance,

S could experience a negative externality when two former non-building coalitions merge and start

building at S border. This would be the case in the 5 agent case represented in figure 1 for 2b < c ≤ 4c

and P = {{2}; {1, 4}; {3, 5}}. The merging to P = {{2}; {1, 4, 3, 5}} would induce the construction of

a project at 1 and make the worth of {2} decrease. As a consequence, cooperative game externalities

in the sense of De Clippel and Serrano (2008) can be positive or negative.

The CIOC and RHOC characteristic functions define the corresponding core concepts. A welfare

distribution x is in the CIOC core (resp. RHOC core) if it satisfies the core lower bounds defined by

the CIOC (resp. RHOC) characteristic function for all coalitions S ⊆ N .
7Such assumption implies a coalition facing cost c would build if and only only if it gathers more than 2 agents.
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Definition 2. Let σ ∈ ΣL An agreement x is in the CIOC (resp. RHOC) core Ccσ(σ) (resp. Crσ) if

it satisfies the following core lower bounds:

∑
i∈S

xi ≥ vhσ(S) (2)

with h = c (resp. h = r) for all S ⊆ N .

The (unrestricted) core is always included in restricted cores. As discussed previously, the re-

stricted core allows us to capture two ideas. First, not all possibilities may be credible in the

evaluation of the worth of a coalition what justifies to discard them. Second, our definition of the

(unrestricted) core assumes that a coalition is extremely optimistic in the sense that among the re-

maining credible behaviors, it selects the most favorable. Restricted core by allowing us to discard

some most favorable outcomes, allows us to consider more permissive cores.
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3 The core

3.1 The central result

The first result provides necessary and sufficient condition for the non-emptiness of the (unrestricted)

core for excludable facilities.

Proposition 2. Let σ ∈ Σe
L such that n ≥ 4 and 2b ≤ c ≤ (n− 2)b.

The core C(σ) is empty if and only if one of the following conditions is met:

1. δ > b
c

2. δ > δ̄(n) where δ̄(n) =



2
n−2 if n = 4k, k ∈ N

2
n−1 if n = 4k + 1, k ∈ N
2
n if n = 4k + 2, k ∈ N

2
n−1 if n = 4k + 3, k ∈ N

The proof is developed in appendix. The first condition comes from binding individual rationality

constraints while the second captures the following: as soon as nuisance are spread across the borders

of the host community, coalitions can save on the cost of the nuisance. Then, the total cost of the

project in the grand coalition should be shared in a way such that everyone would bear some cost to

the extent of the nuisance they would bear would the project be located at their neighbors. However,

because the extent of the nuisance is not directly linked to the cost of the project, this latter may

come to be much lower than the payments that should be imposed to avoid the opportunity for some

coalitions to externalize part of the costs. In such a case, the core is empty. This problem becomes

sharper as the number of agents increases. Such instability can be seen as a version of the garbage

game of Shapley and Shubik (1969).

The reason why the domain of (b, c) on which Proposition 2 holds is restricted comes from the

fact that construction is endogenous in our model. Such hypothesis assumes that small coalitions

would not impact the larger coalition formed by excluding some agents while a coalition formed

by excluding all the neighbors of its host is still large enough to beneficially build a project. Such

hypothesis is reasonable as long as agents are not too connected what is the case in a linear setting.

1. When c < 2b, two-agent coalitions also build a project and we can check that no saving would

be made by excluding them. Formally, the second condition is changed to δ > 1 so the identified

condition remains necessary but is no more sufficient.
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2. When c > (n − 2)b coalitions which exclude two agents does not build anymore, and their

rationality constraints are met if and only if the first condition is met. This relaxes the second

condition and, again, the identified condition remains necessary but is no more sufficient.

Overall, the identified condition holds in setting where there is an asymmetry between small coalitions

which would not credibly build a project what creates a possibility for larger coalitions to save on the

cost of the project. Such coalitions, however should remain large enough to implement the project.

It is in such situation that conditions for non-emptiness are the most stringent.

3.2 Restricted cores

A usual critic for our notion of the core is that a coalition which deviates may not consider all possible

deviations among outside members (or, equivalently, may not be optimistic to the point of taking

its decision regarding the best outcome only). In such a case, the core could be larger. It is then

interesting to question how our emptiness result is modified for the RHOC restriction we defined

previously. More especially, we would like to know whether the conditions identified in proposition

2 still hold as necessary conditions for non-emptiness. The following proposition establishes the

robustness of one of them to the RHOC restriction on the core lower bounds.

Proposition 3. Let σ ∈ Σe
L such that n ≥ 4 and 2b ≤ c ≤ (n− 2)b.

The RHOC-core Cr(σ) is empty if δ > δ̄(n)

The idea of the proof is the following: when the condition is not met, we know there exists a

coalition of size (n-2) or (n-1) which benefits to form under CIOC. When 2b < c, two-agent coalitions

would never rationally build. Then, the value of coalitions of size (n-2) or (n-1) is the same whatever

the expected cooperative behavior of outside members, provided they act rationally. Then a profitable

blocking coalition under CIOC would also be profitable under any cooperative behavior of outside

members, for instance, under the RHOC restriction. A formal proof is provided in appendix allowing

for any arbitrary restriction.

This result calls for three additional comments:

1. Only the second condition of Proposition 2 is robust to restrictions over the behavior of out-

side members. Under RHOC, the first condition in Proposition 2 which stems from binding

individual rationality constraints is relaxed.
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2. As established in the proof, the proposition can actually be generalized to any restriction of

expectations over the partitions. However, the fact that 2-agent coalitions, which are too small

to benefit from the project, actually do not build is essential for our results. Then, our result is

robust to expectations over rational behaviors of outside members only (formally, we restrict our

attention to the Nash equilibria arising in a given partition) and does not hold for restrictions

of expectations over irrational behaviors. Indeed, it is straightforward to see that the α-core

defined by the restriction to the worst possible case among all possible partitions and strategies

is always non-empty as soon as we allow coalitions to build more than a single facility.8

3. The proposition we emphasize only tackles the issue of the credibility of outside members’

behavior. Another consistency requirement would be that only credible blocking coalition

should be considered in the definition of the core. Yet, we note that the binding blocking

coalition which lead to the proposition are coalitions of size (n-2) or (n-1). In the excludable

case, such coalitions include an isolated agent so they are credible in the sense that they don’t

feature the instability which led them to form.

3.3 A note on the non-excludable case

When benefits are non-excludable, cooperation may even be more compromised due to the free-rider

problem. The following proposition shows that free-riding may be an additional source of concerns

for restricted cores:

Proposition 4. Let σe = (N, b, c, δ, e) and σne = (N, b, c, δ, ne) be two NIMBY cooperative games

with excludable and non-excludable facilities respectively. We have,

• Cc(σne) = Cc(σe)

• Cr(σne) ⊆ Cr(σe)

Free-riding does not appear under CIOC as no blocking coalition can rely on outside members’

building hence the core remains the same. Under the RHOC hypothesis however, the blocking coali-

tion can take advantage of outside members’ project. Because rationality constraints with excludable

benefits can only be more stringent as compared to the constraints with excludable facilities, we have

Cr(σ) ⊆ Cr(σ). A formal proof is provided in appendix.
8This comment echoes to a discussion of the garbage game by Laffont (1977).
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The results we emphasize in the RHOC case actually hold for any restriction of expectations over

partitions. Unsurprisingly, when possible, free-riding narrows the core. The following proposition

shows that it may actually lead to an empty core under rather general conditions on parameters in

the RHOC case:

Proposition 5. Let σne = (N, b, c, δ, ne) ∈ Σne
L and k1 ∈ N such that (k1 − 1)b < c+ δc ≤ k1b. We

have: min(k1, n− k1) > 3⇒ Cr(σne) = ∅

Proof. cf. Appendix

It is worth noting that free-riding occurs due to the incentive for small coalitions to withdraw

while our instability arose due to the incentives of large coalitions to exclude the potential neighbors

of the facility. While the former would reasonably expect their complementary to build, the latter

may not. Then, in the non-excludable case, both instability can be expected to apply independently.
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4 A general NIMBY cooperative game

4.1 The setting

We propose here to extend the results we got over a line to a more general framework: let N be a set

of n agents, b = (bi)i∈N be individual benefits from access to a project, c be the cost of the project

when located at any agent’s, T = (τij)(i,j)∈N2 ∈ Mn(R+) be a matrix of closeness between agents

(taking into account geographical characteristics such as distance, streams, hills, etc.) and δ ∈ R+

the geographical extent of the impact of the project such that, when the project is located at i’s,

agent j bears a cost cij = δτijc. We focus on excludable projects (q = e).

A problem is now denoted by σ = (N, b, c,T , δ) and Σ is the set of such problems9. Two

restricted class of problem are of special interest. The restriction to simple graphs, first, correspond

problems in which D is the adjacency matrix of a simple graph i.e. a symmetric matrix such that

∀(i, j) ∈ N2, τij ∈ {0, 1}. With such representation, we allow for the project located at some agents’

to negatively affect several other agents to the same extent. We denote by ΣG the restriction of Σ

to such problems. Finally, if we restrict the graph to the line, we end up with the class of problems

ΣL discussed previously.

In the general case, the optimal location of the project at S ⊆ N is solution to minj∈S
∑

i∈S τij .

We denote by τ(S) the solution to such program and h(S) an optimal site in S. Within a partition

P ∈ P(N), and Nash equilibrium of the game l ∈ E(P), we can compute the value of any coalition

S ∈ P given the cooperative behavior of outside members. We will denote it by vσ(S,P, l). The core

can be defined from such function as previously:

Definition 3. Let σ ∈ Σ. The core C(σ) is the set of agreements x which satisfy the following core

lower bounds:

∀P ∈ P(N) ∀S ∈ P ∀l ∈ E(P)
∑
i∈S

xi ≥ vσ(S,P, l) (3)

Restricted value functions vcσ and vrσ are defined in a similar way as previously.
9Such representation is not the most general as it assumes that municipalities are points in the space what prevent

any possibility for coalitions to choose a location within i’s boundary in order to minimize the pollution which falls

within its boundaries and costs are uniform. However, it generalizes the previous argument so we consider worth to

develop it
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4.2 A necessary condition for non-emptiness of the core

In a similar way as in proposition 2, a necessary condition emerges out of the temptation to exclude

some neighbors in order to externalize part of the costs.

Proposition 6. For any problem σ = (N, b, c,T , δ), there exists a threshold τ̄(T ) such that

δ > τ̄(T ) implies C(σ) = ∅

The proof is provided in appendix. The computation of τ̄(T ) is an hard combinatorial problem in

general and few general results can be obtained. Figure 2 illustrates what higher bound on δ would

come as a necessary condition for non-emptiness of the core on several simple graphs with 6 agents.

4.3 Comparative statics

Such problem yields interesting comparative statics. First, we derive the counterintuitive property

that the more the neighbors are affected by the project at each location, the larger the set of core

allocations10:

Proposition 7. Let σ = (N, b, c,T , δ) and σ′ = (N, b, c,T ′, δ) such that T ′ ≥ T , we have:

minj(
∑

i τij) = minj(
∑

i τ
′
ij)⇒ C(σ) ⊆ C(σ′)

Proof. cf. Appendix

Figure 2 provides an illustration of proposition 7 for simple graphs: on graphs A to F and K to

Q, we observe that, when a link is added while keeping the minimum degree constant, requirements

on δ can only be relaxed. Some additional examples suggest that the structure of the graph does

influence quite a lot the extent of the problem (measured by the stringency of the condition on δ).

The lax condition obtained for the complete graph S can easily be extended to all complete graphs11

what emphasizes that our argument mainly stands for local pollutions.

Another comparative statics could be obtained related to the benefits in this framework. The

following proposition states that an increase in the benefits leads the set of core allocations to expand:

Proposition 8. Let σ = (N, b, c,T , δ) and σ′ = (N, b′, c,T , δ) such that b ≤ b′, we have:

C(σ) 6= ∅ ⇒ C(σ′) 6= ∅
10∀(T, T ′) ∈Mn(R+)×Mn(R+), we write T ′ ≥ T if and only if ∀(i, j) ∈ N2 τ ′ij ≥ τij
11The reader could easily check that in core allocations, agents should all pay δc.
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Graph T t(N) t(T) 

A 1 1/3 

B 1 1/2 

C 2 1/4 

D 2 1/3 

E 2 1/2 

F 2 1 

G 1 1 

H 1 1/2 

I 1 1 

J 1 1 

Graph T t(N) t(T) 

K 2 1/4 

L 2 1/4 

M 2 1/3 

N 2 1/2 

O 3 1/3 

P 3 1/2 

Q 3 1 

R 4 1/2 

S 5 1 

Figure 2: Critical value of δ for non-emptiness of the core for different graphs with 6 agents. We recall

a necessary condition for non-emptiness of the core is δ ≤ τ̄(T ). The algorithm used to compute

such bounds is provided in appendix.
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Proof. cf. Appendix

Here, the benefits play a role in the rationality constraint of non-building coalitions: for such

coalitions, the more the benefits, the more costly it is to block a global agreement as it leads to

abandon the project under CIOC.

Interestingly enough concerning the relevance of the core concept as a positive one, proposition 7

leads to original empirical predictions. For instance, it suggests that, when controlling by the cha-

racteristics of the optimal sites, the density of a zone could have a positive effect on the size of the

core (and maybe then the outcome of negotiations) by limiting the opportunity to dismiss neighbors

concerns. This suggests a way to test our theoretical point.
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5 A positive interpretation

On the positive side, we are lead to doubt the possibility of agreeing on the localization and the

compensation scheme that should come with locally undesirable projects as soon as there exists

significant externalities across sovereign communities. Provided the insights we got "like augurs

divining the future by minute inspection of the entrails of a goose"12 actually capture an actual

feature of negotiations around NIMBY issues13, we can look for ways to get out of such an emptiness

result. The following part focuses on this positive interpretation.

5.1 Cooperation under the polluter-pay principle

The polluter-pay principle imposes that the costs of pollution should be borne by the entity which

causes pollution. In our context, such principle would amount to impose the project implementer

to systematically compensate the victims for the externality they bear due to the project, whether

or not they belong to the host community14. Then, in the excludable case, we note the behavior

of outside members does not matter because any externality they impose would be internalized.

Formally a specific value function vpσ and an associated notion of a core Cp(σ) can be defined (cf.

appendix). Such principle alleviates the problem as shown by the following statement:

Proposition 9. Let σ ∈ ΣL, Cp(σ) 6= ∅

Proof. In appendix, we check that the equal sharing rule always lies in the core.

Such observation concurs with the Aivazen and Callen’s (1981) criticism of Coase theorem:

because cooperation is more likely to emerge under some allocation of property rights, such allocation

may matter, even for a regulator concerned only with efficiency.

5.2 Investment in protection and norms

Such possibility results from the observation that investing in protection may have the effect of

increasing the cost of the project while decreasing its externalities which is formally equivalent to a
12This image was used by Coase (1981) in reply to the Aivazian and Callen (1981) criticism which stands in a zero

transaction cost world. Actually, such instability may be less constraining in a world with transaction costs. Indeed,

adding a cost t of forming a blocking coalition would higher by such amount the critical value of δc above which we

established core allocations would not exist.
13Proposition 7 suggests an empirical test of such interpretation.
14Note that such requirement is weaker than endowing all polluted communities with a clear veto power.
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decrease in δ hence making more likely for core allocations to exist. This comment could justify the

use of stringent standards to foster cooperation.

Consider a problem in ΣL where coalitions’ strategy set is enriched so that a coalition can actually

choose between a polluting project δ+ at lower cost c− and a clean project δ− at a higher cost c+

(δ− < δ+,c− < c+). Then, it is straightforward to see that a the necessary condition for non-

emptiness of the core discussed previously is δ+ ≤ δ̄(n) which only involves δ+. Then, the problem

seems rather alleviated by stringent norms (which discard high δ from the strategy sets) rather than

by the mere existence of cleaner technologies15.

5.3 Subsidies and/or Penalties

The source of instability comes from the possibility for coalitions to save on the cost of the project by

excluding some agents. Then, subsidizing the project in the grand coalition or fining some deviating

coalitions would alleviate the problem; How much is needed? The following proposition characterizes

the least core value i.e. the lowest amount to grant to the grand coalition or the least penalty that

have to be charged for defection16 so that the core is non-empty for problems in ΣL:

Proposition 10. Let σ ∈ Σe
L, the least core value is (δ − δ̄(N))c

The proof is provided in appendix. Unsurprisingly, the least core value is less than δc and increases

with the discrepancy between δ and the higher bounds previously defined.

15We however recall that c encompasses the pollution costs at the host’s so coalition have an incentive to invest in

cleaner technology but to an inefficiently low level.
16Although not exactly equivalent, Stearns (1993) reports an interesting example of an attempt to use fines in the

context of a locally undesirable facility: "In, New York, the Court held the take-title provisions of the Low-Level

Radioactive Waste Policy Amendment Act of 1985 unconstitutional because the amendments penalized states that

failed either to enter into regional pacts for low-level radioactive waste disposal or otherwise to become self-sufficient

within a preset time frame." [18]. This fine was eventually judged as an unconstitutional infringement of the federal

state over local sovereignty.
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6 Conclusion

In this paper, we highlight a specific obstacle to cooperation for the provision of a locally undesirable

facility. We find conditions under which core agreements fail to exist in the context of inter-community

externalities. The rationale for such a result is the following: if the nuisance on neighboring commu-

nities is large, the benefits of excluding some neighbors are high. Then, no sharing rule will prevent

all coalitions to contemplate building a project on its own while saving on the cost of the project by

leaving the neighbors uncompensated.

This result has both normative and positive implications. Normatively, our emptiness results

leads to question the relevance of core solutions for projects with significant negative externalities

across communities. On the positive side, such a result suggests that cooperation for the provision of

a locally undesirable facilities may fail to emerge. However, some arguments may lead us to question

the relevance of such interpretation. First, we emphasize that cooperation may fail to emerge but we

are not able to predict any specific outcome. Second, such instability is less likely in a world with

transaction costs. Third, we do not consider the counterbalancing force of the transportation costs

we discussed in the UFLP. It may also ease the problem. These observations lead us to question

the positive interpretation. However, its theoretical robustness appeals to further investigations. It

would be interesting to test the empirical relevance of our argument. Our work may prove useful

to provide original implications which could be empirically tested on a reduced form model. For

instance, proposition 7 suggests that, when controlling by the characteristics of the optimal sites, the

density of a zone could have a positive effect on the size of the core (and maybe then the outcome of

negotiations) by limiting the opportunity to dismiss neighbors concerns.
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Proof of Proposition 1

Let σ = (N, b, c, δ, e) ∈ Σe
L.

Let us define k0, k1 and k2 as the natural integers such that:

(k0 − 1)b < c ≤ k0b

(k1 − 1)b < c+ δc ≤ k1b

(k2 − 1)b < c+ 2δc ≤ k2b

These numbers corresponds to the minimum number of agents a coalition should gather to implement

the project given the cost it fronts. We can naturally rank the three numbers: k0 ≤ k1 ≤ k2.

The CIOC characteristic function for excludable facility is defined as:

vcσ(S) =


|S|b− c− δc if |S| ≥ k2 ∧ S 6∈ S1

|S|b− c if |S| ≥ k1 ∧ S ∈ S1

0 if |S| < k1 ∨ (|S| < k2 ∧ S 6∈ S1)

where S1 = {S/∃i ∈ Si−1 6∈ S∧i+1 6∈ S} is the set of blocking coalitions with costs c.17. Such value

only includes the benefits due to S own project. As soon as we consider other possible partitions,

because benefits are excludable, S can only face higher costs so its worth would always be (weakly)

lower.

Proof of Proposition 2

Let σ = (N, b, c, δ, e) ∈ Σe
L such that n ≥ 4 and 2b ≤ c ≤ (n − 2)b. From proposition 1 we get the

identity of C(σ) and Ccσ(σ) so we can focus on the value function vcσ defined above. Let x ∈ Ccσ(σ)

then:

∀S ⊂ N,
∑
i∈S

xi ≥ vcσ(S) (4)

∑
i∈N

xi = vcσ(N) (5)

Simplification of the system of inequalities 4

1 - Rationality of building coalitions

(n-1)-coalitional rationality constraints
17By convention, ∀S ⊆ N, 0 6∈ S and n+ 1 6∈ S
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Let j ∈ N . Given that 2b ≤ c ≤ (n − 2)b, the constraint associated to the rationality of coalition

N\{j} writes: ∑
i∈N\{j}

xi ≥ vcσ(N\{j}) = nb− c− δc 1{N\{j} 6∈ S1}

Besides, we know from equation 5 that xj = nb− c− δc−
∑

i∈N\{j} xi. Therefore

xj ≤ b− δc 1{N\{j} ∈ S1}

which can be restated:

xi ≤

 b− δc if i = 2 or i = n− 1

b otherwise

This constraint shows there exists strong pressure for the potential neighbors of efficiently located

facilities not to be compensated: in core allocations, both agents 2 and n-1 should at least contribute

to the extent of the externality of such facility whether or not it is located close to them. Besides,

no agent could be subsidized18.

(n-2)-coalitional rationality constraints

The same reasoning leads to the following requirement ∀(i, j) ∈ N2:

(xi + xj) ≤ 2b− δc 1{N\{i, j} ∈ S1}

Which is equivalent to ∀(i, j) ∈ N2/i < j:

(xi + xj) ≤

 2b− δc if j = i+ 2

2b otherwise

This constraint traduces the strong incentives to exclude the neighbors of the facility. Because

any two individuals separated by an agent i may allow the grand coalition to ignore the externality

δc, we should make sure that their contribution is at least of this amount. Otherwise, it becomes

beneficial for the other agents to exclude both individuals and build the project in between them.

Other coalitional rationality constraints

We now show that if x meets (n-1) and (n-2)-coalitional rationality constraints, then x also meets

all other constraints for building coalitions. Let’s assume x meets both (n-1) and (n-2)-coalitional

rationality constraints and let S be a coalition such that |S| < n− 2.
18This result would change would the removal of the optimal site increase the costs of the project. Then the host

could be subsidized in core allocations.
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1. If S ∈ S1, we know ∃S̄ ∈ S1/|S̄| = n − 2 ∧ S ⊂ S̄. Because x meets both (n-1) and (n-2)-

coalitional rationality constraints, we know:
∑

i∈S̄ xi ≥ |S|b− c

−xi ≥ −b ∀i ∈ S̄\S

Where the first line comes from the rationality of S̄ and the second from accurate (n-1)-

coalitional rationality constraints. Adding these inequations, we get the following:

∑
i∈S

xi ≥ |S|b− c = vcσ(S)

So x meets coalitional rationality constraints for all building coalitions S in S1.

2. If S 6∈ S1 then ∃S̄ ∈ 2N/|S̄| = n− 2 ∧ S ⊂ S̄. As previously, we know:
∑

i∈S̄ xi ≥ |S|b− c− δc

−xi ≥ −b ∀i ∈ S̄\S

And then: ∑
i∈S

xi ≥ |S|b− c− δc = vcσ(S)

Along with the previous result, this establishes that x meets coalitional rationality constraint

for all building coalitions.

2 - Rationality of non-building coalitions

In the following we establish that individual rationality constraints imply others constraints for non-

building coalitions. Indeed, assume that individual rationality constraints are met for all agents:

∀i ∈ N, xi ≥ 0

Then, summing up individual rationality constraints, we get:

∀S ∈ 2N ,
∑
i∈S

xi ≥ 0

This establishes the property.

29



Derivation of the conditions

A linear program

Previous results allow us to simplify the system of constraints defining the core. The linear program-

ming problem (L) defines the maximum welfare which can be allocated in core allocations19:

maxx
∑
i∈N

xi subject to



x2 ≤ b− δc

∀j ∈ [1, n− 2], xj + xj+2 ≤ 2b− δc

xn−1 ≤ b− δc

∀i ∈ N, xi ≤ b

∀i ∈ N, xi ≥ 0

which we restate in matrix form and introducing slack variables s = (si)i=1...n for the n first con-

straints and s′ = (s′i)i=1...n for the n following:

maxX{z = eTnx : MX = b,X ≥ 0}

where M =

 Ln In 0
In 0 In

 , X =


x

s

s′

 and b = b



1

2
...

2

1

en


− δc

en
0n

 where In is the

identity matrix and Ln is the n× n matrix:

Ln =



0 1 0 · · · · · · · · · 0

1
. . . . . . . . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

...
. . . . . . . . . 1

0 · · · · · · · · · 0 1 0


19Strictly speaking, this program characterizes the dual core (sometimes called the anti-core) of the dual of our

cooperative game. It is straightforward to check that this set coincides with the core of the game we consider.
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The problem is feasible if and only if b − δc ≥ 0 (then the vector x = 0 is a feasible solution).

Besides, it is bounded (we have, for instance,
∑n

i=1 xi ≤ nb) so there exists a basic feasible optimal

solution. In the following, we adopt the notation of Matousek and Gärtner (2007). We will have to

treat two differents cases. In each case, we show a basic solution associated to list of variables Bn

and consider the simplex tableau associated:

T (Bn) =
xB = A−1

B b−A−1
B ANxN

z = zB + rTxN

where rT = cTN − cTBA
−1
B AN . We check it is optimal (i.e. r ≤ 0) and compute the optimum value

(z∗ = zB = cTBA
−1
B b).

Case i: if n is even

In this case, we consider the basic solution corresponding to the basis B = (x1, · · · , xn, s′1, · · · , s′n).

The associated tableau is:

T (Bn) =
xB = A−1

B b−A−1
B xN

z = zB + rTxN

where AB =

 Ln 0
In In

. When n is even, Ln is of full rank, then AB is invertible and:

A−1
B =

 L−1
n 0

−L−1
n In

. We compute:

rT = −eTL−1
n

=

 (0,−1,−1, 0, · · · , 0,−1,−1, 0) if n = 4k, k ∈ N

(−1,−1, 0, 0,−1,−1, · · · , 0, 0,−1,−1) if n = 4k + 2, k ∈ N

where the dots indicate the repetition of the pattern formed by the 4 preceeding elements. Then

r ≤ 0 and the solution xB is an optimal basic feasible solution. The computation of zB yields:

zB = nb−

 n
2 δc if n = 4k, k ∈ N
n+2

2 δc if n = 4k + 2, k ∈ N

31



Case ii: n is odd

We consider the basic solution corresponding to the basis B = (x1, x2, s3, x4, · · · , xn, x3, s
′
2, · · · , s′n).

Matrices in the associated tableau can be written as follows:

AB =



0 1 0 0

1 0 0 0 0
0 1 1 1

0 Ln−3

0 0 0

1 0 0 0
0 0 0

1 0 0

0 0
1 0 0

0 1 0 0
0 0 0

0 In−3

0 0 0

0 1 0 0
1 0 1

0 In−3


Inverting AB by block, we compute:

rT =

 ((−1, 0,−1)|(−1,−1, 0, 0,−1,−1, · · · , 0, 0,−1,−1)|(−1, 0, 0)|0Tn−3) if n = 4k + 1, k ∈ N

((−1,−1, 0)|(0,−1,−1, 0, · · · , 0,−1,−1, 0)|(0, 0, 0)|0Tn−3) if n = 4k + 3, k ∈ N

where the dots indicate the repetition of the pattern formed by the 4 preceeding elements. Then

r ≤ 0 and the solution xB is an optimal basic feasible solution. The computation of zB yields:

zB = nb− n+ 1

2
δc

Summary

Let’s assume

δ ≤ b

c
(6)

Then, the maximum welfare which can be allocated in core allocations is:

W (n) =



nb− n
2 δc if n = 4k, k ∈ N

nb− n+1
2 δc if n = 4k + 1, k ∈ N

nb− n+2
2 δc if n = 4k + 2, k ∈ N

nb− n+1
2 δc if n = 4k + 3, k ∈ N
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An additional constraint characterizes the core,

n∑
i=1

xi = nb− c− δc

Then a necessary and sufficient condition for non-emptiness is that W (n) ≥ nb − c − δc which can

be restated in terms of a higher bound on δ:

δ ≤ δ̄(n) where δ̄(n) =



2
n−2 if n = 4k, k ∈ N

2
n−1 if n = 4k + 1, k ∈ N
2
n if n = 4k + 2, k ∈ N

2
n−1 if n = 4k + 3, k ∈ N

(7)

Conditions 6 and 7 are necessary and sufficient conditions for non-emptiness of the core.

Proof of Proposition 3

In order to prove a more general statement, we introduce the notion of restricted core.

Definition 4. A restriction on cooperative behaviors is a correspondence P′ :

 2N −→ P(N\S)

S −→ P′(N\S)

such that ∀S ∈ N P′(N\S) ⊆ P(N\S) with strict inclusion for some S.

We denote by R(N) the set of all restrictions.

Definition 5. For any restriction P′ ∈ R(N), we define the restricted core CP ′l (N) as the set of

global agreements which satisfy:

∀S ⊂ N ∀P ∈ P′(N\S) ∀l ∈ N (P)
∑
i∈S

xi ≥ v(S,P, l) (8)

We will show the following more general property which states that, as soon as 2-agent coalitions

never build, the condition 7 is a necessary condition for non-emptiness whatever the restriction on

the cooperative behavior of outside members.

Proposition 11. ∀σ ∈ Σe
L If 2b < c then, ∀P′ ∈ R(N ) δ > δ̄(n)⇒ CP ′e (N) = ∅

Let σ = (N, b, c, δ, e) ∈ Σe
L such that 2b < c and P′ ∈ R(N). In the system defining the

restricted core CP′σ (N), we can show as in the proof of proposition 2 that the constraints for building

coalitions can be restricted to the (n-1) and (n-2) coalition rationality constraints. Because 2b < c,
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these constraints are the same. The rationality of non-building coalitions, however can no more be

restricted to positivity constraints. Formally, we introduce the following linear program (LP ′):

maxx
∑
i∈N

xi subject to



x2 ≤ b− δc

∀j ∈ [1, n− 2], xj + xj+2 ≤ 2b− δc

xn−1 ≤ b− δc

∀i ∈ N, xi ≤ b

∀S ∈ SNB,
∑

i∈S xi ≥ vcσ(S)

where SNB denote the set of non building coalitions in σ. Because ∀S ∈ SNB, vcσ(S) ≤ 0, (LP ′) is a

less constrained program than (LP ).

First, (LP ′) allows for feasible solution in which xi may be negative then condition 6 is no more

a necessary condition for non-emptiness. Second, such relaxation of the positivity constraints in

(LP ) does not allow to improve on the objective. Indeed, we exhibited in the previous proof basic

optimal feasible solutions which encompassed all xi. This indicates that the reduced cost associated

to positivity of the xi is null so the optimal value of the objective does not change and condition 7

remains necessary. This establishes proposition 11 which implies proposition 3.

Proof of Proposition 4

Let (σe, σne) ∈ Σe
L × Σne

L such that σe = (N, b, c, δ, e) and σne = (N, b, c, δ, ne).

Formally, Proposition 4 comes from of the comparisons of the systems defining the core. In the case

of CIOC, is it straightforward to check that ∀S ⊆ N, vcσe(S) = vcσne(S) so Cc(σe) = Cc(σne). In the

case of RHOC, note that values vrσ(S) and vcσ(S) differ if and only if outside members N\S build.

Note, in addition that, any coalition that builds in the non-excludable case would have built in the

excludable case so the externalities imposed by outside members on blocking coalitions are always

higher in the excludable case. From both observations, we get

∀S ⊆ N, vrσne(S) ≤ vcσne(S) (9)

Let x ∈ Cr(σne), then we have:  ∀S ⊂ N,
∑

i∈S xi ≥ vrσne(S)∑
i∈N xi = vrσne(N)
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Noting that vrσne(N) = vrσe(N) and using 9, it follows: ∀S ⊂ N,
∑

i∈S xi ≥ vrσe(S)∑
i∈N xi = vrσe(N)

So x ∈ Cr(σe). Then, Cr(σne) ⊆ Cr(σe).

Proof of Proposition 5

Let σ ∈ Σe
L such that min(k1, n− k1) > 3. Note first that such assumption implies n ≥ 7.

Because k1 > 3, we know that 3 individuals would not build a project with cost c + δc. Because

n − 3 > k1, any blocking coalition of 3-agents fronts a complementary who would rationally build.

Then, 3-agent coalitions with cost c + δc can free-ride on the others. In particular, any x ∈ Cr(σ)

should meet the following three-agent rationality constraints: x1 + x2 + x3 ≥ 3b− δc

x4 + x5 + x6 ≥ 3b− δc

what sums up to:
6∑
i=1

xi ≥ 6b− 2δc (10)

However, x should also meet the following (n-1) and (n-2) rationality constraints20:

x1 + x3 ≤ 2b− δc

x4 + x6 ≤ 2b− δc

x2 ≤ b− δc

x5 ≤ b

which sum up to:
6∑
i=1

xi ≤ 6b− 3δc (11)

Conditions 10 and 11 are contradictory then Cr(σ) = ∅.

As soon as k1 ≤ 3 or n−k1 ≤ 3, free riding is moderated. In the former case, even small coalitions

would build and then are not credible enough to always induce construction from outside members.

In the latter case, even a small blocking coalition would lead outside members to abandon the project

when forming.
20See the proof of proposition 2 for more details about how these rationality constraints are derived
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Proof of Proposition 6

Let σ = (N, b, c,T , δ) ∈ Σ and x ∈ C(σ). We have the property that the value function under collapse

in outside cooperation actually corresponds to the maximum value over all possible partitions and

Nash equilibria. Then, we can restrict our attention to this restricted value. We know that x pertains

to the dual core of the dual game:

{x ∈ Rn|
∑
i

xi = vc(N) and
∑
i∈S

xi ≤ v∗(S)}

where

v∗(S) = vc(N)− vc(N\S)

=
∑
i∈N

bi − c− τ(N)δc−max(
∑
i∈N\S

bi − c− τ(N\S)δc, 0)

= min(
∑
i∈S

bi − (τ(N)− τ(N\S))δc,
∑
i∈N

bi − c− τ(N)δc)

We consider the linear program (LP2):

maxx{
∑
i∈N

xi : ∀S ∈ 2N
∑
i∈S

xi ≤ v∗(S)}

This linear program is bounded (by
∑

N bi, for instance) and feasible (take, for all i ∈ N , xi =

minS∈2N v
∗(S)), then it admits a finite optimum and so its dual (LP2*), which writes:

minχ{
∑
S⊆N

χSv
∗(S) : ∀i ∈ N

∑
S:i∈S

χS = 1, χS ≥ 0}

Let χ∗ be an optimal feasible solution of (LP2*). We know that a necessary and sufficient condition

for non-emptiness of the core is: ∑
S⊆N

χ∗Sv
∗(S) ≥ vc(N)

We define ṽ(S) =
∑

i∈S bi − (τ(N)− τ(N\S))δc ≥ v∗(S) and replace v∗ by ṽ in (LP2*). This leads

to (LP3):

minχ{
∑
i∈N

bi − δc
∑
S⊆N

χS(τ(N)− τ(N\S)) : ∀i ∈ N
∑
S:i∈S

χS = 1, χS ≥ 0}

Such program is bounded and feasible, then an optimal solution exists. Let denote by χ̃ an optimal

feasible solution of (LP3). Note that it only depends on the spatial structure T . We know that the
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value of (LP3) is higher than that of (LP2) then, a necessary condition for non-emptiness of the core

is: ∑
i∈N

bi − δc
∑
S⊆N

χ̃S(τ(N)− τ(N\S)) ≥ vc(N) =
∑
i∈N

bi − c− τ(N)δc

What leads to the necessary condition:

δ ≤ 1∑
S⊆N χ̃S(τ(N\S)− τ(N)))− τ(N)

= τ̄(T )

Proof of Proposition 7

Let σ = (N, b, c,T , δ) ∈ Σ. As previously, we have the property that the value function under collapse

in outside cooperation actually corresponds to the maximum value over all possible partitions and

Nash equilibria. Then, we can restrict our attention to this restricted value vc. Let x ∈ C(σ) and

S ⊆ N , the value of coalition S is:

vc(S) = max(0,
∑
iinS

bi − c−mini∈S
∑
j∈S

τijδc)

And the associated core constraint is:

∑
i∈S

xi ≥ max(0,
∑
iinS

bi − c−mini∈S
∑
j∈S

τijδc) (12)

To fully characterize the core, an additional equation is needed:

∑
i∈N

xi ≥ max(0,
∑
i∈N

bi − c− τ(N)δc) (13)

All these constraints fully characterize the core. Let’s now consider the problem σ′ = (N, b, c,T ′, δ)

where T ′ ∈ Mn(R+) is such that T ′ ≥ T and minj∈N
∑

i τij = minj∈N
∑

i τ
′
ij . Rationality con-

straints writes in σ′:

∑
i∈S

xi ≥ max(0,
∑
iinS

bi − c−mini∈S
∑
j∈S

τ ′ijδc) (14)

Because T ′ ≥ T , we note that for any blocking coalition S, rationality constraints are more

stringent in 12 than in 14 while the constraint 13 does not change. It establishes C(σ) ⊆ C(σ′).
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Proof of Proposition 8

Let σ = (N, b, c,T , δ) ∈ Σ, σ′ = (N, b′, c,T , δ) ∈ Σ such that b ≤ b′. Given the expression of v∗ in

σ, the linear program (LP2*) can be written:

minχ{
∑
S⊆N

χS(
∑
i∈S

bi−max((τ(N)−τ(N\S))δc; c−τ(N)δc−
∑
i∈N\S

bi)) : ∀i ∈ N
∑
S:i∈S

χS = 1, χS ≥ 0}

Then C(σ) is non-empty if and only if

maxχ{
∑
S⊆N

χSmax((τ(N)−τ(N\S))δc; c−τ(N)δc−
∑
i∈N\S

bi)) : ∀i ∈ N
∑
S:i∈S

χS = 1, χS ≥ 0} ≤ c+τ(N)δc

Similarly C(σ′) is non-empty if and only if

maxχ{
∑
S⊆N

χSmax((τ(N)−τ(N\S))δc; c−τ(N)δc−
∑
i∈N\S

b′i)) : ∀i ∈ N
∑
S:i∈S

χS = 1, χS ≥ 0} ≤ c+τ(N)δc

The comparison of the two conditions gives the result.

Proof of Proposition 9

Let σ = (N, b, c, δ, e) ∈ Σe
L.

Formally, the polluter pay principle leads to define the following value function21:

∀S ⊂ N , vpσ(S) =


0 if S < k1 ∨ (S < k2 ∧ (1 6∈ S ∧ n 6∈ S))

|S|b− c− δc if S ≥ k1 ∧ (1 ∈ S ∨ n ∈ S)

|S|b− c− 2δc if S ≥ k2 ∧ (1 6∈ S ∧ n 6∈ S)

Then we check that the equal sharing rule xe/∀i ∈ N , xei =
vpσ(N)
n is a core allocation.

Let S ⊆ N . We have ∀i ∈ N :

xei = b− c+ δc

n
> 0

Then: ∑
i∈S

xei = |S|b− |S|
n

(c+ δc)

21We note that such game is not convex. Indeed let (S, T, i) ∈ 2N × 2N × N be such that S ⊂ T ⊆ N\{i}. Take

i ∈ {1, n} and S such that |S| ≥ k3 ∧ 1 6∈ S ∧ n 6∈ S and T such that 1 ∈ T ∨ n ∈ T . The marginal contribution of i is:

∀S ⊂ N , vpσ(S) =

 mi(S) = v(S ∪ {i})− v(S) = b+ δc

mi(T ) = v(T ∪ {i})− v(T ) = b

So mi(S) > mi(T ) what establishes that the game is not convex.
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Given the value function, we observe that, whichever type is coalition S,

|S|b− |S|
n

(c+ δc) ≥ vpσ(S)

So we have:  ∀S ⊂ N,
∑

i∈S x
e
i ≥ v

p
σ(S)∑

i∈N x
e
i = vpσ(N)

So xe ∈ Cp(σ).

Proof of Proposition 10

Let σ = (N, b, c, δ, e) ∈ Σe
L and let τc be a fraction of the cost that is granted to the players conditional

on the realization of the project in the grand coalition (or, equivalently, a fine on blocking coalitions).

Then, (n-1) coalitional rationality constraints write, under CIOC:

xi ≤

 b− (δ − τ)c if i = 2 or i = n− 1

b+ τc otherwise

And (n-2) coalitional rationality constraints:

(xj + xl) ≤

 2b− (δ − τ)c if j = i+ 2

2b+ τc otherwise

This lower the minimal amount that has to be collected to:

D(n) =



n
2 (δ − τ)c if n = 4k, k ∈ N
n+1

2 (δ − τ)c if n = 4k + 1, k ∈ N
n+2

2 (δ − τ)c if n = 4k + 2, k ∈ N
n+1

2 (δ − τ)c if n = 4k + 3, k ∈ N

And the associated constraint on δ accordingly:

δ ≤



2
n−2 + τ if n = 4k, k ∈ N

2
n−1 + τ if n = 4k + 1, k ∈ N
2
n + τ if n = 4k + 2, k ∈ N

2
n−1 + τ if n = 4k + 3, k ∈ N

Individual rationality constraints remain the same but now the welfare of agents 2 and n − 1 is

b− (δ − τ)c what imposes the additional constraint:

δ ≤ b

c
+ τ
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Then necessary and sufficient conditions for the non-emptiness of the core are derived as formerly

from which we derive the least core value τ :

τ =



max(0; δ − 2
n−2 ; δ − b

c) if n = 4k, k ∈ N

max(0; δ − 2
n−1 ; δ − b

c) if n = 4k + 1, k ∈ N

max(0; δ − 2
n ; δ − b

c) if n = 4k + 2, k ∈ N

max(0; δ − 2
n−1 ; δ − b

c) if n = 4k + 3, k ∈ N

Computation of τ̄(T ) for graphs

The algorithm to compute the critical value of delta on a simple graph can be simplified using the

following result:

Proposition 12. Let σ = (N, b, c,T , δ) ∈ ΣG such that the minimal degree of the graph T is at least

1 and can only be lower after the withdrawal of a single agent. The set of CIOC-core lower bounds

can be reduced to the bounds for coalitions in

H = {{N\S|S ⊆ N (i) : i ∈ N} ∪i∈N {i}}

where N (i) is the set of i’s neighbors.

Proof. The following proof is a generalization of the first part of the proof of proposition 2.

Let σ = (N, b, c,T , δ) ∈ ΣG such that the minimal degree of T is at leat 1 and can only be lower after

the withdrawal of an agent. Let x be an allocation which satisfies the efficiency condition and the

CIOC core lower bounds for coalitions in the collection H = {{N\S|S ⊆ N (i) : i ∈ N} ∪i∈N {i}}.

We have:

∑
i∈N

xi = nb− c− τ(N)δc (15)

∑
i∈S

xi ≥ |S|b− c− τ(S)δc ∀S ∈ {N\T |T ⊆ N (i) : i ∈ N} (16)

xi ≤ b ∀i ∈ N (17)

xi ≥ 0 ∀i ∈ N (18)

We want to prove that x satisfies core bounds for any coalition S ⊂ N .

Let S ⊂ N then
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1. Either S does not build then we shall show
∑

i∈S xi ≥ 0. It directly stems from the inequali-

ties 18

2. Either S builds then we shall show
∑

i∈S xi ≥ |S|b− c− τ(S)δc where τ(S) = minj∈S
∑

i∈S τij

(a) if τ(S) < τ(N), we consider an optimal site in S j∗ ∈ argminj∈S
∑

i∈S τij . The constraint

associated to S∗ = N\(N (j∗) ∩ (N\S)) belongs to the set of constraints 16. It writes:∑
i∈S∗

xi ≥ |S∗|b− c− τ(S∗)δc = |S∗|b− c− τ(S)δc

Then using inequalities 17 we have, for all i ∈ S∗\S, −xi ≥ −b. Adding this inequalities

gives the result.

(b) if τ(S) ≥ τ(N) then we get the constraint combining conditions 15 and 17.

Such simplication allows us to restrict the number of coalitions to consider to less than n ∗ 2d(G)

constraints instead of 2n. We following program in R solves the linear program (LP4):

maxχ{
∑
S∈H

χS(τ(N)− τ(N\S)) : ∀i ∈ N
∑
S:i∈S

χS = 1, χS ≥ 0}

And derive the value of τ̄(T ) according to the formula:

τ̄(T ) =
1∑

S∈H χ̃S(τ(N\S)− τ(N)))− τ(N)

The following code yields the critical value for graph A in figure 2 (it is written in the R software).

#######################################################

# Finding the critical value of delta on a graph #

#######################################################

library(linprog)

dmin<-function(M){

min(rowSums(M))

}

constraints<-function(M){
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n<-dim(M)[1]

A<-NULL

b<-NULL

for(i in 1:dim(M)[1]){

neighbors<-which(M[i,]>0, arr.ind=TRUE)

di<-length(neighbors)

for(k in 0:(dmin(M)-1)){

ExcludableCoalitions<-matrix(neighbors[combn(1:di,di-k)],ncol=choose(di,di-k))

for(l in 1:choose(di,di-k)){

constraint<-rep(0,dim(M)[1])

constraint[ExcludableCoalitions[,l]]<-1

A<-rbind(A,constraint)

b<-cbind(b,dmin(M)-k)

}

}

}

rownames(A)<-NULL

cbind(A,t(b))

}

deltac<-function(M){

n<-dim(M)[1]

A<-constraints(M)

A1<-rbind(A[,1:n],diag(1,n))

dndns<-c(A[,n+1],rep(0,n))

chi<-solveLP(dndns,rep(1,n),A1,maximum = TRUE,const.dir = rep("=",n))$solution

1/(chi%*%dndns-dmin(M))

}

##Testing case A in Figure 2

#Case A
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MA<-matrix(c(

0,1,0,0,0,0,

1,0,1,0,0,0,

0,1,0,1,0,0,

0,0,1,0,1,0,

0,0,0,1,0,1,

0,0,0,0,1,0), nrow = 6, ncol = 6)

deltac(MA)
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