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Abstract

I study how higher order uncertainty affect communication outcomes when the sender’s

preference is uncertain. I identify a ‘richness’ condition on the players’ type spaces, under which

in every equilibrium, there exists some good senders who cannot fully reveal their information,

even though they have no conflict of interest with the receiver, and they never send the same

message as the bad senders. Moreover, under a ‘contagion condition’, no good sender can fully

reveal her information in any equilibrium. By applying my model to organizational design, I

show that the principal is more inclined to delegate decision rights when the agent faces higher

order uncertainty.
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1 Introduction

When experts communicating with decision makers, the latter is rarely sure about the former’s

underlying motives. In ancient dynasties, emperors suspect their ministers’ unrighteousness and

loyalty. In stock markets, investors doubt about the analysts’ hidden incentives. In bureaucracies,

clerks are cautious about the potential conflicts with their colleagues. In these situations, the expert

will feel uncertain about the decision maker’s belief if the latter has no credible device to signal

trust.1

I study the impact of higher order uncertainty to cheap talk communication (Crawford and Sobel

[1982]) when the sender can have two possible preferences: either she is good, i.e. her preference

is perfectly aligned with the receiver’s; or she is bad, and simply aims to maximize the receiver’s

action. The receiver can have various beliefs and higher order beliefs on the sender’s preference, and

the sender can have various higher order beliefs over the receiver’s beliefs. I adopt the universal

type space formulation (Mertens and Zamir [1985]) and show that when the two players’ type

spaces satisfy a ‘richness condition’, then in every equilibrium, there is a positive probability that

the good sender cannot fully transmit her information, even though she does not pool with the bad

ones (good senders pool within themselves). Furthermore, under a ‘contagion condition’, no good

sender can fully reveal her information in any equilibrium.

My model has a broad range of economic implications, especially in the situation where com-

munication is harassed by rumors. In the above examples, rumors can be deliberately spread by

political enemies, competing analysts, discontented former co-workers, etc. They may also arise

inadvertently among the public. The subtle thing is, whether the decision maker trust the rumor

or not mainly depends on his subjective evaluation, other than the informativeness of the rumor

on the sender’s true preference.

My ’no full communication’ result is in sharp contrast with the case in which the sender does not

face higher order uncertainty (Morgan and Stocken [2003]): a good sender can fully communicate

her information as long as she can fully separate herself from the bad ones. However, when injecting

higher order uncertainty into the game, the marginal good sender’s expected loss is strictly positive

in every equilibrium, since she is unsure about the receiver’s action after receiving her equilibrium

message. Therefore, the largest equilibrium action below the marginal type must be bounded away

from it, and the receiver’s sequential rationality condition forces some good senders to pool within

1In my model, the receiver cannot credibly convey his prior belief through cheap talk.
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themselves.

Under the richness condition which leads to my main result, the players’ posterior beliefs cannot

be originated from the same prior, i.e. they ‘agree to disagree’ (Aumann [1976]). Intuitively, in

context of rumors, my condition implies that:

1. Rumors have an impact, even when they are unfounded. Historical evidence ranges from the

Great Purge of Joseph Stalin, to...

2. Rumors affect everyone, and almost equally. If it is possible that a good sender has a kind

of belief, then it is also possible for a bad one to have that belief. This means, even when

the sender is congruent, it does not give her more confidence that the receiver will not trust

the rumor. When rumors prevail, everyone has a reason to fear that he or she is going to be

distrusted.

3. Anticipating that the receiver has heard a rumor, the sender is very uncertain about what is

in the receiver’s mind, i.e., the receiver may have a potentially rich set of beliefs, and such

beliefs cannot be communicated credibly to the sender via cheap talk.

As a direct application to my model, I revisit delegation problem when a better informed

agent faces higher order uncertainty. I show that higher order uncertainty decreases the receiver’s

expected welfare, and there is no cross-type compensation. Delegating decision rights to the agent

brings an additional benefit to the principal: eliminating the welfare losses caused by higher order

uncertainty, since the principal’s belief and higher order beliefs are no longer relevant when decision

rights are being delegated.

Related Literature: This paper revisits the main insight of Crawford and Sobel (1982), that

in general, the sender’s information can be fully transmitted via cheap talk messages if and only

if her preference is fully aligned with the receiver’s. In a complementary paper, Pei (2012) shows

that when the sender needs to acquire information at a cost, then she must communicate all her

information in any equilibrium, regardless of the conflict of interests between the players. This

paper examines the case in which the sender cannot fully communicate her information, even

though there is no conflict of interest.

This paper is related to two strands of literature: strategic communication when the receiver has

private information; and when the sender’s preference is uncertain. Starting from Watson (1996),

many papers analyzed situations where the receiver has private information on the state of the
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world, and examine how this private information improves or hinders communication. Olszewski

(2004) shows that when the sender has honesty concerns, then information can be fully revealed

when the receiver also receives a private signal. In contrast, many recent papers describe various

environments in which the receiver’s private information makes communication less informative.2

In contrast, my paper focus on the receiver’s private information on the sender’s preference, and

allows for more general forms of uncertainty and higher order uncertainty.

On the uncertain sender-preference side, this paper is closest to Morris (2001) in formulating

the senders’ preferences, where the good sender’s preference is fully aligned with the receiver’s,

and the bad sender simply wishes to maximize the receiver’s action. The main differences are:

whether or not the receiver has private information, and whether the game lasts for 1 period or 2

periods. Another related paper is Blume and Board (2012), where they assume both the sender and

the receiver are uncertain about each other’s language competence. They show that informative

equilibrium still exists, and the optimal communication protocol will try to make use of all the

messages available.

2 A Motivating Example

An emperor (receiver) needs his minister’s (sender) advice on how much to spend on a construction

project. Let θ be the most appropriate amount, which is distributed uniformly on [0, 1], and a be

the emperor’s decision. The minister knows the θ, and can be either upright (good) or corrupted

(bad). An upright minister’s preference is fully aligned with the emperor’s:

Ug = U r = −(a− θ)2

A corrupted minister would always like the emperor to spend more, so that he can divert more

money into his own pocket.

U b = a

2For example, Galeotti et.al. (2009) studies communication in networks, and shows that a sender is less likely to
report information truthfully to a receiver if the latter has too many other sources of information. Lai (2009) studies
a context where the amateur receiver can tell the difference between high and low states, but the cut-off threshold
is private information. Chen (2009), Moreno de Barreda (2010), Ishida and Shimizu (2012) identify situations where
the receiver receives a private signal about the fundamentals, and examine how it hinders communication and make
some equilibria not monotone. Goltsman and Pavlov (2011) examine the case in which the sender talks to multiple
receivers and characterize the equilibria of the game.
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I assume that the emperor does not know the minister’s type, and believes that the minister is

corrupted with probability η. Let us consider the following two cases separately:

1. The minister knows the emperor’s belief, i.e., there is only ‘1st order uncertainty ’.

2. The minister feels unsure about how the emperor perceives of him, perhaps he is uncertain

about whether the emperor has believed in the rumors his political enemies have spread, or

he does not know whether the emperor is suspicious or credulous. In this case, the minister

also faces ‘2nd order uncertainty ’.

In the first case, there exists an equilibrium where the good minister fully reveals θ if and only if:

θ <
1

1 +
√
η

(2.1)

When information is fully revealed, the emperor takes the most appropriate action. If θ is above

this threshold, the good minister pools with the bad one, which induces action a = 1
1+
√
η . In this

example, the good minister fully reveals his information with probability 1
1+
√
η .

In the second case, suppose the minister believes that η ∈ {η1, η2} and η = η1 with probability

p1 and η = η2 with probability p2, where p1 ∈ (0, 1), then the qualitative features of the equilibrium

completely changes. Next, I show the following claim, which explains the qualitative differences

between the equilibria with or without higher order uncertainty.

Claim 1. The good minister can never fully reveal his information.

Proof of the Claim: For any message mb sent by the bad type with positive probability in equi-

librium:

p1a
1(mb) + p2a

2(mb) ∈ arg max
m∈M

{
p1a

1(m) + p2a
2(m)

}
where M is the set of messages. Define a subset M b as:

M b ≡
{
m
∣∣∣p1a

1(m) + p2a
2(m) = max

m′∈M

{
p1a

1(m′) + p2a
2(m′)

}}
the bad type will always send a message in M b.

Next, a good sender with type θ sends message mb ∈M b only if:

∑
i

pi(a
i(mb)− θ)2 ≤ arg max

m∈M

∑
i

pi(a
i(m)− θ)2 (2.2)
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which can be re-written as:

1

2

[∑
i

pia
i(mb)2 −

∑
i

pia
i(m)2

]
≤ θ
[∑

i

pia
i(mb)−

∑
i

pia
i(m)

]
(2.3)

So there exists a threshold θ0, such that the good sender sends a message in M b if and only if

θ > θ0.

For any two messages m,m′ ∈ M b, both messages are sent with positive probability by good

types if and only if: ∑
i

pia
i(m′)2 =

∑
i

pia
i(m)2

If this is not the case, let the LHS of the above equality larger than the RHS, then no good sender

sends m′, which means it is only sent by the bad types. Hence, it implies that all receivers take the

same action upon receiving m′. This contradicts the fact that

∑
i

pia
i(m′) =

∑
i

pia
i(m)

and ∑
i

pia
i(m′)2 >

∑
i

pia
i(m)2

we have assumed before. So equality must hold. This implies that all types of senders are indifferent

between m and m′.

Suppose there exists a message m ∈M b such that ai(m) = θ0 for i = 1, 2. Then, good senders

with any θ prefer m than other messages in M b, which implies that all bad senders send m. Since

different types of receivers have different beliefs over the sender’s distribution, their reactions upon

receiving m cannot be the same, which leads to a contradiction. So there does not exist a message

which makes the expected loss of the marginal good sender θ = θ0 equal to 0. If type θ0 − ε good

sender can fully separate himself, then type θ0 + ε prefers to induce a = θ0− ε than any message in

M b if we make ε small enough. This means, there does not exist a type arbitrary close to θ0 who

can fully separates himself.

Let a1 be the largest equilibrium action induced by good senders with θ < θ0, θ0− a1 > 0. The

receiver’s sequential rationality condition requires that good senders with θ ∈ [θ1, θ0] induces action

a1, where θ1 ≡ 2a1 − θ0. Since type θ1 good sender has to be indifferent between a1 and the next

equilibrium action: a2, a2− θ1 = θ1−a1. Iterating this process, the equilibrium is characterized by
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a

θ = 0 θ

a

θ = 0 θθ0 θ = 1 θ0 θ = 1

Figure 1: Good sender’s equilibrium strategy with or without second order uncertainty.

a partition of equal-lengths intervals within [0, θ0]. Good senders within each interval pool within

themselves, although not being joint by any bad senders. In any equilibrium, no good sender can

fully reveal his information.

The comparison of the good minister’s equilibrium strategy with or without second order un-

certainty is shown in the graph, where the red line is the range in which good ministers pools with

bad one, the green line is the fully separating range, and the blue line is the range where good

ministers pool within themselves.

3 Cheap Talk Under Higher Order Uncertainty

Let θ ∈ [0, 1] be the state of the world and a ∈ A = R be the receiver’s action.3 The sender knows θ

and can be either ‘good’ or ‘bad’. The good sender’s preference is fully aligned with the receiver’s:

u(a, θ), which depends on the latter’s action and the state of the world. The bad sender’s preference

is given by ub = a. I assume that u ∈ C2 and

∂2u

∂a∂θ
> 0,

∂2u

∂a2
< 0, u(θ, θ) = max

a∈A
u(a, θ)

The receiver’s prior on θ is F (θ), which is absolutely continuous, has full support over Θ and adopts

pdf f(θ).

3It is obvious that all our results can be carried over to the case where Θ is a convex bounded subset of R.
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Remark: I assume there is no conflict of interest between her and the receiver, in order to isolate

the effect of higher order uncertainty on full information revelation.

3.1 Types and Beliefs

For higher order beliefs, I adopt the implicit formulation of Mertens and Zamir (1985), in which

a ‘type’ is characterized by its belief on the joint distribution of the fundamentals and the oth-

er players’ type.4 In this paper, the sender and the receiver’s type spaces are characterized by

(Ψ, û, θ̂, π̂) and (Φ, τ̂) respectively. The sender’s type is ψ ∈ Ψ, which is described by her preference

û(ψ) ∈ {g, b}, her belief on θ: θ̂(ψ) ∈ ∆(Θ), and her belief over the receiver’s type π̂(ψ) ∈ ∆(Φ).

The receiver’s type is φ ∈ Φ, which is described by his belief over the sender’s type τ̂(φ) ∈ ∆(Ψ).

For convenience, I assume both Ψ and Φ are finite, and there is no higher order uncertainty if Φ is

a singleton, and Ψ has only 2 elements.

I introduce several definitions on the players’ types as well as their type spaces, which are

essential to my analysis. First, in order to capture the fact that ‘rumors affect everyone almost

equally ’, I define ‘companion type’:

Definition 1 (Companion Type). ψ and ψ′ are ‘companions’ if and only if û(ψ) 6= û(ψ′) and

π̂(ψ) = π̂(ψ′).

Intuitively, two sender types are companions if their beliefs over the receiver’s type are the

same, even though their preferences differ. Next, I define the ‘richness’ condition on Ψ and Φ:

Definition 2 (Richness). Ψ is ‘rich’ if any ψ ∈ Ψ has a companion type. Φ is ‘rich’ if for any

ψ′ ∈ Ψ, û(ψ′) = b, there exists ψ′′ ∈ Ψ, û(ψ′′) = g as well as φ, φ′ ∈ Φ, such that π̂(φ)[ψ] = π̂(φ′)[ψ]

for any ψ 6= ψ′, ψ′′ and π̂(φ)[ψ] 6= π̂(φ′)[ψ] for ψ = ψ′ or ψ′′.

The richness of Φ implies that the sender faces ‘sufficient amount’ of higher order uncertainty,

and the richness of Ψ captures the fact that both good senders and bad senders can have the same

kind of belief after anticipating a rumor. Under this assumption, I use the following expression for

sender and receiver’s type space:

Ψ = {g1, ..., gn, b1, ..., bn}, Φ = {φ1, ..., φk}
4Mertens and Zamir (1985) show that any implicit type space that has no redundant types and satisfies some

topological restrictions is a belief-closed subset of the universal type space. Brandenburger and Dekel (1993) show
the relationship between this formulation and the coherency condition on the belief hierarchies.
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where gi and bi are companions. I make the following assumptions:

Assumption 1. Ψ and Φ are rich.

Assumption 2 (Full Support). π̂(ψ) assigns positive probability to all φ ∈ Φ. π̂(φ) assigns

positive probability to all ψ ∈ Ψ.

3.2 Equilibrium

The sender’s message is denoted by m ∈ M , and her communication strategy is m : Ψ×∆(Θ) →

∆(M). For simplicity, let m(ψ, θ) be the message sent when her type is ψ and the state is θ. After

receiving the message, type φ receiver updates his belief, and his action rule is given by:

aφ(m) ∈ arg max
a∈A

∫
θ
u(a, θ)dF(θ|m,φ)

where F(·|m,φ) is type φ receiver’s posterior belief on θ after receiving m. The concavity of u

ensures that he will always use a pure strategy. The solution concept in this paper is Perfect

Bayesian Equilibrium (PBE, or ‘equilibrium’ for short). I define ‘fully revealing ’ as follows:

Definition 3. Type gi sender fully reveals herself at θ if and only if:

aφ(m(gi, θ)) = θ

for any φ ∈ Φ.

Also, as defined in Crawford and Sobel (1982), an equilibrium is ‘babbling ’ if all types of

receivers choose

a ∈ arg max
a

∫
θ
u(a, θ)dF (θ)

Apparently, this equilibrium always exits. Next, I introduce two classes of equilibria through the

degree of separation they achieve:

Definition 4 (Maximal Separating Equilibrium). An equilibrium is ‘maximal separating’ if it

is not babbling, and type gi fully reveals herself at θ if and only if m(gi, θ) ≡ m(bj) for any i, j.

Definition 5 (Minimal Separating Equilibrium). An equilibrium is ‘minimal separating’ if

there exists a positive measure set Θ0 ⊂ Θ and gi ∈ Ψ, such that type gi fully reveals herself if

θ ∈ Θ0.

Obviously, if an equilibrium is maximal separating, then it must be minimal separating.
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3.3 Benchmark

In this subsection, I prove some benchmark results when there is no higher order uncertainty. I

show that a maximal separating equilibrium always exists, and it maximizes the expected welfare of

the receiver. Moreover, it takes the form of ‘low separating high pooling ’ (Kartik [2009]), in which

a good sender fully reveals her information when θ is small, and pools with bad senders when θ is

large (Morgan and Stocken [2003]).

Lemma 3.1. When Φ is a singleton, there exists a maximal separating equilibrium in which

the good sender fully reveals herself if and only if θ < θ0. The bad sender and good senders above

θ0 send a message which induces a = θ0.

Let θ0 be the ‘threshold point’, which characterizes a maximal separating equilibrium. Let θ∗0

be the maximum threshold point under u and F , then we have the following welfare property:

Lemma 3.2. The maximal separating equilibrium characterized by threshold point θ∗0 is the ex

ante welfare highest equilibrium for the receiver.

3.4 Maximal Separating Equilibrium

Obviously, Φ is not rich in the benchmark case. In this subsection, I impose the richness condition

on both type spaces, and prove my main result, which shows that rumors make some good senders

not being able to fully communicate their information, even though they are not being joint with

the bad ones.

Proposition 1. If Ψ and Φ are rich, there exists no maximal separating equilibrium.

Proof of Proposition 1: The proof is done by contradiction. Assume that a maximal separating

equilibrium exists. Given the equilibrium behavior strategies of each type of sender as well as

receiver, two different types of senders agree on what action a given type of receiver will take after

receiving a message m. They only disagree on the probability distribution over different types of

receivers. If type gi can fully separate herself at θ by sending message m(gi, θ), then gi′ (i′ 6= i)

also can fully separate herself by sending m(gi, θ).

So, in any maximal separating equilibrium, there exists Θ1,Θ2 ⊂ Θ such that all types of good

senders fully separate if θ ∈ Θ1 and pool with bad ones if θ ∈ Θ2. According to the definition of

maximal separating, Θ1
⋃

Θ2 = Θ. Let Θi denote the closure of a set, then Θ1
⋃

Θ2 = Θ. Since Θ
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is connected under the Euclidean Topology on R, it cannot be written as the union of two disjoint

closed sets. So:

Θ1

⋂
Θ2 6= ∅

Next, I show that Θ1
⋂

Θ2 must have a unique element. If not, let θ0, θ
′
0 ∈ Θ1

⋂
Θ2 with θ0 < θ′0.

There exists {θij}∞i=1 and {θ′ij}∞i=1 (j = 1, 2) such that:

lim
i→∞

θij = θ0, lim
i→∞

θ′ij = θ′0

and

{θij}∞i=1 ⊂ Θj , {θ′ij}∞i=1 ∈ Θj

So for any ε > 0, there exists N such that ||θi1 − θi2|| < ε when i > N . Type θi2 good sender

must prefers an action in the pooling range to a = θi1. Let M b be the set of messages which

are sent with positive probability by bad types in equilibrium. So there exists m ∈ M b such that

||aφ(m) − θ0|| ≤ v(ε) where v is strictly increasing with ε and limε→0 v(ε) = 0. The same is true

for θ′0. Find ε such that 2v(ε) < θ′0 − θ0, then all bad senders strictly prefers to send a message

in M b which induces actions around θ′0 rather than θ0. So only good senders send message which

induces action around θ0. Let θ0 = inf Θ1
⋂

Θ2, we get a contradiction.

Let {θ0} = Θ1
⋂

Θ2. In a maximal separating equilibrium, the good sender fully separates if

and only if θ < θ0. Consider good sender with θ = θ0 + ε, when ε is small enough, she has no

incentive to deviate to induce action a = θ0 − ε (in the fully separating range) unless there exists

a message m∗ ∈ M b such that aφ(m∗) = θ0 for any φ ∈ Φ; or there exists a sequence of messages

{mi}∞i=1 such that

lim
i→∞
||aφ(mi)− θ0|| = 0

for any φ ∈ Φ. I rule out these two possibilities through contradiction, and once this is done, the

proposition is proved.

1. If there does not exist m∗, but exists {mi}∞i=1, since each message must be sent by some types

of bad senders with positive probability, then there exist a bad type: b1, which sends infinite

amount of messages within this set: {m1,i}∞i=1 (⊂ {mi}). Let (p1
1, ..., p

1
k) be her belief vector

over Φ, then

m1,i ∈ arg max
m∈M

k∑
j=1

p1
jaφj (m) ≥ θ0
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for any i. From the definition of {mi}:

lim
i→∞

k∑
j=1

p1
jaφj (mi) = lim

i→∞

k∑
j=1

p1
jaφj (m1,i) = θ0

for any belief vector. So
∑k

j=1 p
1
jaφj (m1,i) = θ0.

Next, I claim that her companion type: g1, cannot send any message in {m1,i} in equilibrium,

no matter what is the value of θ. This is because:

k∑
j=1

p1
ju(aφj (m), θ) < u

( k∑
j=1

p1
jaφj (m), θ

)
= u(θ0, θ)

u(θ0, θ)−
∑k

j=1 p
1
ju(aφj (m), θ) must have a strictly positive lower bound in θ ∈ [θ0, 1] due to

compactness. So there exists ε0 > 0, such that when ||aφ(m0)− θ0|| < ε0,

k∑
j=1

p1
ju(aφj (m0), θ) >

k∑
j=1

p1
ju(aφj (m), θ)

for any θ ∈ [θ0, 1]. Since for any ε0, there exists a message in {m1,i} which satisfies this.

This mean, for any message in {m1,i}, there always exists another message in {m1,i} which

g1 sender strictly prefers as long as θ ∈ [θ0, 1].

Then, I claim that g1 cannot send any other messages either as long as θ > θ0. For any

message, if:
k∑
j=1

p1
ju(aφj (m), θ) ≤ θ0

then:
k∑
j=1

p1
ju(aφj (m), θ) < u

( k∑
j=1

p1
jaφj (m), θ

)
≤ u(θ0, θ)

for any θ ∈ [θ0, 1]. So g1 sender always has a profitable deviation in {m1,i}. If

k∑
j=1

p1
ju(aφj (m

′), θ) > θ0
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for m′ /∈ {m1,i}, this is also a contradiction since:

k∑
j=1

p1
ju(aφj (m

′), θ) ≤
k∑
j=1

p1
ju(aφj (m1,i), θ) = θ0

This implies that such an infinite sequence of messages cannot exists once Ψ is rich.

2. If there exists m∗, then, all types of good senders must send m∗ with positive probability.

This is because otherwise, there exist a sequence of messages described above, which can

lead to a contradiction. Also, there exists at least one type of bad sender who sends m∗ with

positive probability. From the richness of Φ, it can never be the case that all types of receivers

choose a = θ0 upon receiving m∗, which leads to a contradiction.

The main message from Proposition 1 is that higher order uncertainty is another reason for

information not to be fully transmitted in cheap talk communication. When the sender is uncertain

about the receiver’s belief about herself, some good types must pool together even though they were

not joint with the bad ones. The companion type assumption is critical for my reasoning, since

this rule out the existence of an infinite sequence of messages, where the actions induced by them

converges to the marginal type θ∗.

To illustrate this point, I construct a maximal separating equilibrium when this condition is

violated. Let η be the probability that the receiver assigns to a bad sender. η ∈ {η1, η2}, where

η1 < η2. Good sender believes that η = η1 with probability pg and bad sender believes that η = η2

with probability pb, with pg > pb. When pg and pb are common knowledge, players’ beliefs can be

originated from a common prior if and only if:

pbη2

(1− pb)η1
=

pg(1− η2)

(1− pg)(1− η1)
(3.1)

Proposition 2. In the setting described above, there exists a maximal separating equilibrium.

The idea of the construction is described below (the detailed proof is in the Appendix): From

the proof of Proposition 1, there exists a maximal separating equilibrium if and only if there exists

an infinite sequence of messages {mi}∞i=1 such that for any ε > 0, there exists N such that for any

i > N

||aj(mi)− θ0|| < ε
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where θ0 is unique intersection between the fully separating range and the pooling with bad type

range. From the bad type’s indifference condition:

a1(εi) = θ0 + (1− pb)εi

a2(εi) = θ0 − pbεi

Each message in the sequence is sufficiently characterized by εi where εi > εi+1 and limi→∞ εi = 0.

Let γi be the threshold type who is indifferent between εi and εi+1, which satisfies:

pg(a1(εi)− γi)2 + (1− pg)(a2(εi)− γi)2 = pg(a1(εi+1)− γi)2 + (1− pg)(a2(εi+1)− γi)2 (3.2)

which gives:

γi − θ0 = x(εi + εi+1) (3.3)

where

x ≡
pg(1− pb)2 + (1− pg)p2

b

2(pg − pb)
(3.4)

Good senders between [γi, γi−1] sends message εi, where γ0 = 1. The length of the interval which

induces εi for any i ≥ 2 is x(εi−1 − εi+1). Let qi be the probability of the bad sender sending

message εi. The receiver’s sequential rationality constraint is given by:

a1(εi) =
1
2η1qi + (1− η1)x(εi−1 − εi+1)(θ0 + x

2 (εi−1 + 2εi + εi+1))

η1qi + (1− η1)x(εi−1 − εi+1)
(3.5)

a2(εi) =
1
2η2qi + (1− η2)x(εi−1 − εi+1)(θ0 + x

2 (εi−1 + 2εi + εi+1))

η2qi + (1− η2)x(εi−1 − εi+1)
(3.6)

The two equations above give rise to the ‘consistency condition’.

A maximal separating equilibrium is characterized by the following three elements:

• A strictly decreasing positive sequence {εn}∞n=1, with εn → 0.

• A positive sequence {qn}∞n=1 where
∑

n qn = 1.

• θ0 ∈ (1
2 , 1).

which satisfies ε1 <
1−θ0
1−pb and the consistency condition. To find such an equilibrium we introduce

the following algorithm:
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• Fix (θ0, ε1). This pins down a1(m1) and a2(m1);

• Find (q1, ε2) such that q1 > 0, 0 < ε2 < ε1 and the consistency condition with respect to

a1(m1) and a2(m1) are satisfied.

• Iterate the process, find (qn, εn+1) such that qn > 0, 0 < εn+1 < εn and the consistency

condition with respect to a1(mn) and a2(mn).

• Check whether εn → 0 and
∑

n qn = 1. If not, modify (θ0, ε1) and repeat the above procedure.

3.5 Minimal Separating equilibrium

In this section, I identify a condition under which no minimal separating equilibrium exists. For

simplicity, I focus on the case where there is only second order uncertainty, where the receiver’s

assigns probability η to a bad sender. The sender knows F and η ∈ {η1, ..., ηn}, but does not know

true value of η.5 She believes that η = ηi with probability pi, where
∑n

i=1 pi = 1. pi is common

knowledge among the players. So uncertainty ends at the second order. The receiver is of ‘type i’

if his belief is η = ηi.

I also assume that u is symmetric, which means that there exists function v such that: u(a, θ) =

v(|a− θ|). The next shown below is based on the assumptions just made:

Proposition 3. When u is symmetric and f(θ) is non-decreasing in θ, then there exists no

minimal separating equilibrium.

Proposition 3 identifies a ‘contagion property ’ of the distribution function F (θ), i.e. under this

family of prior distributions, as long as there is pooling in an arbitrary small interval, it makes the

good senders of different types to pool within each other throughout the support of the distribution.

This completely rule out full revealing, even for θ arbitrarily small (the example in section 2).

4 Delegation under Higher Order Uncertainty [unfinished..]

In this section, I apply my model to study the delegation problem. To ensure tractability, I adopt

the setup in Section 2, except that η ∈ {η1, ..., ηn}, where η1 < ... < ηn. The agent believes that

η = ηi with probability pi. The following benchmark result states that the principal never has any

incentive to delegate decision rights without higher order uncertainty:

5For simplicity, we assume the support of η is a finite set. All our results can be carried over if the support of η
is a non-singleton measurable set.
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Lemma 4.1. When there is no uncertainty over uncertainty, the principal never has an incen-

tive to delegate.

Proof. When η ∈ (0, 1), under delegation, principal’s ex ante expected loss when he has belief

η is η
3 , which is strictly larger than his expected loss under the welfare highest equilibrium in

centralization:

L(η) =
1

3

( √
η

1 +
√
η

)2

Back to the ‘information loss’ versus ‘loss of control’ trade-off in Dessein (2002), the former

effect is being strictly dominated by the latter one in my setting.

5 Discussions

In this section, I discuss the robustness of the results in various situations. For convenience, I only

examine the case where there is only second order uncertainty. First, I illustrate why our results on

the non-existence of maximal separating equilibria can be carried over when the sender also faces

higher order uncertainty on the distribution of θ. Then, I extend the basic model to a more general

multi-dimensional setting and show the non-existence of maximal separating equilibria. Finally, I

discuss the welfare implications of higher order uncertainty and the potential applications of my

model to the theory of delegation.

5.1 General Uncertainty about Uncertainty

In this subsection, I assume that the sender is also uncertain about F : the receiver’s prior belief on

θ. F ∈ {F1, ..., Fk}. The following condition on the support of F is useful in our discussions later:

Condition 5.1 (Clearly Ranked). The set {F1, ..., Fk} is ‘clearly ranked’ if there exists k1, k2 ∈

{1, 2, ..., k} such that for any θ1 > θ2:

fk1(θ1)

fk1(θ2)
>
fk2(θ1)

fk2(θ2)

This is just the ‘Monotone Likelihood Ratio Property ’. Without loss of generality, we assume

that F1 dominates F2 in likelihood ratio once we use this condition.
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In general, the receiver’s type can be summarized by (i, k), and the distribution of types is given

by ψ ∈ ∆(I ×K). Under the following assumption, Proposition 1 still holds if n ≥ 2:

Condition 5.2 (Full Support). ψ has full support if for any (i, k), ψ(i, k) > 0.

This conclusion is obvious. The next Corollary provides a condition under which no maximal

separating equilibria exists even if n = 1:

Proposition 4. If u is symmetric and {F1, ..., Fk} is clearly ranked, then there exists no max-

imal separating equilibrium.

The intuition of this Proposition is that when there exists two beliefs, one dominates the other

in likelihood ratio, then the actions taken by the two types of receivers cannot be both equal to θ0

when they receive a message in M b. When the sender faces uncertainty at this margin, it prevents

him from fully disclose his information when θ < θ0.

5.2 Multi-Dimensional Cheap Talk

Let θ ∈ Θ ∈ Rn and a ∈ A = Rn. Θ is compact and convex.6 Let || · || be the length (L2 norm) of

a vector in Rn. The bad sender’s preference is given by:

U b = −||a− θ∗||

where θ∗ ∈ Θ is his ‘ideal point’. The good sender and the receiver’s preferences are given by:

Ug = U r = u(||a− θ||)

while u is strictly concave and strictly decreasing with ||a− θ||.7

Let η be the receiver’s belief on the sender being bad and F (·) is his prior belief about θ. F is

a full support distribution and η ∈ {η1, ..., ηn}.

I examine whether maximal separating equilibrium exists in a multi-dimensional setting. Let

Θ1 be the set where the good sender fully separates and Θ2 be the set where they pool with bad

senders.

6This implies that Θ is connected under the Euclidean Topology.
7Remember in the 1-dimensional case, I only require that u(a, θ) is convex and reaches its maximum at a = θ.

But now, I require that the utility depends only on the distance between the action and the state.
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Lemma 5.1. In any maximal separating equilibrium, there exists r > 0 such that the good

sender fully reveals himself if and only if ||θ − θ∗|| > r. Furthermore, for any θ ∈ Θ such that

||θ − θ∗|| = r and ε > 0, there exists m(θ, ε) ∈M b such that ||ai(mε)− θ|| < ε for any i.

According to Lemma 5.1, the boundary for ‘pooling with bad types’ is an ‘equi-distance ball’

around the bad sender’s ideal point θ∗. Also, there exists message in which every action induced

by this message is located within a small neighborhood of the boundary point: θ0. Next, I state

the main result in this subsection:

Proposition 5. If n ≥ 2, then there exists no maximal separating equilibrium.

Proposition 5 extends the non-existence of maximal separating equilibria to a multi-dimensional

setting with any arbitrary ideal point, without imposing the restriction that θ∗ ∈ ∂Θ. Still, it is

true that for any θ such that the good sender fully separates himself, there exists a minimum

distance between θ and any ‘boundary point’ θ0. So, there exists a positive measure set such that

good senders pool only within themselves. This ‘non-fully separation’ is again, caused by the higher

order uncertainty faced by the good sender.

6 Conclusion

This paper points out that higher order uncertainty faced by the sender is another reason for

information not to be fully transmitted in a cheap talk game...
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A Appendix I: Proof in Section 3

Proof of Lemma 3.1: The receiver’s action when he believes that m is sent by bad senders as

well as good senders with θ > θ0 is:

a(θ0) ∈ arg max
a

{
η

∫ 1

0
u(a, θ)dF (θ) + (1− η)

∫ 1

θ0

u(a, θ)dF (θ)
}

(A.1)

where η is the receiver’s belief on the sender’s probability of being bad.

From the concavity of u, a(θ0) is unique for any θ0 and is continuous in θ0. When θ0 = 0,

a(θ0) = arg maxa
∫ 1

0 u(a, θ)dF (θ) > θ0; when θ0 = 1, a(θ0) = arg maxa
∫ 1

0 u(a, θ)dF (θ) < θ0. So

there exists θ∗0 such that a(θ∗0) = θ∗0.

Proof of Lemma 3.2: The receiver’s expected utility in the maximal separating equilibrium with

threshold point θ∗0 is:

(1− η)

∫ θ∗0

0
u(θ, θ)dF (θ) +

[
η

∫ 1

0
u(θ∗0, θ)dF (θ) + (1− η)

∫ 1

θ∗0

u(θ∗0, θ)dF (θ)
]

where η is defined as in the proof of Lemma 3.1.

In any equilibrium, bad types cannot induce an action larger than θ∗0. Given that a ∈ [0, θ0]

where θ0 ≤ θ∗0:

(1− η)

∫ 1

θ∗0

u(a, θ)dF (θ) ≤ (1− η)

∫ 1

θ∗0

u(θ0, θ)dF (θ)

So

max
a≤θ∗0 ,a(θ)≤a

{
η

∫ 1

0
u(a, θ)dF (θ) + (1− η)

∫ 1

θ∗0

u(a(θ), θ)dF (θ)
}

≤ max
a≤θ∗0

{
η

∫ 1

0
u(a, θ)dF (θ) + (1− η)

∫ 1

θ∗0

u(a, θ)dF (θ)
}

= η

∫ 1

0
u(θ∗0, θ)dF (θ) + (1− η)

∫ 1

θ∗0

u(θ∗0, θ)dF (θ) (A.2)

Also ∫ θ∗0

0
u(θ, θ)dF (θ) ≥

∫ θ∗0

0
u(a(θ), θ)dF (θ)

for any a(θ), so the the maximal separating equilibrium is welfare highest for the receiver.

Proof of Proposition 2: Now I show the existence of maximal separating equilibrium following
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the algorithm described in the main text. I start with the Proposition below:

Proposition 6. For any θ0 >
1
2 , there exists {(εi, qi)}i∈N such that the consistency conditions

are satisfied.

Proof of Proposition: The consistency condition imply that:

η1

(
a1(εi)−

1

2

)
qi = x(1− η1)(εi−1 − εi+1)

[
θ0 +

x

2
(εi−1 + 2εi + εi+1)− a1(εi)

]
(A.3)

η2

(
a2(εi)−

1

2

)
qi = x(1− η2)(εi−1 − εi+1)

[
θ0 +

x

2
(εi−1 + 2εi + εi+1)− a2(εi)

]
(A.4)

Divide the first equation by the second one, I obtain an equation with only one unknown variable:

εi+1.

A(εi) =
θ0 +

x

2
(εi−1 + 2εi + εi+1)− a2(εi)

θ0 +
x

2
(εi−1 + 2εi + εi+1)− a1(εi)

(A.5)

where for any i ≥ 1,

A(εi) ≡
η2(1− η1)(a2(εi)−

1

2
)

η1(1− η2)(a1(εi)−
1

2
)

(A.6)

I obtain a recursive expression for εi+1:

εi+1 =
2

x

(A(εi)a1(εi)− a2(εi)

A(εi)− 1
− θ0

)
− 2εi − εi−1

=
2

x

( A(εi)

A(εi)− 1
− pb

)
εi − 2εi − εi−1 (A.7)

for any i ≥ 2, and

ε2 =
2

x

( A(ε1)

A(ε1)− 1
− pb

)
ε1 − ε1 −

(1− θ0)

x
(A.8)

Next, I construct a sequence of {εi}∞i=1 which is monotonic decreasing and converges to 0. If

εi+1 > 0, then A(εi) > 1, which gives rise to:

ε1 ≤ min
{1− θ0

1− pb
,
(pg − pb)(θ0 − 1

2)

pb(1− pb)

}
≡ ε (A.9)

Let

ki+1 ≡
εi+1

εi
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From the expression above, we know that:

ki+1 =
2

x

( A(εi)

A(εi)− 1
− pb

)
− 2− 1

ki

Conditional on A(εi) > 1, it is easy to verify that ki+1 is increasing in εi.
8 Since εi → 0, the steady

state value, k∗, is given by:

k∗ +
1

k∗
+ 2 =

2

x

( A

A− 1
− pb

)
(A.10)

where

A =
η2(1− η1)

η1(1− η2)

Now I show the existence of the sequence {εn}. I begin with the initial condition:

k2 =
2

x

( A(ε1)

A(ε1)− 1
− pb

)
− 1− 1− θ0

xε1

Since conditional on A(ε1) > 1, the above equation is strictly increasing in ε1: when ε1 →
(pg−pb)(θ0− 1

2
)

pb(1−pb) , k2 → +∞; when ε1 → 0, k2 → −∞. When ε1 = 1−θ0
1−pb , we show that k2(ε1) ≥ 1. This

is equivalent to:

1 +
1

A(1−θ0
1−pb )− 1

≥ 1 +
pb(1− pg)
2(pg − pb)

and it holds under the CPA. From the arguments above and the continuity of the RHS with respect

to εi and applying the Intermediate Value Theorem, we know that for any k ∈ (p∗, 1) there exists

ε1 such that k2(ε1) = k.

Now, we examine the difference equation:

∆ki+1 ≡ ki+1 − ki =
2

x

( A(εi)

A(εi)− 1
− pb

)
− (ki + 2 +

1

ki
) (A.11)

Lemma A.1. ki < k∗ for any i ∈ N.

Proof of Lemma: We prove by contradiction. If there exists ki ≥ k∗, then:

∆ki+1 >
(
k∗ + 2 +

1

k∗
)
−
(
ki + 2 +

1

ki

)
≥ 0

8This is because A
A−1

is decreasing in A and

∂A

∂εi
=

−θ0 + 1
2

(θ0 + (1 − pb)εi − 1
2
)2
< 0
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So ki+1 > k∗, and

kj+1 − kj ≥
(
k∗ + 2 +

1

k∗
)
−
(
ki+1 + 2 +

1

ki+1

)
≡ δ > 0

for any j ≥ i+ 1. This implies that there exists j′ ∈ N, such that kj′ ≥ k∗+ (j′− i− 1)δ > 1, which

leads to a contradiction.

Lemma A.2. There exists a trajectory {(ki, εi)}∞i=1 with ki is strictly increasing and limi→∞ ki =

k∗, such that:

ki+1 =
2

x

( A(εi)

A(εi)− 1
− pb

)
− 2− 1

ki

εi+1 = ki+1εi

Proof of Lemma: We begin by defining two functions, k(ε) and k(ε):

k(ε) + 2 +
1

k(ε)
=

2

x

[ A(ε)

A(ε)− 1
− pb

]
(A.12)

k∗ + 2 +
1

k(ε)
=

2

x

[ A(ε)

A(ε)− 1
− pb

]
(A.13)

k(·) ≤ k(·), with equality holds if and only if ε = 0 (k(0) = k(0) = k∗) and both are strictly

decreasing with respect to ε.

For any given εi, ki+1 ≥ ki if and only if ki ≥ k(εi), and ki+1 < k∗ if and only if ki ≤ k(εi). Let

G1 be a graph, such that:

G1 ≡
{

(k, ε)
∣∣∣k ∈ [k(ε), k(ε)], 0 ≤ ε ≤ ε

}
I define {Gn}∞n=2 iteratively:

Gn+1 =
{

(ki, εi)
∣∣∣(ki+1, εi+1) ∈ Gn

}
G2 ⊂ G1 since ki+1(k(εi), εi) = k(εi) < k(εi+1), k(ε) ≤ k∗ and ki+1 is increasing with ki. Gn+1 ⊂

Gn can be proved through induction.

From the continuity of ki+1, we can define a sequence of closed intervals:

[k(n)(ε), k
(n)

(ε)]
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such that (k, ε) ∈ Gn if and only if k ∈ [k(n)(ε), k
(n)

(ε)]. Also, k(n)(ε) ≤ k(n+1)(ε), k
(n)

(ε) ≥

k
(n+1)

(ε) for any ε and n. For each ε, we construct an infinite sequence of shrinking intervals.

According to the Closed Interval Theorem, they have non-empty intersection. Define:

G∞ ≡
∞⋂
n=1

Gn

which is non-empty for any intersection of ε.

Since at the initial point, ε2 is increasing with k2, so there exists (k, ε) ∈ G∞ which satisfies

the consistency condition for k2 and ε1 ≡ ε2
k1

.

Proof of Proposition 3: Let Θ1, Θ2 and Θ3 be the sets where the good sender fully separates,

pools with bad senders and pools only among themselves. Obviously:

Θ1

⋃
Θ2

⋃
Θ3 = Θ

Let M b be the set of messages sent by good senders in Θ2 and Mp be the set of messages sent

by good senders in Θ3. Without loss of generality, I assume M b
⋂
Mp = ∅. Following the same

argument as the proof of Proposition 1, there exists:

θ0 ∈ Θ1

⋂(
Θ2 ∪Θ3

)
To reduce notations, let ai(m) be the receiver’s action when receiving m with belief η = ηi. The

rest of the proof is done through the following steps:

Lemma A.3. θ0 /∈ Θ2.

Proof. Obviously, Θ1
⋂

Θ2 cannot have more than 1 element. If Θ1
⋂

Θ2 = {θ0}, then, there exists

mb ∈M b such that ai(mb) = θ0 for any i.

Let Θ′3 ≡ Θ3
⋂

[θ0, 1], which is a closed set.

1. If Θ′3 6= ∅, then, there exists θ1 ∈ Θ′3
⋂

Θ2 ⊂ [θ0, 1] such that type θ1 good sender must

induces a message m′ such that: ∑
i

pia
i(m′) ≥ θ0



A APPENDIX I: PROOF IN SECTION 3 24

But from the Jensen’s Inequality:

∑
i

piu(ai(m′), θ1) ≤ u
(∑

i

pia
i(m′), θ1

)
≤ u(θ0, θ1) (A.14)

So type θ1 good sender prefers to induce a = θ0 by sending mb, contradiction.

2. If Θ′3 = ∅, then, either Θ2 = [θ0, 1] or there exists θ1 < θ0 such that type θ1 good sender

pools with bad types. In the former case, we can get similar contradiction as in Proposition

1. In the latter case, type θ1 good sender prefers to induce the equilibrium action by type

θ0 − ε ∈ Θ1 good sender instead of his own equilibrium action, which is also a contradiction.

The Lemma is then proved.

From the Lemma, we know that in any minimal separating equilibrium, there exists θ0 ∈ (0, 1)

such that fully revealing exists only below θ0, and there exists a minimal distance between ‘pooling

with bad sender range’ and ‘fully separating range’, and in this range, there exists a sequence of

messages, such that |ai(m)− θ0| can be arbitrarily small. This ensures the existence of an interval

of good senders [θ2, θ1] above θ0, such that they pool within each other in equilibrium.

Let θ3 ≡ 2θ2 = θ1. I show that:

u(a∗2, θ2) > u(a∗1, θ2)

where

a∗2 ≡ arg max
a

∫ θ2

θ3

u(a, θ)dF (θ)

a∗1 ≡ arg max
a

∫ θ1

θ2

u(a, θ)dF (θ)

If the sender weakly prefers a∗2 to a∗1 when θ = θ2, then in the equilibrium partition, |θ′3 − θ2| ≥

|θ2 − θ1|. If this relationship holds for any [θ2, θ1], then the lengths of the intervals must be non-

decreasing from right to left. If this is the case, then there never exists a positive threshold θ0.

When the utility function is symmetric, I only need to show that a∗1 + a∗2 > 2θ2 to get this

contradiction. Let w(y) = ∂u
∂a ||a−θ|=y. Since

∫ a∗1−θ2

0
w(y)dF (a∗1 − y) =

∫ a∗2−θ3

0
w(y)dF (a∗1 + y)
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and f(θ) is non-decreasing, a∗1 − θ2 = θ2 − a∗2, a∗2 − θ3 = θ1 − a∗1 so:

∫ a∗1−θ2

0
w(y)dF (a∗2 − y) >

∫ a∗2−θ3

0
w(y)dF (a∗2 + y)

which concludes our proof.

B Appendix III: Proof in Section 5

Proof of Proposition 4: Let m ∈M b be the message sent by good senders when θ ∈ [θ0, 1] and

π(θ) be the receiver’s probability of sending m when the state is θ. When F1 dominates F2 in

likelihood ratio. Define

F ′i (θ) ≡

∫ θ

0
fi(ϑ)π(ϑ)dϑ∫ 1

0
fi(ϑ)π(ϑ)dϑ

So F ′1 dominates F ′2 in likelihood ratio. Then since u(a, θ) is symmetric:

∫ 1

θ0

∂u(θ0, θ)

∂a
dF1(θ) >

∫ 1

θ0

∂u(θ0, θ)

∂a
dF2(θ)

∫ 1

0

∂u(θ0, θ)

∂a
dF ′1(θ) >

∫ 1

0

∂u(θ0, θ)

∂a
dF ′2(θ)

So the actions taken by type F1 receiver must be strictly larger than the one taken by F2 receiver.

So they cannot be both equal to θ0, which is a contradiction.

Proof of Lemma 5.1: Since Θ is connected and Θ1
⋃

Θ2 = Θ, similar to the argument in Lemma

3.2, Θ1
⋂

Θ2 6= ∅. Let θ0 ∈ Θ1
⋂

Θ2, then there exists two sequences {θ1
k}∞k=1 and {θ2

k}∞k=1 such

that:

lim
k→∞

θlk = θ0, {θlk}∞k=1 ⊂ Θl

For any ε > 0 there exists m(ε, θ0) such that ||ai(mε)− θ|| < ε for any i.

Let

Θ∗ =
{
θ
∣∣∣||θ − θ∗|| = ||θ0 − θ∗||

}⋂
Θ

Θin =
{
θ
∣∣∣||θ − θ∗|| < ||θ0 − θ∗||

}⋂
Θ

Θout =
{
θ
∣∣∣||θ − θ∗|| > ||θ0 − θ∗||

}⋂
Θ
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We prove that Θ1
⋂

Θ2 = Θ∗. If not:

• If there exists

θ′ ∈ Θin
⋂

(Θ1

⋂
Θ2)

then bad types have an incentive to induce θ′′ ∈ B(θ′, ε)
⋂

Θ1, contradiction.

• If there exists

θ′ ∈ Θout
⋂

(Θ1

⋂
Θ2)

then there will be no bad type inducing action around θ′, contradiction.

So intΘ1 = Θout and intΘ2 = Θin, where r ≡ ||θ0 − θ∗||

Proof of Proposition 5: Preserving the notations used in the proof of Lemma 5.1, and let [θ, θ′]

denote the interval connecting points θ and θ′.

First, we show that for any θ0 ∈ Θ∗, there exists m(θ0) such that ai(m(θ0)) = θ0 for any i.

Define the following mapping: Lθ0 : Θ → [θ∗, θ0], such that: Lθ0(θ) ∈ [θ∗, θ0], and ||θ − θ∗|| =

||Lθ0(θ)− θ∗||. Then, for any m′ ∈M b such that ||ai(m′)− θ0|| < ε but:

∑
i

pi||ai(m′)− θ0|| > 0

From the bad sender’s incentive constraint:

∑
i

pi||ai(m′)− θ∗|| = ||θ0 − θ∗|| =
∑
i

pi||Lθ0(ai(m′))− θ∗|| (B.1)

Since for any θ ∈ [θ∗, θ0],

||Lθ0(ai(m′))− θ|| ≤ ||ai(m′)− θ|| (B.2)

So, we can we have:

u(||θ0 − θ||) ≥
∑
i

piu(||Lθ0(ai(m′))− θ||)

≥
∑
i

piu(||ai(m′)− θ||) (B.3)

The first inequality comes from (A.15) and the Jensen’s Inequality; the second one comes from

(A.17). From the concavity of u, we know there exists ε′ such that a message m′′ with ||ai(m′′)−
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θ0|| ≤ ε′ for all i is strictly preferred by any good sender with type θ ∈ [θ∗, θ0]. So there must exists

m for any θ0 ∈ Θ∗ such that ai(m) = θ0 for any i.

Since Θ∗ is a connected n− 1 dimensional manifold, for any interior point θ0 ∈ Θ∗:

θ0 ∈ arg max
a

{
ηi

∫
θ
u(||a− θ||)πb(θ)dF (θ) + (1− ηi)

∫
θ∈Θin

u(||a− θ||)πg(θ)dF (θ)
}

(B.4)

while πg(θ) and πb(θ) is the probability of good (or bad) sender with type θ to induce action θ0.

From Lemma 5.1, we know:

arg max
a

{
(1− ηi)

∫
θ∈Θin

u(||a− θ||)πg(θ)dF (θ)
}
∈ Θin

so

arg max
a

{
ηi

∫
θ
u(||a− θ||)πb(θ)dF (θ)

}
∈ Θout

If the (A.18) is satisfied for ηi, then for ηi+1 > ηi:

θ0 = arg max
a

{
ηi+1

∫
θ
u(||a−θ||)πb(θ)dF (θ)+(1−ηi+1)

∫
θ∈Θin

u(||a−θ||)πg(θ)dF (θ)
}
∈ Θout (B.5)

which is a contradiction. So there is no maximal separating equilibrium once the possible values of

η is no fewer than 2.
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