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Abstract

Empirical investigation of discrete-choice games requires assumptions about payoff functions
and player information sets. In practice, applied researchers have focused on the estimation of
payoff functions using strict informational assumptions. In this paper, I propose a flexible infor-
mation structure that nests the two most common informational assumptions: pure complete
and incomplete information. As in other models of discrete-choice games, the parameters of
player payoff functions are point identified if the model covariates have sufficiently rich support.
In addition, the model provides testable restrictions on the information structure of the data-
generating process. I apply the model to study the impact of supercenters on entry and exit
patterns of grocery stores and show that the model can produce useful bounds on counterfactual
outcomes. I find that models that account for only incomplete information are excluded from
the confidence set of the general model. Moreover, a flexible information structure enhances the
credibility of empirical studies of games by allowing for levels of uncertainty between players
that are consistent with the data but are assumed away under stronger assumptions.
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1 Introduction

Game-theoretic models are frequently employed to study strategic interaction between agents. Em-

pirical research has focused on estimating payoff functions while maintaining strong assumptions

regarding the information structure of the game. Relaxing assumptions on the information struc-

ture can enhance the credibility of game-theoretic empirical analysis in discrete games. In this

paper, I investigate the use of a flexible information structure that nests the most common as-

sumptions in the literature. Despite this added flexibility, the parameters of the players’ payoff

functions remain point identified under standard rich support assumptions. Given the flexibility

of the model, multiple equilibria are likely to arise in applications. I incorporate an approach to

equilibrium selection that avoids parametric assumptions and lets selection depend on public in-

formation that is not observed by the econometrician. I apply the method to data on the entry

and exit patterns of grocery stores. The model provides useful bounds to equilibrium outcomes. In

addition, the empirical analysis indicates that the informational assumptions of traditional models

may drive their conclusions.

Assumptions about the information structure determine how the structural errors of a game

are accounted for in players’ information sets. In an oligopoly setting, firms typically have some

private information about their own costs. In addition, some determinants of firm demand are

commonly observed by the game’s players but not by the econometrician. However, most applied

entry papers fall into one of two frameworks. Under the complete information framework, each

agent’s payoff function is perfectly known to his opponents but not the econometrician. In the

incomplete information framework, each agent receives a private shock that is unknown to both

opponents and the econometrician. Abstracting away from either public or private unobservables

will result in a misspecified model. Moreover, assumptions about the information structure have

implications for counterfactual analysis. Consider two firms contemplating entry into a market

where only one can operate profitably. If the firms are uncertain about each other’s actions, the

market may be unserved for several periods even though it is profitable for a single entrant. In

contrast, a pure strategy complete information model will predict that one firm immediately enters

the market whenever a monopolist can make positive profits. A structural model that makes
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incorrect assumptions about the information structure is unable to produce robust predictions

about the environment under study.

My method uses the available data to make inferences about agents’ information sets. Assume

the econometrician observes some variable, such as an independent cost shifter, that directly affects

the profits of only one firm in the market. Differences in rival firms’ response to variation in this

variable can be used to separate complete and incomplete information. In a complete information

game with pure strategies, firms know their opponents’ actions when making their own entry

decisions. Therefore, variation in the cost shifter should not directly affect rival firms’ actions

because their information set includes their opponents’ true actions. By contrast, when firms have

private information, they must base their decisions on a noisy signal of opponents’ actions rather

than actual actions. In this case, variation in the cost shifter will impact rivals’ actions because

it shifts their expectations about the entry of the initial firm. The relative degree of correlation

between the rival’s action, the firm’s action, and the firm’s cost shifter contains information about

the relationship between public and private information.1 These relationships can be used to test

whether commonly assumed information structures are consistent with the data.

Point identification of firm payoff functions as well as tests against pure complete and pure

incomplete information assumptions rely on the econometrician observing markets where entry by

some firm is nearly certain. In practice, researchers may be unable to observe such markets and

must instead work with the data at hand. I characterize the identified set without assuming a rich

support for covariates and show the data still contains valuable information in this case. While

the model may be only partially identified, the data can still provide informative bounds on the

data generating process. This analysis leads to the inference technique employed in the empirical

portion of this paper.

I apply this method to data on the entry and exit decisions of grocery stores to derive infor-

mative bounds on several counterfactuals of interest. I compute a 95 percent confidence set for

the parameters of the full model. For purposes of comparison, I also estimate the model under
1If error terms of firm profit functions are uncorrelated across firms, this test is a simple regression. The identifi-

cation section discusses how to point identify correlation between firms’ unobserved public errors under the complete
information assumptions.
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complete and incomplete information assumptions assuming point identification. The full model

nests the two restricted models. In this empirical setting, the incomplete information model is

excluded from the confidence interval implied by the full model, while a pure complete informa-

tion model is inside the 95 percent confidence region generated by the full model. This finding is

consistent with the explanation that unobserved heterogeneity that is observed by both players is

an important determinant of outcomes. However, a parameterization where more than half of the

unobserved variation is generated by a private error component also fits the observed data, so it

would be incorrect to argue that the data indicate that uncertainty between players is unimportant.

I further show that using the complete information model alone in counterfactual analysis can lead

to misleading results. In summary, the results of both the complete and incomplete information

analysis are not robust to the allowing for more flexible information structures.

By allowing for both a public and private structural error, I unify two strands of the literature

on discrete-choice games. An early model of strategic interaction was proposed by Bjorn and Vuong

(1984) in the context of spousal labor-force decisions. Bresnahan and Reiss (1990, 1991a,b) con-

sidered a complete information framework. They analyzed identification and estimation, including

issues associated with the existence of multiple equilibria. Seim (2006) introduced the incomplete

information framework to empirical work, showed that the existence of equilibria could be guaran-

teed, and employed numerical simulation to show that multiple equilibria do not arise in a number

of interesting applications. Because the incomplete information model is easily adapted to dynam-

ics through the use of Makrov perfect equilibrium, it is used in estimating infinite-horizon dynamic

games based on period profits (Aguirregabiria and Mira, 2007; Bajari, Benkard, and Levin, 2007).

While the techniques developed here are applied to more computationally tractable static games,

an extension to infinite-horizon dynamic games is conceptually straightforward.

My empirical application contributes to the literature on the effect of supercenters on traditional

grocery stores. Several studies have investigated how traditional grocery stores are affected by

supercenter entry. Rather than study the effect of competition from supercenters on firm prices or

quality, I examine the decision to enter or exit a local-grocery-store market, and how that decision

is affected by the presence of a supercenter in the market’s vicinity. Because most customers
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face a relatively small choice set when choosing where to do their grocery shopping, the effect of

firm openings and closings may have a much larger impact on consumer welfare than competitive

responses in product price or quality. Supercenters are commonly believed to hold a significant cost

advantage over traditional grocery stores due to their scale and integrated distribution networks.

However, the locational convenience of a local grocery store, and perhaps higher-quality service and

more customized product lines, may provide some insulation from competition with supercenters.

How much insulation is provided is the key empirical question of this paper.

When analyzing the entry and exit decisions of grocery stores, it is important to account for

both public and private unobservable information. Rural grocery firms and their markets differ

in ways that are observable to all players but unobservable to the econometrician. There are

differences across markets in local terrain, zoning regulations, local tastes, and location availability,

as well as differences among firms in the quality of their products and the level of customer service.

However, firms and potential entrants also have some cost information that is kept private from their

competitors. For example firms have private information regarding their management expertise,

outside opportunities, and the ease of integrating into a distribution network. By allowing both a

public and private error term for each player, the model avoids a potential source of misspecification.

Given the confidence set for the model parameters, I simulate a confidence interval for firm

values and compare the value of a rural supermarket in different market configurations. I find that

entry by a supercenter outside, but within 20 miles, of a local monopolist’s market has a smaller

impact than entry by a local rival. While supercenters appear to be associated with a decrease in

stores’ expected profits, and appear to lower the number of grocery stores in surrounding markets,

the effects are small. Indeed, I cannot reject the possibility that supercenters increase long-term

profits of local grocery stores by discouraging local entry. I interpret this as evidence that location

and format-based differentiation partially insulates rural stores from competition with supercenters.

While a full demand model is outside the scope of this paper, my results indicate how consumer

choice sets are likely to evolve as a result of supercenter entry. Because I find a relatively small

reaction in the number of expected local stores, the crowding-out effect of supercenter entry is

unlikely to offset the static benefits of supercenters highlighted by Hausman and Leibtag (2005).
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Of course, further research on the welfare effect of endogenous store entry and exit is warranted.

The following section provides a brief review of the literature on discrete games. Section 3

provides background information on the supercenter format and the retail grocery industry. Section

4 introduces the model used in this paper, while Section 5 provides a discussion and uses numerical

examples to illustrate how the model incorporates public and private information. I study the

identification of the model in Section 6, and show how to conduct inference on the model in Section

7. I then turn to the application. Section 8 introduces the data and performs some descriptive

analysis. The results of the application of the full structural model and several counterfactual

experiments are presented in Section 9. The final section concludes by reiterating that allowing

for flexible information structures improves the credibility of empirical investigations of discrete

games. All proofs are presented in the Appendix.

2 Literature Review: Discrete Games

The earliest example of the estimation of a game is by Bjorn and Vuong (1984), who extend the

selection model of Heckman (1978) to a game setting where a married couple makes joint labor-

force-participation decisions. The topic is introduced to the industrial organization literature by

Bresnahan and Reiss (1990, 1991a,b), who employ the complete information framework. The incom-

plete information framework is introduced by Seim (2001). A third approach, recently suggested

by Pakes, Porter, Ho, and Ishii (2006), avoids modeling the information sets entirely and instead

attempts to estimate the parameters of the agents’ objective functions using the assumption that

agents are payoff maximizing, a necessary but not sufficient condition for equilibrium.

2.1 Complete Information Models

Most early papers on the estimation of games follow the complete information framework. Because

of the difficulties implied by multiple equilibria, authors adopt the strategy of finding a statistic

uniquely predicted by the model and using that statistic for estimation. Bresnahan and Reiss

(1991b) use the assumption that unobserved determinants of profits vary at the market, rather

than firm level to estimate entry thresholds based on observing the equilibrium number of firms in
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the market. This model conveniently reduces to an ordered probit. Berry (1992) makes use of a

simulation-based estimator that relaxes the firm-homogeneity assumptions of earlier applications.

The specification of the model implies that the number of firms in equilibrium will be unique, and

he uses this outcome to estimate the model.

Several authors have provided extensions to the basic complete information model by imposing

a selection rule in order to complete the model. Mazzeo (2002) adopts a model of endogenous

type choice, which further extends the scope of allowable heterogeneity by letting the competitive

effect of entry vary by firm type. Jia (2008) uses the theory of super-modular games to speed up

the computation of equilibrium for a large action space, and selects the maximal equilibrium for a

game as the model’s unique prediction. Like Mazzeo, she argues for the robustness of her results

by using different selection rules and comparing estimation results.

Tamer (2003) explores what could be learned from a model admitting multiple equilibria by

examining the full outcome distribution. He shows that even in the presence of multiplicity one

can derive bounds on equilibrium outcome probabilities that can be used in estimation. Ciliberto

and Tamer (2007) apply the bounds estimation to the airline industry and compare the technique

to that used by Berry (1992).

Recent work has extended the literature to allow for mixed strategies. Bajari, Hong, and Ryan

(2007) assume a parametric form for the equilibrium selection probabilities to estimate a model

allowing for mixed strategy profiles. Beresteanu, Molchanov, and Molinari (2008) propose using

the theory of random sets to generate approximate bounds on outcome probabilities, allowing for

arbitrary equilibrium selection when mixed strategies are allowed.

2.2 Incomplete Information Models

The first papers to make use of the incomplete information framework in the estimation of games

highlight computational reasons for doing so instead of modeling realism. Seim (2001, 2006) in-

troduces a location choice model where agents observe the same market characteristics and receive

their own privately observed cost shock for each location. Seim assumes uniqueness of equilibrium

in her model and tests this assumption through simulations where she calculates equilibria from

7



several initial guesses to see whether the algorithm always converges to the same point.2 Seim’s

model includes a special market-level unobservable that drops out of the fixed point calculation, and

allows for a random number of potential entrants. Other models of incomplete information have

avoided the use of market-level heterogeneity (Augereau, Greenstein, and Rysman, 2006; Vitorino,

2008).

Incomplete information framework has been especially popular in modeling dynamic games since

it provides a natural extension of the single agent dynamic programming model first proposed by

Rust (1987) to a multi-agent setting. Ericson and Pakes (1995) first suggested this extension for use

in applied work, where the solution concept is Markov perfect equilibrium. However, the comput-

ing the equilibrium to dynamic games can be extremely computationally intensive due to the large

state spaces involved. To alleviate this burden, Aguirregabiria and Mira (2007), Bajari, Benkard,

and Levin (2007), Pakes, Ostrovsky, and Berry (2007) and Pesendorfer and Schmidt-Dengler (2003,

2007) propose methods to estimate dynamic games within the incomplete information framework

which avoid the computation of equilibrium. These papers employ a two-step method which as-

sumes that each firms strategies can be estimated directly from the data on the basis of conditional

choice probabilities. This method requires the assumption that either the researcher has enough

data to estimate choice probabilities for each player in each state, or that the same equilibrium is

played across the data. This assumption will not hold if there are unobserved state variables or

data is pooled across games playing different equilibria.

Other studies have used the incomplete information assumption as a starting point to obtain

other identification results. Aradillas-Lopez (2007) estimates a fully semi-parametric model, elim-

inating the distributional assumption on the error term. Sweeting (2007) shows that with enough

observations of each player to observe strategies, multiple equilibria in an incomplete information

game can be used to aid identification in a coordination game with strategic complementarities.

Along similar lines, de Paula and Tang (2010) have shown that multiplicity can be used to identify

the sign of interaction effects when multiple equilibria are played. While most studies of incom-

plete information games assume that the distribution of agent’s error terms are independent, Wan
2While computationally compelling, this exercise does not constitute a proof. Furthermore, the likelihood function

used by Seim in estimation is only valid for parameterizations that admit a unique equilibrium.
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and Xu (2010) have developed identification results for a model in which the errors are positive

regression dependent.

2.3 Agent-Level Optimality

In contrast to the frameworks presented above, Pakes, Porter, Ho, and Ishii (2006, PPHI) take a

decidedly different approach. PPHI avoid modeling the player’s information set by allowing for a

structural error that constitutes the difference between the model’s predicted payoff and the payoff

expectation of the player given the agent takes a particular action. This error absorbs all direct

effects on the player’s decision that are unknown to the econometrician. Its distribution and how

it enters into opponents information sets is left unspecified. Rather than analyze the game as a

whole, their analysis focuses on the decision problem of each player individually. They assume

optimal decision making on the part of each player—a necessary condition for equilibrium—and

derive a set of moment conditions to use for estimation. In order to control for endogeneity, PPHI

assume that either the structural error can be differenced out across choices or a valid instrument

is available. Inference is then performed using moment inequalities.

This approach may be attractive when the environment under consideration is complex and

when solving for equilibrium would be prohibitively burdensome. Ishii (2005) uses this framework

to model the capacity decisions of banks deciding how to construct their ATM networks. Ho (2008)

applies this setup to a network bargaining game between hospitals and insurance providers.

In contrast, the model proposed in this paper assumes parametric distributions for structural

errors and explicitly models agents’ beliefs based on a common prior assumption. This approach

entails substantial computational cost, but has the benefit of clearly interpretable estimates and

exploits the information contained in the joint distribution of agent decisions.3

3For example, the Nash equilibrium assumption implies that agents are best responding to each other’s strategies,
so we can make use of the fact that all agents in the same market are playing the same equilibrium profile.
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3 Background: Supercenters and the Retail Grocery Industry

The supercenter format has dramatically altered the retail grocery industry and poses a substantial

challenge to existing grocery retailers. A supercenter combines a discount store, a grocery store,

and possibly several other retail services (pharmacy, tires, gas, etc.) into a single store of roughly

175,000 square feet.4 The format was initiated in France by Carrefour and first used in the United

States by Meijer, a Michigan-based firm operating in the Midwest. The largest supercenter chain

by far is Wal-Mart, which accounted for roughly two-thirds of all US supercenters in 2000. Kmart

and Target also operate supercenter chains throughout the United States. Key characteristics of

a supercenter are a vertically integrated distribution network, aggressive pricing strategies, and an

emphasis on low costs. Because of their size, supercenters tend to be located away from population

centers and draw their customers from a wider area than traditional grocery stores. Nationwide,

supercenters have grown from a 2 percent share of all grocery sales in 1994 to a 13.5 percent share

in 2005; their share is expected to continue to expand to over a fifth of all grocery sales by 2010

(Martinez, 2007). In 2003, Wal-Mart surpassed Kroger as the nation’s largest grocery retailer.

Several studies have examined the competitive effect of supercenters on traditional grocery

stores. Hausman and Leibtag (2005) use a national panel of households to study the consumer-

welfare effects of supercenters. They find that supercenters both offer consumers lower prices on

products and induce other grocery retailers to lower their prices, thus providing both direct and

indirect positive effects on consumer welfare. Basker and Noel (2008) analyze store-level price data

from 175 US cities and find that Wal-Mart’s prices on average are 10 percent lower than those of its

competitors and that Wal-Mart entry causes competitors to decrease their prices by 1-1.2 percent.

Singh, Hansen, and Blattberg (2006) investigate a supercenter’s effect on grocery-store revenue.

Using a frequent-shopper database from a single grocery store before and after entry by a Wal-

Mart supercenter two miles away, they find that supercenter entry caused a 17 percent decline in

sales revenue. Their analysis further indicates that there is substantial heterogeneity in consumers’

reactions to supercenter entry. Matsa (2009) shows that traditional grocery stores improve their

quality of service by reducing the probability of items being out of stock in response to supercenter
4Singh, Hansen, and Blattberg (2006) provide a full discussion of the supercenter format.
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entry. All these studies focus on the competitive effects of supercenters evidenced by adjustments

in price or quality of service rather than entry or exit.

In the popular press, the possibility of supercenters crowding out small grocery stores and

reducing consumer utility has received much greater attention than supercenters’ pricing effects,

which are unambiguously welfare improving.5 It is also tempting to draw parallels between the

decline of single-store discounters and the future of traditional supermarkets.6 A significant falloff

in the number of rural grocery stores could generate a significant decrease in consumer welfare if

some consumers have high travel costs.7 A mass closure of traditional grocery stores could also have

significant health implications; public health physicians have reported a link between residents’

distance traveled to a grocery store and obesity, which is itself connected to a large number of

ailments (Inagami, Cohen, Finch, and Asch, 2006). These negative effects would be most acutely

felt in rural areas, where the density of grocery retailers is already low. At a Rural Grocery Store

Summit sponsored by Kansas State University and the United States Department of Agriculture,

competition with “big box” retailers was listed as “Challenge #1” in the summit minutes.8 Using

the methods developed in this paper, I am able to examine how serious of a threat supercenters pose

both to traditional grocery stores (because of their effect on expected profits) and to consumers

(because of their effect on whether traditional grocery stores will remain open within a market).

While previous studies have looked at the effect of supercenters on prices and revenue in traditional

grocery stores, I will consider the effect of supercenters on the entry and exit of grocery stores in

small markets. In contrast to more–urban areas, access to a nearby source of food is an active

concern in rural markets. There is also concern that the presence of vertically integrated chains

syphon profits out of small communities that would otherwise be captured by local entrepreneurs.
5For example, in 2004 the National Trust for Historic Preservation placed the entire state of Vermont in its register

of endangered sites because of Wal-Mart’s plans to begin supercenter expansion into the state. Vermont was already
home to standard Wal-Mart stores (“Preservationists call Vermont Endangered, by Wal-Mart,” New York Times,
May 25, 2004). For other examples see http://walmartwatch.com.

6Jia (2008) has found that the growth of chain discount stores (Wal-Mart and Kmart) explains 40 to 50 percent
of the decline in the number of small discount stores. The data for her study ends prior to the opening of Wal-Mart’s
first supercenter.

7Basker and Noel (2008) report that in 2002, 77 percent of Americans in their dataset live within five miles of
a grocery store, while only 14 percent live within five miles of a supercenter. Although supercenters are expanding,
they remain much more dispersed than traditional grocery stores, whose market radius is commonly thought to be
three to five miles.

8Rural Grocery Store Initiative, http://www.ruralgrocery.org/events/, accessed August 12, 2009.
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To examine both of these concerns, I combine data on grocery store openings and closings across

the United States with a model of firm entry and exit decisions to study whether or not local

grocery stores will be crowded out by supercenters. The model builds off the key assumption that

grocery stores make entry and exit decisions in view of long–run profit opportunities. I employ

a model that estimates the present discounted value of a grocery store given the current market

characteristics based on observed entry and exit decisions.

4 A Model of Entry and Exit with Public and Private Errors

I model firms’ joint entry and exit decisions over a five–year period. A firm will operate only if

it believes the long–run profits will be positive. The firm’s payoff functions include two structural

errors, one that is publicly observed by all players and one that is known only to the directly

affected player. The private error induces uncertainty about rival players’ actions, while the public

error accounts for unobserved heterogeneity at the firm level between observably similar markets.

Since the seminal paper by Bresnahan and Reiss (1990), static models have routinely been used

to analyze decisions that take place within a dynamic environment. I interpret the payoff function

as the sum of the profits accrued during the period and the present discounted value of the firm at

the end of the period.

4.1 Model Setup

I assume firms decide whether to operate in a market in the next five years. This time period

is reasonable because it may take several years to open a grocery store, and stores will operate

with several–year leases. There is a high degree of year–to–year persistence in the data, which is

another indicator that a long period length is appropriate. At the start of the period there are

two potential firms competing in the grocery retail sector in each market.9 The researcher and all

players jointly observe a state variable x = (x0, x1, x2), where x0 are the variables that may affect

all players and xi are the variables that only affect the payoffs of player i. The common variables
9While adding players is conceptually straightforward, it is computationally intensive, and I concentrate on markets

that are small enough that more than two active market participants are unlikely.
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include, for example, the town characteristics, such as population. An example of a firm-specific

variable is whether the firm is operating at the start of the period, which determines whether it

must pay an entry cost to operate.

In addition to the observable vector x, firms view shocks that are not observed by the econome-

trician, ε = (ε1, ε2). While εi contributes only to firm i’s payoff function, ε1 and ε2 can be correlated

with each other. Finally, each firm also observes its own private shock, νi, drawn from a distribu-

tion that is commonly known to all firms and is assumed to be independent of all other variables

in the model. The independence of νi is a strong assumption, but it is necessary to ensure that

player i’s beliefs about equilibrium play are not dependent on νi and to guarantee the existence of

an equilibrium in cutoff strategies. The key difference between public and private shocks is that a

firm’s strategy will be conditional on its opponent’s public shock, but not on its opponent’s private

shock.

After observing the shocks, firms decide whether or not to operate. I assume they base their

decision on equilibrium strategies. In the event that there are multiple equilibria, equilibrium is

selected via a public randomizing device, which is also unobserved by the econometrician. Firms

receive their payoffs based on the outcome profile. The econometrician directly observes firm actions

(y1, y2). Firms choose either to operate, yi = 1, or not operate, yi = 0, based on their expected

profits. If the firms choose to operate, they will play again in the next period. If they decide not to

operate, they will be replaced in the following period by a new potential entrant. Figure 1 provides

an overview of the model timing.

4.2 Firm Payoffs and Error Distributions

Payoffs for the period game are a function of the observable characteristics, the actions of the

players, and the unobservable shocks. The payoff received at the end of the period can be thought
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Two Entrepreneurs
In each Market

Public and Private Shocks 
Observed by Entrepreneurs

Entrepreneurs take 
Entry/Exit Action

Payoffs Received, Inactive firms 
replaced by Potential entrants

Researcher Observes
State, (Xm,Xi, Xj)

Researcher Observes
Action, (Yi, Yj)

Equilibrium Selected

Figure 1: Timing of the entry/exit game. Orange boxes represent actions taken by entrepreneurs;
blue boxes represent all other events. Green boxes represent points of data collection.

of as the ex-post value of the firm.

Vi(yi, y−i;x) =


µ(x0, xi; θµ) + εi + νi if yi = 1, y−i = 0

µ(x0, xi; θµ)− δ(x0; θδ) + εi + νi if yi = 1, y−i = 1

0 if yi = 0

, (1)

where µ and δ are known functions of the observable characteristics up to the finite dimensional

parameters θµ and θδ, µ represents the baseline profits within this market for a monopolist, and δ

parameterizes the “competition effect” or the reduction in profits due to an opponent operating in

the market. I normalize the payoff of a firm that opts not to operate to zero.

The public shocks, ε1 and ε2, are drawn from a bivariate normal distribution with a common

variance component σ2
ε and a correlation coefficient ρ. The assumption that σ2

ε is the same for both
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players may be relaxed but is reasonable for the application below. Each firm’s private shock is

drawn from a normal distribution with variance σ2
ν . Because of the private shock, firm i is uncertain

about firm j’s exact type and whether it will operate. Firm i must use observable characteristics

plus the public shock to form beliefs about firm j’s entry probability.

4.3 Equilibrium

From the perspective of the players, who observe both elements of ε, the model is a game of

incomplete information. I confine the analysis to pure strategy equilibria—a function from the firm

“type” νi to an action yi ∈ {0, 1}.10

I now derive necessary and sufficient conditions for an equilibrium strategy. For expositional

clarity I suppress the dependence on covariates x in this section. A firm’s optimal strategy is a

cutoff in νi. Increasing νi unambiguously increases the expected profits of entry (action 1), so a

strategy in which the firm operates at ν ′i < ν ′′i but not at ν ′′i is clearly sub-optimal. Therefore, an

optimal strategy must be of the form

si(νi; θ, ε) =

 1 if νi ≥ χi(ε; θ)

0 otherwise
,

where χi(ε; θ) is the entry cutoff for agent i. This is convenient because we can associate optimal

strategies with their cutoffs, which are real numbers rather than functions. Furthermore, there is

a simple expression for player j’s beliefs about player i’s probability of entry under the common

prior assumption,

ρi(χi, ε; θ) =
∫
si(νi, ε; θ)dΦ(νi) = 1− Φ

(
χi(θ, ε)
σν

)
(2)

Players select their cutoffs to optimize their expected payoff given their beliefs about the actions

of other players. Let χbi(χj , ε; θ) denote player i’s best response to player j playing the cutoff χj .

Player i’s best response is to adopt the cutoff where he is exactly indifferent between his two actions.
10Milgrom and Weber (1985) have shown that in incomplete information games such as the one considered here

where player types are conditionally independent, equilibrium must exist and every mixed strategy equilibrium has
a nearby “purification” pure strategy under which the agents distribution of observed behavior and expected payoffs
are identical.
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i.e, firm i’s best response is to operate when νi ≥ χbi(χj , ε; θ). The following equation defines agent

i’s best–response cutoff, χbi(·), as a function of opponent strategies and the publicly observed ε:

χbi(χj , ε; θ) = −(µi(θ) + εi) + ρj(χj , ε; θ)δi(θ) (3)

Equation (3) gives the condition that player i is optimally responding to his opponent strategies

given his beliefs, while (2) ensures that beliefs are rational given the agents’ common prior. There-

fore any joint set of cutoffs χ = (χ1, χ2) that satisfies these equations for all players represents an

equilibrium. Because there is a simple one-to-one mapping between χi and ρi, we can alternatively

describe the equilibrium in terms of either cutoffs or entry probabilities.

4.4 Multiple Equilibria and Equilibrium Selection

Although it is well known that games of incomplete information can admit multiple equilibria, the

empirical issues associated with the possibility of multiple equilibria have received more attention in

the context of complete information games. Using the necessary and sufficient conditions derived in

the previous section, I can numerically solve for the equilibrium set for the incomplete information

game given θ and the realization of public shocks ε as the solution set to a system of nonlinear

equations. Let this set be denoted,

E(ε, x, θ) = {χ : ∀i, χi = χbi(χ−i, ε, x; θ)}

Each equilibrium implies a multinomial distribution across agent actions. If the equilibrium

set were a singleton everywhere, a unique observable outcome distribution for the model could be

obtained by integrating over the observable shock ε. However, when there are multiple equilibria,

the model does not provide a unique distribution over actions, so the model is incomplete. Instead,

we can derive a set of restrictions on the outcome distribution that can be used to test the model

parameters. Clearly, in order to build restrictions based on the actions resulting from some element

in the equilibrium set, it will be necessary to compute all the elements of the set. In general
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games, it may be difficult to verify that all the elements of E(ε, x, θ) have been computed.11 In the

simple two–player model presented here, however, finding all equilibria can be done by checking

for intersections of the firm’s best–response functions. The precise method I employ to find the

equilibrium set is detailed in Appendix C.

If their is more than one equilibrium, I assume that an equilibrium is chosen via some public co-

ordination device. The resulting outcome distribution is a mixture across the outcome distributions

implied by each element of the equilibrium set.

Assumption 1. An equilibrium is selected on the basis of a public coordination device that may

depend on (ε, x, θ) but is independent of ν.

The public coordinating device must be independent of ν (like all other variables in the model)

to prevent information leakage, which would cause agents beliefs about other players to depend on

private information.

The public coordinating device picks out the equilibrium to be played from E(ε, x, θ). Once

agents observe the device, it is clearly not optimal for a player to unilaterally deviate to play any

strategy other than the one the device has selected. However, because economic theory provides

no model for the equilibrium selection device, I assume only that it selects strategy profiles from

the equilibrium set.

A selection mechanism is a function that maps the space of strategy profiles to the probabil-

ity that that particular strategy profile is played, and a selection mechanism is valid when only

equilibrium strategy profiles are played with a positive probability.12

Definition 1. Let λ be a selection mechanism, where λe(ε, x, θ) is the probability that that strategy

profile e is played when the game is defined by (ε, x, θ). The following conditions must hold for a

selection mechanism to be valid:

1. If e 6∈ E(ε, x, θ), λe(ε, x, θ) = 0,
11Algorithms that attempt to compute all equilibria of a game in various settings have been proposed by Wilson

(1971), Garcia and Zangwill (1979), Kalbala and Tesfatsion (1991), Bajari, Hong, Krainer, and Nekipelov (2008),
Grieco (2008), and many others.

12Conditional on the publicly observed information, strategies can be described as a vector of cutoffs, such that in
a two–player game, the selection mechanism is a function from R2 to [0, 1].
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2.
∑

e∈E(ε,x,θ) λ
e(ε, x, θ) = 1, and

3. λe(ε, x, θ) ≥ 0.

The equilibrium selection mechanism is an infinite dimensional parameter that completes the

model. In other words, given a valid selection mechanism and a full set of model parameters, the

model predicts a unique probability distribution over actions and it is possible to write the model

likelihood. If only θ = (θµ, θδ, ρ, σ2
ε ) is specified, then a set of probability distributions are available

and the model is only partially determined. Nonetheless, I can still use the data to test whether a

given θ could have produced the observed data. This is because we can still enforce the restriction

that the selection mechanism is valid. I use Λ(θ) to denote the set of valid selection mechanisms for

a fixed θ. The inference procedure proposed in Section 7 will maximize over this set to determine

whether the model parameters θ are consistent with the data.

5 Impact of Information Structure

The model I proposed in Section 4 allows for flexible assumptions about the information structure.

Before turning to identification, it is important to understand how differences in the information

structure will impact observable outcomes. This section presents numerical examples to highlight

how the nature of the information structure affects the competition between firms and how the

model can be used to explain the observed data. In Section 5.1, I plot equilibrium entry probabilities

according to changes in the variance of the private error term while holding other parameters fixed

in order to indicate how the level of uncertainty affects equilibrium strategies. Section 5.2 illustrates

how the information structure affects the measure of markets that have multiple equilibria.

The two structural shocks, ε and ν, affect strategies and observed action distributions in dif-

ferent ways. While both firms’ strategies condition on εi, only firm i’s action is determined by νi.

Abstracting away from either shock simplifies how the model interprets observed actions. Under

the assumptions of the incomplete information framework, econometricians often assume they can

directly measure equilibrium strategies in the data (e.g., Bajari, Hong, Krainer, and Nekipelov,
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2008).13 In contrast, when a complete information shock is present, the observed distribution is

understood as outcomes from a mixture of games determined according to the distribution of ε.

However, the equilibrium concept implies that, given ε, the distribution of outcomes is degenerate.

The general model allows for the observed data distribution to be a mixture of games that imply

non-degenerate equilibrium outcome distributions. While changes in the distribution of ν affect the

shape of the equilibrium correspondence, changes in the distribution of ε affect the distribution of

games over the correspondence.

5.1 Firm reactions to the level of uncertainty

The firms within the model are able to observe ε before making their decision, so the equilibrium

entry probability correspondence E(x, ε; θ) is a function of the public error. Taking the prior

distribution of ν and opponent strategies as given, firms choose entry strategies that are cutoffs

in their own private shock. When the variance of the private error component is zero, firms are

playing a game of complete information.

To illustrate the effect of player uncertainty on equilibrium entry probabilities, I compute nu-

merical examples within a very simple framework. I consider examples with two observably identical

players and no covariates. I consider the case where for both firms µi = δi = 1. So in a complete

information game, entering as a monopolist is profitable if εi > −1, and entering as a duopolist is

profitable if ε > 0.

First, we examine particular points on the equilibrium correspondence and show how players’

action probabilities change with σν . Figure 2 displays how equilibrium entry probabilities vary

with σν for four different public error outcomes. The observed entry probabilities for the game

could be any mixture of these equilibrium outcome distributions according to the density of ε. The

parameterizations are chosen to be near the boundary of between one and three equilibria in the

complete information game.

Figure 2 illustrates the limit result of Harsanyi (1973): The limit of the set of entry probabilities

as σν → 0 is the equilibrium set of the complete information game. However, even for moderate
13This requires the additional assumption that all markets with the same covariate choose to play the same equi-

librium.
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(d) ε1 = −.10, ε2 = 0

Figure 2: Equilibrium entry probability of player 1 in a symmetric two-player entry game as the
level of uncertainty changes. For both players, µi = δi = 1.

levels of σν , the equilibrium probabilities are substantially different from those of the complete

information game. Figures 2a and 2b provide counterexamples to the commonly held intuition

that adding uncertainty to a game tends to reduce the cardinality of the equilibrium set. As the

level of uncertainty about player types increases from zero, the cardinality of this set changes from

one to three and back to one again.

Assumptions about the information structure affect the estimation of the model. First, examine

the assumption of the pure incomplete information framework: estimating the game within this

framework eliminates ε from the model and attributes all variation in the data to the private

error, ν. Rather than integrating over the equilibrium correspondence, the incomplete information

estimation searches for the single point on the correspondence that best explains the data. If there

is even a small amount of public information unobserved by the econometrician, this approach

biases the degree of player uncertainty in the game upwards. Since σν is fixed according to a

scale normalization, overestimating the amount of private information in the game will cause the
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researcher to underestimate the parameters of the objective function, which will in turn bias the

change in entry probabilities in reaction to a counterfactual change in the market observables.

The independence of the private error term places a heavy restriction on the observed distri-

bution of pure incomplete information models: Player actions must be independent of conditional

on the observable variables, x. Including the public information unobservable relaxes this restric-

tion and delivers a significantly more flexible model. From this perspective the role of the public

unobservable is similar to the use of random coefficients to relax the independence–of–irrelevant–

alternatives assumption inherent in a multinomial logit discrete choice model (Berry, 1994; Berry,

Levinsohn, and Pakes, 1995).

The complete information framework assumes that σν = 0, so the equlibrium entry probabilities

given ε are those on the right–hand side of Figure 2, and observed entry probabilities given x

are derived from integrating over ε. When the game is restricted to pure complete information

strategies, the equilibrium entry probabilities are either 0 or 1, so integration over E(ε, x, θ) amounts

to dividing the correspondence into regions within which it is constant. For a given parameterization

of the model, if there are multiple equilibria for a wide range of ε, model will generate only weak

restrictions on the observed outcome distribution. In the next subsection, I will show how the

information structure affects the amount of multiplicity in the model.

5.2 Relationship between Information Structure and Multiple Equilibria

The issue of multiple equilbria is closely related to the information structure. In the general model,

for a given set of covariates, different draws of ε result in a different game being played. The extent

to which multiplicity causes an identification problem is related to the proportion of markets with

multiple equilibira. In contrast, the game played within the incomplete information framework

is the same for all observably identical markets, so a given observed market either has multiple

equilibria or it does not. In addition, if there are multiple equilibria in an incomplete information

game, the bounds on entry probabilities may still be tight (as in Figure 2b), whereas the multiple

equilibria of a complete information game usually include extreme outcomes, such as entering with

probability 0 or 1.
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Morris and Shin (2000) have argued that adding incomplete information can reduce the degree

of multiplicity in a model and that such assumptions are appropriate because they begin to relax

the common–knowledge assumptions of the game. In this section I present numerical evidence that

the complete information assumption may exaggerate the multiple–equilibria problem by restricting

the model to those parameterizations where multiple equilibria are most common. To make this

point, Figure 3 presents a graph indicating the region of multiplicity in ε-space for the model where

µ = 0.5 and δ = 1. This figure can be thought of as a generalization of Figure 1 in Bresnahan and

Reiss (1991a) who present a figure of the region of multiplicity within the complete information

framework. The variance of the incomplete information shock is increasing across the four panels

of the figure. The distribution of ε will determine the density of markets in ε-space and the

proportion of markets where multiple equilibria exist, but it plays no direct role in Figure 3 itself.

The limit result of Harsanyi (1973) is apparent as σν becomes small; the region of multiplicity

closely resembles the ”box” of multiplicity in the complete information game studied by Bresnahan

and Reiss (1991a) and Tamer (2003).

Two striking observations can be drawn from Figure 3. First, the size of the region of multiplicity

shrinks as σν increases. Second, multiplicity in the presence of uncertainty is much more likely when

the two firms are symmetric, i.e., markets along the line ε1 = ε2 continue to exhibit multiplicity

even when σν is relatively high. While these figures do not constitute a proof, the results are stable

across several different parameterizations of the model.

Intuition for the decrease in the size of the region of multiplicity can be found by considering

players’ best–response functions. The shape of the players’ best–response functions corresponds

to the cumulative density function (CDF) of ν. Within the set of rationalizable strategies, this

CDF becomes closer and closer to linear as the variance of ν is increased. Since approximately

linear best–response functions are likely to intersect only once, multiplicity becomes more rare as

σν increases. The symmetry result is also intuitive. If one firm is seen as more profitable ex ante,

it will be expected to enter with a higher probability, which in turn lowers the expected profits of

its rival. As a result, strong firms increase their advantage over weaker ones due to expectations.

Expectations are shifted towards the stronger firm entering, while equilibrium beliefs under which
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Figure 3: Multiplicity in a 2-player game correspondence E(·, θ) varying the degree of incomplete
information by panel. There are multiple equilibria in the shaded region, and one equilibrium in
the unshaded region. Axes correspond to (ε1, ε2). For both players µ = 0.5 and δ = 1. The region
of multiplicity for the limiting complete information game is the box [−0.5, 0.5] × [−0.5, 0.5] (cf.
Bresnahan and Reiss, 1991a, Figure 1).
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the weak firm enters with a high probability are more difficult to rationalize.

The result that even a small amount of uncertainty can drastically reduce the amount of multi-

plicity within the model means that, even without specifying the mixing distribution, the bounds

on entry probabilities from a model with a moderate amount of multiplicity may be much tighter

than the bounds of a similar complete information model. For counterfactuals, this is welcome

news, as the generalization from complete information to the full model is unlikely to exacerbate

the multiplicity issue. For estimation, the result is more muted. Because the model is at the height

of its flexibility under the complete information assumptions, it may be difficult to reject the com-

plete information paradigm. As I show in the following section, the identification of the model and

the testability of the complete information assumption rely heavily on variation in the covariates.

6 Identification

The full model presented here nests the complete and incomplete information frameworks as end-

points of a continuum of possible information structures. I study identification under rich support

assumptions in Section 6.1. Tamer (2003) shows that the payoff function of a complete information

game is point identified if the covariates have a rich support, and I show that this result extends to

the general model. However, I am unable to achieve point identification of the information structure

itself. Instead, I show that both the complete and incomplete information assumptions commonly

used in the literature are testable against the general framework. That is, these assumptions provide

a set of restrictions that can be checked in the observed data.

Without assuming that covariates have a rich support, the model is only partially identified. In

Section 6.2, I derive the identified set for the model parameters without assuming a rich support.14

Even though the model is set identified, this may have little practical effect on the results of the

estimation if the identified set is small.15 Section 7 will provide techniques to perform inference on

the model and conduct counterfactual analysis using confidence regions for the parameters of inter-
14Bajari, Hahn, Hong, and Ridder (2008) study a similar model and argue that it may not be point–identified

without parametric restrictions on the selection mechanism. In this section I explore what can be learned from the
model without imposing point identifying assumptions.

15See Honoré and Tamer (2006) for an illustration of this point in the context of a single–agent dynamic model.
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est without assuming point identification. The alternative to inference under partial identification

is to add assumptions that are capable of point identifying the model. The mis-specified complete

information or incomplete framework, while point identified, may produce results that are driven

by these assumptions alone.

As is typical of discrete–outcome models, we must provide a location and scale normalization.

The location normalization is due to the fact that we only observe differences when latent variables

cross some threshold. It is implicitly recognized by assuming that the payoff for non-action is

always zero. The need for a scale normalization is also due to the threshold–crossing nature of

the problem, since all parameters can be scaled by a constant to reproduce identical outcome

probabilities. The scale normalization can be accomplished by fixing one variance term in the

model. In the application, I use the normalization that σ2
ε + σ2

ν = 1.16 We must also assume a set

of exclusion restrictions in order to identify separately µi(·) from δi(·). These exclusion restrictions

were formally included in the model by the partitioning of x in Section 4. Bajari, Hong, and

Ryan (2007) discuss the need for exclusion restrictions to identify complete information games

and Bajari, Hong, Krainer, and Nekipelov (2008) provide a similar discussion in the context of

incomplete information games. These arguments carry over directly into the model of this paper.

6.1 Identification with Rich Support Assumptions

In this section, we analyze the two-player model under the assumption that the covariates have a

rich support. With this assumption, I first show that the parameters of firm payoff functions in the

general model are point identified. Intuitively, this is because in the limit, we can observe markets

where a firm’s probability of entry given its covariates is 1 or 0 regardless of whether we condition

on the publicly observed shock. In these cases, agents always take opponent entry as given, and the

problem reduces to a standard threshold crossing model. I then show that the implications of both

the complete information model and the incomplete information model are testable. That is, data

generated by a model that includes public and private information together will be inconsistent

with the implications of the pure complete and pure incomplete information frameworks.
16Because the players’ identities are randomly assigned, I assume that the variance of the error terms is the same

for both players.
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Rich support assumptions are a common tool in the identification of games. The assumption

used here is similar to that of Tamer (2003), who analyzes identification in the context of a pure

strategies complete information game.

Assumption 2. We observe a random sample of M markets {(ym, xm)}, m = (1, . . . ,M), where

ym = (y1m, y2m) are binary indicators of whether firm i operates in the market and xm = (x∗1m, x1m, x
∗
2m, x2m)

are covariates.17

Assumption 3. The components of the payoff functions are linear, and for each firm i there is at

least one covariate x∗i which is excluded from the other firm’s payoff function and the determinants

of the competition effect. Given this assumption we can rewrite the payoff functions as follows, for

i = {1, 2}:

πi(yi, y−i;x, θ) =


x∗i θ
∗
iµ + xiθiµ + νi + εi if yi = 1, y−i = 0

x∗i θ
∗
iµ + xiθiµ + xiθiδ + εi + νi if yi = 1, y−i = 1

0 if ai = 0

. (4)

The variables x1 and x2 may have common elements. The matrices (x∗1, x1) and (x∗2, x2) have full

column rank.

Assumption 4. For i ∈ {1, 2}, the density of x∗i conditional on all other covariates is everywhere

positive.

Assumption 5. The unobserved error terms (ε, ν) are assumed to be independent of (x, x∗), and

ε is independent of ν. The distributions of the error terms are parameterized as follows: (ε1, ε2) ∼

BV N(σ2
ε , σ

2
ε , ρ) and νi ∼ N(0, σ2

ν). For a scale normalization, we assume that σ2
ε + σ2

ν = 1.

With these restrictions the parameters of the model are θ = (θ∗iµ, θiµ, θiδ, σ
2
ε , ρ) for i ∈ {1, 2}

and the equilibrium selection mechanism λ(·).

Theorem 1. If Assumptions 1 through 5 hold, the parameters of the payoff function (θ∗iµ, θiµ, θiδ)

are point identified.
17I suppress the market subscript when it is clear from the context.
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Theorem 1 generalizes the result of Tamer (2003) for complete information games to the general

model with an unspecified information structure. The argument of the proof concentrates on those

markets where strategic interaction is not a factor and, thus, the information structure plays no

role in the identification argument. We next show that assumptions of the commonly used pure

strategy complete information model can be tested against the general model.

Complete information models make the assumption that all unobserved variation is observable to

all players, eliminating ν from the model while retaining ε. Within the context of the general model,

this is equivalent to maintaining the assumption that σ2
ν = 0. If it is assumed that players play pure

strategies, then we will show below that, for every x, the probability that either both firms enter or

neither firm enters is independent of the selection mechanism. By examining these statistics for a

single market, we can identify the only remaining parameter, ρ under the pure strategies complete

information assumption. The only unidentified parameter is the selection mechanism. However,

there are also an infinite number of restrictions implied by the complete information model that

are independent of selection, and these can be used to test the complete information assumption

on the information structure.

Theorem 2. If Assumptions 1 through 5 hold, the pure strategies complete information framework

is testable.

Theroem 2 provides a set of equality restrictions with which to test the pure strategies complete

information assumption. The key feature of these equalities is that they do not depend on the

selection mechanism, λ, which is not identified. If the degree of private information is very small,

the complete information assumption is mild due to Harsanyi’s limit result. However, Figure 2

indicates that entry probabilities for a particular point on the equilibrium correspondence change

substantially when even a small amount of incomplete information is introduced in the model. The

following theorem shows that a similar test can be devised for the incomplete information model.

Theorem 3. If Assumptions 1 though 5 hold, the pure incomplete information framework is

testable.

If the only unobserved variation is generated by privately observed structural errors, which are
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independent across firms by assumption, then it must be that players’ actions will be independent

conditional on the other observables. This requirement is very strict and, thus, it would appear

that the incomplete information model will be rejected in a many cases, as happens in the empir-

ical analysis presented below. The full model in this paper relaxes this conditional–independence

implication by adding public firm–level heterogeneity while still allowing firm uncertainty to play

a role in determining equilibrium.

6.2 Identified Set

For expositional simplicity I first consider in Section 6.2.1 identification in the context of an incom-

plete information game where no there is no public–information shock. In Section 6.2.2, I extend

this result to derive the identified set for the general model with both complete and incomplete

information structural errors.

6.2.1 Identified Set with Only Incomplete Information

Consider the following model:

πi(yi, y−i;x, θ) =


µ(x0, xi; θµ) + νi if yi = 1, y−i = 0

µ(x0, xi; θµ)− δ(x0; θδ) + νi if yi = 1, yj = 1

0 if ai = 0

, (5)

with the distributional assumption that νi ∼ N(0, 1) is independent of x and i.i.d. across players.

Note that the location, scale, and exclusion restriction assumptions are already built into the model.

The payoff of the action 0 is always 0, the variance of the error is scaled to 1, and xi affects the

payoff of only player i.

Section 4 derived the necessary and sufficient condition equilibrium strategies and entry proba-

bilities for this model (the only difference is that ε is eliminated from the equilibrium constraints).

An equilibrium can be expressed either as a vector of cutoffs (χ1(x, θ), χ2(x, θ)) or entry prob-

abilities (ρ1(x, θ), ρ2(x, θ)), which are related through the one-to-one mapping (2). It is more

convenient to describe the equilibrium in terms of the entry probability profile ρ(x, θ). As we have
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seen above, this model may have multiple equilibria; hence, the solution to the model is a corre-

spondence E(x, θ) that maps a set of covariates and the parameters to a finite set of equilibrium

strategies. Let #E(x, θ) be the cardinality of this set and let ρe(x, θ) index an element of E(x, θ)

where 1 ≤ e ≤ #E(x, θ). In our model, where two players are making a binary decision and ν

is assumed to be normally distributed, the maximum number of equilibria possible is three. In a

game with more players or a larger choice set, the number of equilibria may be substantially larger.

For the purpose of identification, we can treat the vector of conditional outcome probabilities

P (y|x) as observed. Every equilibrium profile implies a multinomial distribution over outcomes. For

a profile e ∈ E(x, θ), let P e(θ, x) be the resulting multinomial distribution over outcomes. In this

two-player model there are four possible outcomes; in a general binary choice model with N players

there are 2N possible outcomes. Suppose we knew with certainty that a particular equilibrium e of

the set E(x, θ) is played. The probability of observing outcome y could then be written as

P ey (x, θ) =
2∏
i=1

ρei (x, θ)
1[yi=1](1− ρei (x, θ))1[yi=0]. (6)

Let P e(x, θ) be the vector of outcome probabilities indexed by y for equilibrium e of the set E(x, θ).

Note that the independence of the agents’ decisions conditional on x is implied by the fact that the

only structural error within the incomplete information model is independent across players and

privately observed.

If equilibrium were unique, we could connect P e(x, θ) directly to the observed data since that

is the only possible outcome consistent with equilibrium. When equilibrium is not unique, our

assumptions imply that the observed outcome distribution is some mixture of equilibrium strategies

according to the equilibrium selection mechanism λ(x, θ). For a given selection mechanism, we can

denote a unique prediction for the model:

Py(x, θ, λ(x, θ)) =
∑

e∈E(x,θ)

λe(x, θ)P ey (x, θ). (7)

If we had a parametric model for λ, we could estimate the selection mechanism using the

likelihood function implied by (7). Such a strategy is pursued in the complete information context
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by Bajari, Hong, and Ryan (2007). Another common assumption in the context of incomplete

information games is that the same equilibrium is always played in observationally equivalent

markets. However, economic theory tells us nothing about the selection of an equilibrium to play,

so I do not wish to impose strong restrictions on the selection mechanism. In Appendix A, I use a

numerical example to show how incorrect assumptions about the selection mechanism result in a

misspecified model and biased estimates of the model parameters.

Instead, I allow λ to be any any valid mixture across equilibria and derive the sharp identified

set implied by the model. That is, I use the model of the equilibrium correspondence given θ and

the fact that we know that λe(x, θ) ≥ 0 and
∑

e∈E λ
e(x, θ) = 1 to derive the identified set.

Theorem 4. If assumptions 1-3, and 5 hold, the sharp identified set of θ for the incomplete

information model is,

ΘI =

 θ ∈ Θ : ∀x ∈ X,∃λ̃ ∈ [0, 1]Ē s.t. P (·|x) =
∑

e∈E(x;θ) λ̃
eP e(x, θ),∑

e∈E(x;θ) λ̃
e = 1

 (8)

Where Ē is a constant which represents the largest possible number of equilibria the model admits

almost everywhere over X ×Θ.

To gain some intuition into how (8) restricts the identified set, consider testing whether θ is the

true parameter. For a given x, a 4x1 vector P (y|x) is observed. For a given θ, we know that there

are generically either one or three equilibria based on the assumed normality of the private error

term. Suppose E(x, θ) is a singleton; the equilibrium mixing distribution is then degenerate and x

provides three restrictions with which to test the parameter θ. In contrast, suppose there are three

equilibria in E(x, θ). The observed outcome distribution given that θ is the true parameter may

then be any valid probability mixture across the three equilbira and, thus, the selection mechanism

30



λ(x, θ) is overidentified by the following set of four linear constraints:



P ((0, 0)|x)

P ((0, 1)|x)

P ((1, 0)|x)

1


=



P 1
(0,0)(x, θ) P 2

(0,0)(x, θ) P 3
(0,0)(x, θ)

P 1
(0,1)(x, θ) P 2

(0,1)(x, θ) P 3
(0,1)(x, θ)

P 1
(1,0)(x, θ) P 2

(1,0)(x, θ) P 3
(1,0)(x, θ)

1 1 1




λ1(x, θ)

λ2(x, θ)

λ3(x, θ)

 . (9)

Since we have an extra restriction to identify the mixing distribution, market types with multiple

equilibria provide a single restriction that can be used to verify whether θ is the true parameter.

We can rule out any θ for which the restriction that λ(x, θ) ≥ 0 is not satisfied.

When we observe variation in x, we test θ by aggregating the restrictions across all market

types. Suppose M different market types are observed, X = {x1, . . . , xM}, such that P (y|x) is a

vector of length 4M . At worst, there are multiple equilibria in all of the markets. In that case,

there are still M restrictions available to identify the components of θ.

6.2.2 Identified Set of the Full Model

I now return to the full model presented in Section 4 by adding firm–specific complete information

shocks that are observed by the players but unobserved by the econometrician. This model can

be understood as a generalization of the incomplete information model with firm-level unobserved

heterogeneity. As a result, player strategies and equilibrium selection must both be modeled as

functions of the publicly observed error ε. If selection were independent of complete information,

then the researcher could deal with this additional unknown by simply integrating it out of the

final likelihood function. However, the potential relationship between the complete information

shock and the selection mechanism is not restricted by our assumptions.18 Therefore, the selection

mechanism is now potentially a function of ε and, as a consequence, is an infinite dimensional

parameter.

Since players know ε prior to forming strategies, the introduction of unobserved public shock
18One alternative would be to adopt one of several equilibrium refinement concepts to reduce the number of

valid solutions. Kajii and Morris (1997) explore the possibility of using robustness to incomplete information as an
equilibrium refinement. Even if a refinement is applied, an equilibrium selection mechanism will be necessary unless
the refinement can be shown to produce a solution set that is always single valued.
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has no effect on how equilibrium is constructed. It is merely necessary for the econometrician

consider a distribution of possible games conditional on x rather than a single one. The solution

to the model is now a correspondence mapping ε to a set of equilibria E(·, x, θ). The mapping

from equlibria inherits the additional argument ε but is otherwise unchanged. Identification will,

therefore, be based on the mapping from (ε, x, θ, λ) to outcome distributions conditional on x and

comparing these distributions with the observed data.

By adding heterogeneity to the model, it must be true that this identification set is larger than

the one presented in the earlier section where we assumed the researcher had perfect knowledge up

to private shocks. The two models are nested since the former is a special case of the latter when

the distribution of ε is degenerate. The observed distribution of outcomes should now integrate out

unobserved heterogeneity:

Py(x, θ, λ(·)) =
∫ ∑

e∈E(ε,x,θ)

λe(ε, x, θ)P ey (ε, x, θ)dF (ε; θ). (10)

We can go no further in simplifying this expression since economic theory offers little direction as

to how the selection mechanism is related to ε. Nonetheless, we have nontrivial restrictions on the

identified set.

Theorem 5. If assumptions 1-3 and 5 hold, the identified set of the full model is,

ΘI =


θ ∈ Θ : ∀x ∈ X,∃λx(ε) ∈ [0, 1]Ēs.t.:

P (y|x) =
∫ ∑

e∈E(ε,x,θ) λ
e
x(ε)P ey (ε, x, θ)dF (ε),

∀ε, x :
∑

e∈E(ε,x,θ) λ
e
x(ε) = 1

 . (11)

The function λ(·) is restricted to the set Λ(θ): it must be a valid mixing distribution between

equilibria. Thus, meaningful inference can still be performed. Indeed, the distribution implied by

λ must be degenerate whenever equilibrium is unique, which may occur with high probability for

some parameterizations.

Suppose for some θ we observe a market that implies a unique equilibrium for all values of ε.

This market provides 3 equality restrictions on the data with which to test θ, the same number
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supplied in the incomplete information case when equilibrium for a market type is unique. The more

such markets are observed, the more restrictions can be collected to test the model parameters.

Even if all market types exhibit multiple equilibria with high probability, nontrivial restrictions on

θ can still be found.

The identified set can be equivalently defined as the maximizers of the model likelihood. In the

next section, we will use this fact to make inference on the model.

7 Inference

The previous section showed that with complete knowledge of the outcome distribution we can

reduce the set of parameter values that may have generated the data to a non-trivial set, if not to

a single point. In this section, we use a random sample of markets to make inference on the set

of models that plausibly could have generated the data. Chernozhukov, Hong, and Tamer (2007)

have shown how to perform inference on a set–identified model by using the empirical analog of a

function that attains its optimum only on the identified set. I use the log-likelihood of the model.

This section proceeds in three steps. First, I show how the likelihood function of the model can

be used as an objective function to conduct set inference on θ. Second, I show that a computable

empirical analogue of this function converges to the true model likelihood. Finally, I show that

the weighted bootstrap can be used to test the null hypothesis that a particular model is in the

identified set.

7.1 The Model Likelihood

I assume that I observe data from n independent markets {xi, yi}ni=1, each of which comes from a

data–generating process defined by the true parameters (θ0, λ0).19 Since the true model is complete

in the sense that it includes both a well defined model and a valid equilibrium selection mechanism,

it maps onto a unique point in the space of outcome distributions, P 0 ∈ P. The partial identification

problem arises because there may be multiple models (θ, λ) that generate P 0 besides the true model.
19In this section, i is used to index observations rather than players, i.e., yi is a vector recording each player’s

action.
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The likelihood function for the model can be written as

L(θ, λ) = E [log(Py(x, θ, λ))] . (12)

Following the usual likelihood arguments, the likelihood function will be maximized at (θ0, λ0),

since P (·, θ0, λ0) = P 0. The maximizer is not assumed to be unique, i.e., there may exist (θ′, λ′)

such that L(θ0, λ0) = L(θ′, λ′).20 I treat the selection mechanism λ as an infinite dimensional

nuisance parameter and focus on the model parameter θ as the object of interest. The profiled

likelihood function associates each θ with the most favorable selection valid selection mechanism in

terms of likelihood:21

L(θ) = max
λ∈Λ(θ)

E [log(Py(x, θ, λ))] . (13)

The following Lemma states that L(θ) is a continuous function that, if it were known, could be

used to locate the identified set.

Lemma 1. (i) L(θ) = argmaxθ′∈Θ L(θ′) for all θ ∈ ΘI as defined by (11), and L(θ) < argmaxθ′∈Θ L(θ′)

for all θ ∈ Θ \ΘI , and (ii) L(θ) is continuous in θ.

7.2 Empirical Analogue for the Log-Likelihood

Using L(θ) for inference is infeasible because we do not perfectly observe the outcome distribution.

Furthermore, computation of L(θ) involves an optimization over the infinite dimensional selection

mechanism. Following the analogy principe, I now define a feasible empirical analogue that will

allow me to conduct inference on the identified set. In order to make the empirical likelihood feasible

to compute, I use a numerical approximation to convert the infinite dimensional optimization

problem into a finite dimensional one.

To numerically approximate the integral over ε in the definition of Py(x, θ, λ), I assume that

a numerical approximation technique is employed by which the integrand is evaluated at a finite
20In the event that the maximum is unique, the model is point identified. In that case the inference procedure

presented in this section is still valid.
21An alternative argument for the inference method is that I am minimizing the Kullbeck-Leibler divergence

between P 0 and the set of probability distributions that can be generated by θ for any selection mechanism. Using
this explanation, the maximization over λ is part of the divergence metric between a point and a set.
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number of R sample points from the distribution of ε:

PRy (x, θ, λ) =
1
R

R∑
r=1

∑
e∈E(ε,x,θ)

λe(εr, x)P eyi(εr, x, θ)f(εr; θ), (14)

where f(εr; θ) is the density of εr given the parameterization θ. By the law of large numbers, as

the number of sample points R → ∞, PR(x, θ, λ) → P (x, θ, λ) in probability. Sample points may

be selected either through simulation using random or pseudo-random sequences or through deter-

ministic sequences such as Halton sequences. In practice, I use Halton sequences, which have been

shown to have desirable fast-convergence properties vis-a-vis pseudo-random sequences in numeri-

cal simulations.22 Since the number of sample points used is under the control of the researcher, we

assume that R→∞ as n→∞, and that, hence, the simulation error is asymptotically negligible.

Using this approximation for the integral,

Ln(θ) = max
λ∈Λ(θ)

1
n

n∑
i=1

[
log(PRyi (xi, θ, λ))

]
. (15)

The empirical analogue Ln(·) converges uniformly to L(·). That is, supθ∈Θ |Ln(θ) − L(θ)| =

op(1). To see this, recall that I assume that both covariates and outcomes have discrete support

and define the maximum likelihood estimator for the joint outcome distribution as,

P̂n(x, y) =
1
n

n∑
i=1

1[xi = x, yi = y].

Clearly Pn is a consistent estimator for P 0. By rearranging the terms, we can write Ln(·) as a

function of Pn:

Ln(θ) = max
λ∈Λ(θ)

∑
x∈X

∑
y∈Y

P̂n(x, y) log(PRy (x, θ, λ)).

we can also write,

L(θ) = max
λ∈Λ(θ)

∑
x∈X

∑
y∈Y

P 0(x, y) log(Py(x, θ, λ)).

Since P̂n → P 0 in probability, and since by assumption R→∞ as n→∞, for all θ, Ln(θ)→ L(θ)
22For details about Halton sequences, see Bhat (2001).
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by the continuous mapping theorem.23 This is a sufficient condition for uniform convergence of

Ln(·) to L(·).

Computing Ln involves a maximization over the set Λ(θ). However, to evaluate the maximand

of Ln, it is only necessary to evaluate the likelihood on the set of R sample points, and not every

point in ε space. This reduces the maximization problem over Λ(θ) to a finite, but high–dimensional

constrained optimization problem. Fortunately, the form of this problem is tractable for modern

nonlinear optimization packages even with a very high–dimensional parameter space. Appendix C

provides more computational detail on the optimization step.

Informally, the uniform-convergence result indicates that points that are nearly maximizers

of Ln(·) will be nearly maximizers of L(·), with “nearly” growing stricter as n increases. Since

argmaxθ∈Θ L(θ) = ΘI , parameter values that nearly maximize Ln(·) will be more likely to be in

the identified set than those that do not. More formally,

Theorem 6. For all θ ∈ ΘI , maxθ′∈Θ Ln(θ′)− Ln(θ) = op(1).

The next section uses this result to propose a test for the null hypotheses that a given θ is

included in the identified set.

7.3 Likelihood Ratio Test and the Weighted Bootstrap

The weighted bootstrap was introduced by Ma and Kosorok (2005) for use in attaining confidence

intervals for the finite dimensional parameters in a semi-parametric estimation of a point–identified

problem. The technique was shown to be valid in partially identified semi-parametric problems

by Chen and Tamer (2009). The weighted bootstrap is attractive in our problem because of the

straightforwardness of its implementation and the ease with which validity can be shown.24

Inference will be done via a likelihood ratio test on the statistic n(maxθ′∈Θ Ln(θ′)−Ln(θ)). To

see why, suppose momentarily that θ0 were point identified. Then one could write the likelihood

test in the usual way, testing each θ against the (unique) maximizer of Ln and approximating the
23The continuity of Ln(·) in θ for each n follows the argument for the continuity of L(θ) in Lemma 1.
24See Romano and Shaikh (2006, 2008) for more on subsampling in this context. Several authors have studied other

inference techniques in the context of moment inequality models (Andrews and Soares, 2007; Bugni, 2007; Canay,
2008). These techniques are not immediately applicable in our context since the objective function does not take the
form of a finite weighting of moment inequalities.
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asymptotic distribution using an estimator for the Fisher information matrix.25 This would be

valid because the maximizer and its Hessian are consistent estimators for the (assumed) unique

maximizer of L and its Hessian, respectively. If θ0 is only set identified, the regularity conditions

that support the classical asymptotic distribution do not hold. In particular, the information matrix

is degenerate on the interior of the identified set. To relax the assumption that the model is point

identified, Liu and Shao (2003) derive the asymptotic distribution in the set-identified case under

generalized regularity conditions that use the Hellinger distance between probability distributions

rather than the Euclidean distance in Θ as the basis for an asymptotic expansion. However,

their analytic approximation is quite cumbersome to apply in this case, particularly because Ln

itself involves a high-dimensional optimization problem due to the selection mechanism. Instead, I

approximate this distribution and use it for inference using the weighted bootstrap.

We wish to test the null hypothesis H0 : θ = θ0. Under the null hypothesis,

lim
n→∞

P

(
n

(
sup
θ′∈Θ

Ln(θ′)− Ln(θ)
)
≥ c1−α

)
≥ 1− α, (16)

where c1−α is the 1 − α quantile of the distribution of n (supθ′∈Θ Ln(θ′)− Ln(θ)). If this quantile

were known, we could use (16) as a test of H0 that is consistent at level α. To gain a feasible test,

we replace c1−α with a consistent estimator by using the weighted bootstrap to simulate draws from

the asymptotic distribution. The weighted bootstrap uses B different weighted likelihood functions,

which share the same asymptotic distribution as the standard likelihood function, to approximate

the distribution of the likelihood ratio test statistic. The weighted likelihood function is defined as

a function of weights w = (w1, . . . , wn), which are independent of the data and distributed such

that E(wi) = 1, V (wi) = 1 and wi > 0.26 We can then compute the weighted likelihood function

25The classical expansion is of the likelihood ratio statistic when the model is point identified and θ̂ = argmaxLn(θ)
is 2n(maxθ′∈Θ Ln(θ′)−Ln(θ)) = n(θ̂− θ)Ψ(θ̂− θ) + op(1), where Ψ is the Fisher information matrix. The right–hand
side can be shown to have a chi-squared distribution. The statistic is multiplied by two because the right–hand side
is the quadratic term in a Taylor expansion. I drop the 2 because I approximate this distribution using the weighted
bootstrap instead of deriving an analytic approximation.

26I use the standard exponential distribution to produce these weights, some experimentation using the log-normal
distribution produced very similar results.
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as,

Ln(θ, w) = max
λ∈Λ(θ)

1∑
wi

n∑
i=1

wi
[
log(PRyi (xi, θ, λ))

]
.

I approximate the quantiles of supθ′∈Θ Ln(θ′) − Ln(θ) by choosing B sets of weights and com-

puting the quantiles of {supθ′∈Θ Ln(θ′, wb)−Ln(θ, wb)}Bb=1. Note that this requires an optimization

step for each weighted bootstrap draw. The key to the validity of the weighted bootstrap is the

independence of the bootstrap weights from the data. This allows one to show that the unweighted

and all of the weighted estimators share an identical asymptotic distribution as n→∞.27

Using the weighted bootstrap to approximate the distribution of the likelihood ratio statistic, we

follow the procedures of Chernozhukov, Hong, and Tamer (2007) and Romano and Shaikh (2008)

to derive confidence sets for the identified set and the identifiable parameter. The computational

details of these procedures are discussed in Appendix C.

8 Data and Preliminary Analysis

8.1 Data

My primary data source is annual extracts from the Trade Dimension TDLinx database of all

grocery–store locations in the United States.28 To define markets, assume that a local grocery

store is in competition with other grocery stores located roughly within the same ZIP code. Since

ZIP codes themselves are route assignments and not geographic areas, the US Census bureau has

developed ZCTA Code Tabulation Areas (ZCTAs), which are generalized geographic representations

of ZCTA codes. Roughly speaking, ZCTAs map each census block to the ZCTA code of the majority

of it’s residents.29 I use the address information for each store to link that store to a year-2000

ZCTA.

ZCTAs provide a reasonable approximation of a grocery–store catchment area in the markets
27This is in contrast to the standard bootstrap, where validity would require that the distribution of Ln(θ, ·) be

smooth in P .
28This data was graciously provided by Paul Ellickson. Various extracts from the Trade Dimensions database have

been used in several empirical studies investigating retail industries (Ellickson, 2007; Beresteanu and Ellickson, 2006;
Holmes, 2008; Orhun, 2005).

29For a full description of the creation of ZCTAs, see US Census, http://www.census.gov/geo/zip/zcta.html, accessed
August 1, 2009.
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that I study. In their study of the loyalty card program of a grocery store located in a “small East

Coast town,” Singh, Hansen, and Blattberg (2006) find that the average customer lives 3.5 miles

from that store, while 78 percent of customers live within 5 miles of the store. A five–mile radius

translates roughly to a catchment area of 80 square miles. The average land area of a market as

defined in the data is 144 square miles, with larger markets in the West than on the East Coast.

To be included in the dataset as a rural grocery market, a ZCTA must (i) have fewer than

15,000 people, (ii) have a population density of fewer than 750 people per square mile, (iii) have

had at least one grocery store in operation between 1994 and 2006, and (iv) have had no more

than two grocery stores in simultaneous operation between 1995 and 2006.30 The restrictions on

the number of stores active in the ZCTA is necessary to maintain computational feasibility and to

eliminate those ZCTAs that are not viable locations for grocery stores. Including markets where

three stores are open simultaneously would expand the dataset by nine percent. Including these

markets does not appear to affect the descriptive results.

Figure 4 displays the locations of the markets in the data. Red dots represent markets where a

supercenter is more than 20 miles away, blue dot represent markets which are within 20 miles of a

supercenter. The data follows the pattern of population density in the United States. Examining

the data geographically, there are fewer markets in the West than the East due to differences

in population density and a larger ZCTA size. There are also relatively fewer markets near a

supercenter in the West. Expansion of supercenters into the West, led by Wal-Mart, has taken

place since 2000. However, the density of supercenters remains much sparser than in the East. In

the East, markets near a supercenter are fairly interspersed with those that are not. There is some

degree of clustering because a single supercenter affects all markets within a 20–mile radius. It

does not appear that distance to a supercenter varies across geographical regions.

Table 1 displays summary statistics on the markets in the dataset. Distance to a supercenter is

calculated on the basis of ZCTA geographic centroids provided by the US Census. The expansion

of supercenters is apparent from the evolution of the distance from the markets to a supercenter
30For comparison, the US Census designates a census block as “urban” if it has a population density of more than

1,000 people per square mile and the surrounding blocks have a density of at least 500 people per square mile. All
census blocks that are not urban are classified as “rural” (US Census, http://www.census.gov/geo/www/ua/ua 2k.html,
accessed August 1, 2009).
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Figure 4: Location of Markets in the dataset. Markets within 20 miles of a supercenter are plotted
in blue, while markets more than 20 miles away from a supercenter are in red.

over time. Between 1998 and 2002, the median distance to a supercenter decreased by 10 miles. A

market is considered to be in the vicinity of a supercenter if the minimum distance to a supercenter

is less than 20 miles in 2000. The results are qualitatively unchanged by using 1998 or 2002 as

the base year,or by extending the supercenter radius to 25 miles.31 The average distance to a

supercenter in 2000 for those markets that were within the 20–mile radius is 12.3 miles, with a

standard deviation of 4.5 miles. Only 14 percent of the data comes from the Mountain West and

West Coast, where zip codes are larger, the population is sparser, and there are fewer supercenters.

The Southeast, which is considered the stronghold of Wal-Mart, the nation’s largest supercenter

chain, contains 34 percent of the markets.
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Quantiles Mean Std Dev
0.25 0.50 0.75

Population 2,720 4,582 7,261 5,299.06 3,313.78
Distance to Supercenter

1998 16.16 29.80 72.36 71.57 108.64
2000 13.57 22.97 46.14 49.71 76.55
2002 12.06 19.54 34.68 31.31 37.48

South 0.34 0.47
West 0.14 0.34

Table 1: Summary statistics of market characteristics. Mean distance to a supercenter excludes
outliers more than 500 miles from a supercenter. These are accounted for in the quantile calculation.
Total number of markets is 5,893.

8.2 Preliminary Analysis

Table 2 presents the distribution of active firms in each market in 2002. The first two columns

condition the distribution on whether (or not) there is a supercenter in the vicinity of the market.

The table indicates that the presence of a supercenter is associated with fewer duopolies and more

monopolies in the local market and only a very slight increase in the number of unserved markets.

This is consistent with the presence of a supercenter negatively affecting traditional grocery stores

in small markets.

Table 3 presents the transition matrix of the number of firms in a market between 1998 and

2002 conditional on whether there is a supercenter in the vicinity. The transition matrix appears to

shift towards less entry and more exit when a supercenter is nearby, but the effect is mild and not

likely to result in a dramatic decline in grocery–store availability. These descriptive results indicate

the magnitude of the supermarket effect, while the structural model explores the underlying forces

that generate this effect.

Table 3 also aggregates firms across all market sizes. As expected, market size is a strong

determinant of the number of firms, as seen in Table 4. To demonstrate how entry and exit

patterns change with competition once observable market characteristics are controlled for, Tables

5 and 6 present probit regressions on the propensity of firms to enter and exit, respectively. These
31Because I use distance between zip code centroids, a smaller distance cutoff may be subject to a significant

amount of measurement error. I have also experimented with using two distance bands of 15 and 30 miles and found
qualitatively similar results.
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Active Firms Supercenter Overall
Yes No

0 23.03 23.26 23.16
1 64.45 61.38 62.70
2 12.52 15.36 14.14
N 2,540 3,353 5,893

Table 2: Distribution (of the number) of active firms in 2002 by whether the market was within 20
miles of a supercenter in 2000 (percent).

Supercenter No Supercenter
0 1 2 0 1 2

0 70.03 28.97 1.01 71.79 27.34 0.87
(1.19) (1.18) (0.26) (1.21) (1.20) (0.25)

1 10.02 84.34 5.64 11.94 83.06 5.00
(0.53) (0.65) (0.41) (0.65) (0.75) (0.43)

2 0.57 25.98 73.45 0.56 30.06 69.39
(0.26) (1.49) (1.50) (0.32) (1.97) (1.99)

Table 3: Transition matrix on the number of firms in the market. Each entry is the percent chance
that a market with the row number of firms in 1998 has the column number of firms in 2002.
Standard errors in parenthesis.

Percent Near Number of Active Stores
Supercenter 0 1 2

Pop 0-3k 28.43
Supercenter 45.67 51.71 2.62
No supercenter 43.16 54.05 2.78

Pop 3-6k 54.14
Supercenter 24.30 69.44 6.26
No supercenter 15.35 71.16 13.49

Pop 6k+ 43.84
Supercenter 11.91 65.98 22.11
No supercenter 7.51 58.56 33.93

Table 4: Distribution (of the number) of active firms in 2002 by market size and whether or not a
supercenter was located within 20 miles in 2000 (percent).
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regressions do not control for the simultaneous entry and exit decisions of rival firms. Thus, the

results should not be interpreted causally. The presence of competitors is associated with less entry

and more exit, as one would expect. Also, having a supercenter nearby is associated with less entry

and more exit, although the association is stronger for exit than entry.

To examine whether geographic variation effects the parameters of interest, I consider the use

of region dummies for the South and West. A West dummy might control for the larger zip codes

or other region–wide characteristics of the West. The results in Tables 5 and 6 show that the

effect of region dummies is statistically insignificant and their inclusion has almost no effect on the

parameters of interest. Therefore, region dummies are not included in the structural model.

Second, in the structural model, it is necessary to discretize the population data. To validate

the appropriateness of the discretization, Tables 5 and 6 include log population as a control in

columns I and II and the discretization used in the full model in columns III and IV. I include

dummies for whether the population is larger than 3,000 or 6,000.32 The discretization has little

effect on the estimated coefficient of supercenter presence or the existence of local competition. The

effect of population is non-monotonic, but these results should not be given a causal interpretation.

The cutoffs for the dummies were chosen to approximate the one-third and two-thirds quantiles of

the data. Probit regressions such as those in Tables 5 and 6 are robust to slight changes in these

cutoffs.

Column IV adds an interaction term between the presence of a competitor and population. It

appears that the degree of competition between firms varies with market size. Therefore, I include

an interaction between the competition effect and market size in the structural model.33

The structural model of the following section assumes that entry and exit rates in markets

near a supercenter are independent of the supercenter’s age. One might be concerned that entry

and exit rates immediately following entry by a supercenter are different from the rates that are

maintained once the supercenter is established in the region. To see whether this is true in the

data, I add a dummy for recent supercenter entry in Column V of Tables 5 and 6. This coefficient
32Both coefficients should be added to compute the total effect of population when the market is larger than 6,000

persons.
33I have also experimented with interactions between supercenter presence and market size in the entry and exit

probits, but these have little effect.
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on recent supercenter entry is not statistically significant for either entry or exit. The positive

relationship between exit and supercenters does not appear to depend on whether the supercenter

is a recent entrant. Although the addition of the supercenter entry dummy does appear to alter

the relationship between entry and supercenters, the difference between the coefficients is not

statistically significant.

9 Results from the Structural Model

I now apply the model described in Section 4 to data on entry and exit patterns of grocery stores.

I assume that entrepreneurs choose whether to be active (remain open or enter the market) in

order to maximize expected firm value. I focus on entry and exit within each market for the five–

year period between 1998 and 2002. A two-player game is assumed to be played in each market.

Unfilled slots are assumed to be occupied by potential entrants. State variables at the market level

are whether or not a supercenter is present within 20 miles in 2000 and dummies for a population

greater than 3,000 or 5,000 people. Firm level state variables are whether or not the firm was

operating in 1998. The outcome variables are whether or not each firm was operating in 2002. I

assume that opening a store affects only a firm’s costs and not demand, so it can be used as an

exclusion restriction.

The baseline profit function is

µi(x) = µ0 + µ11[Pop > 3k] + µ21[Pop > 6k]

+ µ31[Supercenter < 20mi]− µ41[Inactive in 1998].

We will refer to µ4 as the entry cost, since it measures the extra costs of opening a new grocery

store. Note that we model this as a cost, so the expected sign of this parameter is positive. The

effect of competition within the local market is captured by δ(·) which is also assumed to be linear:

δi(x) = δ0 + δ11[Pop > 3k] + δ21[Pop > 6k] + δ31[Supercenter < 20mi].
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I II III IV V
Supercenter within 20 mi, 2000 -0.0201 -0.0133 -0.0342 -0.0317 -0.0065

(0.0426) (0.0447) (0.0451) (0.0452) (0.0489)
Supercenter Entry 1998-2000 -0.0965

(0.0729)
Log Population 0.2660 0.2620

(0.0278) (0.0279)
Pop over 3k -0.4013 -0.3369 -0.3348

(0.0515) (0.0797) (0.0798)
Pop over 6k 0.5902 0.4623 0.4581

(0.0553) (0.0721) (0.0722)
Competitor Active in 1998 -0.4836 -0.4775 -0.4753 -0.7064 -0.7090

(0.0440) (0.0441) (0.0446) (0.0932) (0.0932)
(Pop > 3k)x(Comp. 98) -0.0984 -0.0989

(0.1039) (0.1039)
(Pop > 6k)x(Comp. 98) 0.3585 0.3631

(0.1185) (0.1186)
South Region 0.0638 0.0589 0.0609 0.0574

(0.0465) (0.0466) (0.0467) (0.0468)
West Region 0.0953 0.0593 0.0640 0.0674

(0.0614) (0.0619) (0.0621) (0.0622)
Log-Likelihood -2265.25 -2263.57 -2249.18 -2244.32 -2243.44
N 6496 6496 6496 6496 6496

Table 5: Probit regressions on firm entry between 1998 and 2002. These results do not control for
endogeneity of decisions between small grocery stores.
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I II III IV V
Supercenter within 20 mi, 2000 0.1361 0.1238 0.1284 0.1340 0.1538

(0.0452) (0.0469) (0.0472) (0.0473) (0.0510)
Supercenter Entry 1998-2000 -0.0828

(0.0804)
Log Population -0.2516 -0.2517

(0.0332) (0.0332)
Pop over 3k 0.1589 0.1364 0.1377

(0.0522) (0.0667) (0.0667)
Pop over 6k -0.4541 -0.4840 -0.4843

(0.0633) (0.0721) (0.0721)
In duopoly in 1998 0.1900 0.1901 0.1901 -0.0864 -0.0843

(0.0491) (0.0492) (0.0499) (0.1561) (0.1561)
(Pop > 3k)x(Duopoly 98) 0.0818 0.0854

(0.1057) (0.1058)
(Pop > 6k)x(Duopoly 98) 0.2756 0.2710

(0.1707) (0.1708)
South Region -0.0114 -0.0080 -0.0079 -0.0096

(0.0485) (0.0486) (0.0486) (0.0487)
West Region -0.0786 -0.0721 -0.0670 -0.0646

(0.0711) (0.0711) (0.0712) (0.0712)
Log-Likelihood -2021.46 -2020.84 -2023.52 -2021.39 -2020.86
N 5290 5290 5290 5290 5290

Table 6: Probit regressions on firm exit between 1998 and 2002. These results do not control for
endogeneity of decisions between small grocery stores.
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Note that the only exclusion restriction for this model is the absence of the activity dummy from

δ(·). The effect on profits from opening a store are assumed to be due to construction and start-up

costs, rather than low demand for a new store when a rival is active. I do not require the costs of

opening the store to be paid for by the entrepreneur in the opening period (i.e, he may take out

loans to cover the cost).

The information structure is parameterized by σ2
ε and ρ.34 The error structure of most entry–

game models is nested by the framework presented in this paper. The earliest entry games assumed

that markets were subject to a single profit shock that is homogeneous across firms and publicly

known to the firms. Bresnahan and Reiss (1991b) showed that, with appropriate distributional

assumptions, this model reduces to an ordered probit. The flexible model of this paper nests these

assumptions when, σ2
ε = 1 and ρ = 1. The more–general complete information model that allows

for firm-level heterogeneity in the error term is equivalent to assuming σ2
ε = 1 within the full

model, but allowing ρ to take any value. Most applications of the complete information model

have restricted themselves to pure strategy equilibria (e.g., Berry, 1992; Mazzeo, 2002; Ciliberto

and Tamer, 2007), so I take the pure strategies assumption as part of the complete information

framework. The incomplete information framework is given by the full model when σ2
ε = 0. A

market-level public shock could be added to an incomplete information game, which would be

accomplished within my framework by assuming that ρ = 1 and allowing σε to vary.35

The main parameters of interest for this study are the effect of supercenters on local grocery

store profits and the competitive effect of other local–grocery–stores on store profits. I assume

the presence of a supercenter is exogenous to the game being played by local grocery stores. The

assumption that national–level firms’ decisions are exogenous to those of local stores greatly sim-

plifies the model and has been employed in other studies of strategic interaction between local

firms (Ackerberg and Gowrisankaran, 2006). Supercenters’ entry decisions are based on their en-

tire catchment area, rather than the isolated markets under study here, so they are not strongly
34Recall that I use the scale normalization σ2

ε + σ2
ν = 1.

35In empirical work, Seim (2006) uses a two-stage game where potential entrants first decide whether to enter based
on a publicly observable market-level shock, and then decide on their location given the number of firms that entered.
The location decision is an incomplete information game. The two-stage structure is distinct from simply assuming
ρ = 1 in the model presented here.
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influenced by the presence or absence of local stores. Furthermore, it often takes several years for

supercenters to gain zoning approval and build their stores, so their presence is known to the local

firms at the time they make operation decisions.

9.1 Confidence Set for the Structural Parameters

For comparison purposes, I estimate the model under the incomplete information and complete

information assumptions that are commonly employed in the entry literature. For these models, I

use traditional inference methods that rely on the assumption that the model is point identified. For

the full model, I do not assume point identification and instead employ the inference techniques

described in Section 7. These techniques do not provide point estimates. Instead, I report the

95 percent confidence sets for the identified set and a 95 percent confidence region for the true

parameter. The first covers the entire identified set at a confidence level of 95 percent, while the

second covers the true parameter values with a confidence level of 95 percent. Table 7 presents

the results for the model restricted to complete information and for the full structural model

respectively. Because the inference procedure for the full model yields a joint confidence region, I

report projections of this region onto parameter axes. For this reason, Table 7 exaggerates the size

of the confidence sets. Many parameter values within the cartesian product of these intervals are

outside the confidence set. The counterfactuals in the next section operate using the true confidence

region, a subset of the “box” reported in Table 7.

The full model nests both the complete and the incomplete information frameworks. Therefore,

we can use the full model to test the other two. The incomplete information model is rejected at

the 0.05 level, while the complete information model cannot be rejected. I compare the intervals

from the complete information framework and the full model to see the impact of the complete

information assumption within this application. Substantial differences between the two confidence

sets indicate that the results of the complete information model are misleading if the complete

information assumption does not hold.

As in most discrete–choice models, it is difficult to interpret the parameter confidence intervals.

The counterfactual calculations presented in the next section clarify the implications of the model.
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Nonetheless, the results indicate that the presence of a supercenter has a mild negative effect on

the value of a grocery store. In contrast, the entry cost is large and positive. The baseline effect

of population on monopoly profits is monotonically increasing, while its effect on competition is

ambigous. The non-monotonic effect of population in the entry and exit probit regressions of Tables

5 and 6 may be due to the failure to control for the endogeneity of rival activity.

9.2 Counterfactual Experiments

Using the confidence region for the identifiable parameter, I construct bounds for counterfactual

statistics, such as the change in firm value from an exogenous change in market structure, or

the difference in the expected number of grocery stores between markets of different sizes. These

counterfactuals are functions of both the parameters of the model, θ, and the selection mechanism,

λ. A very conservative method for deriving bounds would be to allow the selection mechanism

to take any form in the counterfactual experiments. Instead, I restrict the bounds to the set of

selection methods that fit the data using a criterion based on the likelihood function. The details

of this procedure are presented in Appendix D.

9.2.1 Effects on Firm Valuations

I now consider the effect of changing the market structure on firm valuations. For comparison

purposes, I also present bounds based on the complete information model.36 The bounds of the

incomplete information model and the full model are not directly comparable because the assump-

tions of the incomplete information model are rejected. Because the incomplete information model

is rejected by the full model, bounds based on the incomplete information model are not directly

comparable to the full model. Firm valuations are the expected payoff from operating the firm

before shocks are revealed. The formula for the expected value of the firm at the start of the period

is
36Bounds for the complete information model are constructed by drawing from the asymptotic distribution of

θ̂. This assumes that there is sufficient variation in covariates to point identify θ under the complete information
restriction. This is the standard assumption used in the literature.
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E[Vi(x; a)|x; θ, λ] = (17)∫ ∑
e∈E(x,ε)

λe(x, ε)
(
ρei (x, ε; θ)

(
µ(x)− ρe−i(x, ε)δ(x) + E[νi|νi ≥ χei (x, ε)] + εi

))
dF (ε).

I numerically approximate (17) by simulating the distribution of ε. The object of interest is the

relative change in firm value of moving a firm from state x to state x′, i.e., E[Vi(x
′;y)]−E[Vi(x;a)]
E[Vi(x;y)] .

First, consider the effect of adding a supercenter in the vicinity of a market where none existed.

Bounds for the effect on firm value are presented in Table 8. The bounds indicate that supercenters

may decrease expected long-run firm profits by up to 25 percent but may also generate up to a 10

percent increase in profits. The upper bound under the complete information model is substantially

lower. The difference is a result of relaxing assumptions about the information structure. The upper

bound is generated by parameters for which the net effect on µ(·) + δ(·) is negative as a result of

supercenter entry.37 One might expect lower long-run profits as a result. However, the entry

of a supercenter lowers the equilibrium probability of rival activity, an effect that is favorable to

firms conditional on being active. In the complete information framework, firms can condition

on their rival’s public shock and avoid negative outcomes, so the benefits from less rival activity

only appear on the margin. On the other hand, if the firms are uncertain about rival entry, a

reduction in entry probabilities reduces the chance of simultaneous entry resulting in negative

payoffs. Lowering the probability of negative profit outcomes can substantially benefit firms by

alleviating their coordination problem. In contrast, the complete information model assumes away

the coordination problem. Since negative profit outcomes never occur under complete information

assumptions, the complete information model is unable to capture the full benefit of reducing rival

entry when firms are uncertain.

Furthermore, in duopoly markets, the lower bound of the supercenter effect for the full model

is substantially lower than the bound calculated using complete information assumptions. In the

complete information case, firms are able to avoid negative profit outcomes, so the decrease in profits
37Although the confidence set includes parameters where the net effect is slightly positive, these do not generate

either the upper or lower bounds of the confidence intervals.
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Effect of Supercenter Entry
on Firm Value (Percent)

Complete Info. Full Model
Pop 0-3k

Monopoly [-13.9 3.7] [-22.7 11.4]
Duopoly [-13.7 0.2] [-23.9 5.6]

Pop 3k-6k
Monopoly [-12.6 3.0] [-14.9 9.9]
Duopoly [-13.5 -1.1] [-18.9 7.2]

Pop 6k+
Monopoly [-10.9 2.3] [-12.7 7.9]
Duopoly [-12.4 -1.5] [-20.3 4.7]

Table 8: Effect on firm value of grocery store if Supercenter enters within 20 miles (percent), 95
percent confidence intervals for the complete information model and the full model.

is due to both fewer profitable opportunities and less-positive profits given those opportunities.

In contrast, negative profit outcomes occur if firms are uncertain. The full model includes the

possibility that the harsher environment resulting from supercenter entry makes profits even more

negative in the event of ex-post regret. This result is particularly stark if firms begin the period as

a duopoly because both firms are likely to choose to operate.

In sum, the pure strategy complete information model abstracts away from uncertainty about

opponents. This ignores the coordination problem that firms face when entry by both will result in

negative payoffs.38 Allowing for uncertainty between firms systematically widens the bounds on the

effect of supercenter entry. Since neither the data nor economic intuition rules out the possibility

of a substantial private component in players’ objective functions, the bounds using the complete

information model are driven by prior assumptions.

Table 9 bounds the effect on firm value for a monopolist who experiences entry by a local rival.

In contrast to the effect of supercenter entry, this effect is unambiguously negative. Moreover, it

can be devastating. The lower bound is a decrease in expected profit in the range of 60 percent.

When restricted to complete information, the lower bound is only a 25-30 percent loss. The

difference is again that with complete information firms are able to avoid situations that result in
38The coordination problem can arise due to the play of mixed strategies; however, one could argue that mixed

strategies would be avoided in this case because they result in lower expected profits for both players. Moreover,
most empirical studies using the complete information model rule out mixed strategies by assumption.
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Effect of Local Entry
on Firm Value (Percent)

Complete Info. Full Model
Pop 0-3k

Supercenter [-29.8 -16.5] [-75.3 -15.1]
No Supercenter [-26.9 -13.1] [-63.1 -12.4]

Pop 3k-6k
Supercenter [-27.0 -9.4] [-60.2 -10.6]
No Supercenter [-29.3 -14.7] [-69.4 -9.6]

Pop 6k+
Supercenter [-25.2 -10.6] [-66.0 -6.1]
No Supercenter [-24.5 -8.1] [-57.4 -5.2]

Table 9: Effect on a monopolist grocery store’s firm value when another grocery store enters its
market (percent); 95 percent confidence intervals.

negative profits. Under the complete information model, if a two–firm presence in the market is

unprofitable, exactly one will quickly exit, leaving the other to enjoy monopoly status. The effect

of local competition on long–run firm value is strongly negative under both the full model and the

complete information model.

Tables 8 and 9 give the impression that entry by a local grocery store is more harmful than

non-local supercenter entry. However, the bounds overlap and do not rule out the possibility that

monopolists may prefer facing local competition to competition from a supercenter. I use the model

to examine this question directly by computing bounds for the following statistic:

E[Vi|Monopoly, Supercenter]− E[Vi|Duopoly,NoSupercenter]
E[Vi|Monopoly,NoSupercenter]

.

The sign of this statistic indicates whether a firm prefers to face a supercenter or local competition;

its magnitude measures the strength of preference as a percentage of the firm value. Bounds for this

statistic are presented in Table 10. In both small and large market categories, firms unambigously

prefer supercenter competition to local competition. The sign is technically ambiguous in medium–

sized markets; however, results are again heavily tilted towards preferring supercenter competition.

Differentiation on the basis of location and store type is effective at blunting the cost advantages

of supercenters over local grocery stores.
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Difference in Store Value Following
Supercenter versus Local Entry

Complete Info. Full Model
Pop 0-3k [5.0 28.9] [4.2 63.8]
Pop 3k-6k [2.6 25.7] [-1.2 61.5]
Pop 6k+ [-1.1 24.8] [1.5 55.3]

Table 10: Difference between the value of a store following supercenter entry versus local grocery
store entry as a percentage of the monopolist store value. A positive number implies that a mo-
nopolist would prefer supercenter entry to local-grocery-store entry, a negative number implies the
opposite; 95 percent confidence intervals.

9.2.2 Availability of Grocery Stores

The previous subsection analyzed the impact of supercenter entry on the prospects of local firms. I

am also concerned with the effect of supercenters on consumers. Focusing on Wal-Mart, Hausman

and Leibtag (2005) propose a model whereby supercenter entry increases consumer welfare directly

by offering consumers an additional choice and indirectly by causeing prices to drop at all firms

due to increased competition. However, if supercenter entry alters the choice set by inducing

closure of local stores, some consumers will be worse off. Total consumer welfare could then fall

due to supercenter entry. To determine the overall effect on consumer welfare, it is necessary to

examine the extent to which supercenter entry endogenously reduces the set of choices available to

consumers. This initial step is undertaken in this section.

I assume that exogenous market characteristics, including the presence of a supercenter, are

constant over time.39 With this assumption, the structural model produces a Markov chain that

governs transitions over the number of stores in the market. Table 11 presents the confidence bounds

on the stationary distribution of this Markov chain by market type using the full model.40 Across

market sizes, it appears that the presence of a supercenter shifts up the bounds on the proportion

of unserved markets, and shifts down the bounds on the proportion of markets served by two local

firms. While the bounds are wide, the effect of supercenters on the long–run distribution of local
39This assumption is not needed for estimation. I estimate firms’ expectations of their long–run profits based on

their entry and exit actions. Firms’ expectations of how the exogenous variables will change in the future is accounted
for in their expectations of long–run profits.

40The bounds from the complete information model are not presented in this section as they do not provide any
additional insights beyond the results of the full model.
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Number of Grocery Stores
0 1 2

Pop 0-3k
Supercenter [27.9 66.8] [33.0 70.7] [0.1 6.1]
No Supercenter [24.8 50.5] [49.0 70.9] [0.4 10.7]

Pop 3k-6k
Supercenter [14.1 39.0] [57.5 80.4] [1.6 13.0]
No Supercenter [8.0 32.5] [60.3 83.6] [1.9 18.7]

Pop 6k+
Supercenter [3.0 13.5] [57.4 81.9] [15.0 34.2]
No Supercenter [2.0 10.0] [48.0 77.2] [18.9 48.7]

Table 11: Stationary distribution of the number of firms in a market by market type (percent); 95
percent confidence intervals.

grocery stores seems mild.

Comparing these results with the observed distribution of stores across markets (Table 4), I

find that the 2000 distribution of stores is well within the bounds of the steady state distribution.

Note that this need not be the case: the results reported in Table 11 are derived from entry and

exit patterns, while those in Table 4 come from the static distribution of stores. This is consistent

with the view that a major shift in the availability of local grocery stores is not underway.

An area of specific concern is the possibility of supercenters causing a large increase in the

number of markets that are unserved by local grocery stores, spawning “food deserts.” Table

11 provides upper bounds on the proportion of unserved markets. Market size is a much more

important determinant of unserved markets than the presence of a supercenter, and the majority of

markets will be served by at least one grocery store in large and medium markets. In small markets,

where the proportion of unserved markets is already high (Table 4), the proportion of unserved

markets can only be bound below two-thirds. It appears that the smallest markets are barely able to

meet the minimum scale for even a single grocery store. The presence of a supercenter exacerbates

the problem, but a small population is at the root of the issue. Restrictions on supercenters would

not be likely to remove the threat of small markets becoming “food deserts.”

While Table 11 compares stationary distributions of local stores with and without supercenters

nearby, Table 12 examines the effect of introducing a supercenter in the vicinity of the market on

the stationary distribution. This table largely confirms that supercenter entry is likely to lead to a
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Number of Grocery Stores
0 1 2

Pop 0-3k [-10.6 18.9] [-18.6 10.5] [-5.3 1.3]
Pop 3k-6k [-6.7 14.5] [-10.3 7.0] [-12.6 2.0]
Pop 6k+ [-1.9 7.4] [-4.9 23.7] [-28.1 5.4]

Table 12: Effect of supercenters on the stationary distribution of the number of grocery stores
(percent); 95 percent confidence intervals.

Expected Number of Supercenter Effect
Grocery Stores (Percent)

Pop 0-3k
Supercenter [0.33 0.76]

[-36.6 17.0]
No Supercenter [0.50 0.82]

Pop 3k-6k
Supercenter [0.65 0.94]

[-25.7 7.6]
No Supercenter [0.74 1.03]

Pop 6k+
Supercenter [1.04 1.27]

[-22.9 5.0]
No Supercenter [1.13 1.45]

Table 13: Expected number of stores by market size and supercenter presence and the effect of
adding a supercenter to a market on the expected number of stores; 95 percent confidence intervals.

decrease in the number of duopolies, although we cannot rule out the possibility that the number of

duopolies increases slightly. This possibility arises because the data does not reject the possibility

that supercenter entry has a strong negative effect on baseline firm profits, µ(·), but softens the

competition effect between firms, δ(·). If this is the case, the softening of competition leads to

an increase in the proportion of duopoly markets.41 The effect of supercenters on the number of

unserved markets is ambiguous, but the majority of the confidence set is positive. In areas of the

identified set where supercenter entry corresponds to decreases in the number of unserved markets,

the effect of supercenter entry on baseline profits is slightly positive, but the the effect of entry on

the competition effect is strongly negative.

While a full analysis of consumer welfare is outside the scope of this model, consumer welfare

can be roughly related to the number of options the consumer has when shopping for groceries.

The expected number of stores in a market gives some indication of how much choice a typical
41For this part of the identified set, supercenter entry substantially reduces firm values, because of the overall

negative effect on baseline profits and because firms are more likely to be in the duopoly state.
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consumer will have and how this level of choice is affected by supercenter entry. Bounds on the

expected number of stores in each market type are presented as well as bounds on the supercenter

effect on the expected number of stores in a market (in percentage terms) in Table 13. These results

indicate a downward shift in the bounds on the number of local stores available to consumers as a

result of a nearby supercenter, although the bounds overlap. The interval for the supercenter effect

is mostly negative. This echoes the descriptive results from Section 8 and other indicators in this

section that the effect of supercenter entry mildly reduces the number of local stores. However, it

seems unlikely that this decrease in the expected number of local–grocery–store options offsets the

benefits from adding the supercenter option to consumers’ choice sets. Of course, a full analysis of

consumer welfare is outside the scope of this paper.

Allowing for a flexible information structure is important to the robustness of the counterfactual

analysis presented in this section. The amount of uncertainty firms have about rivals is directly

related to the amount of excess entry—when firms make negative profits, but consumers have more

choices—and the number of underserved markets—where entry would be profitable but is avoided

for fear of encountering a rival. The complete and incomplete information frameworks assign all

variation in the data to either firm heterogeneity or firm uncertainty as a starting point for the

analysis. In contrast, the full model generates counterfactual bounds based on allowing all mixtures

of these sources of variation, which are consistent with the observed data.

10 Conclusion

Earlier studies of discrete games have assumed that unobserved factors of the game are either

publicly observed by all players (complete information) or known only to a single player (incomplete

information). I provide a more general model, which nests these assumptions and parameterizes

the extent to which unobservable elements of a firm’s profit opportunities are publicly known.

Using this model, information in the data can be used to make inference on the extent to which

variation in firm actions is due to public or private information. The usual assumptions made by

both the pure complete and pure incomplete information frameworks are testabale using my model.

By using inference techniques that avoid point identification assumptions, I construct bounds on
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model statistics without imposing ad hoc assumptions on the information structure. Comparing

my method to existing methods shows that assumptions about the information structure are not

innocuous and they systematically constrict the confidence bounds for several statistics of interest.

The method presented in this paper can be used to conduct robust but non-trivial inference on

questions of substantial public policy importance. The growth of the supercenter format has led

industry observers to ask how supercenters alter the grocery market, and whether they are likely

to displace local grocery stores. I analyze the impact of supercenters on small localized markets,

using a flexible information structure. For grocery-store owners, I find that entry by a supercenter

is far less detrimental than entry by a local competitor, and that if supercenter entry is effective at

suppressing the probability of entry by a local challenger, it may actually increase long-run profits

for incumbents. This outcome is the product of a reasonable economic model that fits the data

well, but is artificially ruled out by the complete information framework. From the consumer’s

perspective, I find that supercenters likely cause a slight reduction in the expected number of

grocery stores within a market, but that this effect is small when compared to other factors, such

as the size of the market.

The empirical results show that placing strong assumptions on the information structure of a

game has real consequences. The incomplete information framework is rejected when tested against

the general model. While the complete information framework is not rejected, bounds produced

using this framework are driven by ad hoc assumptions on the information structure. This leads the

researcher to make overly strong conclusions. Moreover, the empirical exercise shows that inference

techniques that are robust to partial identification can be used to derive meaningful confidence

bounds for many statistics of interest.
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A Equilibrium Selection Assumptions and Misspecification

In Section 6.2.1, I have derived the identified set for an pure incomplete information model assuming

a non-parametric equilibrium selection mechanism. In this appendix, I take use an incomplete

information model to examine the effect of a stronger selection assumption frequently applied

in the literature. Many papers in the incomplete information framework have assumed that a

unique equilibrium is selected in all markets conditional on the observed variables Seim (2006);

Vitorino (2008); Bajari, Hong, Krainer, and Nekipelov (2008); Bajari, Benkard, and Levin (2007)

state this assumption or a stronger unique equilibrium assumption explicitly while it is sometimes

left implicit in other work. With this assumption it is no longer necessary to treat the observed

outcome distribution within a mixture model, and several authors have noted that this assumption

can be employed to estimate an incomplete information model without solving for equilibrium

(Aguirregabiria and Mira, 2007; Bajari, Benkard, and Levin, 2007; Bajari, Hong, Krainer, and

Nekipelov, 2008). First, consider the case when equilibrium is unique everywhere, so the unique

selection assumption is correct a fortiori. In this case #E(x, θ) = 1, so the mixture model presented

in this paper collapses and the model is locally point identified with or without the unique selection

assumption. Second, consider the case of multiple equilibria, but unique selection is correct. In this

case, the unique selection assumption will achieve local point identification, while the nonparametric

selection model presented here may be partially identified. Finally, we consider the case when the

assumption is incorrect. In this case the unique selection assumption is mis-specified.

To test the extent of mis-specification, we construct a simple 2-firm model where firms are either

high cost or low cost. Payoffs are specified as

πi(ai, a−i;xi, x−i) = 1[ai = 1](β0 + β11[xi = H]− δ1[a−i = 1] + νi)

Where we assume νi ∼ N(0, 1). Within this model there are three market types (L,L), (H,L)

and (H,H). We assume that actions are directly obseved, so there are four possible outcomes

(0, 0), (0, 1), (1, 0) and (1, 1). Let the true parameter values be denoted θ∗ = (β∗0 , β
∗
1 , δ
∗) = (6,−2, 5).

With this parameterization there is a single equilibrium for the (L,L), and (L,H) market types
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(a) Nonparametric Selection, QI(·) (b) Unique Selection Conditional on Observables, QU (·)

Figure 5: Contour map of the identification function for a 2-player model under nested selection
assumptions. The identified set is the set of points for which this function equals zero. Under
identification assuming a nonparametric selection mechanism (a), the identified set is the point
corresponding to the true model. The identified set under unique selection (b) is empty and the
optimum is inconsistent with the true model. See text for model specification specification. Contour
regions are constructed using a log scaling.

and three equilibria for the (H,H) market type. We let the mixing distribution be λ∗ = (.4, .2, .4)

where the equilibrium with weight .2 is the unstable but symmetric equilibrium, and the two with

probability .4 are the stable “label switching” equilibria.

Consider the following function,

QI(θ) =
∑
x∈X

αx min
λx

∣∣∣∣P (y(θ∗, λ∗)|x)− λ′xP (x, θ)
∣∣∣∣ (18)

Where λ is appropriately restricted according to (8) and P (y(θ∗, λ∗)|x) is the observed outcome

distribution given the true parameters and selection mechanism, αx is some positive weighting

and || · || is an appropriate vector norm. It is straightforward to see that the identified set (8) is

equivalent to the set of values that set Q to zero. The we can rewrite identified set of our model as

ΘI = {θ ∈ Θ : QI(θ) = 0}.

We can now compute the identified set by computing Q across a grid of points in the parameter

space. We find that the only point which sets QI equal to zero is θ∗, so the model is point identified.
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A contour map of the minimum of QI in the (β0, δ) plane is shown in Figure 5a. We use an even

weighting across X and the square norm. Contour regions are drawn according to a log scaling.

While Figure 5a depicts sharp curvature of the identified function at the optimum, we should note

that this is dependent on the model, the chosen weighting, and the chosen norm.

Next, consider the identified set of we add the (incorrect) assumption of unique selection con-

ditional on unobservables. We can construct the identified set under this assumption using the

function,

QU (θ) =
∑
x∈X

αx min
e∈E(x,θ)

||P (y(θ∗, λ∗)|x)− P e(x, θ)|| (19)

The identified set under the unique selection assumption is the set {θ ∈ Θ : QU (θ) = 0}. Computing

this function across the same grid as before, we find that this set is empty, indicating that the model

is mis-specified. Since it is common for a structural model to be mis-specified, the usual practice

is to take the minimizer of the identification function as the object of interest. I plot the contour

map of QU in Figure 5b. This figure shows that not only is the minimizer of QS substantially

different θ∗ but θ∗ appears unlikely to lie in the confidence region of the optimum of this function

for substantial data sets.42 This finding should give pause to researchers considering the unique

selection assumption without a strong indication that it in fact holds.43

B Proofs

Theorem 1 If Assumptions 3 and 4 hold, then the parameters of the payoff function (θ∗iµ, θiµ, θiδ)

are point identified.

Proof. The proof is similar to Theorem 1 of Tamer (2003). Without loss of generality consider

player 1’s action, the argument for player 2 is symmetric. Player 1’s best response function is,

χi(χ−i, ε, x) = −(x∗i θ
∗
iµ + xiθiµ + εi) + ρ2(χ−i, ε, x) (xiθiδ) (20)

42This of course will depend on the amount of data available and the chosen weighting and norm. The key message
from the figure is that there are a large set of models that appear to fit the data better than the true model when
the unique selection assumption is enforced but incorrect.

43A case where unique selection is intuitively more likely would be when data comes from the same agents repeating
the game many times (although this may bring dynamic complications into the game). The assumption appears less
credible to hold when we pool data across many markets.

61



Where ρ2 is player i’s rational belief about the rival firm’s probability of entry based on its given

strategy χ−i. This probability is derived according to (2).

Assume without loss of generality that θ2µ > 0.44 Then limx∗2→−∞ P (y2 = 1|x, ε) = limx∗2→−∞ P (yi =

1|x) = 0, because from (20), χ2 → ∞ as x∗2 → ∞ when holding all other parameters fixed. Since

by the Bayesian Nash equilibrium assumption, ρ2(∞, ε; θ) = 0, the probability of firm 1 entering is

lim
x∗2→−∞

P (y1 = 1|x) = E[P (ν ≥ χ1(χ2, ε, x))] = P (εi + νi ≥ −(x∗1θ
∗
1µ + x1θ1µ))

By our scale assumption on the distribution of εi + νi, this is a simple linear probit model, so

(θ∗iµ, θiµ) is identified.45 To identify the parameters of θδ, note that, limx∗2→∞ P (y2 = 1|x, ε) =

limx∗i→∞ P (y2 = 1|x) = 1, so we have

lim
x∗2→∞

P (y1 = 1) = P (εi + νi ≥ −(x∗1θ
∗
1µ + x1θ1µ + x1θ1δ))

Since (θ∗1µ, θ1µ) are already identified by the preceding argument, we treat these parameters as

known, the result is a linear probit model with a constant adjustment, so θiδ is identified as

well.

Theorem 2 If Assumptions 1through 5 hold, the assumptions of the pure strategies complete

information framework are testable.

Proof. The complete information assumption fixes σ2
ε at 1, so the only remaining parameters to

identify are ρ and λ(·). Given the pure strategies assumption, player 1 knows y2 with certainty

when making his own entry decision (and vice versa). Given this, if we observe either both firms

entering or neither firms entering, we can infer that the strategy was generated by a model with a

unique equilibrium.46.

P (y1 = 1, y2 = 1, x; θ) =
∫ ∞
ε1=−(x∗1θ

∗
1µ+x1θ1µ+x1θ1δ)

∫ ∞
ε2=−(x∗2θ

∗
2µ+x2θ2µ+x2θ1δ)

dF (ε1, ε2; ρ)

44The same argument with signs reversed can be carried out if θ2µ < 0.
45The argument is symmetric for player 2.
46This argument assumes that xiθiδ < 0 is zero for both firms, a similar argument holds with the sign reversed.

62



Since the parameters of the objective function are identified by Theorem 1, ρ is the only free

parameter on the right hand side. Because this expression is monotonically increasing in ρ, ρ is

identified by observing the left hand side for a single market. After identifying ρ from a single

market, P (y1 = 1, y2 = 1|x) is known for all x, since it is independent of the selection mechanism.

Therefore can test the assumptions of the pure strategy complete information model by checking

to see whether P (y1 = 1, y2 = 1|x) implied by the pure strategies complete information model is

consistent with the observed distribution across all markets.

Theorem 3 If Assumptions 1 though 5 hold, the assumptions of the pure incomplete information

framework are testable.

Proof. Under the assumptions for the incomplete information model, σε = 0 by assumption, so ρ

drops out of the model. This implies that player’s observed actions are independent conditional on

the observed covariates,

y1 ⊥ y2|x∗1, x1, x
∗
2, x2

We can use the data to test whether or not this restriction holds.

Theorem 4 If assumptions 1-3, and 5 hold. The sharp identified set of θ for the incomplete

information model is,

ΘI =

 θ ∈ Θ : ∀x ∈ X,∃λ̃ ∈ [0, 1]Ē s.t. P (·|x) =
∑

e∈E(x;θ) λ̃
eP e(x, θ),∑

e∈E(x;θ) λ̃
e = 1

 (21)

Where Ē is a constant which represents the largest possible number of equilibria the model admits

almost everywhere over X ×Θ.

Proof. We are only interested in λ at the true value of θ, and we have assumed that P(y—x) is

observed for identification purposes. Therefore, we treat λ as a restricted nuisance parameter. Given

θ this parameter essentially indexes the set of possible observed distributions that are consistent

with the model. The conditional outcome vector P (y|x) describes all the restrictions on the model
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we observe from the data. By definition, θ ∈ ΘI if and only if it can be paired with some valid

mixture λ̃ across equilibrium outcomes to generate the outcome distribution.

Theorem 5 If assumptions 1-3, and 5 hold. The identified set of the full model is,

ΘI =


θ ∈ Θ : ∀x ∈ X,∃λx(ε) ∈ [0, 1]Ēs.t.:

P (y|x) =
∫ ∑

e∈E(ε,x,θ) λ
e
x(ε)P ey (ε, x, θ)dF (ε),

∀ε, x :
∑

e∈E(ε,x,θ) λ
e
x(ε) = 1

 . (22)

Proof. The proof of this theorem is a trivial extension of the argument from Theorem 4.

Lemma 1 (i) L(θ) = argmaxθ′∈Θ L(θ′) for all θ ∈ ΘI as defined by (11), and L(θ) > argmaxθ′∈Θ L(θ′)

for all θ ∈ Θ \ΘI , and (ii) L(θ) is continuous in θ.

Proof. The proof of (i) trvially follows from the definition of ΘI . To see (ii), define the set of

probability distributions that are consistent with a given set of model parameters θ as,

P(θ) =


P (·|·) ∈ P : ∀x ∈ X, ∃λx(ε) ∈ [0, 1]Ē s.t.:

P (y|x) =
∫ ∑

e∈E(ε,x,θ) λ
e
x(ε)P ey (ε, x, θ)dF (ε),

∀ε, x :
∑

e∈E(ε,x,θ) λ
e
x(ε) = 1

 . (23)

It is clear that a discontionuity in L(θ) implies a discontinuity in P(θ), so we show that P(θ) is

continuous in θ. For each point in P ∈ P(θ) there exists a selection mechanism λ which produces

the outcome distribution P . Consider a differential change in θ to θ′. At every regular point (x, ε)

on the equilibrium correspondence, the cardinality of the equilibrium sets E(x, ε, θ) and E(x, ε, θ′)

is the same, so the same selection mechanism can be used. Irregular points on the correspondence

are a set of measure zero and can be ignored. Now consider each individual regular equilibrium,

by the implicit function theorem there is an equilibrium in the set E(x, ε, θ′) in the neighborhood

of every regular equilibrium on the set E(x, ε, θ′). This follows from continuity of the equilibrium

conditions in θ and continuity of the bivariate normal distribution in its parameters. By using the

selection mechanism λ(x, ε) and matching the equilibria of E(x, ε, θ′) to their “nearby” points on
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E(x, ε, θ′). The resulting outcome distribution P ′ must be in the neighborhood of P . Since this can

be accomplished for any P ∈ P and for any θ ∈ Θ, continuity of P(·) and L(·) follows.

Theorem 6 For all θ ∈ ΘI , maxθ′∈Θ Ln(θ′)− Ln(θ) = op(1).

Proof. We have,

max
θ′∈Θ

Ln(θ′)− Ln(θ)→p max
θ′∈Θ

L(θ′)− L(θ) = 0

Where the probability limit follows from uniform convergence of Ln(·) to L(·) and the equality

follows from Lemma 1 and θ ∈ ΘI .

C Computational Appendix

C.1 Computing the Equilibrium Set

In this section I present a method to approximate all equilibrium in the set E(ε, x, θ). For simplicity,

we suppress covariates in this section and treat µ and δ as constants. Moreover, because we deal

with each ε draw independently, the notation of this appendix suppresses the dependence of the

strategies (χ1, χ2) and beliefs (ρ1, ρ2) on x and ε.

The set of equilibria is equivalent to the set of all solutions to the system of equations,

χ1 = −(µ1(θ) + ε1) + ρ2(χ2; θ)δ1(θ) (24)

χ2 = −(µ2(θ) + ε2) + ρ1(χ1; θ)δ2(θ)

Where χi is a cutoff strategy for entry and ρi is agent i’s probability of entry based given he is

using the strategy χi.

ρi(χ; θ) =
∫

1[νi ≥ χ]dF (νi; θ)

We need only search for equilibrium strategies within the set of rationalizable strategies. Because

agents beliefs about the probability of entry are bounded between 0 and 1, the set of rationalizable
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strategies for player i is,

Ψi = [min (−(µi(θ) + εi),−(µi(θ) + εi) + δi(θ)) ,max (−(µi(θ) + εi),−(µi(θ) + εi) + δi(θ))]

Since equilibrium strategies must be rationalizable, we can confine our search for equilibrium cutoffs

for player i to Ψi. We then search for equilibria using the following algorithm:

1. For a grid of points χp1 ∈ Ψ1:

(a) Compute player 2’s best response given player 1 uses the strategy χp1,

χbp2 = −(µ2(θ) + ε2) + ρ1(χp1; θ)δ2(θ).

(b) Compute player 1’s best response given player 2 uses the strategy χbp2

χbp1 = −(µ1(θ) + ε1) + ρ2(χbp2 ; θ)δ1(θ).

(c) Compute zp = χp1 − χ
bp
1 .

2. Wherever zp and zp+1 are opposite signs, use Newton’s method starting (χb1, χ
bp
2 ) to solve

(24).

3. If |zp| < |zp−1| and |zp| < |zp+1|, use Newton’s method starting (χb1, χ
bp
2 ) to solve (24).

If (χb1, χ
bp
2 ) is an equilibrium, then zp = 0. The vector of points {zp} is a discretization of a

continuous function. The algorithm locates equilibria by searching near the zeros of this function,

which is much more efficient than simple multi-starting. Finding all equilibria depends on using a

fine enough discretization of the rationalizable set. Clearly, there is a tradeoff between accuracy

and computation time. The results of this paper are robust to changing the coarseness of the

discretization of the rationalizable set.
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C.2 Numerical Approximation of the Profiled Likelihood Function

This appendix provides details on the optimization problem which is used to calculate Ln(θ). Given

a value for λ, the maximand Ln(θ, λ) is calculated using standard numerical simulation techniques.

We can write the maximand as,

Ln(θ, λ) =
1
n

n∑
i=1

[
log(PRyi (xi, θ, λ))

]
where,

PRy (x, θ, λ) =
1
R

R∑
r=1

∑
e∈E(ε,x,θ)

λe(εr, x)P eyi(εr, x, θ)f(εr; θ)

Where we have selected R sample points over which to approximate the integral over ε. These

sample points could be chosen in several different ways, including monte carlo simulation. I have

chosen to use Halton sequences to approximate this integral.

Our task is to profile λ out of this function. To accomplish this, we need to find a ”most

favorable” selection mechanism given θ. Let λθ be any element of the set of maximizers of the

likelihood for a fixed θ.

λθ ∈ argmax
λ()

Ln(θ, λ(·))

It is clear that all λ which are equal on the sample points chosen for the numerical approximation

of PR evaluate to the same likelihood, so λθ is not be uniquely defined. However, maximizing λ

over the set of sample points will yield an appropriate value for the purpose of approximating L(θ).

For each sample point I calculate the equilibrium set E(εr, x, θ). For each equilibirum, I assign

each an index e, and a mixing probability λr,x,e. We then optimize the following constarined

maximization problem over the vector of mixing probabilities,

λRθ = argmax
λ∈[0,1]R×X×Ē

N∑
i=1

∑
y∈Y

1[yi = y] log

R−1
R∑
r=1

∑
e∈E(ε,xi,θ)

λr,xi,eP
e
y (εr, xi, θ)f(εr; θ)

 (25)

s.t. ∀r, x :
∑

e∈E(εr,x,θ)

λr,x,e = 1
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While high-dimensional and somewhat daunting in appearance, the optimization problem in

(25) is a concave objective with linear constraints, and can be handled by modern nonlinear solvers

for R in the hundreds. Furthermore, whenever E(εr, x, θ) is unique, the selection mechanism is

degenerate and there is no need to optimize over the selection mechanism. This leads to a dramatic

reduction in the number of unknowns in this problem in many cases. Efficient computation of

(25) is important because this problem must be solved for each θ we wish to test during simulated

annealing.

We can now evaluate the profiled likelihood statistic for each θ by plugging λRθ back into the

full likelihood function.

LN (θ) = LN (θ, λRθ )

C.3 Weighted Bootstrap Algorithm for Confidence Sets

This appendix describes the implementation of the weighted bootstrap to derive the confidence

region for the identified set and the confidence region for the identifiable parameter. Let the

objective function be defined as

Ln(θ) = max
λ

n−1
n∑
i=1

log p(zi, θ, λ)

The weighted likelihood function is a function of weights w = (w1, . . . , wn).

Ln(θ, w) = max
λ

n−1
n∑
i=1

wi log p(zi, θ, λ)

The key observation is that, under appropriate distributional assumptions on w, the weighted

likelihood will have the same asymptotic distribution as the “standard” likelihood. Bootstrapping

the weighted likelihood amounts to evaluating the function for different sets of weights. The quan-

tiles found by bootstrapping the weighted likelihood will approximate the quantiles of the standard

likelihood.

First, normalize the likelihood function at its maximum, to get a set objective function in the
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form of CHT,

Qn(θ) = max
θ′

Ln(θ′))− Ln(θ)

Qn(θ, w) = max
θ′

Ln(θ′, w))− Ln(θ, w)

For the weighted bootstrap procedure, draw B = 200 sets of weights where E[wbi ] = 1 and

V [wbi ] = 1 which are independent of the data. Since the weighted likelihood and the unweighted

likelihood have the same asymptotic distribution we can use the quantiles of {Qn(θ, wb)}Bb=1 to

estimate the cutoff for the confidence region. Ideally, we would use all points in Θ for this procedure,

however this is clearly computationally infeasible. Instead we will use simulated annealing to select

a large number of points which adequately cover the parameter space near its minimum. Some

tuning of the jump distance and the temperature of the simulated annealing algorithm may be

needed to ensure adequate coverage.

1. From multiple (around 25) start points, run the simulated annealing algorithm on Qn(·) for

many (over 10,000) iterations each. Save all points.

2. Define the starting cutoff c0 and the starting set of points S0 = {θ : nQn(θ) ≤ c0}. In practice

we will use the set of points S0 which are in S0 and have been visited by the simulated

annealing. The starting cutoff must be decreasing in n at a slow enough rate a la CHT. An

extreme alternative is to let c0 =∞, which implies S0 = Θ and S is simply all points visited

by simulated annealing.

3. For each point in S0, compute {Qn(·, wb)} note that we only need to solve the model 1 time

for each θ and then can compute the likelihood for each weight sample.

4. Iterate the following until |c`−1 − c`| < ε.

(a) Compute:

c`+1 = inf{x :
1
B

B∑
b=1

1[max
θ∈S`

nQn(θ, wb) ≤ x] ≥ 1− α}.

(b) Define:

S`+1 = {θ ∈ S` : nQn(θ) ≤ c`+1}.
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5. Let ĉ = c`, Θ̂I = {θ : nQn(θ) ≤ ĉ}. Use S` to construct confidence intervals for statistics

of interest. Such confidence intervals are valid assuming the number of simulated annealing

iterations goes to ∞ with n.

To find the confidence set for the identifiable parameter we individually test the hypothesis that

θ ∈ ΘI for each point. The collection of all points that are not rejected is denoted Θ̄, the confidence

set for the identifiable parameter. It is easy to see that any point in Θ̄ must also be in Θ̂I–if we

cannot reject that that θ is the true parameter, we clearly cannot exclude it from our coverage

region for the identified set. Therefore, we can restrict the hypothesis test to all points in Θ̂I . The

test is conduct for a given θ by computing,

c(θ) = inf{x :
1
B

B∑
b=1

1[nQn(θ, wb) ≤ x] ≥ 1− α}.

The hypothesis is rejected if nQn(θ) > c(θ). So the confidence set for the identifiable parameter is,

Θ̄ = {θ ∈ Θ̂I : nQn(θ) ≤ c(θ)}.

Again, we use the set of points visited by simulated annealing which pass the above condition to

construct confidence intervals for the statistics of interest.

D Selection and Counterfactual Bounds

This appendix outlines the procedure used to produce the counterfactual bounds for the full model

presented in Section 9. I am interested in counterfactual statistics such as entrepreneurs’ willingness

to pay for a firm given observable characteristics at the start of the period, or the effect of placing

a supercenter near a market where one does not exist. Since the model is only identified up to

scale, I concentrate on comparisons between two observable markets characterized by x and x′.

Counterfactuals are described by a smooth function f(x, x′, θ0, λ0), where (θ0, λ0) are the true

parameters.47

47In this paper, I do not consider policy experiments, which would be the reaction of firms to a change in the true
parameters from θ0 to some other θ. A procedure very similar to the one presented here could be employed to bound
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To produce confidence intervals for a statistic f(x, x′, θ0, λ0), I can draw model parameters from

the identified set Θ̂. However, determining the selection mechanisms to use in counterfactuals is

less straightforward. The most conservative method would be to derive bounds assuming only that

some valid selection mechanism is used. Under this procedure the bounds on the effect of moving

from state x to x′ are,

[
inf
θ∈Θ̂

inf
λ∈Λ(θ)

f(x, x′, θ, λ), sup
θ∈Θ̂

sup
λ∈Λ(θ)

f(x, x′, θ, λ)

]

These bounds are too conservative in practice for two reasons. First, they conflate the un-

certainty about the model parameters and a change in the selection mechanism from its most to

its least favorable outcome from the perspective of f(·). Within the confidence set, some market

types result in multiple equilibria with a probability of more than .45.48 With such a high degree

of multiplicity, the effect of dramatic changes in the selection mechanism will swamp information

in the model about f(·). Second, fixing θ ∈ ΘI , it may be that only a small subset of the avail-

able selection mechanisms in Λ(θ) actually fit the observed data. Intuitively, the researcher could

draw from Λ(θ), check how well the proposed model fits the data by computing its likelihood, and

then construct bounds using only those selection mechanisms which are plausible given the data

according to the likelihood function. In other words for each θ ∈ ΘI , the researcher constructs the

set49

Λ̃(θ) = {λ ∈ Λ(θ) : sup
θ′∈Θ

LN (θ′)− LN (θ, λ) < κN}

and then report as the bounds,

[
inf
θ∈Θ̂

inf
λ∈Λ̃(θ)

f(x, x′, θ, λ), sup
θ∈Θ̂

sup
λ∈Λ̃(θ)

f(x, x′, θ, λ)

]

The theoretical difficulty with this method lies in the choice of κN . If κN → 0 as N →∞, then Λ̃(θ)

the marginal effect of a change in a policy parameter.
48Formally, supθ∈Θ̂I

maxx
R

1[#E(x, ε; θ) > 1]dF (ε) ≥ .45
49I use two methods to draw selection mechanisms from this set, I both randomly perturb the selection mechanism

that maximizes Ln(·) and also independently draw multinomial distributions at each evaluation point of the selection
mechanism.
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is a consistent estimator for the set of selection functions that maximize the likelihood when the

model is specified by θ. However, theory does not provide a guide on how to chose a κN that will

ensure the desired coverage probability. Instead, I assume that the rate at which κN goes to zero

is slow enough that the probability of a false rejection of the selection mechanism is asymptotically

negligible. In practice, I choose κN to be higher than the ĉ cutoff which defines the joint confidence

set for ΘI . The resulting bounds, which I present below are insensitive to large perturbations in

the choice of κN .
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