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Abstract: 

 

GM corn seed companies have innovated continuously with the introduction of new traits and, 

more recently, with the creation of stacked varieties, which combine more than one trait. This 

work develops a Bayesian model of adoption dynamics that demonstrates how uncertainty with a 

package technology with known risk can lead to a sequential adoption pattern in which farmers 

adopt a single component first.  We then develop a semi-parametric panel data model of adoption 

dynamics to measure the effects of experience with single trait (non-stacked) varieties on the 

adoption of stacked varieties. The results underscore the importance of early experience with the 

non-stacked technology in the subsequent adoption of stacked varieties, i.e., a sequential 

adoption process.  There is also evidence that farmers with more human capital tend to learn 

faster from own experience and that as the GM corn-technology diffusion process deepens, the 

importance of early experience decreases.   
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Sequential Adoption of Package Technologies 
The Dynamics of Stacked Trait Corn Adoption  

 
Most recent models of technology adoption take the new technology to be a single 

uniform technology that firms or farmers decide whether to use.  Many technologies in 

fact consist of sub-components that are available individually or jointly as a package. 

Genetically modified (GM) corn to date presents such a technology option to farmers, 

with single trait or multiple (stacked) trait varieties.  This divisibility of the technology 

package can create a particular adoption dynamic, since the experience gained through the 

adoption of subcomponents will provide information on the characteristics of the package 

thereby encouraging or discouraging its subsequent adoption.  

A now old literature on green revolution technology adoption from the 1970’s and 

1980’s analyzed package technologies, and identified sequential adoption patterns in 

which farmers adopted parts of the package before adopting the whole package (see e.g., 

Byerlee and Hesse de Polanco; Leathers and Smale).   These works were primarily 

empirical, and argued that fixed costs, credit constraints, risk, uncertainty, and learning all 

contributed to a sequential adoption pattern.  In the US GM corn market, we posit that 

learning and uncertainty are likely to be the most salient of these explanations.  GM seeds 

are inherently divisible, US farmers are not likely to face credit constraints that bind the 

purchase of a sufficient quantity of seeds to test GM varieties, and crop insurance is 

available to help manage basic risks. 1   

                                                 
1 During the period of our data, 2000-2006, US grain farmers had historically easy access 
to credit at low interest rates.  In addition, most farmers in our sample purchased crop 
insurance.  Thus, while credit constraints and risk aversion may play a role in the 
sequencing of adoption, they are likely to be a small contributor to the issue.  
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Technology adoption has long been viewed as a process that hinges on farmer 

learning about uncertain and risky options (Griliches; Rogers; Feder and Slade; Feder et 

al.; Foster and Rosenzweig; Conley and Udry).  Often the learning process about a new 

technology can drive the timing of adoption.  As explained in Feder and Omara, 

uncertainty diminishes over time because of the common experience gained through the 

adoption of farmers in the economy and because of the expected improvement of 

extension services and advancement of research studies. Similarly, uncertainty decreases 

with direct experience with the technology or with a component of the technological 

package. A strand of the literature has modeled this decrease in uncertainty using a 

Bayesian approach (Lindner; Feder and Slade; Leathers and Smale), according to which 

producers update their beliefs about the distribution of the profitability of the technology, 

using observations on the profit achieved by other producers or themselves.  From this 

literature, the Bayesian conceptual model by Leathers and Smale is the one that comes 

closest to our work in providing a reason for a sequential adoption process.  Our work 

expands the Bayesian adoption literature by considering correlated learning across 

components of package technologies and in so doing provides a new logic for a sequential 

pattern of adoption. 

Previous studies of farmer adoption of GM crops focus almost exclusively on the 

binary decision to use GM varieties (Alexander, Fernadez Cornejo et.al., Hubbell et.al. ) 

or else on a one-time decision across multiple independent or correlated choices (Useche 

et al.). All of these GM adoption studies are cross-sectional analyses that preceded or 

coincided the introduction of stacked GM traits, and do not account for timing or previous 

experience in a systematic fashion.  Thus, none of these studies explicitly account for the 
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potential sequencing of farmer adoption choices, especially the potential path of trying one 

or more single variety traits before adopting stacked varieties, which combine multiple 

traits. Examining the adoption of stacked varieties through a dynamic lens with 

longitudinal data can improve our understanding of the sequencing of farmer choices in 

this and other types of evolving package technologies. 

In this article, we analyze the sequential nature of the adoption of stacked GM corn 

varieties, which are a package of individual GM traits. The main empirical questions that 

we address are whether and why farmers might move sequentially from a single trait to a 

stacked variety.  In the GM corn market during our study period there were three traits 

(herbicide tolerance (HT), bacillus thuringeiensis (BT) to kill corn borers, and to kill corn 

rootworm insects) in the market that were sold both independently and as a packages. We 

develop a novel theoretical framework based on the concept of Bayesian updating of the 

beliefs regarding the expected profits of the stacked varieties. Using theory and data from 

a survey of corn farmers from Minnesota and Wisconsin conducted in 2006, we show that 

the possibility of learning about the profitability of the stacked variety through the use of a 

single trait variety reduces the uncertainty of stacked varieties, which tends to favor a 

sequential pattern of adoption. 

A Bayesian Model of Adoption Dynamics 

In this section, we develop a novel multivariate Bayesian model that explains the 

logic for a sequential adoption pattern for a package technology with individual 

components that could provide information on the value of the package. While this builds 

on a standard Bayesian learning framework (e.g., Anderson, Stoneman), it is to our 
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knowledge the first model using a multivariate Bayesian framework to understand how 

farmers learn about the profitability of package technologies. 

Our model features a seed market where the farmer chooses between conventional, 

single GM trait, and a stack of multiple varieties.  In this Bayesian model, farmers learn 

about the yields of the stacked variety by using a single trait variety.  Farmers make 

choices for the current period based on their current information set, which includes past 

experience with a GM trait.   This allows us to analyze how experience with a single GM 

trait changes the incentives to adopt the package given the information set available to the 

farmer.2  

Farmer’s maximization problem 

We assume that farmers face a choice set that includes J types of corn seeds (e.g., 

Conventional (c), HT only (1), BT only (2), and stacked HT/BT (s)). To simplify the 

modeling, we focus on the case in which the farmer adopts trait 1, and how that might 

create learning about trait 2 and stacked traits. The farmer will choose the variety j*, 

which gives her the highest expected utility: 

{* arg max j
j

j = }EU

                                                

       (1)  

where  is the expected utility achieved when adopting variety jjEU 3. Following 

Stoneman, we express the farmer’s expected utility as a linear function of the expected 

value as well as the variance of profits4: 

 
2 We do not explicitly model the potential forward-looking dynamics of farmer choices, 
the case where farmers might adopt a particular variety today because of the future value 
of information it might provide.  This would unnecessarily complicate the modeling 
exercise and merely reinforce the sequential adoption logic we are seeking to demonstrate.  
3 In this model we constrain farmers to choose one variety at a time. An alternative 
specification would have the farmer choose a land portfolio in order to maximize her 
expected utility. Specification (1) takes into account risk management through the binary 
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( ) ( )j jEU E bV jπ π= −       (2) 

where b represents the farmers risk aversion level. As detailed below, we assume that the 

farmer does not know the expected profits of GM varieties, and this implies that the 

variance and the expected value in (2) represent both the parameters of the real 

distribution of profits and the parameters of the farmer’s beliefs. The term ( )jE π  

represents the mean of the distribution of the farmer’s beliefs regarding expected profits, 

which may or may not be accurate to the true expected profits.  The aggregate variance, 

( )jV π , is the sum of two elements: the variance of the distribution of the beliefs regarding 

expected profits, and the variance of these profits implied by variation in common known 

but stochastic factors such as weather conditions.  The variance of the beliefs can be 

interpreted as the uncertainty component while the variance of the profits implied by 

weather conditions represents what is typically thought of as production risk.  

Profits depend on the output price, the yield, the input cost as well as the price of a 

particular seed variety in the following manner: 

*m s
j j jp y w pπ = − − j

                                                                                                                                                  

        (3) 

 
adoption decision but abstracts from risk management through land portfolio allocation. 
Specifying the problem without the portfolio selection issue, however, allows us to 
analyze the impact of experience in a simpler setting.  As shown in Feder and O’Mara, 
under the alternative portfolio selection specification farmers’ decision to adopt a new 
technology (stacked seeds in this case) will depend on the difference between the expected 
utility from two land portfolios (one where land under the new technology is zero and 
another where this amount is the optimal one) and on the amount of fixed costs of 
adoption. Changes in the expected utility of a particular seed, as expressed in (2), will be 
positively correlated with changes in the expected utility of the portfolio that includes that 
seed.  In that sense, the results obtain here will resemble those obtained under this 
alternative and more complicated specification. 
 
4 This standard mean-variance functional form is consistent with a farmer who has a 
CARA utility function when the actual profits and the farmer beliefs regarding the mean 
profits are normally distributed. 
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where is the output price,  is the yield achieved by variety j,  represents the i

costs incurred when variety j is used and s
jp  is t  price of seed of variety j.  We assum

the yields, as well as the input costs are stochastic and depend on the variety chosen.  

Input costs are distributed normally, with a mean value of 
jw

mp jy jw nput 

he e 

μ and a variance of 2
jwσ , both

hich we assume are known by the farmers.  The distribution of yields is described 

below. 

 

of w

The yields achieved for each type of variety depend on the traits included in a 

particular seed. Define Ijk as an indicator function that equals one if variety j contains trait 

k, and define Ic as an indicator function that equals one if variety j is the conventional 

variety.   Assuming that the number of traits is equal to 2, the yields can be expressed as: 

 1 1 2 2 12 1 2j c c j j j jy I I I I Iδ δ δ δ= + + +       (4) 
 
Equation (4) indicates that the yield of a conventional variety is equal to cδ , while the 

yields of GM varieties depend on the traits contained in the seeds. In this formulation 

12δ captures the impact on yields of having more than one trait present in a seed variety. 

We assume that cδ , 1δ  and 2δ  are random variables which are distributed as , 

where i=c,1,2;  while 

2( , )i iN μ σ

12δ is a random variable distributed as  ; and that these 

variables are independent from each other.  Note that the parameters 

2
12 12( ,N μ σ )

σ c
2,σ1

2,σ 2
2,σ12

2
  

represent production risk.  

Farmer Learning about the Technology 

In order to capture the uncertainty in the profitability of a new technology, we assume that 

the farmer knows the expected value of the yield of the conventional variety,μc , the 
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variance of all yields (σ c
2,σ1

2,σ 2
2,σ12

2 ), but does not know the expected values of the yields 

of the GM varieties: 1μ , 2μ  and 12μ .  Instead, the farmers have a prior distribution, which 

captures their expectations regarding the value of these parameters. This prior distribution 

is updated in a Bayesian manner into a posterior distribution, as the farmer experiments 

with the technology.  

We conceptualize the package as having two correlated elements [ 1μ , 2μ ] that can 

be learned about through experience with any of these elements and then a third part, 12μ , 

which is the part of the package that can only be learned about through use of the 

package.5  In this conceptualization, we assume that the prior distribution of [ 1μ , 2μ ] is 

bivariate normal with a positive covariance between the two varieties.  This captures the 

idea that experience with one trait provides information on the qualities of the other trait.  

For example, if the same company produces both traits, the farmer is likely to expect 

better (worse) results for trait 2 when the results for trait 1 turn out well (badly).   

Note that it is possible for the prior distribution of [ 1μ , 2μ ] to have a positive 

covariance while 1δ  and 2δ  are independent from each other.  The assumption of a positive 

covariance between 1μ   and 2μ  means that the farmer believes that if the expected value 

of trait 1 yields is high, then the expected value of trait 2 yields is more likely to be high.  

The assumption of independence between 1δ  and 2δ  establishes that, regardless of the 

expected value of the distribution of [ 1δ , 2δ ],  a good year for trait one does not imply that 

                                                 
5 Our assumption that 12μ  is uncorrelated with the other elements of the package is a 
simplifying assumption.  The sequential learning results would only be reinforced if we 
allowed 12μ  to be correlated with 1μ   and 2μ   (i.e., learning about all elements of the 
package).      
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a good year for trait 2 is more likely to happen. On the other hand, the prior distribution of 

12μ  is assumed to have a mean given by  and a variance given by .   In order to 

simplify the analysis, we assume that beliefs regarding 

0
12θ 0

12V

12μ are uncorrelated with beliefs 

regarding [ 1μ , 2μ ].  

With the Bayesian formulation, the prior distribution of [ 1μ , 2μ ] is denoted as 

and is described as: 1 2( , )op μ μ

0
1 1

1 2 0
2 2

( , ) ,op N
μ θ

μ μ
μ θ

⎡ ⎤⎛ ⎞⎛ ⎞
= ⎢ ⎜ ⎟⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
Σ⎥      (5) 

 

where [ , ] are the expected value of the distribution and 0
1θ 0

2θ ∑  is the variance 

covariance matrix which equals: 

0 0
1 12
0 0

12 2

V C
C V

⎛ ⎞
∑ = ⎜

⎝ ⎠
⎟        (6) 

 
In order to illustrate the sequencing of adoption we assume that the farmer starts 

by growing a single trait variety that contains trait 1.  She uses n observations (e.g., years 

growing the crop) on the yields of a single trait variety containing trait 1 to update her 

beliefs regarding 1μ . Given the assumption of a positive covariance between 1μ  and 2μ  in 

the prior distribution, these observations on trait 1 will also allow the farmer to update her 

beliefs regarding 2μ .  Since both traits 1 and 2 are present in the stacked variety, 

observations on trait 1 will allow the farmer to update her beliefs about the mean yields of 

the stacked variety.   

The learning process that uses observations on trait one to update the beliefs about 

this same trait can be conceptualized as a standard Bayesian problem in which the prior is 
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a normal univariate distribution.  Consequently, the posterior distribution of 1μ  will be 

distributed normally.  Denoting this posterior as  ,  we have that:  1
1( )p μ

1 1
1 1( ) ( , )p N Vμ θ∼ 1

1        (7) 
 

where the expected value  and variance  can be calculated by the standard formula 

that corresponds to a Bayesian updating of the beliefs when the prior is a univariate 

normal distribution (Anderson). That is:  

1
1θ 1

1V

 
0

1 1
0 2

1 1 1
1

0 2
1 1

1

n
V

n
V

θ δ
σθ

σ

+
=

+
        (8) 

 
1

1

0 2
1 1

1
1V n

V σ

=
+

        (9) 

 
In equation (8) the farmer’s expected value of the posterior distribution will be a function 

of the expected value of the prior distribution, θ1
o , the variance of that distribution, V , 

the known variance of yields, 

1
o

σ1
2, her observed mean yield, δ 1, and the number of trials 

the farmer has had with the technology, n. We can see that if the average yield observed 

through experience is higher than the expected value of the prior distribution, the expected 

value of the beliefs regarding 1μ  will be updated positively.  If the contrary is true, the 

expected value of the beliefs will be updated negatively.  Note that, although not explicitly 

modeled, the mean of the prior distribution 
θ1

o

 may be influenced by common knowledge of 

the technology outside of actual experience.  Equation (9) shows the classical result that as 

the number of observations, n, increase, the variance of the distribution of the beliefs 
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decrease, i.e., ∂V1
1

∂n
≤ 0 and that V1

1 ≤ V1
o. This variance can be regarded as the uncertainty 

faced by the farmer, an uncertainty that decreases as she learns through experience. 

The posterior distribution of 2μ can be deduced from the joint prior distribution, 

equation (5), together with the posterior distribution of 1μ , equation (7), in the following 

manner: 

1 1
2 2 1 1 1 2( ) ( | )* ( ) ( ) ( , )op p p d gμ μ μ μ μ θ=∫∼ 1 1

2V    (10)  
 
Where g is a distribution function with a expected value given by:  and a variance given 

by .  Taking into account the properties of the conditional distribution associated with a 

multivariate normal, we have that

1
2θ

1
2V

6

0
1 0 1 012
2 2 1 10

1

(C
V

θ θ θ θ= + − )       (11) 

20 2 0
1 0 12 12

2 2 0 0
1 1

( ) *C CV V V
V V

⎛ ⎞
= − + ⎜ ⎟

⎝ ⎠
1

1

0
1

     (12) 

 

Definition 1: A technology is “ascendant” when and 
1
1θ θ≥

1
1 0n

θ∂ >∂ , i.e., it is a 

technology for which new information has a non-negative effect on the mean of the 
distribution of the beliefs about the mean returns to the technology. 
 

Lemma 1: When technology 1 is ascendant, and C12>0, thenθ2
1 ≥ θ2

o and
1
2 0n

θ∂ >∂     

 

Lemma 2: When C12 > 0, then V2
1 ≤ V2

o and  
1

2 0V
n

∂
<

∂
 

 
Lemma 1 says that for correlated technologies, a positive experience with 

technology 1 will increase the farmer’s mean of the distribution of the beliefs regarding the 

average yields of technology 2.  Lemma 2 says that this experience with technology 1 will 

                                                 
6 For a detailed proof see: Aldana et al. 
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also decrease the uncertainty with technology 2. Taking into account the definition of an 

ascendant technology and that  will satisfy equation (11) if we replace  by , L

1 follows from equation (11).  In the same manner taking into account that 0
2V will satisfy 

equation (12) if we replace 1

0
2θ 1

1θ 0
1θ emma 

1 VV  with 0
1  and that ∂V1 

1

∂n
≤ 0 ma 2 follows from equation

(12).  This means that an increase in the expected value of the distribution of the beliefs 

regarding 1

 , Lem  

μ  implies an increase in the expected value of the distribution of the beliefs 

regarding 2μ and that experience with trait 1 reduces the variance of the beliefs regardin

2

g 

μ  .  

Lemma 3: When n>0, then C  and 12
1 ≤ C12

o
1
12 0C
n

∂
<

∂
   

 
Proof: It can be shown that covariance of the beliefs will be equal to7: 

0 1
1 12 1
12 0

1

C VC
V

=         (13) 

In this case we also have that satisfies expression (13) if we replace with .  Since 

 is less than , this means that the covariance of the posterior distribution will be 

lower than the covariance of the prior distribution.  Since 

0
12C 1

1V 0
1V

1
1V 0

1V

∂V1
1

∂n
≤ 0 , the covariance of the 

posterior distribution will decrease as n increases. Lemma 3 shows that experience with 

trait 1 will also reduce the covariance of the bivariate distribution of the beliefs.   

Farmer Choice of Technology: 
 
Since producers choose the technology that provides the highest expected utility, equation 

(1), the changes in beliefs from trials with technology 1 will affect the technology choice 
                                                 
7 For a detailed proof see Aldana et al. 
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through changes in the expected utility from adopting different technologies.   Given that 

the farmer does not know the expected value of profits, but instead has a distribution of 

beliefs regarding its possible values, the expected utility she maximizes is given by: 

 ( )
Bi
jj agEU bVπ= − jπ        (14) 

 
where  

Bi
jπ represents the farmer’s best approximation to the expected profits, which is the 

mean of the distribution of the beliefs regarding expected profits. The superscript i is equal 

to zero if there is no experience with any genetically modified trait and equal to one if the 

farmer has some experience that allowed her to learn about the yields of the technology. In 

the second term of the right hand side of (14), Vag(πj) represents the aggregate variance 

(described in detail below) including both risk and uncertainty. The expected value of the 

beliefs of profits will be:  

0
1 1 2 2 12 1 2*( )

j

Bi m i i
j c c j j j j w jp I I I I Iπ μ θ θ θ μ= + + + − sp−    (15) 

 
Specifying the crop choices, j as: 
 

1 the seed only has trait 1
2 the seed only has trait 2

the seed has traits 1 and 2
the seed is conventional

j
s
c

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

 
the expected value of the beliefs about profits for each of the technologies will be: 
 

*( )
c

Bi m
c c wpπ μ μ= − s

cp−       (16) 

1
1 1*( )
Bi m i

wpπ θ μ= − 1
sp−       (17) 

2
2 2*( )
Bi m i

wpπ θ μ= − 2
sp−       (18) 

0
1 2 12*( )

s

Bi m i i
s wpπ θ θ θ μ= + + − − s

sp      (19) 
 

Taking Lemma 1 and (18) into account, one can see that if the farmer positively 

updates the mean of her beliefs regarding the profits of trait 1, the same will happen to the 
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mean of the beliefs regarding the profits of trait 2.  In addition (19) shows that the mean of 

the beliefs regarding the profits of the stacked variety will also be updated positively.   In 

the same manner, if the mean of the beliefs were updated negatively for trait 1, the same 

will happen for trait 2 and for the stacked variety.   Given the dependence of the stacked 

variety on both traits, the change in the mean of the beliefs for this variety, for a new 

observation, will always have a higher absolute value, as we can see in equation (20): 

1 1 1
1*( )

B
s mp

n n
θ θπ ∂ ∂∂

= +
∂ ∂

2

n∂
      (20) 

 
where i=1 since equation (20) describes the mean of the posterior distribution after 

experience with trait 1. The second element of the expected utility contains the aggregate 

variance of profits, which captures the uncertainty regarding the value of the mean of the 

distribution of yields as well as the variance of yields and input costs that are caused by 

factors such as weather, pests and weed problems, i.e., risk. The aggregate variance for 

each type of variety is given by: 

2 2 2( ) ( ) ( )
c

Bii
cag c c c wV E pπ π π σ= − = + 2m σ     (21) 

1

2 2 2
11 1 1 1( ) ( ) ( ) ( )
Bii m

ag wV E p Vπ π π σ= − = + + 2i σ    (22) 

2

2 2 2
22 2 2 2( ) ( ) ( ) ( )
Bii m

ag wV E p Vπ π π σ= − = + + 2i σ    (23) 
 

2 2 2 2 2 2 2 2 0
1 1 2 2 12 12 12( ) ( ) ( ) ( ) ( ) ( ) 2( ) ( ) ( )

s

Bii m i m i m i m
sag s s wV E p V p V p C p Vπ π π σ σ σ= − = + + + + + + + 2σ

         (24)  
  
Equations (22)-(24) show that as experience increases and the variance of the beliefs go to 

zero, the aggregate variance converges to known risk, i.e., the variance of yields and input 

costs that is caused by factors such as weather, pests and weed problems.  

It is worth noting that the uncertainty element is much higher for the stacked 

variety, given that it sums the uncertainty of both traits 1 and 2 as well as the uncertainty 
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of 12μ .  This greater uncertainty helps to explain why a farmer might adopt a single trait 

technology before adopting the stacked variety, because without experience with any of 

the traits in the technology, the uncertainty of the stacked variety is always higher than the 

uncertainty of a single trait variety.   This points to one of the necessary conditions for a 

sequential adoption process, namely that with no information there are incentives to adopt 

a single part of the package rather than jumping directly into the package.   

 
Proposition 1: The uncertainty of the package technology will decrease as experience 
with an element of the package, n, increases. 
 

Proof: By Lemma’s 2, and 3, and equation (9) in the following manner: 

 

1 2 1 2 1 2 1
1 2

( ) ( ) ( ) 2( )m m m
ag sV p V p V p C

n n n n
π∂ ∂ ∂

= + +
∂ ∂ ∂ ∂

12∂ < 0   (25) 

According to (9), Lemmas 2, and 3, each of the three terms that add up the change in the 

aggregate variance of the profits of the stacked variety in (25) is negative. Equation (25), 

then, shows that experience with an element of the package, such as a single trait variety, 

decreases the uncertainty associated with the elements of the package, which decreases the 

uncertainty of the entire package, or the stacked variety.  

Proposition 2: The change in variance is higher in absolute value for the stacked than for 

the single trait variety, i.e, 
1 1

1( ) ( )ag s agV V
n n
π π∂ ∂

>
∂ ∂

 and 
1 1

2( ) ( )ag s agV V
n n
π π∂ ∂

>
∂ ∂

 

 
Proposition 2 states that the uncertainty of the stacked variety will decrease more than the 

uncertainty of the single trait varieties. This proposition follows from equation (25), 

Lemma 2 and Lemma 3.    
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Proposition 3: For an ascendant technology, the incentive to adopt a stacked variety is 
increasing in the number of trials with a single trait variety.   
 
Proof: The condition for the farmer to adopt a stacked variety is: 

1 1

2 2

0     and
0     and
0  

sc s c

s s

s s

EU EU
EU EU
EU EU

= − ≥
= − ≥

= − ≥

+
+
+

(26) 

Looking at the impact of experience with trait 1 over the inequalities in (26), we have: 

1 ( )B
s ag ssc V

b
n n n

ππ ∂∂ ∂
= −

∂ ∂ ∂
+       (27)   

1 2 1 2
1 2 2( ) 2( )*( ) ( )

m m
ms p V p Cp b

n n n n
θ∂ ∂ ∂

= − +
∂ ∂ ∂ ∂
+ 1

12∂    (28) 

1 2 1 2
2 1 1( ) 2( )* ( ) ( )

m m
ms p V p Cp b

n n n n
θ∂ ∂ ∂

= − +
∂ ∂ ∂ ∂
+ 1

12∂    (29) 

The first term on the RHS of equations (27)-(29) reflects the impact of experience on the 

difference between the expected profits of the stacked variety and the expected profits of 

the alternative seed.  The second term reflects the impact of experience on the difference 

between the aggregate variance of the stacked variety and the aggregate variance of the 

alternative seed.  Taking into account Proposition 2, the second term will always be 

positive. That is, the aggregate variance of the stacked variety will always decrease more 

than the aggregate variance of the alternative seed.  On the other hand, the sign of the first 

term will depend on whether the technology is ascendant or not.  

With an ascendant technology, the beliefs regarding the mean yields of trait 1 are 

updated upwardly or do not change.  As stated in Lemma 1 this implies that the mean of 

the beliefs regarding trait 2 are also updated upwardly or do not change.  Thus, the first 

term of the RHS of equations (27)-(29) will be greater than or equal to zero.  
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Consequently, for an ascendant technology the impact of experience on the change in 

expected returns to the new technology (  ,  and ) will be greater than zero, 

increasing the incentive to adopt a stacked variety.   

sc+ 1s+ 2s+

Proposition 4: For a non-ascendant technology, the incentive to adopt a stacked variety 
increases with the number of trials with a single trait variety if the reduction of the 
difference between expected yields is lower than the reduction of the difference between 
the variance of the expected utility of stacked versus non stacked seeds. 
 

For a non-ascendant technology, where the beliefs are updated downwards, we have that 

the first term of the RHS of equations (27)-(29) is lower than zero while the second term 

of these equations is higher than zero.  Hence, the impact of experience on ,  and  

will be positive if the second term is higher in absolute value than the first term.  This 

means that the incentive to adopt a stacked variety will increase with experience if the 

impact of experience on the difference between the variances of stacked versus non 

stacked seeds outweighs the negative impact of experience on the difference between the 

expected value of yields of stacked versus non stacked seeds. 

sc+ 1s+ 2s+

Propositions 3 and 4 demonstrate the potential for a sequential adoption pattern by 

showing that, under certain conditions, experience with single trait varieties will increase 

the chances that a farmer adopts stacked varieties.  Note that if (26) holds for n = 0; that is, 

if without a farmer observation on a single trait variety, the expected utility including both 

risk and uncertainty is higher for the stacked variety, then one would observe farmers 

jumping into the stacked variety directly rather than following a sequential adoption 

pattern through the single trait varieties.   
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Empirical Implementation  
 
Econometrics of Sequential Adoption 
 
Propositions 3 and 4 from the theoretical model show that, when the change in the 

expected value of yields is positive or if negative, higher than a certain threshold, the 

incentive to adopt a stacked variety will increase with the number of trials with the single 

trait variety. Formally, they present the following testable probability statement: 

Pr( * | ) Pr( * | )i jj s n j s n for n n= > = >i j

ε

                                                

8     (30) 
 

A standard estimation method of testing (30) would imply the use of a logit or 

probit model, but the standard version of these models imposes a linear relationship 

between the independent variable, n, and the latent variable, .  Inspection of 

equations (8) and (9) shows that the latent variable,  depends non-linearly on n, the 

level of experience, with higher levels of n having lower effects on expected utility than 

do lower levels of n.   

jEU

jEU

Given this non-linearity in the role of experience, we estimate the adoption of a 

stacked variety using a semi-parametric specification.9  It is as follows: 

( )it it T tT i it
T

y f a c vα= + + +∑      (31) 

       

 
8 Testing equation (30) provides evidence consistent with propositions 3 and 4, while its 
rejection would imply that a technology is non-ascendant and proposition 4 does not hold. 
9 An alternative specification, which can accommodate such non-linearity, would be to use 
survival analysis.  Unfortunately, our data do not conform to the requirement of observing 
the characteristics of farmers at the beginning of the event, in this case the first 
introduction of GM seed traits in the mid 1990’s, which is necessary for a robust survival 
analysis estimate.   
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where, =1 if  farm i adopts a stacked variety in year t,  is experience, measured as 

the years that have passed since the first year of adoption of a GM crop, and  is a 

dummy variable for each chronological year, v

ity ita

tTc

i is a fixed effect, and εit is the standard 

error term.  The function  has no predetermined parametric shape.   The impact of 

experience occurs one year later: that is, if the farmer adopted GM corn for the first time 

in period t,  would be equal to zero and  would be equal to one.  In addition to an 

individual’s own experience, we expect that the expected utility of adopting a stacked 

variety may change over time.  Including a time measure can capture rising levels of 

common information about the technology that a farmer access in addition to or as a 

substitute for their own experience.  

( )itf a

ita 1ita +

A key challenge in estimating the impact of experience arises with its potential 

endogeneity.  Unobservable variables, such as the farmer’s ability, which could affect the 

adoption of stacked varieties, are also very likely to be correlated with early adoption. A 

possible solution implies the estimation of the likelihood of being an early adopter, which 

generates experience, as a function of the value of variables thought to cause early 

adoption such as land size and education, at the period at which the technology was first 

introduced. This, however, can cause an incidental parameters problem (Heckman). In 

order to estimate adoption as a function of experience while circumventing the incidental 

parameters problem, we use the Mundlak device in which we run an estimation that 

controls for the average value of experience of each household. In the current setting, this 

amounts to controlling for the first year of adoption.  
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Formally, since early adopters may possess characteristics that distinguish them 

from late adopters, it is possible for  to be correlated with , which would introduce a 

bias in the estimation of .  Following Mundlak, we can define  as: 

iv ita

( )itf a iv

6

0i j ijj
v sβ

=
= ∑ iz+

ε

it

         (32) 

 
where is equal to one if the sum of the variable  for farm i and over all the time 

periods is equal to j.   While the fixed effects  are usually expressed as a function of the 

average of the independent variable, we use a more flexible expression, in which there is 

one dummy for each value of this average experience level.   This is equivalent to using a 

dummy for the first year of adoption, with two exceptions.  The first is due to the 

exclusion of a dummy that is equal to one if the farmer adopted a GM crop in 2000.  This 

dummy is excluded because using a set of dummies that sum one for each observation will 

imply a collinearity problem in the context of this semi-parametric estimation.  The 

second exception is related to the farmers who adopted for the first time in the last year of 

our data, 2006, or never adopted. These two groups of farmers are represented by the same 

dummy variable since they present the same value for the sum (and the average) of the 

variable , namely zero.  Using the Mundlak formulation to account for potential 

correlation of  and  the adoption of stacked varieties can now be expressed as: 

ijs ita

iv

ita

iv ita

6

0
( )it it T tT j ij i itj

T
y f a c s zα β

=
= + + + +∑ ∑      (33) 

 

where having controlled for early adoption through sij we can now assume that iz ε+  is 

not correlated with our variable of interest: .  ita
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This semi-parametric specification offers the advantage of being highly flexible 

and of allowing us to know how the impact of experience changes as experience evolves.  

The estimation method follows Stock.  Following Blundell and Duncan, we estimate 

confidence intervals for the non-parametric parameters using the bootstrap method.  

Additionally, the bootstrap replications allow us to correct for the bias, which 

characterizes nonparametric specifications.  

 
Data:   
 
The empirical analysis uses data gathered from a random sample of 738 corn farmers from 

Minnesota and Wisconsin from lists that the National Agricultural Statistics Service 

(NASS) maintains for their work on the agricultural census and other USDA data 

collection activities.  These farmers were surveyed in 2006, and the questionnaire included 

retrospective questions on their use of GM corn varieties covering every year back to 

2000. The empirical estimation exploits the variation in time of their adoption of GM 

varieties in order to assess the existence of a sequential pattern of adoption. We use data 

that covers the period 2000-2006 that contain information regarding the type of variety 

adopted each year. 10

 
 
Descriptive Statistics:  
 
Our first empirical illustration is to compare the timing of a farmer’s first year of GM 

adoption with the use of stacked varieties in 2005, shown in table 1.  The likelihood of 

                                                 
10 Note that prior to 2005 we cannot distinguish the use of stacked varieties from the use 
of more than one single trait variety.  This distinction is relatively unproblematic though, 
because in years when we have data on both stacked and multiple variety use, multiple 
variety use was very rare. For example, in 2005, the use of more than one variety was 2%, 
while the use of stacked varieties was 23%. 
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using stacked varieties in 2005 was twice as high (53% vs 27%) for farmers whose first 

year of GM adoption was in 2000-01 versus those adopting first in 2004-05.   These 

descriptive results are consistent with a positive impact of experience through the 

reduction of uncertainty as well as with a technology that has proved to not be 

significantly worse than expected.  Clearly, the results are not exclusive of other potential 

explanations. For one, this relationship might not imply causality because early adopters 

might have adopted the stacked varieties before accumulating any experience.  Second, if 

there are variables correlated with early adoption, they might also shape farmer’s use of 

stacked varieties.   The econometric results in the next section exploit the panel data to 

account for the time the stacked variety was adopted and to isolate the impact of previous 

experience with single trait seeds.  

Table 1 
First year of Adoption and Type of Adoption in 2006 (Planned) 

    
First year of adoption % farms using  % farms using  % farms not using
  stacked varieties 2006  Single trait varieties 2006 GM seeds 2006 
        

2000-01 53.4 40.4 6.2 
2002-03 41.0 47.4 11.6 
2004-05 29.6 50.0 20.3 

2006 27.1 72.9 0.0 
     

Total 41.4 48.2 10.4 
    

Table 2 below shows the variables used in the semi-parametric estimation of equation (33) 

and the sample size of 4,157 observations.  A farmer has adopted a stacked variety at 18% 

of the individual-year combinations in the data.   On average across the dataset, 26% of 

the farmers adopted a GM variety in 2000 while 40% of the farmers adopted GM for the 

first time in 2006 or never adopted.  

 21



Semi-Parametric Estimation Results 
 
Using the data summarized in table 2 we estimate the probability of adopting a stacked 

variety as expressed in equation (33).  Since we do not impose any functional form for the 

impact of experience, it is possible to compare this impact for different groups.11  In order 

to assess how this impact changes with time we have estimated equation (33) for the 

whole sample as well as for a sub-sample that includes observations for the later period 

only.  To assess how the impact of experience changes with human capital, we have 

estimated equation (33) for two sub-samples: the first one contains farmers with no 

college education, while the second one contains farmers with college education12. 

Table 2 
Descriptive Statistics 

Variable Description Mean Std. Dev. 
yit Adopted more than one trait (yes = 1, No = 0) 0.18 0.38 
ait Number of years since 1st year of adoption 1.22 1.81 
tt Time Dummies for each chronological year 2002-2006 

(each year represents ~ 17% of the sample) 
  

 Adopted a GM crop for 1st time in 2000 (Yes=1, No=0) 0.26 0.44 
 Adopted a GM crop for 1st time in 2001 (Yes=1, No=0) 0.04 0.19 
 Adopted a GM crop for 1st time in 2002 (Yes=1, No=0) 0.07 0.25 

sij Adopted a GM crop for 1st time in 2003 (Yes=1, No=0) 0.08 0.27 
 Adopted a GM crop for 1st time in 2004 (Yes=1, No=0) 0.06 0.24 
 Adopted a GM crop for 1st time in 2005 (Yes=1, No=0) 0.09 0.28 
 Adopted a GM crop for 1st time in 2006 or never 

adopted (Yes=1, No=0) 
0.40 0.49 

 Number of Observations = 4,157   
 

                                                 
11 If, instead, we had assumed, for example, a linear relationship, a low coefficient on 
experience might have meant that farmers learn fast and later experience does not matter 
but it could have also meant that experience does not matter at any point. This vagueness 
would make it hard to compare the impact of experience for different groups. Even if we 
had modeled non linearities through the inclusion of a quadratic term, the groups 
comparison might have been misleading if ( )itf a  were not a quadratic function.  . 
12 When assessing how the impact changes with time we have not divided the sample in 
the early and late period because the range of the variable experience is too short in the 
early period.   
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 Figure 1 shows the non-parametric component of the regression f(ait), 

estimated according to equation (33), for the whole sample (2000-2006 period) as well as 

for the 2004-2006 period.   The bands indicate the 90% confidence intervals around the 

predicted value lines13. The whole period regression includes as intercept the dummy for 

the year 2002, and the “later period” regression includes as intercept the dummy for the 

year 2005.  

Figure 1 shows that, for the whole sample as well as for the later period, the 

likelihood of adopting more than one trait increases with experience.  Experience is 

statistically significant for the whole period, since in this estimation there are some values 

of experience for which the confidence intervals do not intersect.  These results are 

consistent with a positive impact of experience in reducing uncertainty and with 

Proposition 3 if a technology is ascendant or with the conditions stated in Proposition 4.  

On the other hand, the estimation for the later period presents a flatter slope and there are 

no values of experience for which the confidence intervals do not intersect, implying that 

experience is not a statistically significant predictor for the later period.    

Table 3 shows the change in the likelihood of adopting more than one trait as 

experience increases by one year, for the whole sample as well as for the 2004-2006 

period.  For the whole sample, the impact of experience is lower at the outset, begins to 

increase at 2 years of experience and slows down at 5 years of experience.  The impact of 

one additional year of experience on the likelihood of adoption ranges between 1.09% and 

3.4%.  This magnitude can be considered economically significant given that the 

                                                 
13 As is common in the non-parametric literature, we chose to show the 

significance intervals at a 90% confidence level because the flexibility that characterizes 
non-parametric regressions comes at the cost of estimators with higher variances. 

 23



likelihood of adopting more than one trait for the individual-year combinations in the data 

is 18%, as shown in Table 2.  As expected from Figure 1, Table 3 shows that the impact of 

experience is lower for the later period. Since the confidence interval of this difference lies 

in the positive range when the number of years of experience is equal to zero, three, four 

and five, we can assert that the difference in impacts between periods is statistically 

significant at the 95% level.     

The flatter slope for own experience as well as the higher intercept in the later 

period likely reflect the higher degree of common knowledge about the technology, an 

issue we return to below.  This first set of results supports the proposition that own 

experience shapes sequential adoption but diminishes in importance as own experience 

becomes less valuable as a way of acquiring information on the benefits of the technology.   

 Figure 1 
 

Likelihood of adopting more than one GM trait for the whole sample 
and for the 2004-06 period.
 90% confidence intervals 
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Table 3 

Change in the likelihood of adopting more than one trait as experience 
increases by one year.   

      
Experience * Whole sample Later Period Difference 95 % Confidence Interval 

  A B A-B of the Difference** 
0 1.09 0.75 0.34 0.02 0.63 
1 1.80 1.32 0.48 -0.07 0.99 
2 2.71 1.88 0.82 -0.03 1.55 
3 3.37 1.97 1.40 0.40 2.18 
4 3.27 1.55 1.73 0.78 2.46 
5 2.53 1.06 1.47 0.64 2.09 

Total 14.77 8.54 6.24 2.29 9.55 
* Years since the first year of adoption    
**Estimated using bootstrap     

 
Next in figure 2, we consider the non-parametric component of the estimation for 

two sub-samples: one that contains farms whose operator has no college education and the 

other farms whose operator has a college degree or a higher educational level. In this 

figure, both functions include as intercept the dummy for the year 2002. For the sake of 

visual clarity, the confidence intervals are not included in this figure14. For both sub-

samples, the 90% confidence interval that corresponds to six years of experience does not 

intersect with the confidence interval that corresponds to zero years of experience, 

implying that experience is statistically significant for both the college-educated and non 

college-educated farmers at the 90% level of confidence.  

Table 4 shows the change in the likelihood of adopting more than one trait as 

experience increases by one year.  The results show that the impact of experience for 

college-educated farmers is higher than the impact for non-college educated farmers at 

low levels of experience and lower at higher levels of experience. The difference between 

                                                 
14 The confidence intervals are included in Aldana et al. 
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the impact of experience for these two sub-samples is negative and statistically different 

than zero when farmers have zero experience while being positive and statistically 

different from zero for farmers with four and five years of experience.  Overall these 

results indicate that college- educated farmers tend to learn faster from own experience 

than less educated farmers. 

Figure 2 
 

Likelihood of adopting more than one GM trait for the non 
college and for the college educated farmers.  

90% confidence intervals 
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Table 4 
Change in the likelihood of adopting more than one trait as experience increases by one 

year.  Non College Educated  vs College Educated Farmers.  
      
Experience * Non College Educated College Educated Difference 95 % Confidence Interval 

  A B A-B of the Difference** 
0 0.70 1.46 -0.76 -1.20 -0.32 
1 1.24 2.14 -0.90 -1.55 -0.18 
2 2.16 2.74 -0.58 -1.66 0.59 
3 3.31 2.80 0.51 -1.01 2.13 
4 4.06 2.20 1.86 -0.04 3.66 
5 3.89 1.38 2.51 0.35 4.09 

Total 15.35 12.71 2.65 -3.88 9.58 
* Years since the first year of adoption     
**Estimated using bootstrap     
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In Figure 3, we use the time variables to investigate how aggregate levels of 

information affect the probabilities of individuals adopting the technology.  It depicts the 

coefficients associated with the year dummies of the semi-parametric regression for the 

whole sample, i.e., tα in specification (33).  The coefficients on the year dummies have 

increased through time, with the diffusion of the technology, implying increases in the 

base levels of stacked variety adoption one would predict from a typical S-curve adoption 

pattern. Comparing the coefficient values in Figure 3 to Figure 1 provides insight into the 

relation between the impact of direct experience (Figure 1) and the impact of indirect 

experience (Figure 3).  The results from Figure 1, of a positive impact of experience for 

the whole sample provide evidence of a sequential pattern adoption.  However, the results 

shown in Figure 3 of a higher likelihood to adopt as time evolves, combined with the 

results on Table 3, which show that the impact of experience is lower for the later period, 

supports the notion that as time evolves and the uncertainty with a new technology 

dissipates, farms are more likely to jump directly to the use of stacked varieties and own 

experience loses some of its explanatory power. 

Figure 3 

Likelihood of adopting more than one GM trait as a 
function of the chronological year.
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In sum, the results from the semi-parametric estimation of the adoption of stacked 

crop varieties shows a sequential adoption process in which the initial experience with a 

single trait variety reduces the uncertainty and increases the probability of adopting a 

stacked variety.  The estimates also show that farmers with high levels of education tend 

to learn faster from own experience and require fewer years of experience in order to 

adopt a stacked variety.   In addition, the estimates show that with time, as the general 

level of knowledge in society about stacked varieties increases, this knowledge reduces 

uncertainty with the technology.  Accordingly, over time the benefits of own experience 

and incentives for sequential adoption decline.   

Conclusions  

GM corn seed companies have innovated continuously with the introduction of new traits 

and, more recently, with the creation of stacked varieties, which combine more than one 

trait. In spite of its potential importance, no previous studies had examined the 

determinants of adoption of stacked varieties, particularly the learning dynamics and 

potential for sequential adoption in which farmers moved from use of GM varieties with a 

single trait to adoption of varieties with stacked traits.  Our article fills this gap in the 

literature.  

The Bayesian modeling framework is to our knowledge the first that models a 

sequential adoption process for a packaged good with correlated component technologies. 

It demonstrates the conditions under which experience with a single component of a 

package technology such as traits in corn seeds plays a role in reducing uncertainty 

regarding the profitability of the packaged (stacked) technology.  As a consequence of this 
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learning process, farmers’ uncertainty associated with adopting a stacked variety will be 

lower conditional on having previously adopted one of the traits included in the seed.   

The empirical results indicate that early adopters of GM will be more likely to 

adopt stacked varieties and benefit from the higher yields they offer.  The empirical 

evidence presented above shows that the likelihood of adopting a stacked variety increases 

with experience, measured as the number of years that have passed since the first year of 

adoption of a GM technology.  The results also show that the impact of experience 

decreases with time as the technology diffuses, and that farmers are more likely to jump 

directly to the use of stacked varieties in the later years. They also show that more 

educated farmers tend to learn faster from own experience.  

The sequencing of adoption of a package technology has important implications 

for both the introduction of new technologies to the market and the industrial organization 

of the market for new technologies.  In terms of the introduction of new technologies, 

these results suggest strong incentives for technology sellers or promoters to help early 

adoption of component parts of a stacked technology as a strategy for eventual adoption of 

the package technology.  In contrast, efforts to push adoption of stacked technologies that 

ignore the uncertainty that drives sequential adoption processes may run into difficulty.  

The sequential nature of adoption may drive differential pricing strategies among 

technology sellers and this could have profound implications for competition and the 

ability of small producers to compete.  These industrial organization questions are left for 

future research. 
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