
An Analysis of the Pricing of Traits in the U.S. Corn Seed Market 

by 

Guanming Shi 

Jean-Paul Chavas 

and 

Kyle Stiegert1

 

The 8th INRA-IDEI Conference on Industrial Organization and the Food Processing 

Industry, Toulouse, France, June 10-11, 2010 

 

Abstract: We investigate the pricing of traits in the U.S. corn seed market under imperfect 

competition. In a multiproduct context, we examine how substitution/complementarity 

relationships among products can affect pricing. This is used to motivate generalizations of 

the Herfindahl-Hirschman index capturing cross-market effects of imperfect competition 

on pricing. The model is applied to pricing of U.S. conventional and biotech seeds from 
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structure (as measured by both own- and cross-Herfindahl indexes) affect U.S. corn seed 

prices.  
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In the past 15 years, biotechnology has had a major impact on U.S. agriculture. Most 

notable has been the commercial development of genetically modified (GM) seeds for 

corn, cotton, and soybeans. GM seeds have contributed to agricultural productivity 

growth and exhibited rapid adoption among U.S. farmers (Fernandez-Cornejo 2004). GM 

traits involve patented technologies that offer specific on-board services to the plant such 

as insect resistance and herbicide tolerance. The research and development of seeds 

combining germplasms with GM traits has spawned increased product differentiation. 

GM seeds may carry either a single trait or combinations of several traits (often called 

stacked seed), sometimes patented by different biotech firms. GM seeds marketed to 

farmers are typically priced higher than conventional seeds, are often associated with 

modifications in farm production practices and carry legal restrictions related to the use 

or resale of patented seeds to others.      

The structure of the seed markets involving GM traits has changed significantly 

over the last two decades (Fernandez-Cornejo 2004). While over 300 seed firms remain 

in the corn hybrid market, the four firm concentration ratio (CR4) in this market has risen 

above 70% since 2005.1 GM corn accounted for about 80 percent of the total U.S. corn 

acreage in 2007. Of the GM corn acres planted in 2007, 56% involved seeds with two or 

more stacked traits.2 Similar trends are present in cotton and soybeans. After a flurry of 

horizontal and vertical mergers in the 1990s, the corn seed industry is now dominated by 

six large biotech firms (Fernandez-Cornejo 2004),3 four of which own subsidiary corn 

seed companies. According to Graff, Rausser and Small (2003), these mergers have been 

motivated in part by the complementarities of assets within and between the agricultural 
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biotechnology and seed industries. Such asset complementarities indicate that trait 

bundling may be associated with cost reductions obtained from capturing economies of 

scope in the production of genetic traits. But bundling can also be part of a product 

differentiation strategy and price discrimination scheme intended to extract rent from 

farmers. If so, increased market concentration can raise concerns about adverse effects of 

imperfectly competitive pricing and the strategic use of bundling (Fulton and Giannakas 

2001; Fernandez-Cornejo 2004). These issues suggest a need to investigate empirically 

the economics of pricing of hybrid corn seeds.   

The objective of the present paper is to evaluate the pricing of conventional and 

GM hybrid corn seeds under imperfect competition and product differentiation. We begin 

by developing a pricing model of differentiated products under a quantity-setting game. 

In a multiproduct context, we examine the linkages between pricing and 

substitution/complementarity relationships among products with different bundled 

characteristics. A multi-product generalization of the Herfindahl-Hirschman index 

(hereafter GHHI) is then motivated, which captures cross-market effects of imperfect 

competition on bundle pricing. The GHHIs are then included in an econometric analysis 

of bundle pricing in the U.S. hybrid corn seed industry. To our knowledge, the present 

analysis is the first econometric investigation using GHHI to estimate the linkages 

between imperfect competition and multiproduct pricing. The model also allows for a test 

of standard component pricing for seeds with stacked GM traits. Applied to farm survey 

data, the econometric estimates provide useful information on the role of trait bundling 

and market structure in the pricing of U.S. hybrid corn seeds.  
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The paper is organized as follows. The model section presents a conceptual 

framework of multiproduct pricing under imperfect competition. We then provide an 

overview of the U.S. corn seed market, followed by an econometric model of seed 

pricing, where the GHHIs reflect the exercise of market power. The estimation method 

and econometric results are then presented. Finally, we discuss the empirical findings and 

their implications.   

The Model 

Consider a market involving a set {1,..., }N=N of N firms producing a set of T 

products. Denote by 

{1,..., }T=T

1( ,..., ,..., )n n n n
m Ty y y T

+≡y ∈ℜ

)

 the vector of output quantities produced by 

the n-th firm,  being the m-th output quantity produced by the n-th firm, m ∈ T, n ∈ N. 

The price-dependent demand for the m-th product is

n
my

( n
m n

p
∈∑ N

y . The profit of the n-th 

firm is: πn = [ ( ) ] ( ),n n n
m m nm n

p y C
∈ ∈

−∑ ∑T N
y y  where ( )n

nC y denotes the n-th firm’s cost of 

producing ny . Assuming a Cournot game and under differentiability, the n-th firm’s 

profit maximizing decision ny  must satisfy πn ≥ 0 and the Kuhn-Tucker conditions:  
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Equation (1c) is the complementary slackness condition. It applies whether the m-th 

product is produced by the n-th firm (  > 0) or not (  = 0). Equation (1c) is important n
my n

my
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for our analysis: it remains valid irrespective of the firm entry/exit decision in the 

industry. And (1c) holds no matter how many of the T products the firm chooses to sell.  

Below, we consider the case of linear demands, ( )n
k k km mm n

p yα α
∈ ∈

= +∑ ∑T N
, with 

k
n
m

p
kmy

α∂

∂
=  and 0mmα < , k, m ∈ T. We also assume that the cost function takes the form 

( )n
nC y  = , where ∑ ∈

+
T

S
m

n
mm

n
n ycF )( { :n n

jj y 0}= ∈ >S T  is the set of products produced 

at positive levels by the n-th firm. Here, ≥ 0 denotes fixed cost that satisfies ( )n
nF S ( )nF ∅  

= 0. Such fixed cost may include R&D expenditure, distribution channel costs, federal 

registration fees and other relevant marketing costs. And the term  denotes constant 

marginal cost of producing the m-th output. Note that the presence of fixed cost (where 

 > 0 for ) implies increasing returns to scale. With positive fixed cost, 

marginal cost pricing would imply negative profit (πn < 0) for any 

mc

( )n
nF S n ≠ ∅S

ny  ≠ 0, corresponding 

to prices not high enough to cover the fixed cost  > 0. Therefore, any sustainable 

equilibrium must be associated with departures from marginal cost pricing. Fixed cost 

can also reflect the presence of economies of scope, which would occur when 

 for some ,  ⊂ T, i.e. when the joint production of 

outputs in  reduces fixed cost (Baumol et al., 1982, p. 75). A relevant example is 

R&D investment as a fixed cost contributing to the joint production of outputs in 

. Indeed, because of synergies in R&D across biotech traits, a biotech firm could 

reduce its aggregate fixed R&D investment by working on the joint development of 

several traits (compared to a situation where the traits are produced by specialized firms). 
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In the case of joint development of traits, scope economies could come from cost savings 

obtained from sharing knowledge and laboratory equipment, and reducing management 

cost of the research team. Alternatively, diseconomies of scope could develop in 

situations where managing multi-output processes increase fixed cost. Examples include 

increased setup costs and excessive administrative burdens.   

Our analysis exploits the information presented in equation (1c).4 Let 

denote the aggregate output of the m-th product. Define 0n
m mn

Y y
∈

=∑ N
> [0,1]

n
m

m

yn
m Ys = ∈  as 

the market share of the n-th firm for the m-th product. Similarly, let 
n
k

k

yn
k Ys = [0,1]∈ be the 

market share of the n-th firm for the k-th product, with 0n
k kn

Y y
∈

= >∑ N
 denoting the 

aggregate output of the k-th product. Dividing equation (1c) by  and summing across 

all n ∈ N yield  

mY

(2)  , ( )n n
m m km k m kk n

p c s s Yα
∈ ∈

= −∑ ∑T N

where cm is the marginal cost of the m-th output, and k
n
m

p
km y

α ∂

∂
=  is the slope of the demand 

curve measuring the marginal impact of the m-th quantity demanded on the k-th price. 

Note that equation (2) applies for any arbitrary number of products in the product space 

T. It includes own-market effects when k = m, and it captures pair-wise cross-market 

effects when m ≠ k.  

Equation (2) can be alternatively written as 

(3)  ,  m m km kmk
p c H Yα

∈
= −∑ T k

swhere .  n n
km k mn

H s
∈

≡∑ N
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Equation (3) is a price-dependent supply function for the m-th product. It is a 

structural equation in the sense that both price mp  and the market shares in the ’s are 

endogenous (as they are both influenced by firms’ strategies). Thus, equation (3) provides 

useful linkages between price and market structure. With cm being marginal cost, 

equation (3) shows that any departure from marginal cost pricing can be measured as  

kmH

(4)  m kmk km kM H Yα
∈

= −∑ T
.  

The Lerner index is defined as m m

m

p c
m pL −= . It measures the proportion by which the 

m-th output price exceeds marginal cost. It is zero under marginal cost pricing, but 

positive when price exceeds marginal cost.5 The Lerner index provides a simple 

characterization of the strength of imperfect competition (where the firm has market 

power and its decisions affect market prices). From equations (3) and (4), the Lerner 

index can be written as m m

m m

M M
m p c ML += =

m
. Thus Mm in (4) gives a measurement of price 

enhancement beyond marginal cost. Equation (4) also provides useful information on the 

structural determinants of Mm. Indeed, while ∈ [0, 1], note that  → 0 under 

perfect competition (where the number of active firms is large) and = 1 under 

monopoly (where there is single active firm operating across all markets). In other words, 

the term Mm in (4) captures the effects of imperfect competition and the exercise of 

market power on prices.  

kmH kmH

kmH

When k = m, note that  is the traditional Herfindahl-Hirschman index (HHI) 

providing a measure of own market concentration. The HHI is commonly used in the 

analysis of the exercise of market power (e.g., Whinston 2006). Given 

mmH

0,mmα <  equation 
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(3) indicates that an increase in the HHI  (simulating an increase in market power) is 

associated with an increase in the Lerner index 

mmH

mL  and in price mp . As a rule of thumb, 

regulatory agencies have considered that  corresponds to concentrated markets 

where the exercise of market power can potentially raise competitive concerns (e.g., 

Whinston 2006).

0.1mmH >

6  

Equation (3) extends the HHI to a multiproduct context. It defines  as a 

generalized Herfindahl-Hirschman index (GHHI). When k ≠ m, it shows that a rise in the 

“cross-market” GHHI  would be associated with an increase (a decrease) in the 

Lerner index 

kmH

kmH

mL  and in the price mp  if 0 ( 0).kmα < >  This shows how the signs and 

magnitudes of cross demand effects k
n
m

p
km y

α ∂

∂
=  affect the nature and magnitude of 

departure from marginal cost pricing. Following Hicks (1939), note that k
n
m

p
km y

α ∂

∂
=  < 0 (> 

0) when products k and m are substitutes (complements) on the demand side, 

corresponding to situations where increasing  tends to decrease (increase) the 

marginal value of . It follows that the terms { : k ≠  m} in equations (3)-(4) capture 

the role of substitution or complementarity among products (through the terms 

n
my

n
ky kmH

kmα ) and 

the effects of cross-market concentration on the Lerner index and prices. Indeed, a rise in 

 would be associated with an increase (a decrease) in the Lerner index kmH mL  and in the 

price mp  when and  are substitutes (complements).  ky my

Previous research has pointed out the complex linkages between bundling 

strategies and the exercise of market power in bundling (e.g., Adams and Yellen 1976; 
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McAfee, McMillan and Whinston 1989; Venkatesh and Kamakura 2003; Fang and 

Norman 2006). Equation (3) captures the essence of bundle pricing under imperfect 

competition in a multiproduct framework. On the supply side, to be sustainable, prices 

given in equation (3) must generate non-negative profit for each firm, πn ≥ 0. As noted 

above, fixed cost may imply economies of scope when ( ) ( )n n
n a n bF F+ >S S  . It 

means that a firm can lower its (fixed) cost by selling multiple products, which may allow 

it to charge lower prices without making losses. In this case, economies of scope may 

contribute to discount bundle pricing. On the demand side, equation (3) shows how the 

HHI and GHHI’s capture the effects of market power on bundle pricing. In particular, for 

m ≠ k, the GHHI’s capture the effects of complementarity or substitutability across 

products. Equation (3) will be used below in our empirical investigation of pricing in the 

U.S. hybrid corn seed market.  

( )n n
n a bF ∪S S

The U.S. Corn Seed Market 

Our analysis relies on a large dataset providing detailed information on the U.S. corn seed 

market. The data were collected by dmrkynetec [hereafter dmrk]7 using computer 

assisted telephone interviews. The dmrk data come from a stratified sample of U.S. corn 

farmers surveyed annually from 2000 to 2007.8 The surveys provide farm-level 

information on corn seed purchases, corn acreage, seed types and seed prices. About 40-

50% of the farms surveyed each year remain in the sample for the next year. The dmrk 

data contain 168,862 transactions from 279 USDA crop reporting districts (CRD). A total 

of 38,617 farms were surveyed during 2000-2007, with each farm purchasing on average 

four to five different corn seed types each year. Our analysis only considers transactions 
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in CRDs in the Midwest with more than ten farms sampled each year. In total, our data 

contain 139,410 observations from 80 CRDs in 12 states.9   

There are two major groups of genes/traits in GM corn seeds: insecticide 

resistance and herbicide tolerance. The insect resistance traits focus on controlling 

damages caused by the European corn borer (ECB), and rootworms (RW).10 The 

herbicide tolerance technology provides farmers with on-board early plant protection 

from applying formula-specific (i.e. branded) herbicides. Insect resistance reduces yield 

damages caused by insects and reduces or eliminates pesticide applications. Herbicide 

tolerance helps reduce yield reductions from competing plants (weeds) and allows for 

greater flexibility in making spring planting decisions. Figure 1 shows the evolution of 

corn acreage shares reflecting adoption rates of conventional and GM hybrid corn seed in 

the US from 2000 to 2007 using the dmrk data. The acreage share of conventional seeds 

decreased rapidly: from 67.5% in 2000 to 20.6% in 2007. Table 1 presents the average 

price of different hybrid corn seeds ($ per bag) in our sample. The presence of a biotech 

trait tends to add value to the conventional germplasm and multiple trait-stacking or 

bundling is typically worth more than single-trait seeds. Note that, being at the national 

level, the information presented in figure 1 and table 1 masks important spatial market 

differences. For example, in spite of a rapid adoption of biotech seeds, the dmrk data 

show that conventional seeds still dominate in some local markets. This indicates the 

presence of spatial heterogeneity in the U.S. corn seed market. As discussed below, such 

heterogeneity also applies to seed prices. 
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Econometric Specification 

Our analysis of corn seed prices builds on equation (3). As derived, equation (3) is a 

structural equation reflecting the determinants of pricing in a multi-product quantity-

setting game.11 As discussed in the model section, cost can affect bundle pricing. Also, 

the effects of imperfect competition on price were shown to depend on the nature of 

substitution/complementarity across traits. Below, we specify a modified version of 

equation (3) that reflects the effects of both bundling and market structure on corn seed 

prices.     

Consider the case of seeds exhibiting different genetic characteristics. Partition 

the set of seeds into mutually exclusive types. Let iK ∈ {0, 1} be a dummy variable for a 

seed of the i-th characteristics, i = 1, …, J. In our analysis, we consider J = 5. 

Conventional seeds are denoted by 1K = 1, while { 2K , …, 5K } correspond to the GM 

traits in corn seeds. The GM seeds include two insect resistance traits: resistance to 

European corn borer ECB and to root worm RW 2(K =1) 1)3(K = and two herbicide 

tolerance traits HT1  and HT2 4(K =1) 1)5(K = .12 Single-trait GM seeds include only one 

GM trait. But bundled/stacked GM seeds include more than one GM trait. We let 1iK =  if 

a GM seed includes the i-th GM trait (either individually or stacked), and  

otherwise. In the absence of bundling/stacking, the K’s satisfy 

0iK =

1
1.J

ii
K

=
=∑  However, in 

the presence of stacking, biotech seeds include the genetic traits of more than one type, 

implying that  Therefore, evaluating the effects of the genetic characteristics 

on seed prices requires a flexible specification that can capture bundling/stacking effects.   

1
1.J

ii
K

=
≥∑
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We start with a standard model in which each purchase observation is at the farm-

level and the price of a seed varies with its characteristics (e.g., following Rosen 1974). 

The price p represents the net seed price paid by farmers (in $ per bag).13 Consider the 

hedonic equation representing the determinants of the price p for a seed of characteristics 

1 2 5{ , ,..., }:K K K   

(5a) 
5 5 5 5 5 5 5 5 5 5

1 1 2 1 1 2 1 1 1 2
,i i ij ij ijz ijz ijzr ijzr

i j i i z j j i i r z z j j i i
p K K K Kβ δ δ δ δ

= = + = = + = + = = + = + = + =

= + + + + + +∑ ∑ ∑ ∑ ∑∑ ∑ ∑ ∑∑ φX ε   

where X is a vector of other relevant covariates, and ε is an error term with mean zero 

and constant variance. In equation (5a),  is a dummy variable for double-stacking the 

i-th and j-th GM traits. Similarly, and  are dummy variables representing 

respectively triple-stacking and quadruple-stacking.

ijK

ijzK ijzrK

14    

 For conventional seeds and single-trait seeds, the dummy variables  and 

 are all zero. This implies that the coefficients 

,ijK ijzK

ijzrK ,ijδ  ,ijzδ  and ijzrδ  in (5a) capture the 

supply-side effects of bundling on seed price. The dmrk data reveal that trait bundling is 

common, which allows us to test for its price impact. One important special case occurs 

when 0ij ijz ijzrδ δ δ= = = , which corresponds to standard component pricing. Here, the 

price of seed is just the sum of the value of its genetic components (as captured 

by∑ , with
i ii Kδ iδ  measuring the unit value of the i-th genetic material). When the 

parameters ,ijδ  ,ijzδ  and ijzrδ  are not all zero, equation (5a) allows for non-linear pricing 

associated with bundled goods under stacking.  
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The parameters ,ijδ  ,ijzδ  and ijzrδ  can be either negative or positive. When 

negative, these parameters would reflect sub-additive bundle pricing. The price of the 

bundle would then be “discounted” compared to component pricing. This could be 

associated with economies of scope on the production side, if the joint production of 

bundled goods leads to a cost reduction that gets translated into lower bundle price. 

Alternatively, positive parameters would correspond to super-additive bundle pricing.   

Next, we introduce market structure effects in (5a) by specifying 

 (5b)  0 ,i i ii iid d Hδ = +   

where, for each CRD,  is the traditional HHI in which n n
ii i in

H
∈

≡∑ N
s s n

is represents the 

market share of the n-th firm in the market for the i-th characteristics. We construct the 

market share using trait acreage. Thus in the GM trait market, only a few biotech firms 

owning the patent of each trait are involved. The market share of each company’s trait is 

constructed as the firm-specific trait acreage divided by the total trait acreage in the local 

market. In the conventional seed market, many more seed companies are involved, and 

the market share is constructed as the firm specific conventional seed acreage divided by 

total conventional seed acreage in the local market.  

We further specify  

(5c)  ,  
5 5 5 5

0
1 1 1 1

ij ij i ji ji j
j i i j i i

H K H Kβ β β β
= + = = + =

= + +∑ ∑ ∑∑

where n n
ij ji i j

n
H H s

∈

≡ ≡ ∑
N

s  is the cross-market GHHI that measures concentration for firms 

operating in the market for both i-th and j-th characteristics. With this specification, the 

coefficients on the GHHI terms capture the net effects associated with efficiency gains, 
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market power, and other possible strategic considerations across different product types. 

Since the HHI and the GHHI’s are zero under competitive conditions, it follows from 

equations (4) and (5a)-(5c) that the market power component of the price of seed with the 

i-th characteristics is given by 

(6)  
5 5

1 1
i ii ii i ij ij i

j i i

M d H K H Kβ
= + =

= + ∑ ∑ .  

In a way similar to equation (4), equation (6) provides a representation of the 

linkages between market structure, imperfect competition, and pricing. As noted in the 

model section, the term Mi in (6) measures the difference between price and marginal 

cost. It can be used to obtain the associated Lerner index i

i

M
i pL = .     

Our model specification allows us to estimate the pricing of each seed type along 

with stacking effects. To illustrate, from (5a)-(5c), for a double-stacked seed with ECB 

and HT1 , the price equation is 2 4 24( 1, 1,  and K K K= = =1)

(7) 
5 3

24 0 02 04 24 22 22 44 44 21 21 2 2 4 4 45 45
3 1

j j i i
j i

p d H d H H H H Hβ δ δ δ β β β β
= =

= + + + + + + + + + + +∑ ∑ φX ε . 

Equation (7) shows how traits, stacking and market concentration are associated 

with pricing. Specifically, the 02δ  and 04δ  terms measure the component value of each 

respective trait, 24δ  measures the marginal impact of stacking ECB and HT1 in a single 

GM seed.  The  terms capture own-market concentration effects (measured by HHI), 

and the β’s capture cross-market concentration effects (measured by the GHHI’s).  

iid

The relevant covariates in X include a time trend, each farm’s total corn acreage, 

binary terms that control for the source of each transaction, and a set of location 
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variables. The time trend is included to capture advances in hybrid and genetic 

technology and other time related factors such as structural changes taking place during 

the study years. Farm acreage captures possible price impacts associated with farm size 

(including productivity differences and/or volume discounts that could vary with farm 

size). Although the surveys defined 16 possible purchasing sources, over 80% of the 

transactions were classified into three categories: “Farmer who is a dealer or agent” 

(33.1%); “Direct from seed company or their representatives” (29%); and “Myself, I am a 

dealer for that company” (16.1%). The source of purchase can capture possible price 

differences linked to alternative marketing strategies.   

Spatial effects enter our model via state dummy variables along with linear and 

quadratic terms for the longitude and latitude of the county.  Since the inception of the 

hybrid corn seed technology in the 1930s, new hybrids have been developed and 

marketed to farms on a regional basis (Griliches 1960). The advent of GM seeds has not 

changed the need for seeds to perform well under specific growing conditions that can 

vary across regions. Our location variables are designed to control for possible pricing 

differences associated with spatial heterogeneity in farming systems (e.g., differing crop 

rotations) and agro-climatic conditions (soil quality, length of the growing season, 

rainfall patterns, etc.).   

The market share of biotech seeds has increased significantly during the years of 

our study (see figure 1). In many cases, we found “entry” and “exit” of traited seeds in 

some local markets. In order to investigate whether entry/exit may affect seed prices 

beyond the H effects, we also introduce entry/exit variables in the specification (5a). In 
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our data, we observe local exits in the conventional seed ( 1K ) markets. We also observe 

local entry in the HT1 trait ( 4K ) markets, the ECB trait ( 2K ) markets and the RW trait 

( 3K ) markets. To capture entry-exit effects on seed price, the following binary terms are 

included: Post-exit1 = 1 for the 1K  market; Pre-entry2 = 1 for the 2K  market; Pre-entry3 

= 1 for the 3K  market; and Pre-entry4 = 1 for the 4K  market.15  

Estimation 

Table 2 reports summary statistics of key variables used in the analysis. Each CRD is 

presumed to represent the relevant market area for each transaction; thus, all H terms are 

calculated at that level. We report the sample mean of the Hii and Hij, across all CRDs for 

each seed type. While the average of HHI shows that the conventional seed markets 

appear concentrated (with = 0.242, which is above the Department of Justice’s 

threshold of 0.18 for identifying "significant market power"), they are not as concentrated 

as the biotech trait markets. The average HHI for the three biotech trait markets is over 

0.80. 

11H

One econometric issue in the specification (5a)-(5c) is the endogeneity of the H’s. 

Market concentrations (as measured by the H’s) and seed pricing are expected to be 

jointly determined as they both depend on firm strategies. For example, if a major seed 

firm uses a strategy focusing on increasing farmers’ adoption, it may price the seed 

lower. The low price may increase the firm’s market share and result in higher H’s (for 

both HHI and GHHIs). To the extent that parts of the determinants of these strategies are 

unobserved by the econometrician, this would imply that the H’s are correlated with the 

error term in equation (5a). In such situations, least-squares estimation of (5a)-(5c) would 
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yield biased and inconsistent parameter estimates (due to endogeneity bias). To address 

this issue, we first test for possible endogeneity of the H’s using a C statistic calculated as 

the difference of two Sargan statistics (Hayashi 2000, p. 232). The test is robust to 

violations of the conditional homoscedasticity assumption (Hayashi 2000, p. 232).16 In 

our case, the C statistic is 200.16, showing strong statistical evidence against the null 

hypothesis of exogeneity of the H’s.  

To correct for endogeneity bias, equations (5a)-(5c) are estimated by an 

instrumental variable (IV) estimator. We used as instruments the lagged values of each H 

and the lagged market size for each seed type. These lagged variables are good 

candidates for instruments: given the time lag required to produce seeds, they are part of 

the information available to firm managers at the time seed quantity decisions are made. 

We investigated the statistical validity of these instruments. The Hansen over-

identification test is not statistically significant, indicating that our instruments appear to 

satisfy the required orthogonality conditions. On that basis, equation (5a)-(5c) was 

estimated by two-stage-least-square (2SLS).    

A second test was used to evaluate the presence of unobserved heterogeneity 

across farms. A Pagan-Hall test17 found strong evidence against homoscedasticity of the 

error term in (5a). As reported earlier, each farm purchases on average four to five 

different seeds. Some large farms actually purchase up to 30 different hybrid seeds in a 

single year. Unobserved farm-specific factors affecting seed prices are expected to be 

similar within a farm (although they may differ across farms). This suggests that the 

variance of the error term in (5a) exhibits heteroscedasticity. On that basis, we relied on 
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heteroscedastic-robust standard errors with clustering at the farm level in estimating 

equation (5a)-(5c).   

 Additional tests of the validity of the instruments were conducted. In the presence 

of heteroscedastic errors, we used the Bound et al. (1995) measures and the Shea (1997) 

partial 2R statistic to examine the possible presence of weak instruments. The F-statistics 

testing for weak instruments were large (i.e., much above 10). Following Staiger and 

Stock (1997), this means that there is no statistical evidence that our instruments are 

weak. Finally, we conducted the Kleibergen-Paap weak instrument test (Kleibergen and 

Paap, 2006).18 The test statistic is 5.81. Using the critical values presented in Stock and 

Yogo (2005), this indicated that our analysis does not suffer from weak instruments. 

Empirical Results 

Equation 5(a)-(5c) is estimated using 2SLS, with heteroscedastic-robust standard errors 

under clustering at the farm level. We first tested whether the cross-market GHHI impact 

is symmetric: H0: βij = βji, where the β’s are the coefficients of the corresponding 

GHHI’s. Using a Wald test, we fail to reject the null hypothesis for . On that basis, we 

imposed the symmetry restriction for  in the analysis presented below.  

13H

13H

Table 3 reports the results. For comparison purpose, the ordinary least square 

(OLS) estimation results are also reported. The OLS estimates of the market 

concentration parameters differ substantially from the 2SLS results. This reflects the 

endogeneity of our market concentration measures (and the associated bias of the OLS 

estimation). Our discussion below focuses on the 2SLS estimates. We first discuss the 

price impacts associated with introducing single biotech traits. This builds toward a 
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broader assessment of the impacts of bundling/stacking of traits and of the role that 

market power. These effects are further investigated below.    

Characteristics effects: The coefficients of the terms 2K  (ECB), 3K  (RW) and 5K  

(HT2) show statistically significant price premiums of $25.64, $46.06, and $9.63 per bag, 

respectively, over the price of conventional seed. The coefficient of 4K  (HT1) is negative 

but insignificant.  

The coefficients of the terms and  provide useful information on the 

effects of trait bundling/stacking on seed price. All of the stacking coefficients except for 

,ijK ,ijzK ijzrK

35K  are negative and statistically significant. The coefficient for 35K  is positive but not 

statistically significant. As discussed in the econometric specification section, component 

pricing is associated with the null hypothesis that all stacking coefficients are zero. Using 

a Wald test, the null hypothesis that the stacking coefficients are all zero is strongly 

rejected. This provides convincing evidence against component pricing of biotech traits 

in the corn seed market. The negative and significant stacking effects also indicate the 

potential prevalence of subadditive pricing of corn seed in their individual components. 

However, an overall evaluation of the bundling effects also requires including the market 

concentration effects. Such an evaluation is presented below.  

Market concentration effects: The price effects of changes in the traditional 

Herfindahl indexes for each seed type are presented in the first four rows of the “Market 

concentration effects” in table 3.19 Our estimates indicate that an increase in market 

concentration for conventional seeds (as measured by ) has a positive and statistically 

significant association with the price of conventional seeds. More specifically, a one-

11H
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point increase in  is associated with a $14.81 per bag increase in the price of 

conventional seeds. The partial effect of concentration in the RW trait market ( ) and 

the HT1 trait market ( ), were also positive and statistically significant: A one-point 

increase in  ( ) is associated with a $32 ($14.92) per bag increase in the price of 

RW (HT1) seeds. Finally, the concentration effect in the ECB trait market ( ) is 

negative but not statistically significant.  

11H

33H

44H

33H 44H

22H

We have argued in the model section that the effects of cross-market 

concentration , i ≠ j, depend on the substitutability/complementarity relationship 

between traits i and j. We expect that an increase in the cross-market concentration 

will be associated with a rise (decrease) in the price if the two components are 

substitutes (complements).  

ijH

ijH

Of the five GHHI’s that involve conventional seeds ( , , , , ), only 

the coefficients on  (conventional market share crossed with ECB market share) and 

 (conventional market share crossed with HT1 market share) are statistically 

significant. The positive effect of both coefficients suggests that the ECB trait is viewed 

as a substitute for the conventional seed from the perspective of non-GM farmers; and 

that conventional seed is viewed as a substitute for the HT1 trait for the HT1 traited seed 

adopters. This is plausibly explained by the presence of a “yield drag” associated with 

adding a trait into a seed (Avise 2004, p. 41), which would induce some substitution in 

demand between GM trait and conventional seed.   

12H 21H 13H 14H 41H

12H

41H
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All the cross-market concentration effects involving biotech traits are statistically 

significant. This is a major finding that stresses the importance of the general market 

structure in a multi-product setting.  The ECB and RW cross-market effects (  and ) 

are both negative suggesting that insect resistance traits are complements to each other. A 

plausible explanation may be that crop damages caused by one insect infestation are 

larger in the presence of damages from other insects. The ECB and HT1 effects (  and 

) are both positive suggesting that the ECB and HT1 traits are substitutes. The RW 

and HT1 effects (  and ) are statistically significant but with opposite sign, 

suggesting that the RW trait and HT1 trait may have asymmetric effects on each other: 

HT1 trait is viewed as complement to RW trait by RW traited seed adopters; and RW trait 

is viewed as substitute for HT1 trait by HT1 traited seed adopters. This suggests that the 

effects of insect infestation on corn yield differ significantly from those for weed 

infestation.   

23H 32H

24H

42H

34H 43H

Location effects: Corn seed prices are found to vary significantly across states. 

Compared to Illinois, the price difference is statistically significant for Iowa ($1.53), 

Indiana (-$1.13), Ohio (-$2.16), Wisconsin (-$2.34), and Kentucky (-$3.22). It appears 

that seed companies are able to price discriminate across regions, reflecting spatial 

differences in farmers’ willingness-to-pay, and their demand elasticities. The longitude 

variables are not statistically significant. But the latitude variables have significant effects 

on corn seed price: the linear term is positive while the quadratic term is negative. Seed 

price rises from south to north, reaches a peak near the center of the Corn Belt20 and then 
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declines when moving further north. This confirms significant differences in seed prices 

between the center of the Corn Belt and fringe regions.  

  Other variables: Except for Pre-entry4, which represents the entry of HT1 in 

specific markets, all other exit and entry dummies are statistically insignificant. The 

negative sign on the Pre-entry4 variable indicates that the introduction of HT1 traited 

biotech seed may raise the price for all seeds, including the conventional ones. This result 

is consistent with the finding in Shi (2009), who argues that the introduction of biotech 

seed can raise the conventional seed price. The farm size effect is statistically significant: 

large farms within each state pay more for corn seed.21The time trend effect is positive 

and statistically significant, possibly capturing the effect of inflation.  

Finally, we found statistically significant differences in pricing across  seed 

purchase sources. Compared to purchasing from “Farmer dealer or agent”, “buying 

directly from a seed company” costs about $4.57 less, while purchasing from “myself 

dealer” costs about $4.40 less. These results may reflect the effect of farmer’s bargaining 

position, but also possibly the presence of price discrimination across different modes of 

purchase.  

Implications 

In this section, our empirical estimates are used to generate additional insights on bundle 

pricing, and the interactive role of market structure within and across markets on seed 

pricing. Our analysis focuses on Illinois, which is one of the largest corn-producing states 

in the US. It has the largest number of farms in our sample. The year 2004 is chosen as it 
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is in the middle of our sample period and it avoids entry/exit events for traits. In each of 

our exercises, bootstrapped standard errors are obtained to support hypothesis testing.  

 Bundling: For the first simulation, we evaluated the effects of bundling/stacking 

on seed prices. The bundling literature has identified situations where component pricing 

may not apply (e.g., when the demands for different components are correlated, or when 

consumers are heterogeneous in at least a subset of the component markets). As discussed 

above, an overall evaluation of the bundling effects needs to combine both supply side 

and demand side effects. Our econometric results strongly reject component pricing on 

the supply side, while finding some statistical evidence that suggests both 

complementarity and substitutability in demand (implying the possibility of observing 

either sub-additive or super-additive pricing). The simulation results (available upon 

request) suggest that, in general, traited seeds generated statistically significant premiums 

over conventional seeds, with strong statistical evidence of sub-additive pricing in 

bundling two, three, and four traits. Subadditive pricing may be driven by price 

discrimination associated with imperfect competition and complementarity in demand, or 

the presence of scope economies in the production of bundled/stacked seeds, or both. As 

discussed above, scope economies would be consistent with synergies in R&D 

investment (treated as fixed cost) across stacked seeds. The subadditivity of prices 

encourages more rapid farm adoption of stacked seeds.   

Estimated Lerner indexes: Second, we simulate the Lerner indexes applied to the 

pricing of different seed types. The Lerner index provides a simple characterization of the 

strength of imperfect competition: it is zero under marginal cost pricing, but positive 
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when price exceeds marginal cost. The market power component Mi in equation (6) gives 

a measure of price enhancement beyond marginal cost. And the associated Lerner index, 

expressed in percentage term, is 100 i

i

M
p× . Evaluated at sample means for Illinois in 2004, 

the Lerner indexes are reported in table 4 for selected seed types.   

The Lerner indexes are statistically significant at the 5 percent level in four of 

eight cases.22 The significant Lerner indexes are positive in three cases: (conventional 

seed (5.92%), HT1 traited seed (20.87%), and double stacked seed of ECB and HT1 

(15.9%)), and negative in the case of double stacked seed of ECB and RW (-10.11%). The 

results provide empirical evidence that market structure affects seed prices. The effect of 

market power on price is found to be smallest in the conventional seed market, but large 

in the HT1 seed market and the ECB/HT1 bundled seed market. While the Lerner indexes 

are not statistically different from zero for single trait ECB and RW seed markets, they 

exhibit a negative and statistically significant price effect in the stacked market ECB/RW. 

Thus, our analysis shows empirical evidence of complementarities interacting with 

market structure: an increased market concentration in these two sub-markets is 

associated with a price reduction in the relevant stacked seed market. 

Market structure: In our conceptual framework, we develop the GHHI’s 

(  for sub-markets i and j) as a way to link market structure with pricing in 

a multi-product framework. When market shares of different products change, several 

GHHIs also change. Thus, the assessment of changing market structures is complex in 

the presence of bundling. To evaluate such issues, we simulated the effects of changing 

market structures associated with alternative merger scenarios. Several simulations are 

n n
ij i jn

H s
∈

≡∑ N
s
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presented to evaluate the potential effects of increased market concentrations on seed 

prices. Each simulation considers a hypothetical merger leading to a monopoly for a 

given GM trait market. While these are rather extreme scenarios, the simulated effects 

can be interpreted as upper bound estimates of the potential impact of market power. 

Three sets of (hypothetical) mergers are simulated: a/ mergers between biotech 

companies within each GM trait market (biotech/biotech within trait); b/ mergers 

between biotech companies producing different GM traits (biotech/biotech across traits); 

and c/ mergers between biotech companies and traditional independent seed companies 

(biotech/seed merger). Each merger scenario is counterfactual and used to illustrate how 

our analysis can be used to evaluate the price implications of changing market structures.  

The price effects of three sets of merger scenarios are reported in table 5. The first 

set (scenarios 1-3) considers mergers of biotech firms within the ECB market (scenario 

1), within the RW market (scenario 2), and within the HT1 market (scenario 3). As shown 

in table 5, the effect of such mergers on seed price would not be statistically significant 

for ECB and RW, but would be for HT1. Our simulation results show that mergers of 

biotech firms in the HT1 markets could induce a price increase of up to $19.08/bag of 

HT1 seed.  

The second set (scenarios 4-6) considers mergers between biotech companies 

producing different genetic traits. This covers mergers of biotech firms involved in ECB 

and RW markets (scenario 4), in ECB and HT1 markets (scenario 5), in RW and HT1 

markets (scenario 6). In each case, the simulations assume that the merger leads to a 

monopoly in the corresponding market. The cases within scenario 4 allow the evaluation 
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of possible efficiency gains that might emerge from mergers. Mergers across ECB and 

RW markets are associated with a price reduction of $5.99/bag for ECB seeds (scenario 

4a), $25.10/bag for RW seeds (scenario 4b) and $31.09/bag for ECB/RW stacked seeds 

(scenario 4c). Merging ECB and HT1 is shown to have no impact on the ECB trait market 

(scenario 5a), but would induce a price increase of up to $22.22/bag for HT1 seed 

(scenario 5b) and $22.55/bag for ECB/HT1 stacked seeds (scenario 5c). Merging RW and 

HT1 could be associated with a price reduction of up to $21.34/bag for RW seed (scenario 

6a) and a price increase of up to $19.91/bag for HT1 seed (scenario 6b). However, the 

price effects on RW/HT1 stacked seeds (scenario 6c) are not statistically significant. 

Finally, the third set (scenarios 7-9) considers mergers involving biotech 

companies and traditional independent seed companies. Again, the simulations assume 

that the mergers lead to the monopolization in the corresponding biotech trait market. 

However, since the monopolization of seed companies is unlikely (given many seed 

companies), the mergers in scenarios 7-9 are assumed to increase market concentrations 

for conventional seed only to the maximum observed in our sample. The results show 

that the merger involving ECB biotech firms lead to statistically significant price 

increases of up to $32.37/bag (scenario 7). The mergers involving RW biotech firms 

(scenario 8) or HT1 firms (scenario 9) do not generate statistically significant price 

changes. Importantly, these simulation results capture cross-market effects that play a 

significant role in the evaluation of the exercise of market power.   

The simulations in table 5 illustrate the potential usefulness of the model in 

studying the effects of changing market concentrations. For example, in a pre-merger 
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analysis, this would involve evaluating the HHIs and GHHIs in all relevant markets 

before and after a proposed merger with a quantitative assessment of the price effects. 

Alternatively, the model could be used to estimate the spin-off effects by evaluating the 

anticipated effects on HHIs and GHHIs and by simulating the associated price changes. 

Concluding Remarks 

This paper has presented an analysis of bundle pricing under imperfect competition. A 

multiproduct Cournot model identifies the role of substitution/complementarity in bundle 

pricing. It explains how oligopoly pricing manifests itself, and motivates generalized HHI 

measures of market concentration. The model is applied to the U.S. corn seed market and 

is estimated using transaction-level data for the period 2000-2007. The U.S. corn seed 

industry is highly concentrated and involves conventionally bred hybrid seeds and other 

seeds with various combinations of patented GM traits that add value and service to the 

plant. GM seeds compete alongside conventional seeds in a spatially diverse farm sector. 

There is considerable variation in the spatial concentration of conventional seeds and 

seeds with various patented genetic traits. Through the years analyzed in this study, GM 

seeds were adopted quickly among U.S. farmers and are part of a broader wave of 

technological progress impacting the agriculture sector.   

The econometric investigation documents the determinants of seed prices, 

including the effects of bundling and the pricing component associated with imperfect 

competition. The research findings yield several major conclusions. . First, we find 

extensive evidence of spatial price discrimination. We observe that, ceteris paribus, seed 

prices vary by state and in a south to north pricing pattern that peaks in the central part of 
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the Corn Belt. This would be consistent with a type of price discrimination pattern that 

reflects the varying productivity of land in the Corn Belt. Second, we find strong 

evidence of subadditive bundle pricing, thus rejecting standard component pricing. This 

is consistent with the presence of economies of scope in seed production and/or demand 

complementarities. Third, we investigated the interactive role of market concentrations 

with complementarity/substitution effects in the pricing of seeds.  Using generalized 

HHI’s, this helps to document how traditional and cross-market effects of imperfect 

competition can contribute to higher (or lower) seed prices. For example, our results 

indicate that Lerner indices are positive and statistically significant for three seed types.  

Fourth, our simulation of hypothetical mergers produced numerous interesting results. It 

documented how complementarity effects can contribute to lower prices. It also found 

that mergers between a biotech firm and conventional seed firm can contribute to 

increasing conventional seed price.  Such a price increase may be of concern to 

policymakers if it contributed to raising the price of the entire corn seed complex.    

Our analysis could be extended in several directions. First, it would be useful to 

explore the implications of bundle pricing and imperfect competition in vertical markets. 

Second, there is a need for empirical investigations of bundle pricing analyzed jointly 

with bundling decisions. Third, it would be useful to investigate farmers’ adoption 

behavior with a focus on dynamics and social learning in the presence of bundling and 

imperfect competition. Finally, there is a need to explore empirically the economics of 

bundling applied to other sectors. These appear to be good topics for further research. 
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Table 1. Average Nominal Price for Different Seeds ($ per bag), 2000 - 2007 

Year Conv. ECB Single RW Single HT Single Double Triple Quadruple

2000 79.37 100.24 n/a 87.34 95.21 100.95 n/a 

2001 80.73 103.77 n/a 89.85 100.43 105.29 n/a 

2002 81.81 103.91 n/a 89.08 103.19 94.64 n/a 

2003 83.79 104.93 114.88 94.73 108.78 82.10 n/a 

2004 86.42 108.61 120.49 98.88 113.68 112.21 n/a 

2005 86.96 104.46 114.52 101.50 114.49 123.78 n/a 

2006 91.36 109.69 116.67 109.93 123.03 139.21 131.29 

2007 93.53 111.36 121.07 114.67 124.71 133.02 140.03 

Total 84.29 105.37 117.33 101.51 118.25 133.47 139.60 
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Table 2. Summary Statistics 

Variable Number of 

observations 

Mean Standard 

Deviation 

Minimum Maximum 

Price ($) 139410 99.61 23.61 3 230 

Farm size (acre) 30273 489.48 587.87 5 15500 

Longitude 30273 91.59 4.783 80.75 103.76 

Latitude 30273 41.71 2.010 36.71 46.98 

11H  639 0.242 0.152 0.067 1 

22H  639 0.769 0.188 0.337 1 

33H  313 0.907 0.150 0.430 1 

44H  639 0.772 0.175 0.434 1 

12H  601 0.085 0.070 0.99E-04 0.518 

13H  291 0.108 0.088 1.10E-03 0.632 

14H  580 0.075 0.079 9.58E-05 0.526 

23H  312 0.761 0.169 0.172 1 

24H  617 0.577 0.261 0.010 1 

Note: The data contain 139410 observations from  CRDs spanning 8 years (2000-2007). Each farm 
purchases multiple seeds, therefore the number of observations for farm size is the total count of farms per 
year. The longitude and latitude information is based on the county level measurement for each farm. For 
the market concentration measurements H’s, we only report the summary statistics of those non zeros at the 
CRD level, therefore the number of observations is at most 80× 8 = 640. 

34H  311 0.785 0.198 0.056 1 
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Table 3.  OLS and 2SLS Regression with Robust Standard Errors 

OLS 2SLS  

Dependant Var: Price ($/bag) Coefficient t-statistics Coefficient Robust z 
statistics 

Characteristic effects, benchmark is K1: Conventional seed 
2K  (ECB) 24.31*** 46.93 25.64*** 12.65 
3K  (RW) 31.89*** 23.82 46.06*** 5.09 
4K  (HT1) 1.93*** 2.97 -3.78 -1.16 

5K  (HT2) 6.92*** 18.68 9.63*** 10.28 
23K  -9.49*** -11.20 -11.20*** -7.06 
24K  -10.06*** -30.10 -13.83*** -13.75 
25K  -3.44*** -7.96 -5.82*** -6.00 
34K  -11.03*** -12.74 -14.35*** -10.13 
35K  0.39 0.33 -1.27 -0.67 
45K  -19.70** -2.25 -21.95*** -2.92 
234K  -24.52*** -28.17 -30.62*** -11.82 
235K  -13.63*** -12.26 -18.71*** -6.47 
245K  -16.51*** -24.34 -22.92*** -11.84 
345K  -12.26*** -6.17 -17.36** -5.98 
2345K  -28.85*** -24.78 -37.88*** -10.05 

Market concentration effects 
11H (conventional seed) 11.71*** 15.83 14.81*** 6.47 
22H (ECB) 1.45** 2.41 -0.57 -0.27 
33H (RW) 4.82** 2.04 32.00*** 2.93 
44H (HT1) 11.25*** 12.70 14.92*** 2.91 
12H  on conventional seed 28.06*** 11.72 36.07*** 3.10 

21H  on ECB trait -7.22*** -4.73 -7.29 -0.95 
13H  on conventional seed/RW 

trait 
-1.74 -1.00 2.78 0.21 

14H on conventional seed -24.19*** -9.93 -14.58 -1.04 

41H on HT1 trait 9.22*** 6.49 22.42* 1.78 
23H  on ECB trait -2.10*** -6.14 -3.42** -2.38 

32H  on RW trait 1.79 0.74 -28.87*** -3.45 
24H  on ECB trait -2.58*** -5.10 3.00* 1.66 

42H  on HT1 trait 6.53*** 9.59 10.07*** 4.17 
34H  on RW trait -8.41*** -4.54 -24.98*** -2.98 

43H  on HT1 trait 3.99*** 9.35 7.77*** 4.15 
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Other variables 
Post-exit1 -4.36* -1.58 -2.77 -0.59 
Pre-entry2 -5.50** -2.21 -4.52 -1.21 
Pre-entry3 -0.30 -1.34 0.12 -0.11 
Pre-entry4 -7.75*** -3.64 -6.57** -2.02 
Total farm corn acreage (1000 
acre) 

0.75*** 9.61 0.72*** 4.68 

Longitude 0.33*** 2.90 0.37 1.49 
Longitude squared  -0.01 -1.52 -0.01 -1.00 
Latitude 0.97*** 5.59 1.18*** 3.30 
Latitude squared -0.11*** -6.93 -0.13*** -4.20 
Year 2.30*** 47.42 1.95*** 13.95 
Constant 71.01*** 71.41 70.36*** 29.39 
Number of observations 123861 

Note: Statistical significance is noted by * at the 10 percent level, ** at the 5 percent level, *** at the 1 
percent level. The R2 is 0.54 for the OLS estimation. For the 2SLS estimation, the centered R2 is 0.53, and 
un-centered R2 is 0.98. Results for the location and purchase source effects are not reported here but are 
discussed in the text. The longitude and latitude measures are normalized by subtracting the lower bound 
(80 for longitude and 36 for the latitude) from the true value. 

 34



Table 4. Simulated Lerner Indexes 

 Lerner Index (100 × L) Standard Error t-ratio 

Conventional 5.92*** 1.51 3.91 

ECB single -2.44 2.05 -1.19 

RW single -8.99 6.31 -1.43 

HT1 single 20.87*** 2.79 7.47 

ECB/RW double -10.11** 5.02 -2.01 

ECB/HT1 double 15.90*** 2.89 5.50 

RW/HT1 double 8.47 6.72 1.26 

ECB/RW/HT1 triple 6.00 5.64 1.06 

Note: Lerner indexes are calculated from prices at the mean GHHI levels compared to the case of 
competition (GHHI=0). Statistical significance is noted by * at the 10 percent level, ** at the 5 percent 
level, and *** at the 1 percent level. 
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Table 5. Simulated Merger Effects 

Sector affected 
by mergers 

 
Scenarios 

 

Market/Price 
Affected 

Induced 
price 

change 
($/bag) 

Standard 
Error 

 
t-ratio 

ECB (K2) 1 ECB (K2) -1.88 2.82 -0.67 

RW (K3) 2 RW (K3) -3.37 3.21 -1.05 

HT1 (K4) 3 HT1 (K4) 19.08*** 3.74 5.10 

4a ECB (K2) -5.99** 3.01 -1.99 

4b RW (K3) -25.10*** 9.35 -2.68 

 
ECB and RW 

(K2, K3) 

4c ECB/RW double -31.09*** 10.45 -2.97 

5a ECB (K2) 0.33 3.33 0.10 

5b HT1 (K4) 22.22*** 4.52 4.92 

 
ECB and HT1 

(K2, K4) 

5c ECB/HT1 
double 

22.55*** 6.20 3.64 

6a RW (K3) -21.34*** 6.30 -3.39 

6b HT1 (K4) 19.91*** 3.62 5.50 

 
RW and HT1 

(K3, K4) 

6c RW/HT1 double -1.43 6.14 -0.23 

Conv. and ECB 
(K1, K2) 

7 Conventional 
(K1) 

32.37*** 8.93 3.62 

Conv. and RW 
(K1, K3) 

8 Conventional 
(K1) 

7.87 10.09 0.78 

Conv. and HT1 
(K1, K4) 

9 Conventional 
(K1) 

-5.99 10.16 -0.59 

Note: Statistical significance is noted by * at the 10 percent level, ** at the 5 percent level, and *** at the 1 
percent level. 
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Figure 1.  Percentage of U.S. acreage planted in conventional and GM corn seed, 
2000 – 2007 
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Footnotes 
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nF S

mm

1 The CR4 indexes (and the acreage statistics) are calculated from the survey data discussed 

below.  

2 Single-trait GM corn seeds were first commercialized in 1996. Two years later the double-

stacked corn seed (i.e., the bundling of two traits) was introduced, followed by the introduction 

of the triple-stacked system, and then the quadruple-stacked system in 2006.  

3  They are: Monsanto, Syngenta, Dow AgroSciences, DuPont, Bayer CropScience, and BASF. 

4 Note that, under Cournot behavior, equation (1c) is a necessary but not sufficient condition for 

profit maximization by the n-th firm. For example, equation (1c) does not include the role of 

fixed cost  which affects the non-negative profit condition πn ≥ 0. To the extent that 

fixed cost can generate economies of scope (as discussed above), it means that equation (1c) 

cannot reveal direct information on economies of scope. However, indirect information about 

economies of scope can still be obtained as scope benefits would affect the observed prices and 

market share of each firm (through the profit condition πn ≥ 0).   

5 As pointed out by an anonymous reviewer, the Lerner index captures information only about the 

difference between price and marginal cost. As such, it neglects information about fixed cost 

and its effect on firm profit.    

6 The markets shares are often expressed in percentage term in the calculation of the Herfindahl-

Hirschman index. Then, the rule becomes H > 1000 (Whinston 2006).   

7  The firm dmrkynetec changed its name to GfK Kynetec in May 2009, web address: 

www.gfk.com. The seed data set is one of their products, called TraitTrak. 

8  The survey is stratified to over-sample large corn producers. The sampling weights are 

constructed using farm census data.  
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9 They are:  IL, IN, IA, KS, KY, MI, MN, MO, NE, OH, SD, and WI. 

10  Yield loss due to ECB or RW has been estimated for each to average about 5% with wide 

variability over time and space (Hyde et al, 1999; Payne, Fernandez-Cornejo and Daberkow, 

2003).  

11The use of a quantity setting assumption is motivated in two ways. First, due to time lags in the 

production of seeds, the quantity of each seed type is determined in the previous growing year: 

seed firms contract with farmers to produce conventional and GM hybrids.  Second, price 

games under a capacity constraint map to quantity setting outcomes (Kreps and Scheinkman 

1983). 

12 In our data, we observe that farmers purchase seeds inserted with both herbicide tolerance 

traits, implying that farmers see HT1 and HT2 as being differentiated.  

13 We also estimated a log specification of the price equation. The econometric results were 

qualitatively similar to the ones reported below.  

14 Note that the K’s in (5a) satisfy − − − =∑ ∑∑ ∑∑∑ ∑∑∑∑

5 ,

, because 

the trait dummy variable K’s are double-counted once in the double stacking dummies, twice in 

the triple stacking dummies, and three times in the quadruple stacking dummies. This equality 

implies that these dummy variables are perfectly collinear with the intercept. To deal with this 

issue below, we set δ1 = 0 in (5a), meaning that the intercept reflects the price of conventional 

seeds and that the other δ parameters measure price differences relative to conventional seeds. 

15 Note that we do not construct an event dummy for K  as we do not observe any pattern of 

entry or exit for this trait. 
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16 Under conditional homoskedasticity, the C statistic is numerically equivalent to a Hausman test 

statistic. 

17  Compared to the Breusch-Pagan test, the Pagan-Hall test is a more general test for 

heteroscedasticity in an IV regression, which remains valid in the presence of heteroscedasticity 

(Pagan and Hall 1983). 

18 Note that the Kleibergen-Paap test is a better choice compared to the Cragg-Donald test for 

weak instruments: the former remains valid under heteroscedasticity (while the latter one does 

not).  

19  We do not observe non-zero H because no firm that operates in HT2 market sells a 

conventional seed.  Similar situations arise for 25 ,H 35H  and 45H . Finally, note that 55H = 1 

because only one firm operates in this trait market.  

20 For the latitude, the peak is reached at 40.54. Note the mean latitude of our study region is 

41.71. 

21 This suggests that larger farms may be relatively more productive (compared to smaller farms) 

and thus may have a higher willingness to pay for seeds. Note that this result is conditional on a 

particular purchase source. Note that, as pointed by the Editor, larger farms are also more likely 

to be dealers (who tend to face lower prices, as discussed below).  

22 Cases involving the HT2 trait are dropped due to lack of variation in the HT2 market 

concentration. 

 

 40


	 Table 1. Average Nominal Price for Different Seeds ($ per bag), 2000 - 2007
	 Table 2. Summary Statistics

