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TECHNICAL EFFICIENCY ANALYSIS CORRECTING FOR BIASES  FROM 
OBSERVED AND UNOBSERVED VARIABLES:  AN APPLICATION TO A NATURAL 

RESOURCE MANAGEMENT PROJECT 
 

 
1  Introduction 

Measuring the impact of development projects has gained considerable prominence in the 

literature as donors are increasingly interested on quantitative evidence of the effects that 

development assistance has on the lives of poor people (Ravallion 2008).   Calls for additional 

funding to meet the Millennium Development Goals need to be supported by convincing analysis 

showing that current spending is indeed contributing toward the attainment of such goals 

(Khandker et al. 2010; World Bank 2006; Pearson 2009; Radelet 2004).   

There is growing evidence and adherence to the use of randomized experiments to 

undertake impact evaluation (Duflo et al. 2008).  However, it is often the case in development 

projects that experimental designs are costly and difficult to implement and one needs to rely on 

quasi-experimental methods. A core issue in impact evaluation is that to isolate a project’s 

impact one would ideally calculate the difference between the outcome for project beneficiaries 

and the outcomes from this same group had they not been part of the project. Clearly, both states 

of nature are not possible and such missing data are referred to as the ‘counterfactual’ in the 

impact evaluation literature (World Bank 2006).  Thus, the counterfactual situation is what 

would have happened to beneficiaries had they not participated in the intervention.   

A common evaluation technique is the before versus after approach where mean 

outcomes for the treatment group are compared before and after the intervention.  This approach, 

usually referred to as a reflexive evaluation, yields information on the trend for the treatment 

group but does not allow for the attribution of the observed changes to the intervention since 

other external factors can be responsible, at least in part, for such changes.  A better approach is 
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to select a comparison group like the treatment group in every way, except that it was not subject 

to the intervention.  This can be done using Propensity Score Matching (PSM), which is a well 

established practice to account for biases stemming from observed variables (World Bank 2006).   

Another common issue that is prevalent in many development projects is that very often 

beneficiaries self-select into participation.  If self-selection is based on unobserved variables 

(e.g., managerial ability) and panel data are available, then fixed effects estimators along with 

PSM can be used to deal with the problem provided that the unobserved variables are time 

invariant (Angrist and Pischke 2009).  Thus, the generation of a counterfactual along with the 

mitigation of biases from observed and unobserved variables can be addressed in quasi-

experimental designs provided one has samples for both treatment and control groups for the 

baseline and then a subsequent measure at the end or near the end of the project for the indicators 

of interest.  Under these circumstances, PSM along with fixed effects makes it possible to derive 

suitable impact measures (e.g., Bravo-Ureta et al. 2011; Rodriguez et al. 2007). 

The issue we want to tackle in this article is the comparison of technical efficiency (TE) 

across treatment and control groups using cross sectional data collected at the end of the 

implementation of the project. This type of data configuration is not uncommon in evaluation 

work in developing country projects. Thus, we first need to establish a group of beneficiaries and 

a control group that should have been very similar at the baseline, according to a vector of time 

invariant observable attributes.  In addition, we need to address possible self-selection in the 

context of a stochastic production frontier (SPF) model, an issue we deal with by using the 

model recently introduced by Greene (2010). A contribution of this paper is to narrow the gap 

between significant methodological advances that have been made in the estimation of SPF 
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models (Greene 2008), which has lead to a sizable number of farm level TE studies (Bravo-Ureta 

et al. 2007), and the rapidly evolving impact evaluation literature (Khandker et al. 2010).   

The analysis relies on data available from the MARENA Program which was 

implemented in Honduras between 2004 and 2009 with funding from the Inter-American 

Development Bank. MARENA belongs to a set of development efforts that have been 

implemented by national governments in Central America during the last two decades focusing 

on improving environmental conditions, increasing agricultural productivity and reducing 

poverty among peasant farmers.   The intent of MARENA was to increase productivity and 

alleviate poverty by strengthening natural resource management, at both local and regional 

levels, in an area of influence covering 13,721 km2 and about 930,000 inhabitants (Bravo-Ureta 

2009).  

MARENA was organized into three components: Component I, addressed institutional, 

strategic, regulatory, and management capacity needs of key public agencies; Component II, 

financed investments in priority sub-basins through three complementary modules; and 

Component III dealt with the overall coordination of the program.  The data used in this study 

relates to Module 3 within Component II, which promoted productivity growth by providing 

managerial training to beneficiaries and by fostering investments in sustainable agricultural 

production systems with a budget of US $7.6 million for that purpose (Bravo-Ureta 2009).  An 

important feature of MARENA, as is the case with many programs of this type, is that once the 

beneficiary eligibility criteria are set and the Program is promoted throughout the intervention 

area, farmers decide whether or not to participate.  Thus, self-selection plays an important role in 

any analysis that relies on data collected to evaluate the impact of these programs.   
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The remainder of the paper is organized into four additional sections.  The second section 

presents a brief overview of related literature followed by the conceptual framework used.  The 

next section presents the data used followed by the empirical model and the results.  The paper 

ends with some concluding remarks.    

2  Related literature  

As already indicated, this paper seeks to narrow the gap between two large bodies of economic 

literature, SPF modeling on the one side and impact evaluation on the other.   To our knowledge, 

the only paper that has made an explicit attempt in this direction is by Dinar et al. (2007) where 

an SPF model is used to evaluate the impact of agricultural extension on the performance of 

farmers in Crete.  A major shortcoming of the Dinar et al. (2007) paper is that selectivity bias is 

not addressed; therefore, the reported SPF parameter estimates and associated TE scores are 

likely to be biased.   

The combination of efficiency estimation and sample selection appears in a few studies 

which have generally dealt with selectivity bias by relying on the Heckman approach, a 

procedure that is unsuitable for nonlinear models such as the SPF (Greene 2010).  Bradford et al. 

(2001) studied patient specific costs for cardiac revascularization in a large hospital.  According 

to these authors, “… the patients in this sample were not randomly assigned to each treatment 

group.  Statistically, this implies that the data are subject to sample selection bias. Therefore, we 

utilize a standard Heckman two-stage sample-selection process, creating an IMR [Inverse Mills 

Ratio] from a first-stage Probit estimator … and … this variable is included in the frontier 

estimate…” (p. 306).  

 Sipiläinen and Oude Lansink (2005) utilized a translog stochastic distance frontier model 

to analyze TE for organic and conventional farms.  These authors state that “[p]ossible selection 
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bias between organic and conventional production can be taken into account [by] applying 

Heckman’s (1979) two step procedure” (p. 169.).  In this case, the inefficiency component is 

distributed as the truncation at zero with a heterogeneous mean1 and the IMR is added to the 

deterministic part of the frontier function. 

Solís et al. (2007) analyze TE levels for hillside farmers under two different levels of 

adoption of soil conservation in El Salvador and Honduras applying the Switching Regression 

Approach (SRA) to a SPF. The authors examine potential selectivity bias for high and low level 

adopters, and separate stochastic production frontiers, corrected for selectivity bias, were 

estimated for each group. SRA also relies on the introduction of the IMR into the specification of 

the frontier.  

Other authors have acknowledged the sample selection issue in stochastic frontier studies.  

Kaparakis et al. (1994), in an analysis of commercial banks, and Collins and Harris (2005), in 

their study of UK chemical plants, suggest that sample selection was a potential issue in their 

analysis.  However, neither study modified the stochastic frontier models to address this issue.   

Mayen et al. (2010) used an alternative approach to address self-selection into organic 

farming by using PSM to compare organic farms to otherwise similar conventional farms. The 

authors found small differences in TE between organic and conventional farms when TE is 

measured against the appropriate technology. Although this study corrected for biases from 

observed variables the authors did not account for biases stemming from unobserved factors. 

In a recent paper, Rahman et al. (2009) used the methods described below and applied in 

this paper to analyze production efficiency for a sample of rice producers in Thailand.  The 

authors analyzed the switch from lower quality rice varieties to Jasmine rice which is a higher 

quality product.  Their sample included 207 farmers with lower quality rice and 141 in the other 
                                                 
1 See Battese and Coelli (1995). 
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group.  Their results indicate that the correction for adoption of the higher quality variety 

produced marked differences in the estimated production frontier and a highly significant 

‘selection effect’. However, Rahman et al. (2009) did not use any matching techniques to ensure 

that the control and treated groups had similar observed characteristics. 

Two other approaches have been introduced recently to modeling sample selection in the 

stochastic frontier model. Kumbhakar et al. (2009) developed a model where the selection 

mechanism is assumed to operate through the one-sided error in the frontier and they apply this 

model to examine organic versus conventional dairy farming in Finland.  The other paper is by 

Lai et al. (2009) who formulate a wage equation in which the selection mechanism is correlated, 

through a copula function, with the composed error in the frontier instead of being correlated 

specifically with either the two sided or the one sided terms.  In both the Kumbhakar et al. (2009) 

and Lai et al. (2009) papers the log likelihood is substantially more computationally demanding 

than the one used here. More importantly, the difference in the assumption of the impact of the 

selection effect is substantive. 

Consequently, the current study adds to the literature by implementing an empirical 

framework which corrects for biases arising from both observed and unobserved variables, and 

applies this method to the impact evaluation literature.   

3  Conceptual framework 

To evaluate the impact of MARENA on the TE levels of beneficiaries we implement a multi-step 

framework where we first generate a group of comparable control farmers and then account for 

potential self-selection in the estimation of an SPF model.  PSM is commonly used when quasi-

experimental data are available, as is the case here, to generate a control group with observed 

characteristics that are as similar as possible as those for the treated group, a condition that is 
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necessary to get an accurate measure of impact (Monteiro 2010). In other words, it is an 

approach that can be used to create the counterfactual situation while mitigating potential biases 

associated with observed characteristics (Rosenbaum and Rubin 1983).  A binary choice model 

is used to generate a ‘score’ which is equal to the probability of receiving treatment, considering 

both treated and nontreated (control) groups based on a given set of predetermined covariates 

(Cameron and Trivedi 2005; Becker and Ichino 2002; Imbens and Wooldridge 2008).  Several 

recent studies have applied PSM within the impact evaluation literature (e.g., Bravo-Ureta et al. 

2011; Cerdán-Infantes et al. 2008; Cavatassi et al. 2009).   

To deal with biases from unobserved variables (e.g., managerial ability) within an SPF 

formulation we use the model recently introduced by Greene (2010). This model assumes that 

the unobserved characteristics in the selection equation are correlated with the noise in the 

stochastic frontier model; hence, Greene’s contribution can be seen as a significant improvement 

of Heckman’s self selection specification for the linear regression model.  The sample selection 

and SPF models, along with their error structures, can be expressed as:2  

 Sample Selection: di  =  1[αααα′zi  +  wi  >  0],  wi ~ N[0,1]   (1) 
 SPF:   yi  =  ββββ′xi  +  εi,  εi  ~  N[0,σε

2] 
    (yi,xi) observed only when di = 1. 
  

Error Structure: εi  =  vi - ui       
    ui  =  |σuUi|  =  σu |Ui| where Ui ~ N[0,1]    
    vi  =  σvVi   where Vi ~ N[0,1]. 
    (wi,vi)  ~  N2[(0,1), (1, ρσv, σv

2)] 
 

In the set of equations above, d is a binary variable equal to one for beneficiaries and zero 

for control, y is output, z is a vector of covariates included in the sample selection equation, and x 

is a vector of inputs in the production frontier.  The Greek characters α and β are parameters to 

                                                 
2 For details on model specification see Greene (2010). 
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be estimated while the characters in the error structure correspond to the typical characterization 

of a stochastic frontier model.  It is useful to underscore that the parameter ρ captures the 

presence or absence of selectivity bias.      

The log likelihood for the model in (1) is formed by integrating out the unobserved |Ui| 

and then maximizing with respect to the unknown parameters.  Thus, 

 logL(ββββ,σu,σv,αααα,ρ) =  
1  | |
log ( | , , ,| |) (| |) | |

i

N

i i i i i i ii U
f y d U p U d U

=∑ ∫ x z .  (2) 

 
The integral in (2) is not known and must be approximated.  To simplify the estimation, 

Greene (2010) uses a two step approach.  The single equation MLE of αααα in the Probit equation in 

(1) is consistent but inefficient.  However, for the estimation of the parameters of the SPF it is 

not necessary to reestimate αααα and the estimates of αααα are taken as given in the simulated log 

likelihood.  The Murphy and Topel (2002) correction is used to adjust the standard errors in 

essentially the same fashion as Heckman’s correction of the canonical selection model.   

Greene (2010) goes on to argue that the non-selected observations (i.e., when di = 0) do 

not contribute information about the parameters to the simulated log likelihood and thus the 

function to be maximized becomes:   

logLS,C(ββββ,σu,σv, ρ) = 

( )2 21
2

1 1

2

exp ( | |) / )

21
log

( | |) /
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i
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y U
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= =
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 ′− − + σ σ
 ×

σ π 
 

 ′ ρ − + σ σ +
 Φ  − ρ   

∑ ∑

x

x

ββββ

ββββ
 (3) 

 
where �� = ��′��. 
 
 

The parameters of the model are estimated using a conventional gradient based approach, 

the BFGS method, and use the BHHH estimator to obtain the asymptotic standard errors.  The 

maximand reduces to that of the maximum simulated likelihood estimator of the basic frontier 
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model when ρ equals zero. This provides us with a method of testing the specification of the 

selectivity model against the simpler model using a (simulated) likelihood ratio test. 

The end objective of the estimation process is to characterize the inefficiency in the 

sample, ui, or the efficiency, exp(-ui).  Aggregate summary measures, such as the sample mean 

and variance are often provided (e.g., Bradford, et al. (2001) for hospital costs).  Researchers 

also compute individual specific estimates of the conditional means based on the Jondrow et al. 

(1982) (JLMS) result given by 

 
2

( )
[ | ] ,  

1 ( )

 φ µ −λεσλε = µ + µ = + λ Φ µ σ 

i i
i i i i

i

E u , εi = yi - ββββ′xi.    (4) 

 
In the standard approach this function is computed using the maximum likelihood estimates.  

In principle, we could repeat this computation with the maximum simulated likelihood estimates.  

However, the alternative approach used here takes advantage of the simulation of the values of ui 

during estimation.  It should be noted that the approach gives a strikingly similar answer to the 

JLMS plug in result (see Greene (2010) Section 2.4 for details).    

4 Data and empirical model 

In this study we combine PSM, to correct for biases from observed characteristics, with the 

Greene (2010) model to correct for selectivity bias arising from unobserved variables and then 

measure and compare TE scores resulting from various combinations of these correction 

procedures.  We use cross sectional data collected for a total of 371 farm households located in 

MARENA’s general area of intervention for the agricultural year 2007-08.  Of this total, 109 are 

beneficiaries of the Program and the other 262 are non-beneficiaries.  This last set provides the 

basis for constructing the control group. The beneficiaries were randomly selected from a 

comprehensive list of farmers participating in the program while non-beneficiaries were 

randomly selected from a list of farmers living either in intervened villages, but that were not 
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part of the project, or in intervened municipalities but from villages not participating in 

MARENA. More details on the sampling procedure can be found in ESA (2008) and in Bravo-

Ureta et al (2009). 

As indicated earlier, to accurately measure the impact of a project such as MARENA it is 

necessary to obtain a counterfactual group of farmers who display time-invariant characteristics 

that are similar to those associated with the project. The PSM technique is often used to generate 

such group (Cameron and Trivedi 2005). The implementation of PSM first requires the 

estimation of the probability that a farmer in the sample will become associated with the project.  

Then, control and beneficiary groups are generated which can be done using various criteria.  

Here we utilize the ‘1-to-1 nearest neighbor without replacement’ criterion where every 

beneficiary is matched with a non-beneficiary farmer imposing the common support condition 

(Sianesi 2001). Although PSM does not completely eliminate biases that might stem from 

observed characteristics across the treated and non-treated groups, Imbens and Wooldridge 

(2008) argue that this method generally yields reasonable results.   

We should point out that several alternative matching criteria have been developed and 

applied in the literature (Cameron and Trivedi 2005).  The decision to choose the ‘1-to-1 nearest 

neighbor without replacement’ criterion is based on the fact that it is easy to implement 

(Caliendo and Kopeinig 2008; Rosembaum and Ruben 1985) and has the most intuitive 

interpretation of all the alternatives available.  In addition, this criterion has become a popular 

choice in applied economic analysis published recently (e.g., Bravo-Ureta et al 2011; Dillon 

2011; Rodriguez et al 2007).   Moreover, as discussed below, the evidence shows that a suitable 

match between control and beneficiaries is achieved, and that such match is found for all 

beneficiaries. 
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The matching procedure yielded a total of 109 pairs (i.e., all 109 beneficiaries were 

paired with 109 non-beneficiaries out of 262).  Following Leuven and Sianesi (2003), t-tests 

were conducted before and after matching to evaluate the null hypotheses that the means of 

observed characteristics of beneficiaries and non-beneficiaries are equal. The results show that 

the mean of most of the observed characteristics are not statistically different suggesting that the 

balancing property of the covariates is satisfied (Leuven and Sianesi 2003). Table 1 defines all 

the variables included in the empirical analysis, while Table 2 presents the descriptive statistics 

for the unmatched (N=371) and matched samples (N=218) and the results of the tests.   

Once the matched samples are constructed, we estimate the SPF model with correction 

for sample selection. In doing so, it is necessary to model the decision of the ith farmer to 

participate in MARENA or not. This behavior can be described by a criterion function, which is 

postulated to be associated with exogenous household socioeconomic variables as follows: 

�� = �	 + ∑ ����
�
��� + ��       (5) 

where B is a dichotomous variable reflecting the farmer’s decision to participate in the project 

(i.e., 1 for beneficiary and 0 otherwise); Z is a vector exogenous variables (i.e., linear and 

quadratic terms for age and education, family size, total farm land and the possession of legal 

title on the land); α are the unknown parameters; and w is the disturbance term distributed as 

N(0,σ2).  

Then, the production frontier for beneficiaries is estimated using a Translog (TL) 

specification as follows: 3 

ln	(��) = �	 + ∑ �������
�
��� +

�

�
∑ ∑ ���������

�
���

�
��� + �� − !�  iff B=1  (6) 

                                                 
3 Preliminary comparisons led to the rejection of the Cobb-Douglas functional form.The same framework is used to 
estimate the SPF model with correction for Sample Selection for the control group. In this case the dependent 
variable in equation (5) equals 1 for non-beneficiaries and 0 for beneficiaries.  
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where Yi represents output, X are inputs, β are the unknown parameters, and v and u are the 

elements of the composed error term, ε.  The dependent variable for the SPF model is the total 

value of agricultural production (TVAP) measured in Lempiras (US $1 = NL19.3).  The 

explanatory variables include: production expenditures on purchased inputs; value of hired and 

family labor; and cultivated area. To account for environmental conditions the altitude at which 

the farm is located is also included.  A different set of variables is included in the Probit and SPF 

models to satisfy the identification criterion stated by Maddala (1983). 

5 Results and analysis  

Before turning to the results we find it convenient to summarize the steps that are implemented 

sequentially to arrive at the TE measures that come from models that have been corrected for 

biases from both observables and unobservables.  These steps are:   

 
1. All available data are used to estimate a pooled unmatched SPF model (P-U) where the 

binary variable BENEF (0 for control, 1 for beneficiaries) is included as a regressor to 
account for Program participation.  Thus, this model ignores any type of biases. 
 

2. Two separate SPF models are estimated with unmatched data, one for beneficiaries (B-U) 
and the other for control (C-U) farmers again ignoring any biases.   
 

3. Two separate SPF models are reestimated with correction for selectivity bias based on 
Greene (2010), one for beneficiaries (B-U-S) and the other for control (C-U-S) farmers.  
 

4. All available data are used to implement the PSM which provides the basis for correcting 
for biases from observed characteristics by matching beneficiaries and control farmers. 
 

5. The pooled SPF model is reestimated but using only the matched subgroups and the 
BENEF dummy variable (P-M) is included as a regressor to account for Program 
participation. 
 

6. Two separate SPF models are estimated using the matched subsamples, one for 
beneficiaries (B-M) and the second for the control (C-M) group without correction for 
selectivity bias.  Thus these models correct only for biases from observables. 
   

7. Finally, two separate SPFs are estimated using the matched subsamples, one for 
beneficiaries (B-M-S) and the other for the control (C-M-S) group, correcting for 
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selectivity bias. Thus, the models in this step incorporate corrections for both biases 
(from observed and unobserved variables).  
 
Tables 3 and 4 present the maximum likelihood estimates for the whole unmatched and 

matched samples, respectively. Following common practice, all variables in the TL models were 

normalized by their geometric mean (GM). Thus, the first-order coefficients can be interpreted as 

partial production elasticities at the GM. As expected, all estimated models present positive partial 

production elasticities; however, their magnitudes and statistical significance differ across 

models.  Consistently, cultivated land (ALAND) and purchased inputs (EXPENSE) contribute the 

most to farm production. This result is consistent with Kalirajan (1991) who argues that budget 

restrictions and land availability are the main production constrains for small scale farmers in 

developing societies.  The sum of all partial production elasticities is consistently less than 1 

revealing decreasing returns to scale in all models, a result that is consistent with previous 

research on small scale farmers in less favorable areas (e.g., González and López 2007; Solís et 

al. 2009; Chavas et al. 2005).   

The values for the σ2 and γ parameters are also reported at the end of Tables 3 and 4. The 

null hypothesis that γ = 0 is rejected in all cases which suggests that technical inefficiency (TI) is 

indeed stochastic and that inefficiency is an important contributor to observed output variability.   

The main goal of this study is to measure potential efficiency differences among 

beneficiary and control farmers and the effect of controlling for biases from observed and 

unobserved variables. First, the pooled models (P-U and P-M) suggest that there are no 

significant differences between the two studied groups of farmers based on the lack of statistical 

significance of the parameter for BENEF. These results are however dismissed by a likelihood 

ratio test (LR) that offers evidence favoring the estimation of separate technologies for 

beneficiaries and control farmers.  Specifically, the estimated LR test is:  
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LR = 2*(lnLP – (lnLB + lnLC))     (7) 

where lnLP, lnLB and lnLC represent the log-likelihood function obtain from the  pooled model 

(P-U or P-M), and the Beneficiary (B-U or B-M) and Control (C-U or C-M) subsamples 

(restricted models), respectively (Greene 2007).  The estimated LR test rejects, in both cases 

(unmatched and matched samples), the null hypothesis for equality, confirming that the 

parameters for the production frontiers differ across the two groups of farmers. 

The impact of correcting for self-selection is analyzed next. Table 5 shows the empirical 

estimates for the self-selection Probit model for both the unmatched and the matched samples.  

The results of these two Probit models are, in general, compatible. Specifically, the null 

hypothesis that all coefficients are simultaneously zero is rejected in both cases and the estimated 

coefficients exhibit comparable values. However, the number of statistically significant variables 

is lower for the matched sample. This reduction of the statistical significance of the parameters 

can be explained by the fact that PSM reduces the variability between the two samples 

(beneficiary and control farmers) which affects the significance of the estimates.4 The empirical 

results suggest that both age and education display nonlinear effects on the choice to become a 

beneficiary of MARENA. Specifically, age and education display, correspondingly, a U and an 

inverted-U shape relationship with respect to the propensity to be a beneficiary farmer. On the 

other hand, the estimates for total land and legal ownership of the land display non significant 

effects. 

The estimation of the sample selection SPF models reveals that the coefficient for the 

selectivity variable RHO(w,v) is statistically different from zero for the Beneficiary group using 

both samples, Unmatched and Matched,  and for the Control group using the Matched sample. 

                                                 
4  Following Caliendo and Kopeinig (2008), we used a set of t-tests to examine if, at the mean of the sample, both 
control and treated farmers display similar observed characteristics after matching. The results of these tests are 
reported in Table 2. 
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This result suggests the presence of selection bias, thus lending support to the use of a sample 

selection framework to estimate separate SPFs for the beneficiaries and control groups. The 

presence of selection bias also indicates that the estimates from the conventional SPF model 

yield biased frontier estimates which affect the TE scores. It is important to indicate that Rahman 

et al. (2009) also found selection bias among rice farmers in Thailand. However, selection bias 

was not an issue for Greene (2010).  

Table 6 presents average TE for all estimated models using the conventional and sample 

selection SPF models for both the unmatched and matched samples. In addition, the table 

presents the differential, in percentage terms, between the TE for beneficiaries and control 

groups. Beneficiaries present an average TE ranging from 67% (B-U) to 75% (B-U-S). By 

contrast, the average TE for control farmers ranges from 40% (C-U) to 66% (C-U-S).  Moreover, 

beneficiaries exhibit a higher average TE in all cases.  These results clearly show that the 

efficiency gap between beneficiaries and control farmers decreases by implementing the 

matching technique, which is consistent with findings reported by Mayen et al. (2010).  This 

outcome is expected since PSM makes both samples comparable. In addition, the sample 

selection correction decreases the TE gap even further.  

To get a better understanding of how correcting for biases from observed and unobserved 

variables affects TE levels, Figure 1 presents the distribution of TE scores from the set of models 

with and without correction for both type of biases (extreme results); namely, the B-U and C-U 

SPFs (unmatched traditional SPF), and B-M-S and C-M-S SPFs (matched with Sample 

Selection). The results exhibit significant differences between these two sets of models. For 

instance, 7% of the beneficiaries have a TE level that is 81% or higher using the traditional SPF 

method and the unmatched sample (B-U); however, this percentage increases to 10% of 
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beneficiaries with the B-M-S model.  The effect of controlling for these biases is more 

significant for the control group. Specifically, Figure 1 shows that 34% of the control farmers 

operate at an efficiency level below 50% when using the C-U model, while not a single 

observation is found at this level once the biased correction is implemented (C-M-S model).    

Finally, we investigate which of the two groups (control versus beneficiaries) has higher 

output after controlling for biases from observed and unobserved variables.  For this purpose, we 

compare the predicted frontier output at three different input levels: 1) at the average for the 

smallest matched pair of farms; 2) at the average for the entire sample; and 3) at the average for 

the largest matched pair.  As shown in Table 7, the total output gap is 16%, 14% and 9%, 

respectively in favor of beneficiaries.  Thus, the analysis suggests that beneficiaries do not only 

exhibit higher efficiency but also higher total output.  

6 Concluding remarks 

This paper compares technical efficiency (TE) across treatment and control groups using cross 

sectional data associated with the MARENA Program in Honduras.  A matched group of 

beneficiaries and control farmers is generated using Propensity Score Matching (PSM) 

techniques to mitigate biases associated with observed variables.  In addition, we deal with 

possible self-selection arising from unobserved variables using a selectivity correction model for 

stochastic frontiers recently introduced by Greene (2010).    

The results do reveal that average TE is consistently higher for beneficiary farmers than 

the control group while the presence of selectivity bias cannot be rejected.   TE ranged from 0.67 

to 0.75 for beneficiaries and from 0.40 to 0.65 for the control.  It is worth noting that the TE gap 

between beneficiaries and control farmers decreases after the samples are matched.  This result is 

expected since PSM makes both samples comparable on observables. In addition, the sample 
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selection framework decreases this gap even further. Our empirical results also suggest that the 

frontier for beneficiary farmers is located above the one for the control group. These differences 

highlight the value of exploring extensions to the model used in this study to allow for more 

comprehensive analyses of the impact of development projects. Thus, an extended 

methodological framework that accommodates panel data would make it possible to decompose 

the impact of development projects on productivity growth by separating the effects of 

technological change, technical efficiency change as well as changes in scale or size.    
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Table 1 Definition of variables 
 

Variable Parameter Unit Definition 
TVAP Y Lempiras† Total value of agricultural production 

 
EXPENSE β1 Lempiras Farm production expenditures 

 
LABOR β2 Lempiras Total expenditure on hired and family labor 

 
ALAND β3 Hectares Total  land devoted to agricultural production 

 
ALTITUDE  βALT 100 Meters 

 
Altitude at which the farm is located  

BENEF βBEN Dummy 1 if the household is a beneficiary of MARENA 
 

AGE α1 Years Age of the household head 
 

EDUC α2 Years Level of education of the household head 
 

FAMILY α3 Number Number of people in the household 
 

TLAND α4 Hectares Total farm land 
 

TITLE α5 Dummy 1 if the household has legal title to at least some 
of the land farmed 

    

 
† US $1=19.3 Lempiras (Lps) 
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Table 2 Descriptive statistics 
 

 
† A t-test is use to determine if the sample means are significantly different between the beneficiaries and control 
groups. 
*, P < 0.10; **, P< 0.05; ***, P< 0.01. 
 

 
  

UNMATCHED SAMPLE  

Variable 
POOLED  BENEFICIARIES  CONTROL Test of 

means† Mean SD  Mean SD  Mean SD 
TVAP 46,729.6 74,025.1  43,006.7 84,563.0  48,278.4 69,289.1 0.624 
EXPENSE 20,825.8 47,778.1  13,545.7 28,663.4  23,854.6 53,523.5 1.899* 
LABOR 36,627.1 35,557.7  38,286.4 43,490.5  35,936.8 31,750.3 0.579 
ALAND 2.24 2.42  1.86 1.61  2.40 2.67 1.967** 
ALTITUDE 9.46 3.96  9.17 3.28  9.57 4.20 0.887 
AGE 50.69 13.47  48.95 14.34  51.72 13.04 1.809* 
EDUC 3.38 3.08  3.57 2.80  3.30 3.20 0.767 
FAMILY 5.67 2.40  6.06 2.50  5.50 2.35 2.051** 
TLAND 7.84 26.43  5.95 19.25  8.62 28.89 0.886 
TITLE 0.82 0.39  0.80 0.40  0.83 0.38 0.682 
Observations 371  109  262  

MATCHED SAMPLE  

TVAP 39,708.6 67,846.8  43,006.7 84,563.0  36,440.5 45,819.3 0.712 
EXPENSE 15,864.5 32,001.1  13,545.7 28,663.4  18,162.2 34,976.9 1.066 
LABOR 37,052.1 37,351.5  38,286.4 43,490.5  35,829.0 30,218.6 0.484 
ALAND 2.03 1.79  1.86 1.61  2.20 1.94 1.408 
ALTITUDE 9.16 3.70  9.18 3.28  9.14 4.09 0.079 
AGE 48.73 12.96  48.95 14.34  48.50 11.50 0.255 
EDUC 3.49 2.81  3.57 2.80  3.42 2.83 0.393 
FAMILY 6.11 2.46  6.06 2.50  6.15 2.44 0.269 
TLAND 5.10 14.21  5.95 19.25  4.26 5.94 0.876 
TITLE 0.82 0.39  0.80 0.40  0.84 0.37 0.766 
Observations  218  109   109  
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Table 3 Parameter estimates for the conventional and sample selection SPF models: Unmatched sample 
 

Variables 
Conventional SPF  Sample Selection SPF 

P-U B-U C-U  B-U-S C-U-S 
Coeff. S.E. Coeff. S.E. Coeff. S.E.  Coeff. S.E. Coeff. S.E. 

CONSTANT 10.245***     0.142 10.252***  0.183 9.672*** 0.224  10.199*** 0.824 9.738***  0.714 
β1  0.413***     0.046 0.492***  0.078 0.367*** 0.056  0 .396*** 0.082  0.491***  0.127 
β2  0.115***     0.036 0.041 0.051 0.133*** 0.046  0 .158**  0.066 0.044 0.076 
β3  0.229***     0.085 0.220 0.137 0.252**  0.106  0.195 0.148 0.222 0.193 
β11  0.074***     0.015 0.105***  0.025 0.062*** 0.018  0 .070*** 0.026  0.105***  0.037 
β22  0.027***     0.010 0.011 0.014 0.031**  0.014  0 .035**  0.018 0.013 0.021 
β33 0.188 0.123 0.353*    0.194 0.149 0.158  0.036 0.213  0.370*    0.204 
β12 0.007 0.006 0.041*    0.022 0.006 0.007  0.003 0.010 0.044 0.049 
β13 -0.038 0.034 -.141**   0.060 0.002 0.042  0.006 0.060 -0.147*    0.076 
β23 -0.026 0.021 -0.051 0.034 -0.040 0.027  -0.026 0.046 -0.056 0.078 
βATL 0.020 0.013 0.044**   0.021 0.016 0.017  0.011 0.021  0.048**   0.023 
βBEN 0.027 0.108 --  --     --  
RTS 0.757  0.753  0.752   0.749  0.757  
L. Likelihood -506.778  -117.186  -375.348   -472.951  -245.592  
γ 1.988***       0.186     1.186***      0.265     2.231***      0.259      --  --  
σ

2 1.385***       0.003    0.897***      0.007   1.525***      0.005    --  --  
σ(u) --  --  --   0.465 1.006 0.510 0.500 
σ (v) --  --  --   1.260*** 0.189 0.655***  0.177 
RHO (w,v) --  --  --   -0.851*** 0.071 -0.234 0.639 
N 371  109  262   109  262  

 
*, P < 0.10; **, P< 0.05; ***, P< 0.01. 
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Table 4  Parameter estimates of the conventional and sample selection SPF models: Matched sample 
 

Variables 
Conventional SPF  Sample Selection SPF 

P-M B-M C-M  B-M-S C-M-S 
Coeff. S.E. Coeff. S.E. Coeff. S.E.  Coeff. S.E. Coeff. S.E. 

CONSTANT 9.923***  0.155 10.252***  0.183 9.761***  0.224  10.552***  0.338 9.236***  0.318 
β1  0.428***  0.049 0.492***  0.078  0.317***  0.056  0.332***  0.075  0.479***  0.100 
β2  0.078**   0.037 0.041 0.051 0.063 0.058  0.090 0.076  0.037     0.062 
β3  0.288***  0.089 0.220 0.137  0.457***  0.101   0.421***  0.148  0.226     0.165 
β11  0.101***  0.018 0.105***  0.025  0.068***  0.022   0.068**   0.029  0.106***  0.032 
β22 0.017 0.011 0.011 0.014 0.009 0.015  0.013 0.020  0.011     0.017 
β33 0.202 0.142 0.353*    0.194 -0.122 0.187  -0.101 0.239  0.408**   0.199 
β12  0.015*    0.009 0.041*    0.022 -0.003 0.010  -0.002 0.018  0.034     0.034 
β13 -0.073*    0.043 -.141**   0.060 0.048 0.054  0.048 0.073 -0.149**   0.065 
β23 -0.023 0.022 -0.051 0.034 0.009 0.027  0.010 0.044 -0.044     0.066 
βATL 0.014 0.014 0.044**   0.021 0.009 0.020  0.006 0.025  0.048**   0.021 
βBEN 0.130 0.102 --  --   --  --  
RTS 0.794  0.753  0.837   0.843  0.742  
L. Likelihood -247.445  -117.186  -118.056   -191.335  -190.998  
γ 1.587***      0.226     1.186***      0.265     3.404***      1.048      --  --  
σ

2 1.025***      0.003   0.897***      0.007   1.157***      0.008    --  --  
σ(u) --  --  --   0.817*        0.484    0.921*** 0.155 
σ (v) --  --  --   0.783*        0.424     0.712*** 0.117 
RHO (w,v) --  --  --   -0.926***      0.126    0.965*** 0.139 
N 218  109  109   109  109  

 
*, P < 0.10; **, P< 0.05; ***, P< 0.01. 
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Table 5  Parameter estimates of the probit selection equation 
 

Parameter 
Unmatched 

Sample 
 Matched Sample 

Coeff. S.E.  Coeff. S.E. 
CONSTANT 0.880 0.8515  2.208** 1.1081 
α1 -0.077** 0.0323  -0.100** 0.0430 
α11 0.001** 0.0003  0.001** 0.0004 
α2 0.148** 0.0651  0.047 0.0825 
α22 -0.014** 0.0064  -0.003 0.0085 
α3 0.071** 0.0304  0.011 0.0366 
α4 -0.003 0.0031  0.007 0.0077 
α5 -0.138 0.1829  -0.171 0.2230 
L. Likelihood -216.08   -147.63  
Chi-Square 17.12*   18.78**  
N 371   218  

 
*, P < 0.10; **, P< 0.05; ***, P< 0.01.
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Table 6  Technical Efficiency (TE) levels and differentials across models 
 

 CONVENTIONAL SPF   SAMPLE SELECTION SPF  
Index P-U  B-U  C-U Test of  

Means† 
 B-U-S  C-U-S Test of  

Means  Mean S.D.  Mean S.D.  Mean S.D.  Mean S.D.  Mean S.D. 
TE 0.43 0.16  0.67 0.15  0.40 0.17 15.79***  0.70 0.05  0.59 0.08 13.27*** 
Differential  ‡    67.5%     19%   
  

P-M 
  

B-M 
  

C-M 
 

Test of  
Means 

  
B-M-S 

  
C-M-S 

 
Test of  
Means  Mean S.D.  Mean S.D.  Mean S.D.  Mean S.D.  Mean S.D. 

TE 0.53 0.16  0.67 0.15  0.48 0.21 7.69***  0.75 0.18  0.65 0.11 4.95*** 
Differential     39%     15%   
† A t-test is use to determine if TE means are significantly different between the beneficiaries and control groups. 
‡The formula for percentage increase was used to calculate the TE differential between beneficiaries and control groups.  
*, P < 0.10; **, P< 0.05; ***, P< 0.01. 
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Table 7 Predicted frontier output after bias correction 
 

 Min Mean Max 
B-M-S 20,751 51,603 97,122 
C-M-S 17,933 45,401 89,153 

Differential 16% 14% 9% 
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Figure 1. Distribution of efficiency score for extreme models 
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