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Almost half a century ago, Griliches (1963) presented his pioneering enquiry into the sources
of US agricultural productivity growth. This study was the culmination of a series of studies by
Griliches and his mentor (Griliches, 1957, 1960, 1963; Schultz, 1947, 1956, 1958) on the factors

explaining a startling empirical observation by Barton and Cooper (1948):

Output per unit of all inputs has shown an upward trend since World War I, as a
result of a remarkable stability of total inputs and a steady upward trend in the volume
of farm output.... These considerations are extremely important in analyzing the changes

in economic conditions of agriculture over the last quarter century.

Schultz (1956) defined an ideal input-output formula as "...one where output over input, exclud-
ing of course, changes in their quality, stayed at or close to one", and he attributed this definition in
a footnote to, the then graduate student, Griliches. Seemingly they saw the goal of the productivity
analyst as eliminating the residual between input and output growth that Abramovitz (1956) had
recently called a "measure of our ignorance". For US agriculture, Griliches (1963) suggested that
making adjustments for changes in the quality of inputs (particularly, labor and capital) and cor-
recting for scale economies, which his empirical analysis suggested then persisted in US agriculture,
would achieve this goal.

Those quality corrections to inputs have long since been incorporated in official United States
Department of Agriculture (USDA) TFP calcualtions. Moreover, after that time US agriculture
underwent a dramatic transformation characterized by a remarkable concentration of its traditional
"small family farms" into fewer and fewer commercially viable operations. Even so, as Figure 1
attests, Barton and Cooper ’s (1948) observation is still valid. The Schultz-Griliches ideal input-
output relationship has not been achieved, even though US agriculture has now witnessed almost
a century of marked stability in aggregate input use. The residual remains

The longer the residual persists, the more productivity analysts try to explain it. By far the most
common approach is to regress some measure of agricultural productivity, typically multi-factor or
total factor productivity, on potentially causal factors such as public expenditures on agricultural
research and development.! Because most computations of total factor productivity rely explicitly
upon the economic theory of index numbers, this analysis often attempts to explain productivity

change under the maintained hypothesis of efficient and economically rational behavior.?

L An excellent summary as well as guide to many of the econometric, philosophical, and practical issues involved

in this particular mehtod of research evaluation can be found in Alston, Norton, and Pardey (1995).
2 Another approach is induce rates of technical change from estimated cost or profit functions for representative



I have no problem, per se, with the assumption of either efficiency or rationality. In fact, my
prior belief is that farmers are usually highly rational and very technically efficient. Instead, I
question whether the observed behavior of our empirical TFP measures jibes with both rational
behavior and the physical realities of farming.

The kernel of my concern is nicely captured by Figure 2, which depicts rates of TFP change
for US agriculture for the last six decades. As I have pointed out elsewhere (Chambers, 2008),
calculated TFP changes for US agriculture are highly variable exhibiting both significantly positive
and significantly negative rates of change. This phenomenon is most marked starting in the early
1980s.3

In one sense, what’s happening is obvious and, perhaps, even trivial. Clearly, agriculture is
highly variable. Farmers make many production decisions before a host of potentially important
and variable factors, such as weather, are known. Thus, the trivial answer: It’s the weather. And I,
for one, would not disagree that an important component of this variability is weather induced. In
fact, I would go further. Because input use is so stable in US agriculture and weather is not, I would
argue that more than anything else, Figure 2 represents a weather index expressed in output terms.
The trouble, of course, is that Figure 2 is not supposed to be a weather index. Rather, by the
economic theory of index numbers, Figure 2 should depict changes in the locations of production
frontiers.

It is precisely such situations that have led many researchers to insist upon a stochastic frontier
approach to measuring productivity. But for me, that approach also can seem a tad too facile in
the following sense. Clearly agriculture and other industries are affected by stochastic factors or in
a real-valued world by random variables. No argument. But the real question is how to represent
those stochastic factors.

In decision theory, those stochastic factors are represented, following Savage (1954) and Arrow
and Debreu, by first defining a "state space", where each element of that state space corresponds

to a complete description of the world under all possible conditions. Then acts are defined as maps

agents and then use secondary regression analysis to decompose the factors contributing to the evolution of those

rates. Of course, this also implicitly assumes rational behavior.
3This phenomenon is not peculiar to US agriculture (Chambers, 2008) or even to agriculture in general, as any

glimpse at sectoral TFP growth rates for the United States and other developed nations will reveal. But that said,
my concern is with agricultural technologies, and in the remainder of the paper I will stick to them even though the
principles that I elicit can clearly be applied to TFP measurement in other sectors, such as finance, with exhibit high

degrees of variability.



from that state space to some outcome space. When that outcome space is the set of reals, those
maps are random variables. The domain of technologies and preferences in this setting are random
variables. Or put another way, the technology is defined over random variables, but it is not itself
random.? Once the state’s realization is known everything is deterministic. Where things become
perhaps too facile for me is when those random variables are defined in econometrically convenient
terms without a proper accounting of how they relate back to the underlying state space, and the
physical reality we attach to that state space.

That’s the simple task I set myself. Try to be more careful about incorporating information
about the state space into representations of stochastic technologies. If done properly, it might
allow us to parse measured productivity growth into measures of frontier shifts due to changes in
technical knowledge and shifts associated with realizations of "good" or "bad" states of Nature.
Thus, in a sense, I see the goal of the paper as similar to Griliches and Schultz: try to explain
as much of the residual, be it called technical change or efficiency change, as possible in terms
of the physical technology. Or, in more econometric terms, filter the noise process of some of its
explainable heterogeneity. And I perceive this as a step that should be taken before one tries to
explain whatever residual finally remains.

So, in what follows, I start by looking at an aggregate agricultural data set,” drawn from
the 48 continental US states covering the period 1960 through 2004. Using data envelopment
analysis measures, I follow Fére, Grosskopf, Norris, and Zhang (1994) first to construct measures
of intertemporal productivity growth for the meta-technology facing these 48 states over time, and
second to decompose those measures of productivity growth into a ’technical change’ component
and an ’efficiency change’ component. To keep the presentation of empirical results manageable,
the empirical discussion focuses on two representative, but distinctly different, US states: California
and lowa.

When that is done, it turns out that a large component of agricultural productivity change (par-
ticularly in Towa) is attributed to ’efficiency change’. Because no overarching theory of inefficiency
yet holds sway, that observation begs an explanation. One way to explain it is to regress efficiency
scores on explanatory variables. My interpretation is that it is further evidence that something is

missing from the model. I find it hard to credit that producers who are on the frontier at one point

*1 won’t let this fact stop from me talking about stochastic and nonstochastic technologies in what follows. In this

case, it seems the linguistic convenience of the abuse of terminology outweighs any linguistic imprecision that results.
’These data were generously supplied by V. Eldon Ball and consist of state-level information on aggregate output,

capital, land, labor, and materials in agriculture.



in time suddenly forget where the frontier is or are so surprised by technical innovations that they
routinely lag behind it.

The analysis that forms the core of the paper is next. I attempt to incorporate, in as simple
a manner as possible, the Arrow-Debreu notion of a state-contingent technology into an empirical
representation of the agricultural meta-technology and to use that representation to decompose
measured productivity growth into three components: efficiency change, technical change, and, for
lack of a better term, heterogeneity, which in our case is attributable to weather.> Those measures
are then compared to the results obtained from the more traditional Fére et al. (1994) analysis.

This is a simple-minded paper. True enough. There are virtually no mathematics. The goal
is not to develop more sophisticated means of examining existing data. Instead, it’s to use simple
methods from standard efficiency analysis, albeit viewed from a different theoretical perspective,

to learn more from the data that we already possess.

1 Nonstochastic Productivity Measures

Our starting point is perhaps the simplest possible notion of a technology. There is a single output,

and production possibilities at time ¢ are governed by

T(t)={(z,y) :y < [z, 1)},

where x € Rf denotes inputs controlled by the producer, y € R} denotes output, ¢ now indexes
the state of knowledge available at time ¢, and f (z,t) represents the production function.

The associated productivity index for observations (J:O,yo,to) and (a:l,yl,tl) is defined, fol-
lowing Caves, Christensen, and Diewert (1982) and many others, as the geometric average of two

Malmquist productivity indices:
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Following Fire et al. (1994), I decompose this measure into two components:
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In a related paper, I show with a co-author how similar methods can be applied when the source of the hetero-

ot (y07x0;y1’$1) —

geneity is not weather but driven by other environmental factors (Chambers and Kafkalas, 2011).



is the ’efficiency’ component of the productivity index and

0,41 f (29,89 f (21,10 :

is the technical-innovation or technical change component of the productivity index.

As already mentioned, our data set consists of a panel of observations on aggregate output and
inputs for 48 US states over the 1960 to 2004 period. Let (ykt,xkt) represent the input-output
vector at time t = 1,2,...,45 for state k = 1,2, ...,48. The standard DEA approximation to T ()

with free disposal of inputs and outputs, constant returns to scale, and no technical regress is

. 48 t k 48 t k
(y,x) ‘Y S Zk:l v=1 )‘kvy v’x 2 Zk:l v=1 >‘kv-’1j v’

Ak > 0,0 =1,..,1

TP (t) =

The corresponding approximation to the production function is

48 t kv . 48 t kv
Zkzl v=1 Aoyt > Ek:l v=1 Akox™,

A > 0,0v=1,...,t

P (x,t) = max

1.1 Empirical Results for State-level Intertemporal Productivity Indices

The empirical focus, throughout the paper, is on intertemporal productivity measures for California
and lowa. Figure 3 presents information on aggregate agricultural output and input for California,
while Figure 4 presents the same information for Iowa.”

Several patterns are noticeable. In 1960, Iowa and California were roughly the same when
compared in terms of aggregate agricultural inputs and outputs. But by 2004, California’s aggregate
output was almost 80% higher than Iowas. And while California’s aggregate input use had grown,
Towas had fallen after peaking in the mid 1970s.

Figure 5 presents year-to-year intertemporal productivity indices computed for both states on
the basis of the DEA approximation to the meta-technology. It is apparent, as also evidenced by
Figure 3, that California experienced almost continual productivity growth, with only a few in-
stances of productivity setbacks.® Iowa has a more checkered history, particularly since the 1980s.

Its productivity growth often exceeds that of California, sometimes by as much as 10%, but it also

has far more, and more drastic, productivity set backs than California. Despite these differences,

"In all cases indexes are defined taking Alabama 1996 as 1.
8For the form in which the indices are calculated, numbers less than one signal productivity growth (less input

per unit of output) while numbers greater than one (more input per unit of output) imply productivity setbacks.



the long-run patterns are moderately close. For California, the average of the intertemporal pro-
ductivity indices is approximately .97, while for Iowa, it is slightly over .98. On average, California
grew faster by about 1% per annum. But, as is visually apparent, Iowa’s productivity exhibited far
more variability. For example, the coefficient of variation for its intertemporal productivity index
at .11 was about 4 times as large as that for California.

A pat explanation is to hand: California’s climate is more moderate than Iowas. And, as such,
one expects more variable traditional measures of productivity growth. That is, in fact, one of the
two reasons why I chose these two states to focus upon. The other is that both California and Iowa
are traditionally thought of as being among the most "efficient" of the agricultural states in the
United States. They have very different forms of agriculture, but one routinely expects them to be
among the industry leaders.

Figure 6 presents lowa’s computed year-to-year intertemporal productivity indices and year-to-
year technical change indices graphed against the same axis for 1980 forward. Over that period,
Towa experienced fairly steady technical change on the order of about 1 to 3% per year with the
exception of 1995 to 2000, during which there was almost no technical progress. lowa’s intertem-
poral productivity index over the same period oscillated between extremes of slightly over 1.2 and
slightly below .8 suggesting productivity changes of over 20%. The explanation for that oscillation,
in terms of the current decomposition, are "efficiency changes".

One interpretation of efficiency change is in terms of catching up to a continually expanding
meta-frontier that grows with technical innovation and progress (Fire et al., 1994). For example,
if in period t°, a particular state is operating inside its technical frontier, then one component of

Eto’tl (y07 xO; y17 331),
yO

f(20,1%)

is less than one. If it moves to the frontier in period ¢!, that is catches up to it, the remaining

component of the efficiency index
f (')
yto
equals one. Consequently, the intertemporal efficiency index is less than one. On the other hand

if the country is on the frontier in period 0 and then "falls behind" as the frontier shifts out in
period 1, the intertemporal efficiency index is greater than one. In what follows, we shall refer to
situations where the intertemporal efficiency index is less than one as catching up and situations
where it is greater than one as falling or lagging behind. Apparently Iowa has been doing a lot of

lagging behind and catching up since 1980.



Another possibility is that there is some form of heterogeneity that we are not capturing with the
DEA hull. More intuitively, a residual exists, which we call efficiency change, that the intersection of
the data and the current model cannot explain. One might be tempted to dismiss this as a typical
example of DEA’s shortcomings, but, as I have emphasized earlier a similar pattern emerges in
USDA TFP calculations.

Turning to California, Figure 7 suggests a pattern that is quite different than in Figure 6.
Now there is closer agreement between the calculated intertemporal productivity indices and the
calculated technical change indices. This, of course, signals that the residual efficiency index is at

or close to 1 throughout these 24 years.

2 Stochastic Technologies and Productivity Measurement’

The problem this section tackles is to incorporate the physical reality that farming takes places
under conditions of uncertainty into our model. The approach taken is that taken by Arrow and
Debreu, and much later by John Quiggin and myself (Chambers and Quiggin, 2000). Uncertainty
is represented by a set of states, (2, from which a neutral player, 'Nature’, makes a draw. €2 provides
a comprehensive and mutually exclusive description of the possible states of the world to which
the producer is exposed, but which are beyond his or her control. Random variables are defined as
(measurable) maps from the set of states, €2, to the reals. Random variables can thus be thought
as vectors f € RY where
f=1{f(s):s€0},

and f (s) denotes the realized value (ex post value) of the random variable if ’Nature’ chooses s.

The production technology involves using multiple inputs to produce a single stochastic out-
put.! That stochastic output is represented by the random variable Z € Rﬁ. At time ¢, the

technology in a convenient abuse of notation is represented by a set
T (t) ={(Z,z) : © can produce Z at time t},

where Z € ]Ri} denotes the stochastic output, and = € ]Rf denotes the inputs that the producer

chooses.'! The interpretation of the technology is as follows. Before the producer knows Nature’s

9Readers wishing more detail on the basics of this approach to specifying stochastic production technologies can

refer to Chambers and Quiggin (2000).
10We stick to the single output case here for consistency sake. The basic concepts easily extend to the multiple-

output case.
YT (t) as defined for the nonstochastic technology is a subset of R¥*1, Here it is a subset of R x RY.



draw s € Q, he or she picks (Z,z) € Rﬂ X R_]X from within 7. Then Nature makes her draw. If the
draw is s, the realized state is s € Q, and the realized (ex post) output is z (s), while if s’ # s is
drawn, the ez post output is z (s).

Making this representation both empirically operational and compatible with what has gone
before requires some further assumptions that impinge in important ways on the producer’s freedom
of choice in choosing his or her input-stochastic output mix. Chambers and Quiggin (2000) discuss
these issues at length. For our purposes, it suffices to assume that we can represent the technology
by the set

T () = {(2,2) : 2(s) < g (z,s,1),5 € Q},

where g is a real valued function. This representation corresponds to the state-contingent production
function axiomatically studied by Chambers and Quiggin (2000).

A state-contingent production function has a number of advantages for applied work. Most
importantly, it permits the use of ex post observations on output to construct an empirical approx-
imation to the technology using DEA methods. Second are its intuitive advantages. It corresponds
in a reasonable fashion to stochastifying the technology used earlier. And it is by far the most
common empirical representation of stochastic technologies once sufficient structure is placed upon
Q. But, it has shortcomings. Chambers and Quiggin (2000, 2007) discuss these at length, and
O’Donnell, Chambers, and Quiggin (2009) have shown that if the true technology is not of this
form, empirical representations based upon it can be seriously biased in approximating the frontier
and measuring efficiency.

In our terminology, Z is a random variable because it belongs to ]Rg. Its maximal realized values
are defined, for given x and state of the technology, ¢, by g (z,s,t) which maps Nature’s draw
from 2 into a real number that represents an upper bound on the producer’s choice for output in
that state of Nature. That upper bound function, as a map from €2 to the reals, defines a random
variable. As with our nonstochastic technology, the producer can choose to be technically inefficient
in any state of Nature.

It is important to note, however, that even though Z is random, we have not and will not
attribute any probability distribution to it. All our results are free from any assumption on an
associated probability measure. So, in this sense, this representation of the technology is different
from the more commonly encountered stochastic frontiers frequently encountered in efficiency and
productivity analysis. One can, however, arrive at the stochastic frontier model by associating s

with an econometric error term, and then assuming a probability distribution for that error term.



That is not the approach that I use. Instead, I follow O’Donnell and Griffiths (2006) and
several others and identify €2 with physically observable outcomes that are beyond the control of
the producer, and that for the most part only become known to the producer after his or her input
decisions are made.'> More on that shortly.

Now, I introduce a productivity measure that accommodates the presence of s and 2. With

yet another abuse of notation, that index is defined:

1
0 1 .1 41 0 1 .0 40 2
(1) pstst a0t (20,29 21, 21) = z g(z! st z g (a,s%,t%)
e g (20, s1,¢1) 21 g (20,59, 10) il ’
where z* corresponds to the observed output for observation k. As before, the productivity index

is the geometric average of the ratio of two Malmquist indices.

This index can be decomposed into three components:

0 .1 4041 0 o140 41 0 o140 41 0 o140 41
PS8 AN/ (ZO,ZCO;Zl,.’L'l) — E58 RN (ZO,CCO;Zl,SCl) QS -8 0t (ZO’xO;zl’xl) TS 8 NN (ZO,xO;Zl,xl) 7

where
1 .1 41 0
t ) z
00t (L0 0.1 1Y L g(x S
( RARER. ) il g (29, 50,10y’
1
Q514060 0 0.1 1\ ._ g(xoﬂso’tl) g(mlvsoﬂto) ’
Q (Z EARERE ) = 0 o1 41 T <1 40 ’
.g("lj 78 7t ) g(a: 78 7t )
and 1
0 .0 40 1 .1 400\ 2
x,s,t x,s,t
010t (zo,azo; Z17$1) ,: 9( 5, ) 9( 1S )

g (29,80, t1) g (a!, st 1h)
0 o1 40 41 0 140 41 . .
As before, B 51t (zo, z%; 21, xl) and T -5t (zo,:co; zl,:cl) represent an efficiency index and a
h . 1 . . d . . 1 Th QSO,Sl,tO,tl 0 0..1 1 . h .
technical-innovation index, respectively. e new term, zh,x ;27,2 ), 1s the geometric

average of two separate indices of the effect that different draws by Nature, s and s', have on

maximal feasible output. One component holds the input bundle constant at 2° while evaluating

12 Another reason for the choice of the stochastic production function specification of the technology is that it
makes the timing of the observation on Nature’s draw from €2 less critical in technical efficiency analysis. For
example, suppose that the producer were allowed to observe Nature’s draw before choosing his input and output.
If the technology assumes the form in this paper, which Chambers and Quiggin (2000) dub ’output cubical’, the
interpretation would then be that the producer faces a state-specific production function which governs his technical
choices. Timing of the observation of Nature’s draw is, of course, critical to the input and output choices a producer
makes. But because we are only examining technical possibilities in this paper and not optimal economic choices,

whether the producer knows the draw or not is not essential.



the technology at the state of knowledge indexed by ¢! and then evaluates the frontier shift caused
by different realizations of Nature’s draw. The other component holds the input bundle at ! and
the state of knowledge at t° to evaluate the frontier shift.!?

With an index and the corresponding decompositions defined, the next step is an empirical
representation comparable to the empirical representation used earlier. Formally, I need a com-
prehensive description of all possible states of the world that can be implemented empirically.
That’s not possible practically. Therefore, a compromise is necessary, and of needs I must settle
for something that describes production conditions relevant to the producer and that are beyond
his control.!*

For this application, I take {2 to be a subset of Ri that is associated with observations on two
climatic variables: one representing solar radiation and the other moisture. These data, which
are also state level, are drawn from Schlenker and Roberts (2008) and correspond to degree days
between 8° and 30° Celsius and inches of precipitation between the months of March and August.
As our specification indicates, these observations are incorporated directly into the definition of
the frontier as though they were ’'inputs’. What kind of inputs they are is another matter. In
particular, it is apparent that precipitation does not satisfy global free disposability.

At first blush, it might seem that the degree day measure might satisfy free disposability. In
fact, in the existing economic literature on climate change from which these variables are drawn,
degree days between 8° and 30° are referred to as "beneficial’ degree days while degree days defined
for temperature ranges outside that span (for example, above 34° C) are often viewed as detrimental
(Schlenker, Haneman, and Fisher, 2005; Deschénes and Greenstone, 2007).

Things may not be so simple.'® First, the notion of degree days, which originated in the

biological literature, was originally intended for other purposes. Physical scientists found that the

13This decomposition is, in fact, arbitrary. It was chosen to afford an easy comparison with the Fire et al. (1994)

0

0 . 1,0 ,1
decomposition that was used earlier. Therefore, Q° - ¥t (z ,xo;zl,xl) is most properly thought of as a weather

residual. To see the arbitrariness, note that one could just have easily taken
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and induced a balancing technical change index that is different from st (2°

2°,2%z",2") . The problem of

defining ’path independent’ decompositions is treated in Henderson and Russell (2005).
1By beyond control, it is not meant that the producer cannot prepare for different realizations, for example, by

building greenhouses or installing irrigation systems. Rather, it means that he or she cannot affect Nature’s choice.
'5This section reflects lessons learnt in discussions with Ariel Ortiz-Bobeia and from reading Ortiz-Bobeia (2011).
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rate at which a plant progresses through its stages of development is approximately linear in a
measure of thermal time. This is the relationship captured by the notion of a degree day. So while
the degree-day measure is related to the rate at which the plant progresses through these stages, it
is not necessarily related to the resulting harvested mass, which is our traditional output measure
(Ortiz-Bobeia, 2011). Moreover, degree days here correspond to the March to August period. For
much of the United States, March to August does cover most of the growing period, but not for all
of the United States.

The DEA approximation to T (t) under the assumption of weak disposability of s is

7 () = (z,2.8) 1 2 < 080 Tomy Mz 2 3058 200y Aka™, s = 0021 0y Mws®,
- ?
Akw > 0

and the approximation to the state-contingent production function is
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g (x,s,t) = max

Some differences between this representation of a stochastic technology and more familiar spec-
fications of stochastic production functions are worth noting. First is the absence of any assumption
on an underlying probability measure. That’s not to deny that one exists, but rather a specific
assumption is superfluous. Second, the randomness in the technology is driven by Nature’s draw,
which in the current case is two-dimensional, rather than one dimensional. Imagine trying to
approximate g (x, s,t) as follows

g(x? S’t) = m(x’t78)

where ¢ is a one-dimensional random variable intended to capture the effect of Nature’s draw.
Specifically, because ¢ is a random variable, it must be a map or function from 2 to the reals. A

more suggestive notation is thus

g(x,s,t) =m(x,t,e(s)).

This may or may not be plausible. A priori, it is difficult to judge. But it does imply that the various
components of s (which is a vector) are separable from (z,t) in the technology. In our case, for
example, it implies that precipitation is separable from other forms of moisture delivery, which may
or may not be incorporated in . And unless the elements of €2 interact in a ’nice’ fashion, € could
exhibit significant heterogeneity across observations that might be difficult to capture realistically

using traditionally convenient econometric specifications.
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2.1 Empirical Approximations to and Decompositions of State-level Intertem-

poral Productivity Indices for 7%

Figures 8 and 9 present intertemporal productivity indices for California and Iowa, respectively. In
each case, three separate indices are reported. One repeats the intertemporal productivity index
reported earlier that ignored the weather data. The other two indices correspond to the DEA
approximations to (1) calculated under different disposability assumptions.

For both California and Iowa, there appears to be relatively close general, but certainly not
complete, agreement between the calculated indices. For both states, there are years (1997 for
California, 1993 for Iowa) where there is significant disagreement between the nonstochastic ap-
proximation to the productivity index and the indices calculated for the stochastic representations
of the technology. And for both California and Towa, the stochastic productivity indices show some
strikingly large productivity increases. Moreover, the productivity gains are more marked (perhaps
unbelievably so) for the weakly disposable version of the technology than for the freely disposable
version of the technology. For example, on average, the nonstochastic productivity index for Cali-
fornia shows productivity growth of about 3% while the stochastic measures suggest growth on the
order of 6 and 8%. For Iowa, the nonstochastic indicator suggests productivity growth on average
of about 2% per annum, while the stochastic measures suggest average growth of about 3 and 6%
annually.

Looking more closely, there are instances where the nonstochastic productivity index suggests
that productivity fell, but one or both of the stochastic productivity indices suggest that produc-
tivity had actually risen. So, for example, in 1996 the nonstochastic productivity index calculated
for California suggests a productivity decline of about 3 to 4%, while both stochastic productiv-
ity indices indicate productivity growth on the order of 2%. In 1999, the difference is even more
marked. The nonstochastic productivity index indicates a productivity decline of about 3 to 4%,
while the weakly disposable measure indicates growth on the order of 7% and the freely disposable
measure on the order 8%.

Similarly, for 2002 the nonstochastic productivity measure shows a decline in Iowa’s productivity
on the order of 9% while the stochastic indices show growth on the order of 10 to 11%. The pattern
reverses in 2003, the nonstochastic productivity index suggests growth on the order of almost 20%
while the stochastic measures indicate much more modulated growth on the order of 2%. But then

the pattern reverses again in the final year.
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Figure 10 presents intertemporal efficiency indices for California for the nonstochastic represen-
tation of the technology and for the weakly disposable stochastic approximation. As noted earlier,
California routinely exhibits intertemporal efficiency indices at, or very close to one, for the nonsto-
chastic representation of the technology. That tendency is dramatically increased by the inclusion
of climatic variables. For example, using the nonstochastic approximation, between 1961 and 1980
California had an intertemporal efficiency index that differed from unity 15 times. According to
that measure, California routinely lagged behind the frontier and caught up to it only to repeat
the cycle. Incorporating the climatic variables into our analysis eliminated all of these departures
from unity. Similarly from 1981 forward, California’s computed intertemporal efficiency index for
the nonstochastic technology was different from unity 11 times, while that number fell to 6 when
climatic variables were incorporated.

The intertemporal efficiency index for T (t) also suggests that California’s instances of lag-
ging behind the frontier and then catching back up to it were less dramatic than the nonstochastic
efficiency index suggests. Overall before the climatic variables were included in the analysis, Califor-
nia’s average intertemporal efficiency index was unity through 3 decimal places, and its coefficient
of variation was approximately .02. After the climatic variables were included, the average in-
tertemporal efficiency index was unity out through 5 decimal places, and its coefficient of variation
was approximately. 01. In fact, each time California lagged behind the meta-frontier (1983, 1988,
and 1996), it immediately caught up to the meta-frontier in the next year.

A similar, though less dramatic, pattern emerges in Figure 11 where I present the corresponding
intertemporal efficiency indices for lowa. As with California, including climatic variables reduces
the number of times that the intertemporal efficiency index departs from unity. Both measures
give lowa an intertemporal efficiency index of unity between 1961 and 1968. But after 1968, the
nonstochastic representation of the technology never yields an intertemporal efficiency index of
one. In other words, if lowa was ever on the productive frontier and thus could be judged as a true
leader in technical innovation during that period, it didn’t stay there for long. Instead, according
to that measure, it routinely lagged behind the frontier trying to catch up to innovations made
elsewhere.

The version including climatic variables, however, has an intertemporal efficiency index of unity
21 times after 1968. So almost 60% of the lagging and catching up behavior has been eliminated.
The stochastic intertemporal efficiency index suggests that throughout the 1960s and the early

1970s, Iowa, like California, was helping to set the meta-frontier for the agricultural technology. In
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other words, it was a technical leader. Its first instance of lagging behind the frontier occurred in
1974, and after that it took a few years to catch up to the frontier. That first instance of lagging
behind the frontier corresponds to the first-oil shock. By 1979, Iowa was back on the frontier and
stayed there until 1983 when it again started to lag behind the meta-frontier. Recall, however,
that in January 1983 President Reagan had announced the first payment-in-kind (PIK) program
that involved producers relying intensively on USDA payment programs idling production capacity.
Towa caught back up to the frontier in 1985 and stayed there until it lagged behind in the late 1980s
only to catch up in the 1990s.

This pattern suggests a different story about technical innovation and productivity growth for
Towa than do the nonstochastic numbers. Iowa now looks more like California. Over large periods
of time, it seems to be a leader in pushing the meta-frontier for agriculture outward. When exposed
to shocks, such as the first oil shock and Reagan’s PIK program, it lagged behind the frontier briefly
before it moves back to a leadership role.!

In a sense this is the end of the story. Or rather, now that we have seen these numbers we
know how the story should end. When weather was ignored, the Fire et al. (1994) decomposition
suggested that Iowa, in particular, was doing a lot of "catching up to" and "falling away from"
the productive frontier. California, too, was doing some catching up to and falling way from the
productive frontier.

For California, incorporating climatic variables has eliminated almost all of California’s lagging
behind and catching up activity. Instead, California seems to be on the productive frontier pretty
much all of the time. Because California is typically regarded as one of the leading agricultural
states and has been for a very long time, this is not unexpected.!” For Iowa the story is similar, but
not quite so dramatic. Still, almost 60% of that activity has been eliminated by the incorporation
of climatic variables into the analysis.

Therefore, where before the productivity and technical change indices were very divergent for
Towa and somewhat less so for California, we should now expect to see much less divergence for

California and somewhat less divergence for Towa. And as Figures 12 and 13 illustrate, that is what

'6When the preceding analysis is replicated for the version of the technology satisfying free disposability of s,
not surprisingly, the number of instances where either California or Iowa exhibits and efficiency index of one. For
California, instead of 6 instances of an efficiency index differing from unity, there are 8. And for lowa, the number of

departures from an index of one is reduced by slightly over 30 % instead of 60%.
"For example, Schultz’s (1947) analysis suggests that Pacific Coast agriculture had the highest output per farm

worker as far back as 1929.
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happens. For California, the technical change and productivity indices now coincide almost exactly

for much of the sample period. For lowa, the match is less perfect, but still noticeable.

2.2 A Closer Look at Q""" (30 20, 21 1)

In the introduction, I suggested that measured TFP growth for US agriculture more properly
reflects a weather index than an actual productivity index. So far, not much has been said about
Qststt! (zo,xo;zl,xl) . Partly, that’s because it is actually a residual that is identified by the
measures already discussed. In this sense, it contains no information about the technology that
has not been examined by other means. But sometimes, it helps to look at matters from different
angles.

Figures 14 and 15 presents the empirical results or Q5% "' (29,29 21, 21) , graphed against
the same axis, for three states, California, Iowa, and Maryland. I include Maryland for several
reasons. First, unlike the other two, it is an eastern state. Thus, one expects it to experience
somewhat different weather patterns than the other two. Second, and more importantly, Maryland’s
agricultural industry is heavily dominated by broiler production, which is largely undertaken indoors
under closely controlled environmental conditions.'®

Figure 14 compares California and Maryland, and Figure 15 compares California and Iowa.
Each of these series represents a state-level weather index in the sense that each captures year-to-
year variation in productive capacity that is associated purely with variations in s. But they are
not weather measures in the same sense that either components of s are. Instead, they measure
s indirectly through its impact on productive ability. In fact, it is not too much of an intuitive
stretch to suggest that these measures, which are in fact statistics, portray some of what we might
characterize as noise in productivity measurement.

The most noticeable feature of Figure 14 is the tendency of Maryland’s weather index to be
at or very close to one throughout the period. This does not mean that Maryland does not have
variable weather patterns. It does. Rather, it means that those weather patterns have relatively
little impact on state-level agricultural productivity, and hence there is relatively little noise here.
Given the concentration of poultry production in Maryland, this is not surprising. When compared
to Maryland, California’s weather index appears much more variable even though California is

noted for the moderation of its climate. Again, this reflects the fact that weather variation in

California plays more of a role in affecting California’s agricultural productivity than in Maryland.

8Tt also happens to be the state where I grew up, where I currently live, and whose University pays my salary.
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Turning to Figure 15 reveals that the variability in Iowa’s weather index dwarfs that of Califor-
nia. A large part of this is concentrated on the extreme outcome for 1993 in Iowa (reflected in an
extreme productivity outcome). But even ignoring this apparent outlier, the patterns in variability

are distinct.!?

3 Conclusion

The main lesson learnt is that including our measures of s into a state-contingent production
function changes DEA based measures of productivity change and efficiency change for California
and Iowa.?’ That’s hardly surprising. Incorporating new variables into efficiency and productivity
analysis routinely changes results. So, in and of itself, that’s not really saying much. What
impresses me is that the changes tend to confirm what I know to be conventional wisdom about
those two states in a fashion that also accords with the basic nature of agricultural production.
Agricultural producers operate in a stochastic environment. I do not believe that it is inherently
more stochastic (if any sense can be attributed to that notion) than other industries, but I do
know that our productivity and efficiency models routinely deny its very nature. And the evidence
that this matters is palpable to anyone who bothers to look at routinely computed TFP numbers.
Thus, if we are to take those numbers seriously, perhaps we should take the modeling process more
seriously in this regard.

Venturing beyond that is dangerous. The analysis here is preliminary and is intended to be
a start towards a more thorough analysis of how the Arrow-Debreu framework can be integrated
in a meaningful fashion into agricultural productivity measurement and accounting. While the
start seems encouraging, there are reasons for caution. As usual, attempting to solve one problem
introduces new problems, and here that is manifested in some very large productivity estimates that
appear to be driven by outlier effects. There are a number of possible causes to this ranging from
the obvious possibility of misspecification to the use of poor measures of Nature’s actual draws.
As already noted, the measures included here were originally developed for purposes other than
those to which they have been put. These and other matters need to be resolved before anything

approaching a definitive statement can be made on whether the inclusion of weather variables truly

19Replicating Figure 15 for the stochastic technology consistent with free disposability still leads to weather indices
for the states that are distinctly different across states. However, for that version of the technology, California’s index

exhibits the most variability.
20Tn fact, this is broadly true for all 48 states in the sample.
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makes a difference in productivity analysis. But what is clearly true is that it does make a difference

in the numbers we currently calculate, and that’s a start.
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Figure 15: IA and CA Omega Indices
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