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ABSTRACT 

In this paper we consider parametric deterministic frontier models.  For example, the 

production frontier may be linear in the inputs, and the error is purely one-sided, with a known 

distribution such as exponential or half-normal. 

 The literature contains many negative results for this model.  Schmidt (1976) showed that 

the Aigner-Chu (1968) linear programming estimator was the exponential MLE, but that this was a 

non-regular problem in which the statistical properties of the MLE were uncertain.  Richmond 

(1974) and Greene (1980) showed how the model could be estimated by two different versions of 

corrected OLS, but this did not lead to methods of inference for the inefficiencies.  Greene (1980) 

considered conditions on the distribution of inefficiency that make this a regular estimation 

problem, but many distributions that would be assumed do not satisfy these conditions.   

 In this paper we show that exact (finite sample) inference is possible when the frontier and 

the distribution of the one-sided error are known up to the values of some parameters.  We give a 

number of analytical results for the case of intercept only with exponential errors.  In other cases 

that include regressors or error distributions other than exponential, exact inference is still possible 

but simulation is needed to calculate the critical values.   

We also discuss the case that the distribution of the error is unknown.  In this case 

asymptotically valid inference is possible using resampling (subsampling or bootstrap) methods. 
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1.  INTRODUCTION  

In this paper we consider a linear deterministic frontier model of the form: 

ݕ  (1) ൌ ߙ  ݔ
ᇱߚ െ ݑ    ,    ݑ  0     ,     i = 1, 2, …, n     . 

We are mostly interested in the case in which the ݑ are iid with a distribution that is known up to 

the value of some parameters.  For example, we will discuss in detail the case that the distribution 

of the ݑ is exponential with mean ߤ.  We have ݕ  ߙ   ,which is the deterministic frontier , ߚԢݔ

and the model is parametric in the sense that a parametric assumption is made both about the 

functional form of the frontier and the distribution of ݑ.  The ultimate point of models of this type 

is to obtain an estimate of ݑ (for each i), which is interpreted as a measure of the technical 

inefficiency of firm i.  For an expository treatment of parametric deterministic frontier models, see 

Kumbhakar and Lovell (2000), section 3.2.1 

 The literature contains many negative results for this model.  Aigner and Chu (1968) 

suggested a linear programming estimator that minimized the sum of absolute errors in (1) subject 

to the constraint that  ݕ  ߙ   for all i.  They also suggested a quadratic programming ߚԢݔ

estimator that minimized the sum of squared errors subject to the same constraints.  They did not 

establish any statistical properties for these estimators.   Schmidt (1976) showed that the 

Aigner-Chu linear programming estimator was the MLE under the assumption that the errors ݑ 

are exponential and that their quadratic programming estimator was the MLE under the 

assumption that the errors are half-normal.  However, he noted that this was a non-regular problem 

because the range of the random variable ݕ depends on the parameters, which violates one of the 

usual regularity conditions for MLE.  Therefore the statistical properties of the MLE were 

uncertain.  Greene (1980) gave a condition on the distribution of inefficiency that makes this a 

regular estimation problem, namely that the density of u at the point u = 0 should equal zero.  Some 
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possible distributions for u (e.g. lognormal, or gamma with parameter  2) satisfy this condition, 

but many other distributions that might commonly be assumed (e.g., exponential or half-normal) 

do not.  Another possible method of estimation is corrected ordinary least squares (COLS), in 

which ߚ is estimated by ordinary least squares (OLS) applied to equation (1), and then ߙ is 

estimated by shifting the line upward (keeping the slope the same) until it lies on one point and 

above the others.  This was first suggested by Winsten (1957) – though it was literally a 

one-sentence suggestion – and then further developed by Greene (1980), who proved the 

consistency of the COLS estimators of ߙ and ߚ.  However, while this enabled consistent 

estimation of the ݑ, methods of inference (such as construction of confidence intervals) for the ݑ 

are still not established thirty years later. 

 The lack of more positive results for this problem is surprising because asymptotically 

valid methods of inference are available for models that make weaker assumptions.  For example, 

in the stochastic frontier model of Aigner, Lovell and Schmidt (1977) and Meeusen and van den 

Broeck (1977), which adds normal noise to the model (1) and therefore clearly makes the 

estimation problem more difficult, we can estimate the ݑ and construct asymptotically valid 

confidence intervals for them.  See Jondrow, Lovell, Materov and Schmidt (1982), Battese and 

Coelli (1988) and Horrace and Schmidt (1996) for an analytical approach.  Alternatively, Simar 

and Wilson (2010) show that bootstrapping also provides asymptotically valid confidence 

intervals for ݑ in this model. 

Asymptotically valid confidence intervals can also be constructed for non-parametric 

deterministic frontier models in which no distributional assumption is made for the ݑ and no 

functional form is assumed for the frontier function.  Examples are the FDH (free disposal hull) 

model for which only monotonicity in x is assumed for the frontier function and the DEA (data 
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 envelopment analysis) model in which monotonicity and concavity are assumed.   Consistency and 

rates of convergence of the efficiency estimators were established by Kneip, Park and Simar 

(1998) for DEA and by Park, Simar and Wiener (2000) for FDH.  The asymptotic distribution of 

the efficiency estimates was obtained by Park, Simar and Wiener (2000) for FDH and by Kneip, 

Simar and Wilson (2008) and Park, Jeong and Simar (2010) for DEA.  These asymptotic 

distributions can be used to create asymptotically valid confidence intervals for the efficiency 

estimates.  Asymptotically valid confidence intervals can also be achieved by bootstrapping.  The 

existence of the boundary condition on y implies that the naive bootstrap is not consistent, but 

asymptotically valid bootstrapping procedures are given by Simar and Wilson (1998, 2000A, 

2000B) and Kneip, Simar and Wilson (2008).  Also other subsampling methods (notably the “m 

out of n bootstrap”) have been proposed by Simar and Wilson (2009). 

 In this paper we ask the obvious question of whether we can do better in the case of a 

parametric deterministic frontier model, which intuitively should be possible because we are 

making stronger assumptions.  The answer is yes.  Under a “scaling condition” that holds for many 

commonly-assumed distributions, including half-normal and exponential, we can construct exact 

confidence intervals in finite samples.  This is not possible in stochastic frontier models or in 

non-parametric models like DEA. 

 The plan of the paper is as follows.  In Section 2 we consider a very simple case in which 

there are no regressors (only intercept) and the error is exponential.  This case allows analytical 

expressions for bias-corrected estimates and for confidence intervals that are valid in finite 

samples.  In Section 3 we allow distributions other than exponential.  So long as the distribution of 

u satisfies the “scaling property” that u is distributed as a scalar multiple of a random variable with 

a known density, we can still construct confidence intervals that are valid in finite samples.  
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 However, now the critical values that are needed for the confidence intervals must be calculated by 

simulation.  In Section 4, we add regressors to the model.  Once again we can construct confidence 

intervals that are valid in finite samples, but now the critical values depend on the values of the 

regressors and must be calculated (observation by observation) by simulation.  Section 5 considers 

the case that the distribution of u is unknown.  Now we cannot construct confidence intervals that 

are valid in finite samples, but asymptotically valid inference is generally possible using 

resampling techniques (subsampling or the bootstrap).  Finally, Section 6 contains our concluding 

remarks. 

 

2.  INTERCEPT ONLY, EXPONENTIAL ERRORS 

 In this section we consider the case of an intercept only (no regressors) and exponential 

errors.  The point of considering this simple and empirically uninteresting case is that we can 

obtain analytical results that we cannot obtain in more complicated models.  Thus we consider the 

model 

ݕ  (2) ൌ ߙ െ ݑ    ,    ݑ  0     ,     i = 1, 2, …, n     , 

where the ݑ are iid as exponential with mean ߤ.  The density of u is 

(3)  ݂ሺݑሻ ൌ ቀଵ

ఓ
ቁ exp ሺെ ௨

ఓ
ሻ . 

 This model is closely related to the “two parameter exponential distribution,” which would 

correspond in our notation to ݕ ൌ ߙ  ߙ , ݑ   A textbook  .ߤ  exponential with meanݑ  , 0

treatment of that model is given by, e.g., Lawless (1982), section 3.5.  The results from that model 

apply to our model with a few sign changes. 

Define ݕ௫ = ݉ܽݔୀଵ,…, ݕ and ݑ = ݉݅݊ୀଵ,…, ݑ , and note that ݕ௫ ൌ ߙ  െ   . ݑ

Also let ݕത ൌ ଵ


∑ ݕ


ୀଵ  and similarly for ݑത.  Then we have the following (well known) result. 
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RESULT 1.  The MLE’s of ߙ and ߤ are ߙො ൌ ߤ̂ ௫ andݕ ൌ ොߙ  െ ௫ݕ = തݕ െ  = തݕ

തݑ െ  .ݑ

 

Proofs not given in the text can be found in the Appendix. 

It is clear that ߙො is biased downward, because ߙො ൌ ௫ݕ ൏  with probability one.  This ߙ

implies that ̂ߤ is also biased downward.  However, these biases are easily evaluated, so that we can 

construct bias-adjusted (i.e. unbiased) estimators, as follows. 

 

RESULT 2.  The following estimators are unbiased for ߙ and ߤ: 

ߤ  ൌ 
షభ

௫ݕ)   െ  = (തݕ


ିଵ
 ߤ̂

ߙ  ൌ 
షభ

௫ݕ  െ భ
షభ

ොߙ =  തݕ   ଵ

ିଵ
 ߤ̂

 

We now turn to the question of inference on the ݑ.  Since ݑ ൌ ߙ െ   , it is natural toݕ

consider estimating it by ݑො ൌ ොߙ െ ݑ  orݕ ൌ ߙ െ  .  The second of these is unbiased in the senseݕ

that ܧሺݑ െ ሻݑ ൌ  0.  However, for purposes of construction of confidence intervals, it is simpler 

to consider the biased estimator ݑො, and (as we will point out later) we would get the same 

confidence intervals either way.  We note that 

ොݑ  (4) െ ݑ ൌ ොߙ െ ߙ ൌ െݑ  

so that the estimation error ݑො െ   is the same for all i.  In fact, from (4) it is clear that the problemݑ

of construction of a confidence interval for ݑ (based on ݑො) is exactly the same as the problem of 

construction of a confidence interval for ߙ (based on ߙො). 
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Since ݑ is the minimum of a random sample of n exponential random variables with 

mean ߤ, it is distributed as exponential with mean 
ఓ


.    This leads to the probability statement 

(5)  ܲሺ0.0253 ఓ


  ݑ  3.689 ఓ


ሻ = 0.95 , 

where 0.0253 = െ݈݊(1 – 0.025) and 3.689 = െ݈݊ሺ1 – 0.975) are the appropriate (0.025 and 0.975) 

quantiles of the standard (ߤ ൌ 1) exponential distribution.  Substituting ݑ ൌ ݑ െ  ො , weݑ

obtain the confidence interval: 

(6)  ܲሺݑො  0.0253 ఓ


  ݑ  ොݑ  3.689 ఓ


ሻ = 0.95. 

 Several things about this result are worth pointing out.  First, it holds for any individual i, 

but it also holds simultaneously for all i, because ݑ െ ොݑ ൌ   for all i, that is, the estimationݑ

error in ݑො is the same for every observation.  Second, it implicitly recognizes the downward bias 

of ݑො as an estimate of ݑ; the confidence interval is not symmetric around ݑො.  In fact the entire 

confidence interval lies to the right of ݑො .  Third, this interval is not feasible in practice because it 

depends on ߤ, but it would remain valid asymptotically if a consistent estimate ̂ߤ (e.g. the MLE 

given in Result 1) is used in place of ߤ. 

In order to construct a confidence interval that is valid in finite samples, we need to find a 

quantity that is pivotal, that is, whose distribution does not depend on the parameters ߙ and ߤ.  

This is not hard to do, as the following result demonstrates. 

 

RESULT 3.  Define ܵ ൌ ௨ି௨ෝ

ఓෝ
 .  Then the distribution of ܵ does not depend on ߙ or ߤ. 

 

We note that ܵ is defined in terms of ݑො and ݑ , but in fact it does not depend on i because 

ݑ െ ොݑ ൌ   . for all i.  It just depends on nݑ
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A sidelight is that, if we had chosen to construct confidence intervals based on ݑ instead of 

ො , we would have been led to the pivotal quantity ሚܵݑ ൌ ௨ି௨

ఓ
 .  However, using the relationships 

in Result 2, it is easy to show that ሚܵ ൌ ିଵ


ܵ െ ଵ


 .  So exactly the same confidence intervals 

would result if we use ݑ or ݑො . 

Because ܵ is pivotal, we should be able to find critical values ܽ and ܾ (which depend 

on n but not on ߙ or ߤ) such that 

(7)  ܲሺܽ  ܵ  ܾሻ ൌ 0.95 . 

If so, then simple arithmetic yields the confidence interval 

(8)  ܲሺݑො  ܽ̂ߤ  ݑ  ොݑ  ܾ̂ߤሻ ൌ 0.95 . 

As above, it is noteworthy that this confidence interval would hold individually for any i, but it 

also would hold simultaneously for all i, because the estimation error in ݑො is the same for every 

observation. 

 We could calculate ܽ and ܾ by simulation.  Because ܵ is pivotal, we can arbitrarily set 

ߙ ൌ 0 and ߤ ൌ 1 (or pick any other values), generate data ݕ ൌ െݑ , i = 1,…,n, where the ݑ are 

draws from a standard (ߤ ൌ 1ሻ exponential distribution, and calculate ܵ.  (Equation (A3) of the 

Appendix gives a useful formula for calculating ܵ.)  Repeating this process a large number of 

times will reveal ܽ and ܾ as the 0.025 and 0.975 quantiles of the values of ܵ.  This is essentially 

a method of calculation, as opposed to estimation, because the results can be made as accurate as 

one wishes by using enough replications of the simulation. 

However, in the present case, simulation is not actually needed because we can calculate 

the distribution of ܵ analytically.  The following result gives the asymptotic and finite sample 

distributions and the formula for the calculation of ܽ and ܾ. 

 



 

 10

 RESULT 4.   

(a) As ݊ ՜ ∞, ݊ܵ ՜ௗ exponentialሺ1ሻ 

(b) For fixed n, the cdf of ܵ is ܨሺݏሻ ൌ ܲሺܵ  ሻ = 1ݏ െ ଵ

ሺଵା௦ሻషభ  

(c) The quantiles of ܵ are:  quantile(p) = ሺ1 െ ሻ
షభ

షభ െ 1 . 

(d) The confidence statement in equation (8) is correct, with 
 

 ܽ ൌ ሺ1 െ 0.025ሻ
షభ

షభ െ 1  ,  ܾ ൌ ሺ1 െ 0.975ሻ
షభ

షభ െ 1  . 
 
 

Table 1 gives values of ݊ܽ and ܾ݊ for selected values of n between 2 and 50,000.  Very 

large sample sizes like n = 50,000 are not empirically relevant but are included so that we can 

clearly see the asymptotic behavior of the entries.  The first two columns of critical values give the 

results from a simulation with 1,000,000 replications, while the last two columns are calculated 

using Result 4.  The simulation results and the analytical results are quite close, which is a good 

check on both.  The convergence to the asymptotic values of  ݊ܽ and ܾ݊, which are 0.0253 and 

3.689, is reasonably fast, but in this case there is no reason to use the asymptotic values when the 

exact (finite n) values are available. 

For quantiles corresponding to probabilities other than 0.025 and 0.975, we can use the 

formula in Result 4(c).  For example, we might want to calculate the 0.05 and 0.95 quantiles to 

construct a 90% confidence interval in place of a 95% interval.  Or, another motivation might be 

that we want to construct a one-sided confidence interval (upper bound only), which because of the 

skewness of the distribution of u will be shorter than a two-sided interval of equal confidence 

level.  For example, with n = 25, a two-sided 95% confidence interval will have width 
ସ.ଵହସି.ଶସ

ଶହ
 ߤ̂

 Here)  . ߤwhereas a one-sided (upper) 95% confidence interval will have width 0.1329̂ ,ߤ0.1651̂ =

the quantile 0.1329 is calculated from part (c) of Result 4, with p = 0.95.) 
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 Table 2 gives the results of a simulation to check the coverage rates of the confidence 

intervals using the values of ܽ and ܾ from Table 1 and the formula in equation (8).  For purposes 

of comparison we also present the coverage rates from the intervals using the formula in equation 

(6), based on the true value of ߤ.  These intervals would be infeasible with real data but can be 

constructed in a simulation setting.  We also present the coverage rates from the intervals using the 

formula in equation (8) but the asymptotic values of ݊ܽ and ܾ݊ (.0253 and 3.689).  There are no 

surprises here.  The infeasible intervals cover the correct fraction (95%) of the time, and so do the 

exact intervals using the tabulated finite sample values of ݊ܽ and ܾ݊.  This should be true 

exactly, apart from the randomness of the simulation and rounding error in the calculations.  The 

intervals that use the asymptotic values are fairly accurate in small samples, especially when 

݊  25.  Still, the ability to construct exact finite sample confidence intervals is of theoretical 

interest and some practical importance. 

 

3.  OTHER DISTRIBUTIONS 

In this section, we still consider the case of an intercept only (no regressors), but we allow 

for distributions of u other than exponential.  That is, the model (1) still holds, and the distribution 

of the error u is known apart from unknown parameters. We will discuss in most detail the case 

that the errors are half-normal, that is, u is distributed as ܰሺ0,  ଶሻା, the non-negative truncation ofߪ

a normal random variable. 

The key to our treatment is that we will not calculate the MLE based on the actual 

distribution of u.  Rather, we will continue to calculate exactly the same quantities as we did in the 

previous section.  So, specifically, ߙො and ̂ߤ are still as defined in Result 1 (however, there is no 
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longer any claim that they are the MLE’s), ݑො ൌ ොߙ െ   as in the previous section, and ܵ is stillݕ

defined as in Result 3. 

We will assume the following. 

 

ASSUMPTION 1. 

(a)  ߤ ؠ  .ሻ existsݑሺܧ

(b)  The density of u is strictly positive in an open neighborhood (0,c) for some c  >  0. 

(c)  (scalability)  u is distributed as a scalar ߠ times a random variable u*, where the 

distribution of u* is known.  In particular, there are no unknown parameters in the 

distribution of u*. 

 

Assumption 1(a) ensures that a law of large numbers applies to u, and therefore to y, so that  

തݕ ՜ ሺߙ െ ݑ ሻ.  Assumption 1(b) ensures thatߤ ՜ 0 so that ߙො is a consistent estimate of ߙ.  

Note that Assumption 1(b) does not rule out the possibility that the density of u equals zero at the 

point u = 0. It just ensures that ܲሺݑ ൏ ݇ሻ is strictly positive no matter how small k is.  Therefore 

Assumptions 1(a) and 1(b) ensure that ̂ߤ is a consistent estimate of ߤ.  Since our interest is not 

primarily in asymptotics, these assumptions could have been omitted.  Assumption 1(c) is 

fundamental to the results of this section, however.  It will hold for many commonly-assumed one 

parameter distributions for u.  For example, it holds in the exponential case, since if u is distributed 

as exponential with mean ߤ, it can be written as ߤ times u* where u* is exponential with mean one.  

Similarly, this assumption holds in the half-normal case, since if u is distributed as ܰሺ0,  ଶሻା, thenߪ

it can be expressed as ߪ times u* where u* is distributed as ܰሺ0,1ሻା.  It will not hold for all 
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one-parameter distributions, however;  for example, it does not hold if u is distributed as ܰሺߤ, 1ሻା.  

And it will generally not hold for two-parameter distributions. 

The point of Assumption 1(c) is that it ensures that the unknown scale factor ߠ cancels out 

of the distribution of ܵ.   We state this result formally. 

 

RESULT 5.  Suppose that Assumption 1(c) holds.  Then ܵ is pivotal; its distribution does 

not depend on ߙ or ߠ. 

 

Because ܵ is pivotal, we can calculate its quantiles by simulation, for an arbitrary value of 

ߙ .e.g) ߙ ൌ 0ሻ and an arbitrary value of the scaling parameter.  For example, in the half-normal 

case, we can generate data ݕ ൌ െݑ (i = 1,…,n) where the ݑ are iid draws from ܰሺ0,1ሻା.  This 

data implies a value of ܵ, and repeating this process many times reveals the quantiles of ܵ . 

Once we have the critical values ܽ and ܾ, we can construct confidence intervals as 

before, according to equation (8).  The only difference is that the values of  ܽ and ܾ are different 

for different distributions of u. 

Table 3 gives the values of ݊ܽ and ܾ݊ for the half-normal case, for selected values of n 

between 2 and 50,000, based on a simulation with 1,000,000 replications.  This tabulation is 

similar to the simulation-based tabulation in Table 1 for the exponential case. 

The last two columns of Table 3 give the coverage rates of the confidence intervals that use 

the asymptotic values of ݊ܽ and ܾ݊ (.0398 and 5.7861) and the actual tabulated values, 

respectively.  The coverage rates for the intervals that use the actual (finite sample) tabulated 

values are very close to the correct probability of 0.95, as they should be.  The intervals that use the 

asymptotic values are reasonably accurate except when the sample size is very small. 
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Table 4 gives n times the quantiles of ܵ for a variety of other probability levels that might 

be commonly used in practice.  The values of ݊ܽ and ܾ݊ that appear in Table 3 reappear in 

Table 4 in the columns corresponding to p = 0.025 and 0.975. 

 

4.  MODELS WITH REGRESSORS 

We now consider the empirically relevant case that we have regressors (inputs) in our 

production function.  That is, the model becomes 

ݕ  (9) ൌ ߙ  ݔ
ᇱߚ െ ݑ    ,     ݑ  0     ,     i = 1, 2, …, n   , 

where ݔ is a vector of inputs or functions (e.g. logarithms) of inputs.  For the moment, we will 

assume that the ݑ are exponential with mean ߤ.  This assumption will be relaxed shortly. 

Schmidt (1976) showed that, if the ݑ are exponential, the MLE is the Aigner and Chu 

(1968) linear programming estimator.  That is, the MLE’s of ߙ and ߚ solve the problem: 

(10)  ݉݅݊ఈ,ఉ ∑ ߙ|  ݔ
ᇱߚ െ |ݕ   subject to:  ݕ  ߙ  ݔ

ᇱߚ for all i = 1,…,n 

Unfortunately, the statistical properties of this estimator are unknown.  Thus we will 

consider instead the corrected ordinary least squares (COLS) estimator proposed by Winsten 

(1957) and Greene (1980).  As intuitive motivation, we write the model as 

ݕ   (11) ൌ ሺߙ െ ሻߤ  ݔ
ᇱߚ െ ሺݑ െ כߙ = ሻߤ  ݔ

ᇱߚ െ ݑ
 כ

which now has an error with expectation zero and can be reasonably estimated by OLS (whether 

the errors are exponential or not).  Let the estimates from OLS of ݕ on intercept and ݔ (i = 1,…,n) 

be denoted as ߙොߚ ,כመ  , and let the OLS residuals be ݁ ൌ ݕ െ כොߙ െ ݔ
ᇱߚመ  .  Now define  ̂ߤ ൌ ݁௫, 

the largest of the OLS residuals, and define ߙො כොߙ =    That is, we have shifted the OLS  . ߤ̂

regression line upward (leaving its slope unchanged) by the amount of the largest residual, so that 

the line now goes through one point and lies above the other points.  Finally, then, we define the 
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inefficiency estimates:  ݑො ൌ ොߙ  ݔ

ᇱߚመ െ  ො will equal zero, and the others willݑ  .  So one of theݕ

be positive. 

The following result shows the sense in which this is a legitimate generalization of our 

approach of Section 2. 

 

RESULT 6.  In the intercept-only case, the exponential MLE and the COLS estimator are 

the same. 

 

With regressors, the exponential MLE and the COLS estimator are not the same. We 

choose the COLS estimator, because we can construct exact confidence intervals based on these 

estimates, as we now proceed to show.  

We now drop the assumption of exponential errors, and make the weaker assumption that 

the distribution of the errors satisfies Assumption 1, and therefore satisfies the scalability 

condition 1(c).  As before we denote the scaling factor by ߠ.  We then have the following result: 

 

RESULT 7.  Define ܵ, ൌ ௨ି௨ෝ

ఓෝ
 .  Then ܵ, is pivotal; its distribution does not depend on 

,ߙ  .ߠ or ߚ

 

 It is easy to see that 

ොݑ  (12) െ ݑ ൌ ሺߙො െ ሻߙ  ݔ
ᇱሺߚመ െ  . ሻߚ

Unlike in the case of intercept-only, this difference is not the same for every i, and its distribution 

depends on the value of the regressor matrix X and also on the specific value of ݔ .  As before, 

because ܵ, is pivotal, we can calculate the quantiles of ܵ, by simulation, generating the data for 
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the simulation using arbitrary values of ߙ,  These quantiles will vary over i.  Other than  .ߠ and ߚ

that, the procedure is essentially the same as before.  We find (by simulation) the critical values 

ܽ, and ܾ, such that  

(13)  ܲ൫ܽ,  ܵ,  ܾ,൯ ൌ 0.95  

and this leads to the confidence interval: 

(14)  ܲ൫ݑො  ܽ,̂ߤ  ݑ  ොݑ  ܾ,̂ߤ൯ ൌ 0.95 . 

It is interesting that, unlike in the intercept-only case, the values of ܵ, can now be of 

either sign.  It will be the case that ܵ, ൏ 0 when ݑ ൏  , theݔ ො , that is, when, at a given value ofݑ

fitted line lies above the true line.  However, because the fitted line and the true line can cross, this 

can be true for some (but not all) values of ݔ.  Therefore it is possible that ܽ, can be negative for 

some values of i. 

 Table 5 presents the results of a simulation that verifies that the intervals (14) cover with 

the correct probability.  The data are generated with an intercept and a dummy variable, and the 

errors are exponential.  The dummy variable takes on the value of 1 for 60% of the observations 

and the value of 0 for 40% of the observations.  (These are convenient fractions because all of our 

sample sizes are multiples of five.)  Obviously inputs in a production function are not generally 

dummy variables.  The choice of a dummy variable for the non-constant regressor is a matter of 

convenience.  Although there are n observations on ݔ, they only take on two different values, and 

so we have to calculate only two values of ܽ, and ܾ, (one set for the observations for which ݔ = 

0 and another set for the observations for which ݔ = 1).  Table 5 presents these two sets of ݊ܽ, 

and ܾ݊,.  We also can note that for observations with the same value of ݔ , the estimation error 

ොݑ െ   for all values of i with thatݑ  is the same, and so the intervals either cover or do not coverݑ

value of ݔ.   As a result we need to report only two (instead of n) coverage rates, one for the 
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observations with ݔ ൌ 0 and another for the observations with ݔ ൌ 1.   These two coverage rates 

are given in the last two columns of Table 5.  They are equal to 0.95 apart from the randomness of 

the simulation, as they should be. 

 

5.  UNKNOWN ERROR DISTRIBUTION 

In this section we consider the case that the form of the distribution of u is unknown.  In this 

case valid finite sample inference is no longer possible, but under certain assumptions 

asymptotically valid inference is possible using resampling methods.  Interestingly, now the 

intercept-only case is fundamentally different from the case with regressors, because the rate of 

convergence of ݑො െ  . differs in the two casesݑ

5A. The Intercept-Only Case 

We consider first the intercept-only model of equation (2).  As noted above, this is not just 

a matter of convenience of exposition; this case is different from the case with regressors. As 

before we are interested in a confidence interval for ݑ , or equivalently a confidence interval for 

ොߙ and we consider the estimate ,ߙ ൌ  .௫ݕ 

In this case we will use subsampling (or the m out of n bootstrap) because the usual 

full-sample bootstrap is not valid.  To see why the bootstrap fails in this case, let B be the number 

of bootstrap samples used and let b (= 1,…,B) be a single bootstrap sample of n observations 

chosen with replacement from {ݕଵ, … ,  based on bootstrap ߙ ොሺܾሻ be the estimate ofߙ }.  Letݕ

sample b.  The usual justification for the bootstrap is that asymptotically the distribution of 

ොሺܾሻߙ) െ ොߙ) ො) is the same as that ofߙ െ  However, this result does not hold in the present case, or  .(ߙ

in general in many problems involving boundaries.  The specific problem is that, while ߙො is strictly 

less than ߙ with probability one, it will often be the case that ߙොሺܾሻ ൌ ොሺܾሻߙ ො.  We will haveߙ ൌ  ොߙ
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whenever the bootstrap sample contains ݕ௫, and this will occur with probability 1 െ ሺ1 െ ଵ


ሻ.  

For large n this probability converges to 1 – 1/e, or approximately 0.63.  So the bootstrap estimate 

will exactly equal the original estimate about 63% of the time, and this event has no counterpart in 

the relationship of the original estimate to the true parameter. 

Politis and Romano (1994) and Politis, Romano and Wolf (1999) solved this problem by 

using subsamples (again denoted  b = 1,…,B) of size m < n.  Formally we pick m such that, as 

݊ ՜ ∞, ݉ ՜ ∞ but m/n ՜ 0.  This is called “subsampling” if the subsamples are chosen without 

replacement, and it is called the “m out of n bootstrap” if they are chosen with replacement.  (The 

usual bootstrap corresponds to m = n and is ruled out by the assumption that  m/n ՜ 0.)   In the 

case of subsampling, the B subsamples can either be all possible subsamples of size m or they can 

be a random selection from the set of all subsamples of size m.  If m/n is small, it will not matter 

much whether sampling is with or without replacement, so subsampling and the m out of n 

bootstrap will be similar.  The point of making m/n small is that it reduces the probability that 

ොሺܾሻߙ ൌ  ො.  For example, for the m out of n bootstrap with m/n = 0.1, for large n the probability thatߙ

ොሺܾሻߙ ൌ  ො equals 1 – ݁ି.ଵ = 0.095,  so the bootstrap estimate will equal the original estimate aboutߙ

9.5% of the time, instead of 63% of the time.  Conversely, the point of having m grow with n is so 

that asymptotics apply to the estimates from the subsamples in the same way as to the original 

estimate. 

To make proper use of the subsampled estimates, we need to know the rate of convergence 

of the original estimate.  Suppose that ߬ሺߙො െ  ,has a non-degenerate asymptotic distribution (ߙ

where ߬ is a known function of n.  (For many estimation problems, ߬ ൌ √݊, and for the problem 

just discussed, generally ߬ ൌ ݊. ሻ  Then the basic result is that the asymptotic (large n) 

distribution of  ߬ሺߙොሺܾሻ െ ොߙොሻ is the same as the asymptotic distribution of ߬ሺߙ െ  ሻ.  See, forߙ
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 example, Politis, Romano and Wolf (1999), Theorem 2.2.1, p. 43.  Thus we approximate the 

distribution of ሺߙො െ ሻ by the distribution of ሺఛߙ

ఛ
ሻሺߙොሺܾሻ െ  ොሻ.  This leads us to an asymptoticallyߙ

valid confidence interval of the form  

(15)  ܲ൫ߙො  ܽ,  ߙ  ොߙ  ܾ,൯ ൌ 0.95 , 

where ܽ, and ܾ, are the 0.025 and 0.975 quantiles of the B values of ሺఛ

ఛ
ሻሺߙො െ   .ොሺܾሻሻߙ

Finally, since ݑො െ ݑ ൌ ොߙ െ  we can use these same values of ܽ, and ܾ, for the confidence ,ߙ

intervals 

(16)  ܲሺݑො  ܽ,  ݑ  ොݑ  ܾ,) = 0.95 . 

 In the intercept-only model of equation (2), the rate of convergence of ߙො depends on the 

behavior of the density of u near and at zero.  We will make the following assumption. 

 

ASSUMPTION 2.   

(a)  ߤ ؠ  .ሻ existsݑሺܧ

(b) The density of u is strictly positive in an open neighborhood (0,c) for some c  >  0. 

(c)  0 ൏ ݂ሺ0ሻ ൏ ∞ 

 

Comparing this assumption to Assumption 1, we no longer assume the scalability property.  

However, we now assume that 0 ൏ ݂ሺ0ሻ ൏ ∞.  In this case, the following result implies the 

relevant asymptotic distribution for ߙො . 

 

RESULT 8.  Let ݑଵ, … ,   be a random sample from the distribution of a non-negativeݑ

random variable with density ݂ሺݑሻ.  Suppose that Assumption 2 holds, so that 0 < ݂ሺ0ሻ ൏ ∞.  

Then ݊ · ݑ ՜ௗ exponential(ߤ) with ߤ ൌ 1/݂ሺ0ሻ. 
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Since ߙො െ ߙ ൌ െݑ , Result 8 implies that ݊ሺߙො െ ሻߙ ՜ௗ – exponential(ߤ) with 

ߤ ൌ 1/݂ሺ0ሻ.  So to apply subsampling techniques, we choose ߬ ൌ ݊ in this case. 

We note that, as an alternative to subsampling, we could base confidence intervals on the 

asymptotic distribution (exponential).  However, this would require an estimate of ݂ሺ0ሻ, and we 

prefer to avoid the problems inherent in density estimation.   

In the case that ݂ሺ0ሻ equals zero [or infinity], the asymptotic distribution of ݑ and the 

rate of convergence to this distribution depend on the rate of convergence of ݂ሺ0ሻ to zero [or 

infinity].  Such cases could be empirically relevant but they will be very difficult to treat, and we 

therefore will not consider them here. 

Table 6 gives the results of simulations to determine the coverage rates of confidence 

intervals constructed by subsampling and the m out of n  bootstrap.  We considered two sample 

sizes, n = 100 and 500.  We use three different distributions: exponential, half-normal and uniform.  

The number of iterations was 10,000, and the number of subsamples (or bootstrap subsamples) 

used in each iteration was 1000.  (In the case of subsampling, that is, sampling without 

replacement, this was a random sample of 1000 from the set of all possible subsamples.) 

The exponential case is unusual because the finite sample distribution of the estimate is the 

same as the asymptotic distribution (i.e., exponential) no matter what the value of m is.  So the 

requirement that m be large enough for asymptotics to be relevant is unnecessary.  And, indeed, the 

confidence intervals are quite accurate (coverage is close to 0.95) so long as m is not too large.  As 

expected, so long as m is small relative to n, subsampling and the m out of n bootstrap are quite 

similar. 
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 For the other two distributions, the value of m is more important.  If m is too small the 

coverage rates are too small.  Presumably this occurs because the asymptotic distribution is a poor 

approximation to the finite sample distribution of the subsample estimates when the subsample 

size is very small.  If m equals 10 or 20 when n = 100, or if m = 10, 20, 50 or 100 when n = 500, the 

coverage rates of the confidence intervals are reasonably close to 0.95.  These values of m would 

be quite standard in the subsampling literature.  For these values of m, once again there is little 

difference between subsampling and the m out of n bootstrap. 

The general conclusion from these simulations is that subsampling (or the m out of n 

bootstrap) works quite well in the intercept-only case. 

5B. The Model with Regressors 

Now we turn to the empirically relevant case in which we have regressors (inputs) in our 

production function.  The model is as given in equation (9) of section 4.  However, now we do not 

assume that the distribution of the error is known.  We simply assume that the distribution of u 

satisfies Assumption 2. 

Interestingly, the rate of convergence of ݑො െ   is different in the case with regressors thanݑ

in the intercept-only case.  To see why this is true, we begin with the following result. 

 

RESULT 9.  ݑො െ ݑ ൌ ݔ
ᇱ൫ߚመ െ ൯ߚ െ ݉݅ ݊ୀଵ,…,ሺݑ  ݔ

ᇱ൫ߚመ െ  ൯ሻߚ

  

Since √݊ሺߚመ െ ොݑሻ has a (normal) asymptotic distribution, the same is true of √݊ሺߚ െ   .ሻݑ

That is, it is the slower-converging portion of the right hand side of the expression in Result 9 that 

determines the rate of convergence.  Therefore we take ߬ ൌ √݊  for subsampling. 
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 It may be worthwhile to be explicit about the nature of our subsampling and the 

construction of the resulting confidence intervals.  We sample (y,x) pairs, so that subsample b is a 

set of m observations randomly drawn from ሼሺݕଵ, ,ଵሻݔ … , ሺݕ,  ሻሽ, either without replacementݔ

(“subsampling”) or with replacement (“m out of n bootstrap”).  Let ߙොሺܾሻ and ߚመሺܾሻ be the 

estimates of ߙ and ߚ in subsample b.  These imply estimates ݑොሺܾሻ ൌ ොሺܾሻߙ  ݔ
ᇱߚመሺܾሻ െ   for allݕ

i.  That is, we obtain ݑොሺܾሻ whether or not observation i was one of the m observations that went 

into subsample b.  Now ܽ,, and ܾ,, are defined as the 0.025 and 0.975 quantiles of the B 

values of (ݑො െ  :ොሺܾሻሻ, and they yield the confidence intervalsݑ

(17)  ܲሺݑො  ܽ,,  ݑ  ොݑ  ܾ,,) = 0.95 . 

 Tables 7, 8 and 9 give results of simulations to determine the coverage rates of confidence 

intervals constructed by subsampling and the m out of n bootstrap.  As in the intercept-only case, 

we considered two sample sizes, n = 100 and 500, and we used three different distributions: 

exponential, half-normal and uniform.  The number of iterations was 10,000, and the number of 

subsamples (or bootstrap subsamples) used in each iteration was 1000.  Our model contains 

intercept and a single regressor (x).  For n = 100 we used 100 different uniformly spaced values of 

x:  x = 0, 0.1, 0.2,0.3,…, 9.9.  For n = 500 we used these same 100 values, repeated five times each. 

 Table 7 gives the results for x = 0, the smallest value of x.  (The results for the largest value, 

x = 9.9, are very similar.)  These results are quite good.  Consider subsampling first.  For n = 100 

and m = 10 or 20, we have coverage rates in the range of 90-95% and the results are only a little 

worse than in the intercept-only case.  For n = 500 and m = 10, 20, 50 or 100, the results are better, 

and in fact are better than in the intercept-only case.  For the m out of n bootstrap, and with m in the 

same range as just discussed, the results are quite similar to those for subsampling. 
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  A striking difference between these results and the results for the intercept-only case is that 

the full-sample bootstrap (m = n) now yields approximately correct coverage rates.  We will 

comment more on this below. 

 The results for x = 2.4, the 25th percentile value of x, are given in Table 8, while Table 9 

gives the results for x = 4.9, the median value of x.  We will focus on the results in Table 9 because 

the results in Table 8 are intermediate between those in Tables 7 and 9.  For subsampling and for 

the m out of n bootstrap with relatively small values of m, the results are clearly worse than for the 

case of x = 0 (Table 7).  Coverage rates are now in the range of 80-90% as opposed to 90-95%.  

This result was unexpected.  It is true that the effect of estimation error in ߚ is smallest at the 

sample mean, and that this is the component of estimation error for ݑ that converges at rate √݊.  

However, the term ሺߚመ െ ݔ ሻ does not cancel from Result 9 even whenߚ ൌ  ҧ and so theݔ

convergence rate remains √݊ even for ݔ ൌ  ҧ.    The finite sample relevance of this convergenceݔ

rate may simply be weaker at or near the sample mean. 

 The most interesting aspect of the results in Tables 7, 8 and 9 is that the ordinary (full 

sample, m = n) bootstrap works quite well regardless of the value of x.  We are not aware of any 

proof of the asymptotic validity of the bootstrap that would apply to this case, but our simulations 

certainly support the notion that it is valid.  We intend to pursue this question in a separate paper.  

In any case, as a practical matter, based on our simulations the bootstrap would be the preferred 

method. 

 

6.  CONCLUDING REMARKS 

The main purpose of this paper was to resolve an intellectual puzzle.  For the linear 

deterministic frontier model with known error distribution, valid methods of inference on the 
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 inefficiencies were not available, even though asymptotically valid methods of inference were 

available for more complicated models.  The linear deterministic frontier model with known error 

distribution makes very strong assumptions and so we ought to be able to do at least as well as in 

models that make weaker assumptions.  We show that this is true.  Exact (finite sample) inference 

is possible if the error distribution is known up to a scaling parameter. 

A secondary purpose of the paper was to investigate the case that the error distribution is 

not known.  Now asymptotically valid inference should be possible using resampling 

(subsampling or bootstrapping) methods.  Interestingly, the intercept-only case differs from the 

case with regressors (which is the empirically relevant case), because the rate of convergence of 

the inefficiency estimates is different with regressors than without.  The bootstrap is known not to 

be valid in the intercept-only case, whereas it performs well in simulations in the case with 

regressors.  The theoretical basis for this good performance remains as a topic for further research. 
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APPENDIX 

 
Proof of Result 1.  This result follows from Lawless (1982), unnumbered equations on p. 

127.  However, for the convenience of the reader we give a brief proof.  The density of y is 

݂ሺݕሻ ൌ ቀଵ

ఓ
ቁ exp ሺെ ఈି௬

ఓ
ሻ for ߙ  ܮ݈݊ and so the log-likelihood is ݕ ൌ ݊ ݈݊ µ – 

ଵ

ఓ
∑ ሺߙ െ ሻݕ  

ൌ ݊ ݈݊ µ – 


ఓ
 ሺߙ െ ߙ തሻ forݕ   yields ߤ  for all i = 1,…,n.  Maximizing partially with respect toݕ

ߤ ൌ ߙ െ  :ത, and substituting this into lnL gives the concentrated likelihoodݕ
 
(A1)  ݈݊כܮ ൌ െ݊ lnሺߙ െ തሻݕ െ ݊ for ߙ   . for all i = 1,…,nݕ
 
Thus we minimize lnሺߙ െ  subject to the constraint.  This yields ,ߙ തሻ, or equivalently minimizeݕ
ොߙ ൌ ߤ̂ ௫ and thenݕ ൌ ොߙ  െ  .തݕ
 
 
 Proof of Result 2.  We use the results that ܧሺݑതሻ ൌ ሻݑሺܧ and ߤ  ൌ  Therefore  .݊/ߤ

തሻݕሺܧ ൌ ߙ െ ௫ሻݕሺܧ and ߤ ൌ ߙ െ ሻߙሺܧ Then  .݊/ߤ ൌ 

ିଵ
ቀߙ െ ఓ


ቁ െ ଵ

ିଵ
ሺߙ െ ሻߤ ൌ  and ߙ

similarly for ߤ .  In terms of the algebraic relationship of the unbiased and biased estimates, the 
relationship between ߤ and ̂ߤ is obvious, and for the relationship between ߙ and ߙො we have 
 

(A2)  ߙ ൌ 
షభ

௫ݕ  െ భ
షభ

௫ݕ =  തݕ   ଵ

ିଵ
ሺݕ௫ െ ොߙ  = തሻݕ  ଵ

ିଵ
 ߤ̂

 
Proof of Result 3.  This result is pointed out by Lawless (1982), p. 128, but not explicitly 

proved.  We can write 
 
(A3)  ܵ ൌ തݑ) / ݑ െ  ሻݑ
 
which does not involve ߙ.  Its distribution also does not depend on ߤ because ߤ is a scale factor in 
both numerator and denominator and cancels from the ratio.   
 
 

Proof of Result 4.   
 
(a) Similarly to (A3), write ݊ܵ ൌ തݑ) / ݑ݊ െ   is distributed asݑ݊ ሻ.  Thenݑ

exponential(ߤ), while ݑത ՜ ݑ and ߤ ՜ 0, and so ݊ܵ ՜ௗ exponential(ߤ) / ߤ = 
exponential(1). 
 

(b) Invert the quantile function in part (c)  to get the distribution function, that is, solve s = 

ሺ1 െ ሻ
షభ

షభ െ 1 for p in terms of s. 
 

(c) It follows from Lawless (1982), equation (3.5.3) that ሺ݊ െ 1ሻܵ is distributed as 
 .ଶ,ଶሺିଵሻ.  The quantile is then given in his equation (3.5.4)ܨ
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 (d) Follows immediately from (c). 
 
 

Proof of Result 5.  The proof is essentially the same as the proof of Result 3.  Equation 
(A3) still holds, and it does not involve ߙ, and the effect of the scale factor ߠ cancels from the ratio 
in (A3). 
 
 
 Proof of Result 6.  Consider the equivalent of equation (11) in the case of no regressors:  
ݕ ൌ כߙ  ݑ

כߙ where כ ൌ ߙ െ  This is a model with only an intercept, and so the OLS estimator  .ߤ
is the sample mean, that is, ߙොכ ൌ ത.  Then the residuals are ݁ݕ ൌ ݕ െ ߤ̂ ത, andݕ ൌ ݁௫ ൌ ௫ݕ െ
ොߙ ത.  Finally, the COLS estimate isݕ ൌ כොߙ  തݕ = ߤ̂  ሺݕ௫ െ തሻݕ ൌ  ௫ , which is the same as theݕ
exponential MLE. 
 
 

Proof of Result 7.  The proof follows the same lines as the proofs of Results 3 and 5.  We 
start with the numerator, ݑො െ ݑ ൌ ሺߙො െ ሻߙ  ݔ

ᇱሺߚመ െ ොߙ ሻ.  The distributions ofߚ െ መߚ and ߙ െ  ߚ
do not depend on the true values of ߙ and ߚ, and the whole expression is linear in the errors (u’s) 
and therefore has the same scale as ߠ.  Similar statements apply to the denominator.  Each of the 
individual residuals has a distribution that does not depend on the true values of ߙ and ߚ, and has 
the same scale as ߠ.  The same is then true of ̂ߤ ൌ ݁௫.  Finally, the scale factor ߠ cancels from 
the numerator and denominator. 

 
 
Proof of Result 8.  This result can be derived as a consequence of Corollary 1.3.2 of 

Galambos (1978), p. 11.  However, a direct proof is simpler.  Let ܨሺݑሻ be the cdf corresponding to 
݂ሺݑሻ.  Then note that, for fixed c > 0, as n ՜ ∞ , since F(0) = 0, 
 

(A4)  ݊ܨ ቀ


ቁ ൌ

ிሺ


ሻ

/
· ܿ ՜ ݂ሺ0ሻܿ 

 
Now we evaluate  
 

 ܲሺ݊ · ݑ  ܿሻ ൌ ܲ ቀݑ  


ቁ ൌ ሾ1 െ ܨ ቀ


ቁሿ,  

so that 
 

 ݈݊ܲሺ݊ · ݑ  ܿ) = ݊ · ln ሾ1 െ ܨ ቀ


ቁሿ. 

 
But lnሺ1  ሻݔ ൌ ݔ    ሻ, soݔሺ
 

  ݊ · ln ሾ1 െ ܨ ቀ


ቁሿ = െ݊ · ܨ ቀ


ቁ   ቂ݊ · ܨ ቀ


ቁቃ ՜ െ݂ሺ0ሻܿ , 

 
using (A4).  So 
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(A5)  ܲሺ݊ · ݊݅݉ݑ  ܿሻ ൌ exp ሾ݈݊ ܲሺ݊ · ݊݅݉ݑ  ܿሻሿ ՜ ݁ିሺሻ. 
 
This is the survivor function for the exponential distribution with mean ߤ ൌ 1/݂ሺ0ሻ. 
 
 
 Proof of Result 9.  We begin with the expression given in equation (12),  
ොݑ െ ݑ ൌ ሺߙො െ ሻߙ  ݔ

ᇱሺߚመ െ ොߙሻ.  Now we seek to substitute out ሺߚ െ כොߙ = ොߙ ሻ.  We haveߙ   ߤ̂
where ߙොכ ൌ തݕ െ ҧݔ ᇱߚመ  and ̂ߤ ൌ ݔܽ݉ ݁.  But ݁ ൌ ൫ݕ െ ത൯ݕ െ ሺݔ െ መߚҧሻᇱݔ .  Therefore ̂ߤ ൌ 

ݕሺݔܽ݉ െ ݔ
ᇱߚመሻ – ሺݕത െ ҧݔ ᇱߚመሻ and ߙො ൌ ݕሺݔܽ݉ െ ݔ

ᇱߚመሻ.  Now ݕ െ ݔ
ᇱߚመ ߙ =  െ ݔ െݑ

ᇱሺߚመ െ  ሻߚ

and therefore ߙො െ ߙ ൌ ݑሺെݔܽ݉ െ ݔ
ᇱ൫ߚመ െ ൯ሻ ൌߚ െ݉݅ ݊ሺݑ  ݔ

ᇱ൫ߚመ െ  ൯ሻ.  With thisߚ
substitution we obtain Result 9. 
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TABLE 1 

 
Values of ࢇ and ࢈ , intercept only, exponential errors 

 
 

    By simulation   Analytic formula 
 

n ࢈ ࢇ ࢈ ࢇ 
     
2 0.0510 78.008 0.0513 78.000 
3 0.0380 15.960 0.0382 15.974 
5 0.0317 7.593 0.0317 7.574 
10 0.0282 5.070 0.0282 5.066 
25 0.0263 4.143 0.0264 4.154 
50 0.0256 3.898 0.0258 3.909 
100 0.0258 3.783 0.0256 3.796 
200 0.0254 3.738 0.0254 3.742 
500 0.0255 3.706 0.0254 3.710 
1000 0.0252 3.689 0.0253 3.699 
2000 0.0253 3.684 0.0253 3.694 
5000 0.0256 3.692 0.0253 3.691 

10,000 0.0253 3.688 0.0253 3.690 
25,000 0.0251 3.700 0.0253 3.689 
50,000 0.0253 3.695 0.0253 3.689 
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TABLE 2 

 
Coverage rates of 95% confidence intervals 

 
Intercept only, exponential case 

 
 
 

n Infeasible 
using true ࣆ 

(equation (6)) 

Using asymptotic 
values of 

 ࢈ and ࢇ

Using exact 
values of 

 ࢈ and ࢇ
    
2 0.9498 0.6360 0.9501 
3 0.9504 0.7822 0.9502 
5 0.9500 0.8700 0.9500 
10 0.9501 0.9182 0.9504 
25 0.9503 0.9398 0.9503 
50 0.9496 0.9445 0.9496 
100 0.9498 0.9474 0.9493 
200 0.9498 0.9485 0.9497 
500 0.9503 0.9497 0.9497 
1000 0.9503 0.9500 0.9500 
2000 0.9499 0.9498 0.9498 
5000 0.9503 0.9502 0.9502 

10,000 0.9501 0.9501 0.9501 
25,000 0.9499 0.9498 0.9498 
50,000 0.9499 0.9499 0.9499 
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TABLE 3 

 
Values of ࢇ and ࢈ and coverage rates of 95% confidence intervals 

 
Intercept only, half-normal case 

 
 
 

n ࢈ ࢇ Coverage, using 
asymptotic 
values of 

 ࢈ and ࢇ

Coverage, 
using exact 
values of 

 ࢈ and ࢇ
     
2 0.0794 100.46 0.6669 0.9502 
3 0.0602 21.311 0.8049 0.9494 
5 0.0498 10.685 0.8842 0.9502 
10 0.0442 7.5334 0.9245 0.9501 
25 0.0414 6.3987 0.9410 0.9499 
50 0.0407 6.0709 0.9456 0.9497 
100 0.0397 5.9223 0.9480 0.9502 
200 0.0396 5.8682 0.9488 0.9503 
500 0.0398 5.8301 0.9495 0.9502 
1000 0.0401 5.8168 0.9498 0.9501 
2000 0.0399 5.7968 0.9496 0.9497 
5000 0.0396 5.7870 0.9498 0.9500 

10,000 0.0398 5.8039 0.9497 0.9500 
25,000 0.0403 5.7956 0.9501 0.9499 
50,000 0.0398 5.7861 0.9497 0.9497 
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TABLE 4 

 
Quantiles of ࡿ 

 
Intercept only, half-normal case 

 
 

n .01 .025 .05 .10 .90 .95 .975 .99 
         
2 0.0315 0.0794 0.1646 0.3426 23.477 49.252 100.46 257.56 
3 0.0239 0.0602 0.1228 0.2537 8.9244 14.084 21.311 35.575 
5 0.0196 0.0498 0.1009 0.2085 5.6658 7.9700 10.685 14.917 
10 0.0174 0.0442 0.0903 0.1855 4.4134 5.9111 7.5334 9.7980 
25 0.0161 0.0414 0.0840 0.1726 3.8940 5.1259 6.3987 8.0599 
50 0.0158 0.0407 0.0818 0.1688 3.7528 4.9035 6.0709 7.6149 
100 0.0159 0.0397 0.0812 0.1671 3.6859 4.8052 5.9223 7.4262 
200 0.0157 0.0396 0.0806 0.1663 3.6577 4.7700 5.8682 7.3539 
500 0.0160 0.0398 0.0811 0.1662 3.6301 4.7293 5.8301 7.2832 
1000 0.0159 0.0401 0.0807 0.1658 3.6245 4.7223 5.8168 7.2585 
2000 0.0158 0.0399 0.0806 0.1660 3.6231 4.7208 5.7968 7.2423 
5000 0.0156 0.0396 0.0805 0.1656 3.6174 4.7063 5.7870 7.2341 

10,000 0.0159 0.0398 0.0809 0.1658 3.6173 4.7084 5.8039 7.2646 
25,000 0.0160 0.0403 0.0814 0.1658 3.6251 4.7036 5.7956 7.2279 
50,000 0.0159 0.0398 0.0805 0.1656 3.6144 4.7044 5.7861 7.2257 
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TABLE 5 

 
Values of ,ࢇ and ,࢈ and coverage rates of 95% confidence intervals 

 
Model with dummy variable regressor, exponential errors 

 
 

n ,ࢇ  
x = 0 

  ,࢈
x = 0

  ,ࢇ
x = 1

  ,࢈
x = 1

Coverage 
x = 0 

Coverage 
x = 1 

       
5 -4.2177 20.864 -3.6212 14.444 0.9501 0.9501 
10 -7.2147 10.448 -6.4286 7.3407 0.9499 0.9500 
25 -13.686 7.9517 -12.567 5.6138 0.9500 0.9497 
50 -21.394 7.4877 -20.035 5.2313 0.9502 0.9492 

100 -32.697 7.3202 -31.071 5.0593 0.9502 0.9499 
200 -48.733 7.2759 -47.052 4.9760 0.9501 0.9504 
500 -81.479 7.3282 -79.323 4.9734 0.9496 0.9495 
1000 -118.15 7.3296 -115.98 4.9623 0.9495 0.9508 
2000 -170.57 7.3848 -167.65 4.9717 0.9502 0.9498 
5000 -274.32 7.4184 -272.38 4.9631 0.9512 0.9497 
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TABLE 6 

 
Coverage rates of 95% confidence intervals 

Intercept only 
 
 

n = 100 
 

            Subsampling         m out of n bootstrap 
 

m Exponential Half-normal Uniform Exponential Half-normal Uniform
       
1 0.9438 0.8090 0.6001 0.9486 0.8095 0.5986 
2 0.9523 0.8705 0.7888 0.9526 0.8714 0.7909 
3 0.9632 0.9066 0.8677 0.9683 0.9052 0.8718 
4 0.9670 0.9238 0.9066 0.9711 0.9298 0.9036 
5 0.9690 0.9332 0.9181 0.9704 0.9383 0.9196 
10 0.9622 0.9366 0.9357 0.9643 0.9491 0.9415 
20 0.9442 0.9327 0.9274 0.9629 0.9538 0.9507 
50 0.8604 0.8473 0.8528 0.9414 0.9336 0.9532 
100    0.8778 0.8777 0.8746 

 
 
 

n = 500 
 
           Subsampling                m out of n bootstrap 

 
m Exponential Half-normal Uniform Exponential Half-normal Uniform
       
1 0.9509 0.8058 0.5992 0.9506 0.8113 0.6034 
2 0.9486 0.8753 0.7871 0.9499 0.8705 0.7874 
3 0.9530 0.8990 0.8612 0.9524 0.8987 0.8560 
4 0.9508 0.9069 0.8817 0.9516 0.9114 0.8895 
5 0.9554 0.9191 0.9018 0.9535 0.9200 0.9044 
10 0.9558 0.9434 0.9329 0.9547 0.9367 0.9358 
20 0.9698 0.9591 0.9584 0.9714 0.9606 0.9627 
50 0.9662 0.9583 0.9619 0.9702 0.9640 0.9647 
100 0.9469 0.9445 0.9459 0.9620 0.9641 0.9590 
200 0.8956 0.8980 0.8952 0.9431 0.9473 0.9416 
300 0.8058 0.7979 0.8054 0.9285 0.9253 0.9345 
400 0.6870 0.6986 0.6828 0.9080 0.9083 0.9086 
500    0.8808 0.8755 0.8800 
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TABLE 7 

 
x = 0.0 (smallest x) 

 
Coverage rates of 95% confidence intervals 

 
 

n = 100 
 

            Subsampling         m out of n bootstrap 
 

m Exponential Half-normal Uniform Exponential Half-normal Uniform
       
5 .9468 .9353 .9172 .9563 .9328 .9227 
10 .9397 .9215 .9011 .9428 .9263 .9095 
20 .9352 .9249 .9201 .9544 .9445 .9278 
50 .8756 .8768 .8752 .9631 .9527 .9504 
100    .9435 .9389 .9368 

 
 
 

n = 500 
 
                Subsampling           m out of n bootstrap 

 
m Exponential Half-normal Uniform Exponential Half-normal Uniform
       
5 .9394 .9150 .9041 .9386 .9187 .8996 
10 .9346 .9117 .8819 .9438 .9154 .8894 
20 .9484 .9267 .9102 .9477 .9291 .9141 
50 .9548 .9455 .9290 .9598 .9446 .9303 
100 .9493 .9484 .9372 .9663 .9605 .9544 
200 .9117 .9129 .9151 .9652 .9601 .9604 
300 .8142 .8246 .8304 .9570 .9572 .9543 
400 .6498 .6588 ,6678 .9479 .9426 .9477 
500    .9322 .9366 .9400 

 
  



 

 37

 
TABLE 8 

 
x = 2.4 (25th percentile x) 

 
Coverage rates of 95% confidence intervals 

 
 

n = 100 
 

            Subsampling         m out of n bootstrap 
 

m Exponential Half-normal Uniform Exponential Half-normal Uniform
       
5 .9061 .8912 .8804 .9178 .8926 .8865 
10 .9131 .8911 .8762 .9150 .8985 .8863 
20 .9159 .9086 .9096 .9349 .9287 .9185 
50 .8534 .8690 .8719 .9456 .9430 .9480 
100    .9309 .9250 .9232 

 
 
 

n = 500 
 
                Subsampling           m out of n bootstrap 

 
m Exponential Half-normal Uniform Exponential Half-normal Uniform
       
5 .8930 .8577 .8473 .8917 .8669 .8369 
10 .9084 .8760 .8407 .9151 .8812 .8461 
20 .9333 .9050 .8826 .9321 .9053 .8878 
50 .9438 .9310 .9125 .9503 .9332 .9144 
100 .9314 .9351 .9242 .9556 .9518 .9441 
200 .8954 .8994 .9004 .9509 .9506 .9515 
300 .8131 .8375 .8285 .9420 .9457 .9480 
400 .6713 .6777 .6880 .9422 .9352 .9396 
500    .9279 .9263 .9272 
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TABLE 9 

 
x = 4.9 (median x) 

 
Coverage rates of 95% confidence intervals 

 
 

n = 100 
 

            Subsampling         m out of n bootstrap 
 

m Exponential Half-normal Uniform Exponential Half-normal Uniform
       
5 .7657 .7666 .7795 .7779 .7738 .7859 
10 .8069 .7940 .8014 .8207 .8044 .8084 
20 .8529 .8614 .8669 .8805 .8771 .8807 
50 .8255 .8448 .8607 .9310 .9323 .9367 
100    .9328 .9209 .9195 

 
 
 

n = 500 
 
                Subsampling           m out of n bootstrap 

 
m Exponential Half-normal Uniform Exponential Half-normal Uniform
       
5 .7425 .6846 .6629 .7322 .6906 .6545 
10 .7849 .7293 .6826 .7939 .7418 .6886 
20 .8512 .8059 .7751 .8515 .8061 .7760 
50 .8884 .8650 .8471 .8992 .8753 .8507 
100 .8882 .8881 .8829 .9210 .9109 .9055 
200 .8724 .8734 .8815 .9352 .9358 .9390 
300 .8022 .8147 .8158 .9352 .9345 .9424 
400 .6587 .6828 .6918 .9410 .9348 .9407 
500    .9346 .9301 .9315 

 
 


