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Abstract

Simar and Wilson (J. Econometrics, 2007) provided a statistical model that can
rationalize two-stage estimation of technical efficiency in non-parametric settings. Two-
stage estimation has been widely used, but requires a strong assumption: the second-
stage environmental variables cannot affect the support of the input and output vari-
ables in the first stage. In this paper, we provide a fully non-parametric test of this
assumption; in addition, we provide a theoretical link to results obtained by Politis et al.
(Statistica Sinica, 2001), allowing us to estimate critical values for our test statistics
using bootstrap sub-sampling while optimizing the choice of sub-sample size by mini-
mizing a measure of volatility. Our simulation results indicate that our tests perform
well both in terms of size and power. We present a real-world empirical example by
updating the analysis performed by Aly et al. (R. E. Stat., 1990) on U.S. commercial
banks; our tests easily reject the assumption required for two-stage estimation, calling
into question results that appear in hundreds of papers that have been published in
recent years.
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1 Introduction

Two-stage estimation procedures wherein technical efficiency is estimated by data envel-

opment analysis (DEA) or free disposal hull (FDH) estimators in the first stage, and the

resulting efficiency estimates are regressed on some environmental variables in a second stage,

are very popular in the literature.1 Simar and Wilson (2007) cited 48 published papers that

employed this approach and commented that “as far as we have been able to determine,

none of the studies that employ this two-stage approach have described the underlying data-

generating process.” Simar and Wilson went on to (i) define a statistical model where

truncated (but not censored, i.e., tobit, nor ordinary least squares) regression yields con-

sistent estimation of model features, (ii) demonstrated that conventional, likelihood-based

approaches to inference are invalid, (iii) and developed a bootstrap approach that yields

valid inference in the second-stage regression.

A number of papers have appeared in recent years using the approach suggested by Simar

and Wilson (2007). However, papers that estimate technical efficiency in the first stage and

then regress these estimates on some environmental variables in a second-stage tobit model

continue to appear; a search on Google Scholar on 14 May 2010 using the keywords “dea,”

“efficiency,” “tobit,” and “two stage” returned 362 papers with dates between 2007 and 2010.

As far as we know, none of these papers present a statistical model in which second-stage

tobit estimation would consistently estimate features of the model; the approach is ad hoc

in each case.

Recently, Daraio and Simar (2005) have developed conditional measures of efficiency,

which allow nonparametric estimation of technical efficiency conditional on some explanatory

variables in a single stage. This raises some important questions for practitioners, such as

the question of precisely how environmental variables might affect the production process. In

the model presented by Simar and Wilson (2007), environmental variables affect the shape

(i.e., mean, variance, etc.) of the distribution of inefficiencies, but not the support of input or

output variables. Conceivably, however, environmental variables might have other effects; in

particular, they might affect the production possibilities themselves. The statistical model

in Simar and Wilson rationalizes second-stage regression of efficiency estimates on some

1 The Google Scholar search engine returned about 4,120 articles after a search on “efficiency,” “two-
stage,” and “dea” on 14 May 2010.
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environmental variables, but does not allow for the possibility that environmental variables

might affect the production possibilities. If they do, then a different model is needed, and

second-stage regression may not be appropriate.

In this paper, we present a carefully-developed framework—i.e., a statistical model—

in order to make clear how environmental variables might be relevant, and how to test

whether two-stage approaches might be meaningful (i.e., whether assumptions given by Simar

and Wilson, 2007 and required by most studies that have used the two-stage approach are

satisfied). In addition, we describe a bootstrap method that can be used to assess the

significance of test statistics without incurring a large computational burden. In cases where

two-stage approaches are found to be inappropriate, one can estimate efficiency conditionally

on environmental variables.

In the next section, we develop the statistical model. Estimators and test statistics are

discussed in Section 3, and the bootstrap procedure necessary for inference is given in Section

4. Section 5 describes Monte Carlo experiments used to assess the size and power of our tests

as well as results. In Section 6 we provide a real-world example by revisiting the work of Aly

et al. (1990) and testing whether the assumptions given by Simar and Wilson (2007) that

are required for the two-stage approach used by Aly et al. to be meaningful are satisfied.

Conclusions are given in the final section.

2 Production in the Presence of Environmental Fac-

tors

Let X ∈ R
p
+ denote a vector of p input quantities, and let Y ∈ R

q
+ denote a vector of q

output quantities. In addition, let Z ∈ Z ⊆ R
r denote a vector of r environmental variables

with domain Z. Firms transform quantities of inputs into various quantities of outputs,

but environmental variables may affect how well firms do this on average, or possibly the

range of possibilities for production. Given Z, a firm becomes more technically efficient

if it increases at least some of its output levels without increasing its input levels (output

orientation), or alternatively if it reduces its use of at least some inputs without decreasing

output levels (input orientation). In the real world, the analyst observes a set of observations

Sn = {(Xi,Y i,Zi)}ni=1.
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Assumption 2.1. The sample observations (xi,yi, zi) in Sn are realizations of identi-

cally, independently distributed random variables (X,Y ,Z) with probability density function

f(x,y, z) which has support over a compact set P ⊂ R
p+q
+ × R

r with level sets P(z) defined

by

P(z) = {(X,Y ) | Z = z, X can produce Y }. (2.1)

Let

Ψ =
⋃

z∈Z

P(z) ⊂ R
p+q
+ . (2.2)

The model developed by Simar and Wilson (2007) to rationalize regression of technical

efficiency estimates on environmental variables in a second-stage regression involves the

following, additional assumption on the production set P.

Assumption 2.2. P(z) = Ψ ∀ z ∈ Z.

Under Assumption 2.2, P = Ψ × Z; this is the “separability” condition described by

Simar and Wilson (2007), who also noted that this condition should be tested.

In the context of Assumptions 2.1–2.2, the standard, unconditional Farrell (1957) measure

of output technical efficiency corresponding to an arbitrary point (x,y) ∈ R
p+q
+ is given by

λ = λ(x,y) ≡ sup{λ | (x, λy) ∈ Ψ, λ > 0} (2.3)

and is the reciprocal of the Shephard (1970) output distance function. For (x,y) ∈ Ψ,

λ(x,y) ≥ 1. Note that λ provides a measure of Euclidean distance from the point (x,y) ∈
R

p+q
+ to the boundary of Ψ in a direction parallel to the output axes and orthogonal to the

input axes.2

Note that y ∈ R
q
+ can be described in terms of polar coordinates; Simar and Wilson

(2007) demonstrate that the modulus is related to the Farrell output efficiency measure in

(2.3), and so y can be described by (η, λ), where η is a vector of (q − 1) angles and λ is

the Farrell output efficiency corresponding to Y . Then the joint density f(x,y, z) can be

described by a series of conditional densities and in terms of cylindrical coordinates:

f(x,η, λ, z) = f(x,η | λ, z)f(λ | z)f(z). (2.4)

2 Of course, one could also work in the input direction using the input-oriented analog of (2.7). In
the remainder of the paper, we work only in the output direction to save space; analogous results for the
input-orientation follow with suitable changes in notation.
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The order of the conditioning on the right-hand side of (2.4) reflects the sequential nature

of the DGP. Firm i is faced with environmental variables Zi drawn from f(z). Given this

Zi, an efficiency level λi is drawn from f(λ | Zi), and then X i and ηi are drawn from

f(x,η | λi,Zi), resulting in a realization (X i,Y i,Zi) from the joint density f(x,y, z) after

transforming the polar coordinates (ηi, λi) to Cartesian coordinates Y i.

Assumptions 2.1–2.2, together with the next assumption, comprise the nucleus of the

model developed by Simar and Wilson (2007).

Assumption 2.3. The conditioning in f(λ | z) in (2.4) operates through the following

mechanism:

λi = ψ(Zi) + εi ≥ 1, (2.5)

where ψ is a smooth, continuous, function and εi is a continuous iid random variable, inde-

pendent of Zi.

Assumptions 2.1–2.3 impose a “separability” condition on the model of Simar and Wilson

(2007). In this model, P(z) is unaffected by z, but the distribution of technical efficiency

depends on z through Assumption 2.3.3 As Simar and Wilson (2007, p. 36) noted, however,

“one might reasonably wonder whether the implied separability condition is supported by

the data.”

Alternatively, one might consider one of the formulations discussed by Coelli et al. (1997,

pp. 166–171) where the environmental variables take the role of either inputs or outputs and

may be either discretionary or non-discretionary. Simar and Wilson (2007) remark that the

testing methods described by Simar and Wilson (2001) can be used to distinguish whether

the covariates in Z act as inputs or outputs. However, treating environmental variables

as inputs or outputs incurs some problems. First, some environmental variables may be

discrete; this may be problematic due to the assumptions required to obtain consistency of

DEA and FDH estimators (see Simar and Wilson, 2008 for details). Second, incorporating

elements of Z as inputs or outputs requires knowing whether each element behaves as an

input or as an output, which may be difficult to determine a priori. Third, this approach

3 In the empirical literature, researchers have typically assumed ψ(Zi) = Ziβ, where β is an (r × 1)
vector of parameters. In addition to Assumptions 2.1–2.3, Simar and Wilson (2007) assume the error ε in
(2.5) is distributed (truncated) normal in order to reflect the empirical literature. Alternatively, ψ(Zi) and
the distribution of ε can be assumed to be nonparametric; see Park et al. (2008) for details.
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requires that the effects of the environmental variables must be monotonic; when DEA (as

opposed to FDH) estimators are being used, their effects must also satisfy convexity of

the production set. Perhaps most important, environmental variables describing regulatory

regimes, climatic factors, etc. are likely to operate not as inputs or outputs, but as constraints

on feasible combinations of inputs and outputs.

Alternatively, Assumption 2.2 may not hold; consequently, Assumptions 2.2–2.3 may be

replaced with the following assumption.

Assumption 2.4. P(z) 6= Ψ for some z ∈ Z; i.e., P(z) 6= P(z̃) for some z 6= z̃, z, z̃ ∈ Z.

If the sets P(z) are convex for all z ∈ Z, then the set Ψ is convex under Assumption

2.2. However, if Assumption 2.4 holds, Ψ is not in general convex, even if the sets P(z)

are convex for all z ∈ Z. Moreover, under Assumption 2.4, some of the input-output

combinations in Ψ are not attainable. Consequently, λ(x,y) measures distance from the

point (x,y) to the frontier of an unattainable set when Assumption 2.4 holds, and thus has no

meaning in familiar economic terms; moreover, as discussed below in Section 3, if Assumption

2.4 holds,the usual DEA estimators of Ψ and λ(x,y) are statistically inconsistent. This

further implies that Assumption 2.3 is meaningless under Assumption 2.4; hence, regressing

estimated efficiencies on environmental variables is also meaningless under Assumption 2.4.

In cases where Assumption 2.4 holds, conditional measures of technical efficiency developed

by Daraio and Simar (2005) are needed.

The joint density introduced in Assumption 2.1 implies a conditional distribution function

H(x,y | z) = Pr(X ≤ x,Y ≥ y | Z = z)

= Pr(Y ≥ y | X ≤ x,Z = z)︸ ︷︷ ︸
=S(y|x,z)

Pr(X ≤ x | Z = z)︸ ︷︷ ︸
=F (x|z)

(2.6)

where S(y | x, z) is the conditional survivor function of Y . Note that the conditioning on

X ≤ x and Z = z is non-standard; however, the distribution function and its components

are well-defined. A conditional version the Farrell (1957) output measure technical efficiency

given in (2.3) can be defined by writing

λ(x,y | z) ≡ sup{λ | (x, λy) ∈ P(z), λ > 0}
= sup{λ | S(λy | x, z) > 0}. (2.7)
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One can adopt either Assumptions 2.1–2.3, or alternatively Assumptions 2.1 and 2.4. In

either case, some additional assumptions are needed. The following assumptions on P are

standard in microeconomics; here, we adapt those of Shephard (1970) and Färe (1988) to

account for the environmental variables:

Assumption 2.5. For any z ∈ Z, (x,y) 6∈ P(z) if x = 0, y≥
6=
0; i.e., all production requires

use of some inputs.

Assumption 2.6. For any z ∈ Z, x̃ ≥ x, and ỹ ≤ y, if (x,y) ∈ P(z) then (x̃,y) ∈ P(z)

and (x, ỹ) ∈ P(z), i.e., both inputs and outputs are strongly disposable.

Throughout, inequalities involving vectors are assumed to hold element by element; e.g.,

a ≤ b denotes aj ≤ bj for each j = 1, . . . , k, where k is the length of a and b. Assumption

2.6 is equivalent to an assumption of monotonicity of the technology.

The next assumptions define a DGP; the framework here is similar to that in Simar

(1996), Kneip et al. (1998), Simar and Wilson (1998, 2000a), Kneip et al. (2008), and Jeong

et al. (2010).

Assumption 2.7. The n observations in Sn are identically, independently distributed (iid)

random variables on the attainable set P.

Assumption 2.8. (a) Conditional on Z = z, the (X,Y ) possess a joint density fXY |Z with

support P(z); (b) fXY |Z is continuous on P(z); and (c) fXY |Z (x, λ(x,y)y) > 0 ∀ (x,y) in

the interior of P(z).

Assumption 2.8(c) imposes a discontinuity in f at points on the boundary of P(z),

ensuring a strictly positive, non-negligible probability of observing production units close to

the production frontier. For points lying outside P(z), f ≡ 0.

Assumption 2.9. The function λ(x,y | z) is twice continuously differentiable for all z ∈ Z
and (x,y) ∈ P(z).

Assumption 2.9 imposes some smoothness on the boundary of P. This assumption is

slightly stronger, but simpler, than a corresponding assumption needed by Kneip et al.
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(1998) to establish consistency of the DEA estimators. We have adopted Assumption 2.9

from Kneip et al. (2008) and Jeong et al. (2010), where additional discussion is given.

Recall that the empirical researcher only observes the n observations in the sample Sn.

In order to decide between the model of Simar and Wilson (2007) defined by Assumptions

2.1–2.3 and 2.5–2.9, or alternatively the model defined by Assumptions 2.1 and 2.4–2.9, the

researcher must test Assumption 2.2 versus Assumption 2.4. In other words, the empiricist

must test H0 : P(z) = Ψ ∀ z ∈ Z versus H1 : P(z) 6= Ψ for some z ∈ Z. In order to

implement a test of this null hypothesis, estimators of λ(x,y) and λ(x,y | z) are needed;

these are introduced in the next section.

3 Non-parametric Efficiency Estimators

The distance functions in Section 2 are defined in terms of the unknown, true production

set P, and must be estimated from the set Sn of sample observations. In cases where

Assumption 2.2 holds, traditional non-parametric approaches used in analyses of efficiency

and production typically assume Pr((xi,yi) ∈ Ψ) = 1 ∀ i = 1, . . . , n and replace Ψ in (2.3)

with an estimator of the unobserved production set Ψ to obtain estimators of the Farrell

(1957) input- and output-oriented efficiency measures. Several possibilities exist.

Deprins et al. (1984) proposed estimating Ψ by the free-disposal hull (FDH) of the ob-

served pairs (X i,Y i) in Sn, i.e.,

Ψ̂FDH(Sn) =
⋃

(Xi,Y i)∈Sn

{(x,y) ∈ R
p+q
+ | y ≤ Y i, x ≥ X i}. (3.1)

This estimator is consistent under Assumptions 2.1–2.3 and 2.5–2.9, but is not consistent if

Assumption 2.4 replaces Assumption 2.2. If, in addition to Assumptions 2.1–2.3 and 2.5–2.9,

one is willing to assume that Ψ is convex, then the convex hull of Ψ̂FDH,

Ψ̂DEA(Sn) =
{
(x,y) ∈ R

p+q
+ | y ≤

n∑

i=1

ωiY i, x ≥
n∑

i=1

ωiX i,

n∑

i=1

ωi = 1, ωi ≥ 0 ∀ i = 1, . . . , n
}
, (3.2)

can be used to consistently estimate Ψ. As with the FDH estimator, however, consistency

is lost if Assumption 2.4 replaces Assumption 2.2.
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As a practical matter, DEA estimates of input or output distance functions are obtained

by solving familiar linear programs; in the case of the output-oriented measure defined in

(2.3), one would compute

λ̂DEA(x,y | Sn) = max
λ,ω1, ..., ωn

{
λ > 0 | λy ≤

n∑

i=1

ωiY i, x ≥
n∑

i=1

ωiX i,

n∑

i=1

ωi = 1, ωi ≥ 0 ∀ i = 1, . . . , n
}
. (3.3)

Although FDH efficiency estimators can be written in terms of integer programming

problems, estimates based on (3.1) can be obtained using simple numerical calculations. In

particular, in the output orientation, one can compute

λ̂FDH(x,y | Sn) = max
i=1,..., n|Xi≤x

(
min

j=1, ..., p

(
Y

j
i

yj

))
, (3.4)

where yj , Y j
i denote the jth elements of y (i.e., the input vector corresponding to the fixed

point of interest) and Y i (i.e., the output vector corresponding to the ith observation in Sn).

Asymptotic properties of the estimators in (3.3)–(3.4) based on Ψ̂DEA(Sn) and Ψ̂FDH(Sn),

as well as the assumptions needed to establish consistency of the estimators, are summa-

rized in Simar and Wilson (2000b). In particular, under the assumption of convexity and

Assumptions 2.1–2.3, 2.5–2.9, λ̂DEA(x,y | Sn) is a consistent estimator of λ(x,y), with con-

vergence rate n−2/(p+q+1) (Kneip et al., 1998).4 Irrespective of whether Ψ is convex, under

Assumptions 2.1–2.3 and 2.5–2.9, λ̂FDH(x,y | Sn) is a consistent estimator of λ(x,y), but

with convergence rate n−1/(p+q) (Park et al., 2000).

In cases where Assumption 2.4 replaces Assumption 2.2, one can use the conditional esti-

mators introduced by Daraio and Simar (2005, 2007a, 2007b). In particular, the conditional

FDH estimator of λ(x,y | z) defined in (2.7) is given by

λ̂FDH(x,y | z,Sn) = max
i=1, ..., n|

Xi≤x∩|Zi−z|≤h

(
min

j=1, ..., p

(
Y

j
i

yj

))
, (3.5)

4 If, in addition, one assumes globally constant returns to scale and drops the constraint
∑n

i=1 ωi = 1
from the right-hand side of (3.6), the convergence rate becomes n−2/(p+q) (Park et al., 2010).

8



where h is an r-vector of bandwidth parameters. Alternatively, Daraio and Simar (2007b)

define a conditional DEA estimator of λ(x,y | z), namely

λ̂DEA(x,y | z,Sn) = max
λ,ω1, ..., ωn

{
λ > 0 | λy ≤

∑

i=1, ..., n|
|Zi−z|≤h

ωiY i, x ≥
∑

i=1, ..., n|
|Zi−z|≤h

ωiX i,

∑

i=1, ..., n|
|Zi−z|≤h

ωi = 1, n ωi ≥ 0 ∀ i such that |Zi − z| ≤ h
}

(3.6)

where h is again an r-vector of bandwidth parameters.

Asymptotic results for both of the conditional estimators in (3.5)–(3.6) are given by Jeong

et al. (2010); with appropriate size of the bandwidth, the convergence rates of the conditional

estimators are slower than their unconditional counterparts by a factor n−4/(4+r). For either

estimator in (3.5)–(3.6), the bandwidth parameter h can be optimized using the least-squares

cross-validation technique discussed by Bădin et al. (2010), provided the elements of Z are

continuous. If Z contains qualitative variables, then the sample observations must first

be divided into groups defined by the qualitative variables. For example, if Z includes

rc continuous variables and rd binary dummy variables, we can partition Z by writing

Z =
[
Zc Zd

]
. There are potentially 2rd groups of observations where the rd binary variables

have the same values within each group (note some cells may be empty). For each group,

either λ̂FDH(x,y | z,Sn) or λ̂DEA(x,y | z,Sn) can be computed using only the continuous

elements Zc of Z, optimizing the bandwidth for continuous components of Z using only

observations within the given group. By computing estimates separately for each group, one

necessarily conditions on Zd = zd. Dividing into groups is necessary since the bandwidths

in (3.5)–(3.6) merely determine which observations fall into the reference set that defines the

estimators. This contrasts with nonparametric regression estimators such as the Nadaraya-

Watson estimator, where bandwidths determine kernel weights; here, however, no smoothing

is performed since only the support of H(x,y | z) is estimated.

In order to test the null hypothesis given at the end of Section 2, consider the test

statistics

τ̂FDH,n(Sn) = n−1
n∑

i=1

D̂
′

FDH,iD̂FDH,i ≥ 0 (3.7)

and

τ̂DEA,n(Sn) = n−1
n∑

i=1

D̂
′

DEA,iD̂DEA,i ≥ 0 (3.8)
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where D̂FDH,i =
(
Y iλ̂FDH(X i,Y i | Sn)− Y iλ̂FDH(X i,Y i | Zi,Sn)

)
and D̂DEA,i =

(
Y iλ̂DEA(X i,Y i | Sn)− Y iλ̂DEA(X i,Y i | Zi,Sn)

)
are (q × 1) vectors. The statistics de-

fined by (3.7)–(3.8) give estimates of the mean integrated square difference between P and

Ψ × Z. If Assumption 2.2 holds, we should expect these statistics to be “close” to zero;

otherwise, we should expect them to lie “far” from zero.

The sub-sampling method described by Simar andWilson (2009) can be used to determine

critical values in order to implement tests using the statistics defined above. We give an

overview of this method in the next section.

4 Bootstrap Inference using Sub-Sampling

4.1 A Probabilistic Framework for Testing

In order to test the “separability” condition in Assumption 2.2 (versus the alternative given

by Assumption 2.4), we must first define a probabilistic framework within which the model

characteristic to be tested can be described. This is necessary in order to find critical values

for the statistics defined at the end of Section 3. Let (Ω,A,P) be the probability space on

which the random variables X, Y , and Z are defined; by Assumption 2.1, P is the support

of the joint distribution of (X,Y ,Z). Denote the DGP by P ∈ P. Let P0 denote the

restricted DGPs where the null hypothesis is true, and let P1 denote the complement of P0,

so that P0 ∩ P1 = ∅ and P = P0 ∪ P1. Under the null, P ∈ P0.

Now consider a particular model P ∈ P with model characteristic τ(P ) defined as

τ(P ) = E (D′D) (4.1)

where D = (Y λ(X,Y )− Y λ(X,Y | Z)), a (q × 1) vector. Since D′D is a Borel (mea-

surable) function, the expectation τ(P ) is well-defined. Assume that the variance of D′D,

denoted by σ2(P ), is finite. By construction, τ(P ) ≥ 0 ∀ P ∈ P, with τ(P ) = 0 if P ∈ P0

and τ(P ) > 0 if P ∈ P1. Hence testing the null amounts to testing H0 : τ(P ) = 0 versus

H1 : τ(P ) > 0.

Consistent estimators of τ(P ) are given by (3.7) and, under convexity of P(z), by (3.8).

To simplify notation, let W = (X,Y ,Z) denote a generic observation. Define

T (W ) = D′D (4.2)
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and

T̂ (W | Sn) = D̂
′
D̂, (4.3)

where Sn = {W i}ni=1; D̂ can represent either D̂FDH or D̂DEA defined near the end of Section

3. Then

τ(P ) = E(T (W )) (4.4)

and

τn(Sn) = n−1
n∑

i=1

T̂ (W i | Sn), (4.5)

with τn representing either of the statistics defined in (3.7)–(3.8), depending on whether D̂

in (4.3) represents either D̂FDH or D̂DEA.

4.2 Asymptotic Behavior of T̂ (W | Sn)
The framework introduced above ensures that for all P , T (W )

a.s.
≥ 0 and if P ∈ P0, then

T (W )
a.s.
= 0. In addition, either under Assumptions 2.1–2.3 and 2.5–2.9, or under Assump-

tions 2.1 and 2.4–2.9, for all fixed w ∈ P,

nκ
(
T̂ (w | Sn)− T (w)

)
L−→ GP (· | w), (4.6)

where GP (. | w) is a nondegenerate distribution whose characteristics depends on w. The

value of κ is known and depends on which of the statistics in (3.7)–(3.8) is being used. This

rate is governed by the smallest rate of convergence of the DEA or FDH estimators used

to define T (W ); for example, κ =
(

4
4+r

) (
1

p+q

)
when the statistic in (3.7) based on the

conditional FDH estimator is used, or κ =
(

4
4+r

) (
2

p+q+1

)
when the statistic in (3.8) based

on the conditional DEA estimator is used. This implies that

lim
n→∞

Pr
[
nκ
(
T̂ (w | Sn)− T (w)

)
≤ a
]
= GP (a | w). (4.7)

Since T̂ (W | Sn) and T (W ) are well-defined random variables on (Ω,A), (4.7) can be

considered as a conditional statement, with conditioning on W = w; hence

lim
n→∞

Pr
[
nκ
(
T̂ (W | Sn)− T (W )

)
≤ a | W = w

]
= GP (a | w). (4.8)

By marginalizing on W , we have

lim
n→∞

Pr
[
nκ
(
T̂ (W | Sn)− T (W )

)
≤ a
]
=

∫

P

GP (a | w)fW (w)dw = QP (a). (4.9)
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Note that the density introduced in Assumption 2.1 has been re-written here as fW (·). Since
GP (· | w) and fW (·) are nondegenerate, QP (·) is a nondegenerate distribution. It follows

that

nκ
(
T̂ (W | Sn)− T (W )

) L−→ QP (·). (4.10)

Now let µQP
and σ2

QP
denote the finite mean and strictly positive variance of QP (·). Since

T̂ (W | Sn)) = T (W ) + n−κξ(W ), ξ(W ) must have limiting distribution QP (·) as n → ∞.

Combining this result with (4.4), we have

E(T̂ (W | Sn)) = τ(P ) + µQP
/nκ (4.11)

and

VAR(T̂ (W | Sn)) = σ2(P ) + σ(P )O(n−κ) + σ2
QP
/n2κ, (4.12)

where the second term in (4.12) accounts for the covariance between T (W ) and n−κξ(W )

(which is bounded by the product of their standard deviations). Note that when the null is

true, i.e., P ∈ P0, τ(P ) = σ2(P ) = 0 and the formulas (4.11) and (4.12) simplify accordingly.

4.3 Asymptotic Behavior of τn(Sn)
From the results in (4.11) and (4.12), it is easy to derive the asymptotic mean and the

variance of τn(Sn). For the latter, we have to consider the asymptotic covariance between

T̂ (W j ;Sn) and T̂ (W k;Sn), for j 6= k. The local nature of the asymptotic distribution of

DEA efficiency estimators is given by Theorem 1(i) in Kneip et al. (2008) and Theorem 4.1

in Kneip et al. (2011). The value of the DEA estimator at a point is essentially determined

by those observations which fall into a small neighborhood of the projection of this point

onto the frontier. Using the reasoning in the proof of Theorem 4.1 in Kneip et al. (2011),

consider a point w ∈ P where the DEA score (i.e., efficiency estimate) is evaluated and

let Cz(ζ) be a neighborhood of the frontier point w∂ determined by the projection of the

point w on the true frontier; ζ is a bandwidth that controls the size of this neighborhood.

If ζ2 = O
(
n−2/(p+q+1)

)
, Cz(ζ) will contain the DEA estimate of the frontier at w with

probability 1. Since ζ → 0 as n→ ∞, the probability of an observation W i falling in Cz(ζ)

is approximated by

πn = Pr
(
W ∈ Cz(ζ)

)
≈ fW (w∂)(2ζ)p+q−1ζ2 = O

(
n−1
)
. (4.13)
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For large n, the distribution of the number of points W i falling in Cz(ζ) follows approxi-

mately a Poisson distribution with parameter nπn = O(1). As shown in Kneip et al. (2011),

when n→ ∞, only points falling in this neighborhood influence the distribution of the DEA

estimator at the point w. The number of such points is O(1). Consequently, the covariances

between the DEA estimator at W j and the (n − 1) DEA estimators at the other points

W k is nonzero for at most O(1) of these (n− 1) estimators.5 Moreover, each of the nonzero

covariances is bounded by the product of the standard deviations derived from (4.12); there-

fore, the n covariance terms sum to nO(1)[σ2(P )+σ(P )O(n−κ)+σ2
QP
/n2κ]. Combining these

results, we obtain

E(τn(Sn)) = τ(P ) +
µQP

nκ
(4.14)

and

VAR(τn(Sn)) =
1

n2

{
n× [σ2

QP
/n2κ +O(n−κ)σ(P ) + σ2(P )]

}
= O(n−1). (4.15)

Hence for all P ∈ P, τn(Sn)
P−→ τ(P ) and τn(Sn) is a consistent estimator of τ(P ). From

(4.14) we also see that µQP
/nκ acts as a bias term that disappears asymptotically. Under

the null, since τ(P ) = σ(P ) = 0, we obtain for all P ∈ P0,

E(τn(Sn)) = µQP
/nκ (4.16)

and

VAR(τn(Sn)) = σ2
QP
/n1+2κ = O(n−(1+2κ)), (4.17)

indicating that the rate of convergence of τn(Sn) is faster when the null is true as opposed

to when it is false.

Consistency of the sub-sampling approximation to the distribution of our test statis-

tics follows from Theorem 3.1 of Politis et al. (2001), which requires that under the null,

nκ
√
nτn(Sn) converge to a nondegenerate distribution. It is sufficient to assume an additional

technical regularity condition on fW (·) in order to obtain a normal limiting distribution.

Proposition 4.1. If the joint density fW (w) of W is such that the moments of QP (·) exist
up to the fourth order, then under the null hypothesis H0 : P ∈ P0,

nκ
√
n (τn(Sn)− µQP

/nκ)
L−→ N (0, σ2

QP
). (4.18)

5 In the case of the FDH estimators, value of the estimators is determined by only one point, and so O(1)
becomes simply 1 for the FDH case (see Jeong and Simar, 2006 for additional discussion).
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This proposition follows directly when considering the triangular array (see e.g. Serfling,

1980, Section 1.9.3, p.31)

T̂ (W 1;S1);

T̂ (W 1;S2) T̂ (W 2;S2);
...

T̂ (W 1;Sn) T̂ (W 2;Sn) . . . T̂ (W n;Sn);
....

The mean and the variance of the sums were derived above. As explained by Simar and

Wilson (2009), Proposition 4.1 follows from the Lyapunov condition with ν = 3 (see the

corollary in Section 1.9.3 of Serfling), i.e.,

nE
∣∣T̂ (W j;Sn)− µQP

/nκ
∣∣3

(
nσ2

QP
/n2κ

)3/2 = o(1), (4.19)

which holds provided moments of QP (·) exist up to fourth order.6

4.4 Testing by Subsampling

In principle, one could use the asymptotic result in Proposition 4.1 for inference. However,

this would require estimating both µQP
and σ2

QP
, and one should not expect the asymptotic

normal approximation to give good results except in perhaps extraordinarily large samples,

perhaps larger than those typically encountered by practitioners. Hence, it is safer for the

practitioner to estimate critical values using the bootstrap sub-sampling methods described

below.

Since τn(Sn) is a consistent estimator of τ(P ), we will reject the null if τn(Sn) is “too

large.” For m < n, let τm(S∗
m) denote the test statistic evaluated using the pseudo data

set S∗
m obtained by drawing m observations from Sn without replacement. Due to the

6 The argument used here is standard; in addition, it is straightforward to verify that the result also
holds in the unrestricted case where P ∈ P. The only difference will be in the expressions for the mean and
the variance of τn(Sn) that appear in (4.14) and (4.15). Of course, to satisfy the Lyapunov condition an
additional technical regularity condition on the random variable T (W ) is needed. In particular, T (W ) must
have finite moments up to order 4 (when H0 is true, P ∈ P0 and T (W ) is a degenerate random variable
equal to zero). Hence, for P ∈ P,

√
n
(
τn(Sn)− (τ(P ) + µQP

/nκ)
) L−→ N

(
0, σ2

QP
/n2α +O(n−κ)σ(P ) + σ2(P )

)
.
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results derived above, for a test of level α we reject the null hypothesis H0 if and only

if nκ
√
nτn(Sn) > qm,n(1 − α), where qm,n(1 − α) is the (1 − α) quantile of the bootstrap

distribution of mκ
√
mτm(S∗

m) approximated by

Ĝm,n(a) =
1

B

B∑

b=1

1I
(
mκ

√
mτm(S∗,b

m ) ≤ a
)
, (4.20)

where 1I() denotes the indicator function, B ≤
(
n
m

)
is the number of bootstrap replications,

and
{
τm(S∗,b

m )
}B
b=1

is the set of bootstrap estimates, each computed from different random

sub-samples of sizem. Theorem 3.1 of Politis et al. (2001) ensures that this testing procedure

is asymptotically of size α and is consistent (i.e., the probability of rejecting the null when

it is false converges to 1), provided m,n→ ∞ with m/n→ 0.

Note that in the procedure proposed here, we neglect the bias term µQP
/nκ appearing in

(4.18). This bias term could be estimated while performing the bootstrap computations, but

Monte-Carlo results from Simar and Wilson (2009) suggest that this introduces substantial

noise; results (both in term of achieved level and of power) are better when the bias term is

simply ignored.

In the context of DEA estimates of technical efficiency, Kneip et al. (2008) proved that a

sub-sampling approximation for the distribution of a DEA efficiency estimator is consistent

for any choice m = nγ of the sub-sample size with γ ∈ (0, 1). However, their Monte Carlo

results reveal that the quality of the approximation in finite samples depends crucially on γ,

i.e., the choice of the sub-sample size m. Using extensive Monte Carlo experiments, Simar

and Wilson (2009) showed that ideas discussed by Politis et al. (2001) and Bickel and Sakov

(2008) for choosing m (or equivalently, choosing γ) yield confidence interval estimates with

reasonable coverage properties as well as critical values resulting in tests with good size and

power properties.

Both Politis et al. (2001) and Bickel and Sakov (2008) proposed computing the object

of interest (e.g., the critical value of a test) for various values of m, and then choosing

the value of m that minimizes some measure of volatility of the object of interest; we use

the approach of Politis et al.. One can compute the bootstrap approximation in (4.20) for

various sub-sample sizes m1 < m2 < . . . < mJ , and obtain critical values cj corresponding to

each value of mj for tests of (nominal) size α. Then, volatility corresponding to mj can be
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measured by computing the standard deviations of the critical values cj−k, . . . , cj, . . . , cj+k

corresponding to sub-sample sizes mj−k, . . . , mj, . . . , mj+k for some small integer k, where

j = (k + 1), . . . , (J − k). The sub-sample size m would then be chosen as the mj yielding

the smallest measure of volatility; explicit details are given below in Section 5.

When the sub-sampling is done without replacement, the bootstrap distribution in (4.20)

will become too concentrated asm→ n; if fact, ifm = n, the bootstrap distribution collapses

to a single probability mass. On the other hand, as m→ 0, the resulting critical values will

not be informative since too much information is lost. An optimal value ofm will lie between

these extremes; the idea is to choose a value of m that yields “stable” estimates for critical

values since as explained by Politis et al. (2001), the bootstrap approximation is valid for a

wide range of values of sub-sample sizes m.

5 Monte Carlo Experiments

In order to examine the performance of our tests in terms of size and power, we conducted

a series of Monte Carlo experiments for sample sizes n ∈ {50, 100, 200, 400}. We consider

four DGPs in our experiments. For p = q = r = 1, we consider a DGP where the null

hypothesis is false (i.e., where Assumption 2.4 holds) and another DGP where the null is

true (i.e., where Assumption 2.2 holds). For p = q = r = 2, we consider another two DGPs,

again one where the null is false, and one where it is true.

In each experiment, we perform 1,024 Monte Carlo trials. On each Monte Carlo trial,

we perform 2,000 bootstrap replications for each of 49 sub-sample sizes m ∈ Mn =
{

n
50
, 2n

50
, 3n

50
, . . . , 49n

50

}
. For each sub-sample size m, we use k ∈ {1, 2, 3} to select the

“optimal” sub-sample size as described above in Section 4.4. All experiments are conducted

using resampling without replacement.7

In each experiment where we test a null hypothesis H0 against an alternative hypothesis

H1, on a particular Monte Carlo trial, we generate n observations and then compute the

relevant test statistic. Next, for each sub-sample size mj ∈ Mn, we perform 2,000 bootstrap

7 The “optimal” sub-sample size is chosen as in Simar and Wilson (2009). Simar and Wilson found
that in their Monte Carlo experiments examining tests of convexity of Ψ, the optimal sub-sample size m
was smaller when resampling was done with replacement as opposed to without replacement. In addition,
holding dimensionality and sample size constant, resampling with replacement typically resulted in less test
power than resampling without replacement for given sub-sample sizes and departures from the null.
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replications and compute corresponding critical values {c1, c2, . . . , c49} for (one-sided) tests

of size α ∈ {.1, .05, .01}. Then, for a given test size α, we minimize critical value volatility

along the lines of Politis et al. (2001) using the following steps:

[i] For j ∈ {Jlo, . . . , Jhi} and for a small integer value k, compute volatility indices given

by the standard deviations ŝj of the critical values {cj−k, . . . , cj+k}.

[ii] Choose ĵ corresponding to the smallest volatility index, and take cĵ as the final critical

value, with corresponding sub-sample size m̂ = mĵ .

In all of our experiments, differences in results across the three different values of k were

small; since k = 1 typically yielded the best results in terms of achieved size and power, we

report only results for k = 1 below in order to conserve space.

In order to generate efficient input-output combinations (x,y+), let v be a draw from

the uniform distribution on the surface of the unit (p+ q− 1)-sphere centered at the origin.8

The vector v has length (p + q), and can be partitioned by writing v =
[
vx vy

]
where vx

has length p and vy has length q. Now define

x = 1− |vx| (5.1)

and

y+ = |vy|. (5.2)

Then (x− 1,y+) represents a draw from the uniform distribution on the surface defined by

the intersection of the unit (p + q − 1)-sphere centered at the origin and the closed orthant

in R
p+q defined by the Cartesian product R

p
− × R

q
+. The addition of 1 to −|vx| on the

right-hand side of (5.1) amounts to shifting this surface one unit in the positive direction

along the axes in R
p-space. In the case where p = q = 1, (x,y+) represents a draw from the

uniform distribution on the northwest quarter of a circle of radius 1 centered at (1, 0) in R
2.

For p = q = r = 1, we considered two DGPs as noted above. In the first DGP, we define

DGP #1: y = y+e−δ(z−2)2e−|u| (5.3)

8 Recall that for any natural number d, a unit d-sphere is the set of points in (d+1)-dimensional Euclidean
space lying at distance one from a central point; the set of points comprises a d-dimensional manifold in
Euclidean (d+1)-space. A draw v from the uniform distribution on the surface of the unit (p+ q−1)-sphere
can be simulated using the method of Muller (1959) and Marsaglia (1972).
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where u ∼ N(0, σ2
u) with σ

2
u = 0.17, z ∼ uniform on [0, 4], and δ ≥ 0. In the second DGP,

we define

DGP #2: y = y+e−|uzδ| (5.4)

where z ∼ uniform on [0.8, 1.2] and u and δ are defined as before. We also considered two

DGPs for the case p = q = r = 2, namely

DGP #3: y = y+e−δ(z1−z2)2e−|u| (5.5)

where z1 and z2 are distributed uniform on [0, 4], and

DGP #4: y = y+e
−
∣∣∣u((z1−z2)2)

δ
∣∣∣

(5.6)

where z1 and z2 are distributed uniform on [0, 0.4]; in both cases, u and δ are defined as

above.

In DGPs #2 and #4, the environmental variables z do not affect the support of y,

irrespective of the value of δ. Since the environmental variables multiply the random inef-

ficiency u, the environmental variables in these DGPs can be viewed as affecting the mean

and variance of the one-sided inefficiency process. Hence these DGPs, are consistent with

Assumption 2.2; in other words, the null hypothesis to be tested is true within the context

of DGPs #2 and #4. This stands in contrast to DGPs #1 and #3, where the environmental

variables affect the support of y whenever δ > 0. For example, in DGP #1 given in (5.3),

for δ > 0, y ≤ y+ even if u = 0. If δ = 0, then Assumption 2.2 is satisfied and the null

hypothesis to be tested is true, but as δ increases from zero, we have increasing departures

from the null; hence δ controls the degree of departure from the null hypothesis.

In our experiments, we consider values δ ∈ {0, 0.1, 0.2, . . . , 0.8, 1.0}. In addition,

for each experiment, we consider both the FDH-based statistic defined in 3.7 as well as the

DEA-based statistic given in 3.8, choosing the optimal m independently for the two different

statistics.

For each value of m, we record whether the null hypothesis is rejected for nominal test

sizes α ∈ {0.1, 0.05, 0.01} on each Monte Carlo trial. Dividing these counts by the number

of Monte Carlo trials gives an estimate of the rejection rate achieved for each alternative

sub-sample size. Figures 1–2 show plots of rejection rates for tests of nominal size α = 0.05

as a function of the sub-sample size m for experiments with DGP #1 defined by (5.3). In the
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figures, each panel corresponds to one of the four samples sizes we considered. In each panel,

rejection rates corresponding to δ = 0, 0.1, . . . are plotted as alternating solid and dashed

curves. The lowest solid curve in each panel corresponds to δ = 0; moving upward, the next

curve is dashed, corresponding to δ = 0.1, and so on. Figure 1 shows results obtained using

τ̂FDH,n(Sn), while Figure 2 shows results obtained using τ̂DEA,n(Sn).

The results shown in Figures 1–2 indicate that even with only n = 50, the tests have good

power. The optimal sub-sample sizes in each panel are indicated by the intersections of the

horizontal line drawn at 0.05 on the vertical axes and the bottom, solid curve corresponding

to δ = 0 (recall that the null is true when δ = 0). The optimal sub-sample sizes in Figure

1 vary between about 50 and 75 percent of the sample size n. Comparing the panels within

each of the two figures, it is evident that power increases rapidly with increasing departures

from the null.

Figures 3–4 show similar results from experiments with DGP #2, where the null is true

regardless of the value of δ. The differences between these figures and the previous pair are

striking; here, if the optimal sub-sample size is used, the rejection rate is about five percent

regardless of the value of δ. Since the null is true in DGP #2 for all values of δ, this is as

expected.

Comparing Figures 1 and 3 with Figures 2 and 4 reveals few real differences; with either

the FDH-based or the DEA-based statistic, size and power properties are good for an ap-

propriate choice of the sub-sample size. The optimal sub-sample size appears to be smaller

when the DEA-based statistic is used, as opposed to the FDH-based statistic.

Figures 5–6 show estimated rejection rates obtained for DGP #3, where p = q = r = 2

and the null is again false whenever δ > 0. Comparing these results with the results in

Figures 1–2 indicates that power suffers when dimensionality is increased, which is to be

expected given dependence on p + q and r of the convergence rate in (4.20). Nonetheless,

even with moderate sample sizes n, power increases rapidly with increasing departures from

the null. Also, as before, there are few differences in the estimated rejection rates across the

two statistics.

Figures 7–8, show estimated rejection rates for DGP #4, where p = q = r = 2 and

the null is true for all values of δ. In this case, some differences between the FDH-based

and DEA-based statistics become apparent. In Figure 8, the curves in each panel lie close
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together, indicating that the rejection rates will be close to five percent for each value of

δ. But in Figure 7 where results for the FDH-based statistic are shown, we see that at

the optimal sub-sample size (defined by the intersection of the horizontal line at 0.05 on

the vertical axis and the lowest of the solid curves corresponding to δ = 0), the test will

reject the null with increasing frequency as δ increases from zero, although far less so than in

Figure 5 with DGP #3. The convergence rates in the FDH estimators are slower than in the

DEA estimators; the curse of dimensionality is more acute for the FDH estimators than for

the DEA estimators. Hence with increasing dimensionality, the DEA estimators should be

expected to out-perform their FDH counterparts for a fixed sample size. The results suggest

that while there is a price to pay for increasing dimensionality, the price is lower if one can

safely assume convexity of the level sets P(z); here, the price involves Type-I errors.

The results in Figures 1–8 illustrate rejection rates for a range of sub-sample sizes. In an

application, however, the researcher must choose the sub-sample size, and furthermore, has

only one set of observed data. In each of our experiments, on each Monte Carlo trial, we

selected an “optimal” sub-sample size m using the method described in Section 4.4 and the

beginning of this section. We counted the number of rejections obtained for each nominal

size α ∈ {0.1, 0.05, 0.01} over the Monte Carlo trials, and then divided these counts by the

number of trials. Results obtained with DGP #1, using both our statistics, are shown in

Table 1.

The results in Table 1 confirm the overall impression given by Figures 1–2; more im-

portantly, however, the results in Table 1 give an idea of how well the applied researcher

with only one sample can be expected to do when optimizing m as described earlier. With

sample size n = 100 or more, the achieved sizes of the tests (corresponding to the rejection

rates when δ = 0) are slightly too small, resulting in conservative tests. In addition, with

the DEA-based statistic, the realized size decreases with n in Table 1. This is apparently

due to the fact that in our simulations, we use the grid of sub-sample values given by Mn

as discussed above; consequently, the grid over which we search becomes more coarse as we

increase the sample size. We used a grid of 49 sub-sample sizes to avoid excessive computa-

tional burdens in our Monte Carlo experiments, but in an application with a single dataset, a

researcher could use a finer grid, or perhaps first use a coarse grid, and then refine the choice

of sub-sample size by subsequently searching using a fine grid over sub-sample sizes near the
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one initially selected. Nonetheless, our results indicate the tests work well; it is certainly

better to have a conservative test than one where the realized size exceeds the nominal size.

Moreover, the power of the tests increases quickly with increasing departures from the null.

Table 2 shows similar results obtained with DGP #3. As expected, the increased dimen-

sionality over DGP #1 degrades the power of the tests; for n = 50 and n = 100, the power

with either statistic is quite poor. However, power improves when n is increased to 200, and

becomes quite good when n reaches 400. In addition, the achieved sizes of the tests are close

to the nominal sizes with n = 200 or 400.

Tables 3–4 show similar results obtained with DGPs #2 and #4, where the null is true

regardless of the value of δ. The results in these tables confirm the earlier observations made

in conjunction with Figures 3–4 and 7–8; i.e., the rejection rates are low for all values of δ

and all sample sizes that were considered.

While use of a rule such as the one described in Section 4.4 and at the beginning of this

section is necessary for choosing the “optimal” sub-sample size in a Monte Carlo setting, the

applied, empirical researcher can use graphical methods as discussed by Simar and Wilson

(2009). In our experiments, on a given Monte Carlo trial, we have one sample of size n;

for each of 49 values of m, we compute the bootstrap approximation in (4.20) and obtain

a critical value. Figure 9 shows results from randomly chosen Monte Carlo trials in our

experiments using DGP #1 and the DEA-based statistic defined in (3.7) with n = 400 and

nominal test size α = 0.05. The three panels in the first column of Figure 9 correspond to

particular trials where δ = 0 and the null hypothesis is true; the three panels in the second

column correspond to particular trials where δ = 0.3 (and so the null is false). In each panel,

the value of the test statistic is given by the height on the vertical axis of the horizontal

solid line (the scales on the vertical axes are different in order to make the plots legible).

Values of the critical values corresponding to each value of the sub-sample size m (measured

on the horizontal axis) are represented by “+” symbols. The vertical dashed line in each

panel indicates the sub-sample size optimized using the deterministic rule described above.

In the three Monte Carlo trials represented in the first column of Figure 9, use of the

deterministic rule leads to failure to reject the null; in each case a sub-sample size yielding

a critical value greater than the value of the test statistic is chosen. Recalling the results

in Table 1, in the experiment with DGP #1 and the DEA-based statistic defined in (3.8)
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with n = 400 and nominal test size α = 0.05, the null was rejected in only one percent of

all Monte Carlo trials, a sensible outcome given that the null is true in these cases. If an

empirical researcher working with a single dataset produced a plot along the lines of those

in the first column of Figure 9, he would have little reason to doubt that the null should not

be rejected.

On the other hand, the three panels in the second column of Figure 9 show quite different

results. In each of these cases, δ = 0.3 and so the null is false. In each of the three Monte

Carlo trials that are illustrated, the null is rejected using the deterministic rule, although

just so in trials #408 and #721. However, an empirical researcher looking at a plot similar

to any of the three in the second column of Figure 9 would see that the value of his test

statistic is larger than almost every critical value, and hence could feel safe in rejecting the

null hypothesis.

6 Empirical Example

Simar and Wilson (2007) included an empirical example based on Aly et al. (1990) using

data on 6,955 U.S. Commercial Banks observed at the end of the fourth quarter, 2002. The

specification in the example included three inputs (p = 3), four outputs (q = 4), and four

environmental variables (r = 4), two of which are continuous and two of which are binary

(rc = rd = 2). Simar and Wilson (2007) computed DEA estimates of efficiency for each of

the 6,955 banks, and then estimated a truncated regression where these estimates appeared

as the dependent variable and the four environmental variables (as well as interaction and

squared terms) were treated as exogenous, right-hand side variables. Inference was made

using the bootstrap methods discussed by Simar and Wilson. Specific definitions for the

variables, etc. are given in Section 7 of Simar and Wilson (2007).

Using the same data, we tested the “separability” condition in Assumption 2.2 versus

the alternative in Assumption 2.4 using both the FDH- and DEA-based statistics defined

above in (3.7)–(3.8) that were examined in Section 5 using Monte Carlo methods. As in our

Monte Carlo experiments discussed in Section 5, we searched over the grid of sub-sample

sizes m ∈ Mn =
{[

n
50

]
, 2
[
n
50

]
, 3
[
n
50

]
, . . . , 49

[
n
50

]}
, where [a] denotes the integer part of a

real number a; with n = 6, 955 our grid of sub-sample sizes includes values 139, 278, 417, . . .,

6,811. We used k = 1 to define the volatility measure as discussed above. For each of the
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49 sub-sample sizes, we performed 2,048 bootstrap replications, using resampling without

replacement.

Figure 10 illustrates the results of our two tests; the left panel corresponds to the FDH-

based test, while the right panel corresponds to the DEA-based test. In either panel, esti-

mated 95-percent critical values corresponding to each of 49 sub-sample sizes are represented

by “+” symbols, and the value of the test statistic (measured on the vertical axes) is rep-

resented by the solid horizontal line. The vertical dashed lines indicate the sub-sample size

chosen using the rule described above in Section 5. From the evidence shown in Figure 10,

it is clear that the null hypothesis given by Assumption 2.2 should be rejected. In fact,

the results are quite strong—with the FDH-based test, only one very small sub-sample size

yields a critical value larger than the value of our statistic (i.e., m = 973), while with the

DEA-based test, no critical values fail to reject the null.

Our tests indicate that the empirical illustration in Simar and Wilson (2007), while

providing an example of how the bootstrap methods developed in Simar and Wilson (2007)

can be applied in a real-world setting, gives results that are meaningless. Although we have

not explicitly tested the “separability” assumption in Assumption 2.2 using the data used

by Aly et al. (1990) (here, we have used more recent data and a larger sample size, but

with the same variable definitions used by Aly et al.), our results certainly call into question

whether the results obtained by Aly et al. are meaningful. Assuming we would similarly

reject Assumption 2.2 in favor of the alternative Assumption 2.4 using the same data that

Aly et al. used, our results suggest that not only is the second-stage regression estimated

by Aly et al. meaningless, but the first-stage efficiency estimates are also meaningless since

the DEA efficiency estimators used by Aly et al. estimate distance to the frontier of a set Ψ

that is unattainable due to the violation of Assumption 2.2.

7 Conclusions

As discussed in the Introduction, numerous articles where technical efficiency is estimated

using DEA or FDH estimators and then the estimates are regressed on some environmental

variables in a second stage continue to appear in a variety of academic journals. Apart

from the fact that few, if any, of these articles specify a coherent statistical model, and also

the fact that many estimate second-stage models that cannot be justified in the context of
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the model presented by Simar and Wilson (2007), as far as we know none have tested the

“separability” assumption necessary for either the first-stage or the second-stage results to

be sensible.

We have developed a fully non-parametric test employing sub-sampling methods in order

to test the separability condition needed for two-stage estimation in production models.

Our simulation results indicate that the test works quite well, with both good power and

good size properties. Applying our test using data and variables from the empirical example

in Simar and Wilson (2007), we easily reject separability, calling into question the results

presented by Aly et al. (1990). The results of our empirical example also raise the question of

whether the numerous articles cited by Simar and Wilson (2007) as examples of where two-

stage efficiency estimation has been employed would be meaningful even if the second-stage

estimation in those papers had been done sensibly.

It is important to note that in Simar and Wilson (2007), we did not recommend the two-

stage approach for efficiency estimation. Rather, our purpose there was to rationalize what

had frequently appeared in the literature (and, as noted in Section 1, continues to appear).

Simar and Wilson (2007) remarked that the separability condition introduced in our earlier

paper should be tested, and in this paper we have introduced tools that will enable applied

researchers to test whether separability holds. If it does not hold, one should certainly not

use two-stage estimation, but instead should use the conditional efficiency estimators that

we have used to construct our test statistics here.
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Table 1: Rejection Rates for Separability Test (DGP #1, p = q = r = 1)

FDH
n = 50 n = 100 n = 200 n = 400
(1− α) (1− α) (1− α) (1− α)

δ .90 .95 .99 .90 .95 .99 .90 .95 .99 .90 .95 .99

0.0 0.096 0.022 0.007 0.060 0.021 0.009 0.058 0.018 0.007 0.037 0.021 0.009
0.1 0.070 0.025 0.010 0.060 0.032 0.018 0.104 0.045 0.029 0.231 0.133 0.061
0.2 0.065 0.031 0.013 0.139 0.071 0.053 0.378 0.219 0.127 0.756 0.540 0.353
0.3 0.091 0.042 0.034 0.293 0.132 0.101 0.736 0.498 0.268 0.992 0.940 0.733
0.4 0.130 0.055 0.050 0.467 0.244 0.146 0.931 0.741 0.471 1.000 0.999 0.948
0.5 0.162 0.072 0.064 0.606 0.363 0.175 0.992 0.931 0.647 1.000 1.000 1.000
0.6 0.228 0.101 0.085 0.782 0.485 0.248 1.000 0.992 0.818 1.000 1.000 1.000
0.7 0.299 0.136 0.098 0.872 0.604 0.322 1.000 0.997 0.936 1.000 1.000 1.000
0.8 0.352 0.156 0.103 0.944 0.780 0.385 1.000 1.000 0.986 1.000 1.000 1.000
1.0 0.452 0.211 0.126 0.998 0.927 0.521 1.000 1.000 0.999 1.000 1.000 1.000

DEA
0.0 0.146 0.091 0.063 0.064 0.035 0.023 0.040 0.020 0.016 0.022 0.010 0.007
0.1 0.113 0.069 0.045 0.086 0.039 0.026 0.137 0.074 0.040 0.298 0.189 0.087
0.2 0.097 0.054 0.029 0.185 0.101 0.065 0.499 0.296 0.188 0.858 0.684 0.468
0.3 0.137 0.062 0.042 0.383 0.219 0.115 0.834 0.606 0.392 0.996 0.975 0.873
0.4 0.211 0.096 0.049 0.596 0.382 0.208 0.975 0.884 0.641 1.000 1.000 0.990
0.5 0.307 0.159 0.087 0.747 0.518 0.303 0.998 0.987 0.830 1.000 1.000 1.000
0.6 0.360 0.184 0.099 0.904 0.723 0.385 1.000 1.000 0.956 1.000 1.000 1.000
0.7 0.458 0.253 0.150 0.967 0.813 0.480 1.000 1.000 0.998 1.000 1.000 1.000
0.8 0.538 0.311 0.137 0.986 0.926 0.648 1.000 1.000 1.000 1.000 1.000 1.000
1.0 0.697 0.424 0.207 1.000 0.991 0.799 1.000 1.000 1.000 1.000 1.000 1.000

27



Table 2: Rejection Rates for Separability Test (DGP #3, p = q = r = 2)

FDH
n = 50 n = 100 n = 200 n = 400
(1− α) (1− α) (1− α) (1− α)

δ .90 .95 .99 .90 .95 .99 .90 .95 .99 .90 .95 .99

0.0 0.222 0.043 0.009 0.138 0.060 0.010 0.091 0.049 0.013 0.090 0.048 0.027
0.1 0.166 0.067 0.016 0.083 0.053 0.021 0.122 0.078 0.037 0.213 0.107 0.075
0.2 0.111 0.062 0.010 0.075 0.068 0.025 0.127 0.088 0.059 0.354 0.159 0.120
0.3 0.093 0.051 0.021 0.091 0.053 0.032 0.174 0.092 0.078 0.705 0.330 0.183
0.4 0.093 0.060 0.020 0.110 0.079 0.046 0.303 0.125 0.128 0.957 0.681 0.278
0.5 0.088 0.059 0.025 0.136 0.063 0.054 0.467 0.190 0.134 0.996 0.893 0.420
0.6 0.086 0.073 0.021 0.150 0.062 0.084 0.634 0.245 0.158 1.000 0.972 0.534
0.7 0.082 0.061 0.030 0.177 0.077 0.082 0.715 0.312 0.172 1.000 0.994 0.667
0.8 0.082 0.061 0.029 0.180 0.067 0.083 0.787 0.393 0.169 1.000 0.998 0.747
1.0 0.097 0.066 0.035 0.232 0.089 0.111 0.874 0.504 0.230 1.000 1.000 0.876

DEA
0.0 0.070 0.034 0.022 0.071 0.029 0.016 0.092 0.046 0.012 0.094 0.045 0.013
0.1 0.085 0.042 0.027 0.082 0.068 0.028 0.104 0.056 0.022 0.153 0.070 0.032
0.2 0.090 0.048 0.027 0.101 0.068 0.024 0.137 0.086 0.048 0.259 0.127 0.106
0.3 0.086 0.047 0.028 0.110 0.075 0.045 0.202 0.110 0.064 0.654 0.289 0.191
0.4 0.093 0.058 0.038 0.151 0.069 0.062 0.298 0.124 0.107 0.952 0.633 0.274
0.5 0.098 0.066 0.044 0.163 0.076 0.060 0.474 0.160 0.122 0.998 0.891 0.376
0.6 0.105 0.069 0.056 0.175 0.081 0.075 0.610 0.235 0.137 0.999 0.963 0.515
0.7 0.112 0.055 0.053 0.225 0.088 0.081 0.685 0.338 0.164 1.000 0.995 0.621
0.8 0.110 0.050 0.042 0.212 0.076 0.091 0.743 0.343 0.175 1.000 0.996 0.675
1.0 0.114 0.049 0.041 0.214 0.078 0.075 0.721 0.348 0.195 1.000 0.994 0.707
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Table 3: Rejection Rates for Separability Test (DGP #2, p = q = r = 1)

FDH
n = 50 n = 100 n = 200 n = 400
(1− α) (1− α) (1− α) (1− α)

δ .90 .95 .99 .90 .95 .99 .90 .95 .99 .90 .95 .99

0.0 0.092 0.016 0.007 0.063 0.021 0.009 0.062 0.021 0.013 0.041 0.014 0.005
0.1 0.111 0.020 0.006 0.075 0.022 0.009 0.065 0.024 0.011 0.073 0.031 0.005
0.2 0.080 0.021 0.004 0.061 0.014 0.011 0.052 0.013 0.010 0.055 0.021 0.003
0.3 0.078 0.014 0.004 0.084 0.026 0.014 0.056 0.015 0.006 0.048 0.020 0.010
0.4 0.085 0.016 0.008 0.062 0.029 0.010 0.044 0.022 0.008 0.051 0.021 0.009
0.5 0.075 0.019 0.006 0.070 0.021 0.011 0.059 0.023 0.009 0.061 0.022 0.010
0.6 0.091 0.030 0.008 0.067 0.023 0.007 0.056 0.021 0.008 0.043 0.014 0.005
0.7 0.085 0.017 0.007 0.062 0.019 0.014 0.041 0.019 0.010 0.044 0.018 0.005
0.8 0.077 0.021 0.007 0.073 0.020 0.008 0.061 0.022 0.010 0.046 0.014 0.005
1.0 0.097 0.034 0.011 0.066 0.023 0.009 0.049 0.021 0.009 0.047 0.018 0.009

DEA
0.0 0.138 0.089 0.067 0.073 0.050 0.039 0.046 0.032 0.020 0.023 0.012 0.005
0.1 0.140 0.098 0.062 0.074 0.037 0.029 0.049 0.027 0.020 0.029 0.017 0.008
0.2 0.156 0.099 0.067 0.068 0.045 0.028 0.041 0.027 0.017 0.027 0.020 0.011
0.3 0.134 0.085 0.061 0.071 0.042 0.029 0.042 0.025 0.015 0.030 0.012 0.008
0.4 0.110 0.073 0.056 0.081 0.043 0.033 0.040 0.021 0.015 0.030 0.016 0.008
0.5 0.131 0.075 0.058 0.073 0.039 0.035 0.040 0.028 0.019 0.024 0.012 0.007
0.6 0.119 0.079 0.058 0.071 0.042 0.029 0.046 0.030 0.016 0.026 0.017 0.010
0.7 0.127 0.073 0.062 0.073 0.043 0.030 0.055 0.029 0.011 0.018 0.011 0.006
0.8 0.120 0.082 0.062 0.070 0.050 0.029 0.043 0.024 0.021 0.033 0.018 0.006
1.0 0.130 0.086 0.062 0.081 0.046 0.035 0.040 0.023 0.017 0.019 0.009 0.007
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Table 4: Rejection Rates for Separability Test (DGP #4, p = q = r = 2)

FDH
n = 50 n = 100 n = 200 n = 400
(1− α) (1− α) (1− α) (1− α)

δ .90 .95 .99 .90 .95 .99 .90 .95 .99 .90 .95 .99

0.0 0.221 0.045 0.011 0.133 0.057 0.012 0.090 0.051 0.013 0.085 0.052 0.024
0.1 0.268 0.018 0.009 0.170 0.060 0.008 0.104 0.071 0.014 0.115 0.062 0.022
0.2 0.297 0.010 0.005 0.198 0.033 0.007 0.121 0.036 0.011 0.105 0.049 0.009
0.3 0.251 0.007 0.004 0.209 0.021 0.007 0.173 0.054 0.008 0.114 0.046 0.010
0.4 0.184 0.004 0.003 0.212 0.010 0.006 0.203 0.027 0.004 0.131 0.059 0.018
0.5 0.113 0.001 0.001 0.208 0.007 0.004 0.215 0.016 0.006 0.154 0.034 0.013
0.6 0.071 0.001 0.001 0.170 0.001 0.001 0.210 0.011 0.002 0.201 0.041 0.011
0.7 0.033 0.000 0.000 0.112 0.001 0.001 0.198 0.009 0.003 0.190 0.020 0.003
0.8 0.031 0.000 0.000 0.070 0.001 0.001 0.127 0.001 0.001 0.212 0.010 0.006
1.0 0.012 0.000 0.000 0.020 0.000 0.000 0.059 0.000 0.000 0.128 0.002 0.001

DEA
0.0 0.065 0.032 0.023 0.066 0.040 0.023 0.081 0.040 0.011 0.103 0.044 0.016
0.1 0.082 0.042 0.020 0.068 0.047 0.025 0.075 0.042 0.015 0.073 0.062 0.016
0.2 0.102 0.062 0.027 0.073 0.044 0.021 0.071 0.039 0.010 0.081 0.033 0.010
0.3 0.091 0.070 0.042 0.068 0.044 0.021 0.071 0.029 0.012 0.073 0.039 0.011
0.4 0.143 0.107 0.036 0.080 0.040 0.016 0.065 0.033 0.017 0.071 0.032 0.008
0.5 0.246 0.139 0.052 0.069 0.053 0.023 0.071 0.031 0.013 0.062 0.032 0.006
0.6 0.335 0.211 0.077 0.083 0.055 0.028 0.062 0.031 0.018 0.073 0.027 0.007
0.7 0.478 0.294 0.089 0.110 0.090 0.039 0.065 0.038 0.021 0.065 0.032 0.012
0.8 0.564 0.353 0.108 0.170 0.120 0.043 0.071 0.053 0.034 0.063 0.037 0.011
1.0 0.639 0.431 0.121 0.359 0.220 0.078 0.119 0.064 0.031 0.058 0.044 0.022
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Figure 7: Rejection Rates for Separability Test (DGP #4, τ̂FDH,n(Sn), p = q = r = 2,
resampling without replacement, α = 0.05)
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Figure 8: Rejection Rates for Separability Test (DGP #4, τ̂DEA,n(Sn), p = q = r = 2,
resampling without replacement, α = 0.05)
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Figure 9: Estimated Critical Values versus Sub-Sample Size m for Separability Tests (DGP
#1, τ̂DEA,n(Sn), p = q = r = 1, resampling without replacement, α = 0.05)
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Figure 10: Tests of Separability for Banking Data used in Example by Simar and Wilson (2007), n = 6, 955
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