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Abstract

In the econometric literature on the estimation of production technologies, there
has been considerable interest in estimating so called cost frontier models that relate
closely to models for extreme non-standard conditional quantiles (Aragon et al. (2005))
and expected minimum input functions (Cazals et al. (2002)). In this paper, we in-
troduce a class of extremile-based cost frontiers which includes the family of expected
minimum input frontiers and parallels the class of quantile-type frontiers. The class is
motivated via several angles, which reveals its specific merits and strengths. We discuss
nonparametric estimation of the extremile-based costs frontiers and establish asymp-
totic normality and weak convergence of the associated process. Empirical illustrations
are provided.
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1 Introduction

In the analysis of productivity and efficiency, for example of firms, the interest lies in estimat-

ing a production frontier or cost function. Among the basic references in economic theory

are Koopmans (1951), Debreu (1951) and Shephard (1970). The activity of a production

unit (e.g. a firm) is characterized via a set of outputs, y ∈ R
q
+ that is produced by a set of

inputs x ∈ R
p
+. The set of attainable points can be characterized as

Ψ = {(y, x) ∈ R
q+p
+ | y can be produced by x}.

This set can be described mathematically by its sections. In the input space one has

the input requirement sets C(y) = {x ∈ R
p
+|(y, x) ∈ Ψ}, defined for all possible outputs

y ∈ R
q
+. The radial (or input-oriented) efficiency boundary is then given by ∂C(y), the

boundary of the input requirement set. In the case of univariate inputs ∂C(y) = min C(y),

the input-efficiency function, also called the frontier cost function. From an economic point
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of view, a monotonicity assumption on this function is reasonable, meaning that higher

outputs go along with a higher minimal cost. Different other assumptions can be made on

Ψ such as for example free disposability, i.e. if (y, x) ∈ Ψ then (y′, x′) ∈ Ψ for any x′ ≥ x

and y′ ≤ y (the inequalities here have to be understood componentwise); or convexity, i.e.,

every convex combination of feasible production plans is also feasible. See Shephard (1970)

for more information and economic background.

In this paper we will focus the presentation on the input orientation1, where we want

to estimate the minimal cost frontier in the case of univariate inputs. To our disposal are

observations Xn = {(Yi, Xi)| i = 1, · · · , n} generated by the production process defined

through for example the joint distribution of a random vector (Y, X) on R
q
+×R+, where the

q-dimensional vector Y represents the outputs and the second variable X is the single input.

Let (Ω,A, P) be the probability space on which both Y and X are defined. In the case where

the production set Ψ is equal to the support of the joint distribution of (Y, X), a probabilistic

way for defining the cost frontier is as follows. The cost function ∂C(y) is characterized for

a given set of outputs y by the lower boundary of the support of the conditional distribution

of X given Y ≥ y, i.e.

ϕ(y) := inf{x ≥ 0|F̄y(x) < 1} ≡ ∂C(y), (1)

where F̄y(x) = 1 − Fy(x), with Fy(x) = P(X ≤ x|Y ≥ y) being the conditional distribution

function of X given Y ≥ y, for y such that P(Y ≥ y) > 0. The frontier function ϕ is

monotone nondecreasing, which corresponds to the free disposability property of the support

Ψ. When the support boundary ∂C(·) is not assumed to be monotone, ϕ(·) is in fact the

largest monotone function which is smaller than or equal to the lower boundary ∂C(·). See

Cazals et al. (2002) for this formulation and a detailed discussion on the concept of frontier

cost function.

There is a vast literature on the estimation of frontier functions from a random sample

of production units Xn. There have been developments along two main approaches: the

deterministic frontier models which suppose that with probability one, all the observations

in Xn belong to Ψ, and the stochastic frontier models where random noise allows some

observations to be outside of Ψ.

In deterministic frontier models, two different nonparametric methods based on envelop-

ment techniques have been around. The free disposal hull (FDH) technique and the data

envelopment analysis (DEA) technique. Deprins et al. (1984) introduced the FDH estimator

that relies only on the free disposability assumption on Ψ. The DEA estimator initiated by

1The presentation for the output orientation, where we want to estimate the maximal production frontier
in the case of univariate outputs, is a straightforward adaptation of what is done here.

2



Farrell (1957) and popularized as linear programming estimator by Charnes et al. (1978), re-

quires stronger assumptions, it relies on the free disposability assumption and the convexity

of Ψ. Such a convexity assumption is widely used in economics, but it is not always valid.

Because of the additional assumption of convexity the FDH estimator is a more general

estimator than the DEA estimator. The asymptotic distribution of the FDH estimator was

derived by Park et al. (2000) in the particular case where the joint density of (Y, X) has a

jump at the frontier and by Daouia et al. (2010) in the general setting. The asymptotic dis-

tribution of the DEA estimator was derived by Gijbels et al. (1999). Today, most statistical

theory of these estimators is available. See Simar and Wilson (2008), among others.

In stochastic frontier models, where noise is allowed, one often imposes parametric restric-

tions on the shape of the frontier and on the data generating process to allow identification

of the noise from the cost frontier and subsequently estimation of this frontier. These para-

metric methods may lack robustness if the distributional assumptions made do not hold.

Since nonparametric deterministic frontier models rely on very few assumptions, they

are quite appealing. Moreover, the FDH estimator of the frontier cost function can simply

be viewed as a plug-in version of (1) obtained by just replacing the conditional distribution

function by its empirical analog F̂y(x) resulting into

ϕ̂(y) = inf{x ∈ R+| F̂y(x) > 0} = min
i:Yi≥y

Xi ,

with F̂y(x) =
∑n

i=1 1I(Xi ≤ x, Yi ≥ y)/
∑n

i=1 1I(Yi ≥ y).

The FDH estimator, as well as the DEA estimator, however are very sensitive to outlying

observations. In the literature two robust nonparametric estimators of (partial) cost frontiers

have been proposed to deal with this sensitivity. Cazals et al. (2002) introduced the concept

of expected minimal cost of order m ∈ {1, 2, 3, ...}. It is defined as the expected minimal

cost among m firms drawn in the population of firms exceeding a certain level of outputs.

More precisely, for a given level of outputs y, the cost function of order m is given by

ϕm(y) = E[min(Xy
1 , · · · , Xy

m)] =

∫ ∞

0

{F̄y(x)}mdx,

where (Xy
1 , · · · , Xy

m) are m independent identically distributed random variables generated

from the distribution of X given Y ≥ y. Its nonparametric estimator is defined by

ϕ̂m,n(y) =

∫ ∞

0

{1 − F̂y(x)}mdx.

The estimator ϕ̂m,n(y) does not envelop all the data points, and so it is more robust to

extreme values than the FDH estimator ϕ̂(y). By choosing m appropriately as a function of

the sample size n, ϕ̂m,n(y) estimates the cost function ϕ(y) itself while keeping the asymptotic

properties of the FDH estimator.
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A second approach to deal with the sensitivity to outlying observations was proposed by

Aragon et al. (2005). They consider extreme quantiles of the conditional distribution of X

given Y ≥ y. Such non-standard conditional quantiles provide another concept of a partial

cost frontier as an alternative towards the order-m partial cost frontier introduced by Cazals

et al. (2002). The duality between expected minimum input frontiers and quantile-type cost

frontiers has been investigated by Daouia and Gijbels (2011).

In this paper we introduce a new class of extremile-based cost frontiers which includes

the class of order-m expected minimum input frontiers. The class also parallels the class of

quantile partial cost frontiers in the sense that it is related to the mean of a random variable

rather than the median (or quantile more generally).

The paper is organized as follows. In Section 2 we introduce the class of extremile-based

cost frontier functions, and discuss the relation with the order-m partial cost functions and

the quantile-type cost functions. Some basic properties of the new class of frontier functions

are provided. Section 3 is devoted to nonparametric estimation of an extremile-based cost

frontier, and studies the asymptotic properties of the estimators. An empirical study on a

simulation model and on a real data example is provided in Section 4. Section 5 concludes.

2 The extremile-based cost function

Consider a real γ ∈ (0, 1) and let Kγ be a measure on [0, 1] whose distribution function is

Kγ(t) =






1 − (1 − t)s(γ) if 0 < γ ≤ 1
2

ts(1−γ) if 1
2
≤ γ < 1

where

s(γ) =
log(1/2)

log(1 − γ)
≥ 1 for γ ∈ [0, 1/2].

Define the score function Jγ(·) to be the density of the measure Kγ on (0, 1).

Definition 1. The extremile-based cost function of order γ denoted by ξγ(y) is the real

function defined on R
q
+ as

ξγ(y) = E [XJγ (Fy(X)) |Y ≥ y]

where we assume the existence of this expectation.

As a matter of fact, the partial cost function ξγ(y) coincides with the γth extremile (see

Daouia and Gijbels 2009) of the conditional distribution of X given Y ≥ y. The following

proposition is a basic property of extremiles.
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Proposition 1. If E(X|Y ≥ y) < ∞, then ξγ(y) exists for all γ ∈ (0, 1).

Proof. Following Daouia and Gijbels (2009, Proposition 1 (i)), the γth extremile exists pro-

vided that the underlying distribution has a finite absolute mean which corresponds here to

E(X|Y ≥ y) < ∞.

From an economic point of view, the quantity X of inputs-usage is often assumed to be

bounded or at least to have a finite mean and so, in this case, the γth cost function is well

defined for any order γ in (0, 1) and all y ∈ R
q
+ such that P(Y ≥ y) > 0.

More specifically, the extremile function ξγ(y) is proportional to conditional probability-

weighted moments:

ξγ(y) =






s(γ)E
[
X

{
F̄y(X)

}s(γ)−1 |Y ≥ y
]

for 0 < γ ≤ 1
2

s(1 − γ)E
[
X {Fy(X)}s(1−γ)−1 |Y ≥ y

]
for 1

2
≤ γ < 1.

In the special case where γ ≤ 1/2 with s(γ) being a positive integer, ξγ(y) equals the

expectation of the minimum of s(γ) independent random variables (Xy
1 , . . . , Xy

s(γ)) generated

from the distribution of X given Y ≥ y. Whence

ξγ(y) = E

[
min

(
Xy

1 , . . . , Xy
s(γ)

)]
= ϕs(γ)(y).

Thus the class of our conditional extremiles includes the family of expected minimum input

functions introduced by Cazals et al. (2002). Likewise, if γ ≥ 1/2 with s(1 − γ) = 1, 2, . . .

we have ξγ(y) = E

[
max

(
Xy

1 , . . . , Xy
s(1−γ)

)]
, where Xy

1 , . . . , Xy
s(1−γ) are independent random

variables generated from the distribution of X given Y ≥ y.

Proposition 2. If the conditional distribution of X given Y ≥ y has a finite mean, then it

can be characterized by the subclass {ξγ(y) : s(γ) = 1, 2, . . .} or {ξγ(y) : s(1− γ) = 1, 2, . . .}.

Proof. This follows from the well known result of Chan (1967) which states that a distribution

with finite absolute first moment can be uniquely defined by its expected maxima or expected

minima.

The non-standard conditional distribution of X given Y ≥ y whose E(X|Y ≥ y) < ∞
is uniquely defined by its discrete extremiles. This means that no two such non-standard

distributions with finite means have the same expected minimum input functions.

Of particular interest is the left tail γ ≤ 1/2 where the partial γth cost function has the

following interpretation

E

[
min

(
Xy

1 , . . . , Xy
[s(γ)]+1

)]
≤ ξγ(y) ≤ E

[
min

(
Xy

1 , . . . , Xy
[s(γ)]

)]
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where [s(γ)] denotes the integer part of s(γ) and Xy
1 , Xy

2 , . . . are iid random variables of

distribution function Fy. In other words, we have ϕ[s(γ)]+1(y) ≤ ξγ(y) ≤ ϕ[s(γ)](y) for γ ≤ 1/2.

Hence ξγ(y) benefits from a similar “benchmark” interpretation as expected minimum input

functions. For the manager of a production unit working at level (x, y), comparing its inputs-

usage x with the benchmarked value ξγ(y), for a sequence of few decreasing values of γ ց 0,

could offer a clear indication of how efficient its firm is compared with a fixed number of

(1 + [s(γ)]) potential firms producing more than y.

Yet, there is still another way of looking at ξγ(y). Let X y
γ be a random variable having

cumulative distribution function

FX
y
γ

=






1 −
{
F̄y

}s(γ)
if 0 < γ ≤ 1

2

{Fy}s(1−γ) if 1
2
≤ γ < 1.

Proposition 3. We have ξγ(y) = E(X y
γ ) provided this expectation exists.

Proof. Since E|X y
γ | = E(X y

γ ) < ∞, we have E(X y
γ ) =

∫ 1

0
F−1
X

y
γ
(t)dt in view of a general

property of expectations (see Shorack 2000, p.117). On the other hand, it is easy to check

that ξγ(y) =
∫ 1

0
Jγ(t)F

−1
y (t)dt =

∫ 1

0
F−1

y (t)dKγ(t) =
∫ 1

0
F−1
X

y
γ
(t)dt.

This allows to establish how our class of extremile-based cost functions is related to the

family of quantile-based cost functions defined by Aragon et al. (2005) as

Qγ(y) = F−1
y (γ) := inf{x ∈ R+| Fy(x) ≥ γ} for 0 < γ < 1.

Indeed, while ξγ(y) equals the mean of the random variable X y
γ , it is easy to see that the

quantile function Qγ(y) coincides with the median of the same variable X y
γ . Consequently

the γth extremile-based cost function is clearly more tail sensitive and more efficient than

the γth quantile-based cost function. The latter means that the (asymptotic) variance for

the extremile-based cost function estimator is smaller than the (asymptotic) variance of the

γth quantile-based cost function. Recall that for many population distributions (such as e.g.

a normal distribution) the sample mean has a smaller asymptotic variance than the sample

median, when both are estimating the same quantity. See for example Serfling (1980).

One way of defining ξγ(y), with 0 ≤ γ ≤ 1, is as the following explicit quantity.

Proposition 4. If E(X y
γ ) < ∞, we have

ξγ(y) =






ϕ(y) +
∫ ∞

ϕ(y)

{
F̄y(x)

}s(γ)
dx for 0 ≤ γ ≤ 1

2

ϕ(y) +
∫ ∞

ϕ(y)

(
1 − {Fy(x)}s(1−γ)

)
dx for 1

2
≤ γ ≤ 1.

(2)
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Proof. We have ξγ(y) = E(X y
γ ) by Proposition 3 and E(X y

γ ) =
∫ ∞

0

{
1 − FX

y
γ
(x)

}
dx = ϕ(y)+

∫ ∞

ϕ(y)

{
1 − FX

y
γ
(x)

}
dx by a general property of expectations (Shorack 2000, p.117).

This explicit expression is very useful when it comes to proposing an estimator for ξγ(y).

Obviously, the central extremile-based cost function ξ1/2(y) reduces to the regression function

E(X|Y ≥ y). The conditional extremile ξγ(y) is clearly a continuous and increasing function

in γ and it maps (0, 1) onto the range {x ≥ 0|0 < Fy(x) < 1}. The left and right endpoints

of the support of the conditional distribution function Fy(·) coincide respectively with the

lower and upper extremiles ξ0(y) and ξ1(y) since s(0) = ∞. Hence the range of ξγ(y) is the

entire range of X given Y ≥ y.

Of interest is the limiting case γ ↓ 0 which leads to access the full cost function ϕ(y) =

ξ0(y). Although the limit frontier function ϕ(·) is monotone nondecreasing, the partial cost

function ξγ(·) itself is not necessarily monotone. To ensure the monotonicity of ξγ(y) in y, it

suffices to assume, as it can be easily seen from Proposition 4, that the conditional survival

function F̄y(x) is nondecreasing in y. As pointed out by Cazals et al. (2002), this assumption

is quite reasonable from an economic point of view since the chance of spending more than

a cost x does not decrease if a firm produces more.

The next proposition provides an explicit relationship between the γth quantile and

extremile type cost functions at γ ↓ 0. Let DA(Wρ) denote the minimum domain of attraction

of the Weibull extreme-value distribution

Wρ(x) = 1 − exp{−xρ} with support [0,∞), for some ρ > 0,

i.e., the set of distribution functions whose asymptotic distributions of minima are of the

type of Wρ. According to Daouia et al. (2010), if there exists a sequence {an > 0} such that

the normalized minima a−1
n (ϕ̂(y) − ϕ(y)) converges to a non-degenerate distribution, then

the limit distribution function is of the type of Wρ for a positive function ρ = ρ(y) in y.

Proposition 5. Suppose E(X|Y ≥ y) < ∞ and Fy(·) ∈ DA(Wρ(y)). Then

ξγ(y) − ϕ(y)

Qγ(y) − ϕ(y)
∼ Γ(1 + ρ−1(y)){log 2}−1/ρ(y) as γ ↓ 0,

where Γ(·) denotes the gamma function.

Proof. This follows immediately by applying Proposition 2 (ii) in Daouia and Gijbels (2009)

to the distribution of −X given Y ≥ y.

Consequently, as γ ↓ 0, the quantile curve Qγ(·) is closer to the true cost frontier ϕ(·)
than is the extremile curve ξγ(·) following the value of the tail index ρ. In most situations
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described so far in the econometric literature on frontier analysis, it is assumed that there

is a jump of the joint density of (Y, X) at the frontier: this corresponds to the case where

the tail index ρ(y) equals the dimension of data (1 + q) according to Daouia et al. (2010).

It was shown in that paper that β(y) = ρ(y) − (1 + q), where β(y) denotes the algebraic

rate with which the joint density decreases to 0 when x approaches the point at the frontier

function. Since a jump of the joint density at the frontier implies that β(y) = 0, it follows

that ρ(y) = 1+ q in that case. In such situations, Qγ(·) is asymptotically closer to ϕ(·) than

is ξγ(·) when q ≤ 2, but ξγ(·) is more spread than Qγ(·) when q > 2.

On the other hand, the score function Jγ(·) being monotone increasing for γ ≥ 1/2

and decreasing for γ ≤ 1/2, the conditional extremile ξγ(y) depends by construction on all

feasible values of X given Y ≥ y putting more weight to the high values for γ ≥ 1/2 and

more weight to the low values for γ ≤ 1/2. Therefore ξγ(y) is sensible to the magnitude

of extreme values for any order γ ∈ (0, 1). In contrast, the conditional quantile Qγ(y) is

determined solely by the tail probability (relative frequency) γ, and so it may be unaffected

by desirable extreme values whatever the shape of tails of the underlying distribution. On the

other hand, when Qγ(y) breaks down at γ ↓ 0 or γ ↑ 1, the γth conditional extremile, being

an L-functional, is more resistant to extreme values. Hence, ξγ(y) steers an advantageous

middle course between the extreme behaviors (insensitivity and breakdown) of Qγ(y).

3 Nonparametric estimation

Instead of estimating the full cost function, an original idea first suggested by Cazals et al.

(2002) and applied by Aragon et al. (2005) to quantiles is rather to estimate a partial cost

function lying near ϕ(y). Thus the interest in this section will be in the estimation of the

extremile function ξγ(y) for γ ≤ 1/2. The right tail (i.e. γ ≥ 1/2) can be handled in a

similar way and so is omitted. Results below are easily derived by means of L-statistics

theory applied to the dimensionless transformation Zy = X1I(Y ≥ y) of the random vector

(Y, X) ∈ R
q+1
+ . Let F̄Zy = 1 − FZy be the survival function of Zy. It is easy to check that

F̄y(X) = F̄Zy(Zy)/P(Y ≥ y). Then

ξγ(y) = E [ZyJγ (Fy(X))] /P(Y ≥ y) for 0 < γ < 1

=
s(γ)

P(Y ≥ y)
E

[

Zy

{
F̄Zy(Zy)

P(Y ≥ y)

}s(γ)−1
]

=
ξZy(γ)

{P(Y ≥ y)}s(γ)
for 0 < γ ≤ 1

2
(3)

where ξZy(γ) = s(γ)E
[
Zy

{
F̄Zy(Zy)

}s(γ)−1
]

=
∫ 1

0
F−1

Zy dKγ is by definition the ordinary γth

extremile of the random variable Zy. Therefore it suffices to replace P(Y ≥ y) by its empirical

version P̂(Y ≥ y) = (1/n)
∑n

i=1 1I(Yi ≥ y) and ξZy(γ) by a consistent estimator to obtain a
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convergent estimate of the conditional extremile ξγ(y).

As shown in Daouia and Gijbels (2009), a natural estimator of the ordinary extremile

ξZy(γ) is given by the L-statistic generated by the measure Kγ:

ξ̂Zy(γ) =

n∑

i=1

{
Kγ

(
i

n

)
− Kγ

(
i − 1

n

)}
Zy

(i), (4)

where Zy
(1) ≤ Zy

(2) ≤ · · · ≤ Zy
(n) denote the order statistics generated by the sample {Zy

i =

Xi1I(Yi ≥ y) : i = 1, · · · , n}. It is easy to see that the resulting estimator of the γth cost

function ξγ(y), given by

ξ̂γ(y) = ξ̂Zy(γ)/{P̂(Y ≥ y)}s(γ)

coincides with the empirical conditional extremile obtained by replacing Fy(x) in expres-

sion (2) with its empirical version F̂y(x), i.e,

ξ̂γ(y) =

∫ ∞

0

{
1 − F̂y(x)

}s(γ)

dx = ϕ̂(y) +

∫ ∞

ϕ̂(y)

{
1 − F̂y(x)

}s(γ)

dx. (5)

This estimator converges to the FDH input efficient frontier ϕ̂(y) as γ decreases to zero. In

particular, when the power s(γ) is a positive integer m = 1, 2, . . . we recover the estimator

ϕ̂m,n(y), of the expected minimum input function of order m proposed by Cazals et al.

(2002). See Section 1. The following theorem summarizes the asymptotic properties of ξ̂γ(y)

for a fixed order γ.

Theorem 1. Assume that the support of (Y, X) is compact and let γ ∈ (0, 1/2].

(i) For any point y ∈ R
q
+ such that P (Y ≥ y) > 0, ξ̂γ(y)

a.s.→ ξγ(y) as n → ∞, and
√

n
(
ξ̂γ(y) − ξγ(y)

)
has an asymptotic normal distribution with mean zero and variance

E [Sγ(y, Y, X)]2, where Sγ(y, Y, X) =

s(γ)

{P(Y ≥ y)}s(γ)

∫ ∞

0

{P(X > x, Y ≥ y)}s(γ)−11I(X > x, Y ≥ y)dx− s(γ)ξγ(y)

P(Y ≥ y)
1I(Y ≥ y).

(ii) For any subset Y ⊂ R
q
+ such that infy∈Y P (Y ≥ y) > 0, the process

√
n

(
ξ̂γ(·) − ξγ(·)

)

converges in distribution in the space of bounded functions on Y to a q-dimensional

zero mean Gaussian process indexed by y ∈ Y with covariance function

Σk,l = E
[
Sγ(y

k, Y, X) Sγ(y
l, Y, X)

]
.

Proof. Let m = s(γ). When m = 1, 2, . . . the two results (i)-(ii) are given respectively by

Theorem 3.1 and Appendix B in Cazals et al. (2002). In fact, it is not hard to verify that

the proofs of these results remain valid even when the trimming parameter m is not an

integer.
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The conditional distribution function Fy even does not need to be continuous, which is not

the case for the empirical conditional quantiles Q̂γ(y) = F̂−1
y (γ) whose asymptotic normality

requires at least the differentiability of Fy at Qγ(y) with a strictly positive derivative (see

Aragon et al (2002) for the pointwise convergence and Daouia et al. (2008) for the functional

convergence).

Next we show that if the FDH estimator ϕ̂(y) converges in distribution, then for a

specific choice of γ as a function of n, ξ̂γ(y) estimates the true full cost function ϕ(y) itself

and converges in distribution as well to the same limit as ϕ̂(y) and with the same scaling.

Theorem 2. Suppose the support of (Y, X) is compact. If a−1
n (ϕ̂(y) − ϕ(y))

d→ Wρ(y), then

a−1
n

(
ξ̂γy(n)(y) − ϕ(y)

)
d→ Wρ(y) provided

γy(n) ≤ 1−
{

1 − 1

nP̂(Y ≥ y)

} log(2)
(β+1) log(Cn)

or γy(n) ≤ 1−exp

{
(1 + o(1)) log(1/2)

(β + 1)n log(Cn)P(Y ≥ y)

}
,

with β > 0 such that ann
β → ∞ as n → ∞, and C being a positive constant.

Proof. We have a−1
n

(
ξ̂γ(y) − ϕ(y)

)
= a−1

n (ϕ̂(y) − ϕ(y)) + a−1
n

(
ξ̂γ(y) − ϕ̂(y)

)
. Let Ny =

∑n
i=1 1I(Yi ≥ y) =

∑n
i=1 1I(Zy

i > 0). It is easily seen from (5) that

(
ξ̂γ(y) − ϕ̂(y)

)
=

Ny∑

j=1

{
Ny − j

Ny

}s(γ) (
Zy

(n−Ny+j+1) − Zy
(n−Ny+j)

)
.

The support of (Y, X) being compact, the range of Zy is bounded and so
(
ξ̂γ(y) − ϕ̂(y)

)
=

O

(
n

{
1 − 1

Ny

}s(γ)
)

. Then, for the term a−1
n

(
ξ̂γ(y) − ϕ̂(y)

)
to be op(1) as n → ∞, it

is sufficient to choose γ = γy(n) such that
{

1 − 1
Ny

}s(γy(n))

= O
(
n−(β+1)

)
or equivalently

{
1 − 1

Ny

}s(γy(n))

≤ (Cn)−(β+1) with C > 0 being a constant and β > 0 is such that a−1
n n−β =

o(1) as n → ∞. Whence the condition s(γy(n)) ≥ (β+1) log(Cn)

log
“

1− 1
Ny

”

log(1/2)
, or equivalently, γy(n) ≤

1−
{

1 − 1
Ny

} log 2
(β+1) log(Cn)

. Since log
(
1 − 1

Ny

)
∼ − 1

Ny
∼ − 1

nP(Y ≥y)
as n → ∞, with probability

1, it suffices to assume that s(γy(n)) ≥ (β+1)n log(Cn)P(Y ≥y)
log(2)(1+o(1))

, or equivalently, γy(n) ≤ 1 −
exp

{
(1+o(1)) log(1/2)

(β+1)n log(Cn)P(Y ≥y)

}
.

Note that the condition of Theorem 2 on the order γy(n) is also provided in the proof in

terms of s (γy(n)) and reads as follows:

s(γy(n)) ≥ (β + 1) log(Cn)

log
(
1 − 1

nP̂(Y ≥y)

)
log(1/2)

or s(γy(n)) ≥ (β + 1)n log(Cn)P(Y ≥ y)

log(2) (1 + o(1))
. (6)
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Note also that in the particular case considered by Cazals et al. (2002) where the joint

density of (Y, X) is strictly positive at the upper boundary and the frontier function ϕ(y)

is continuously differentiable in y, the convergence rate an satisfies a−1
n ∼ (nℓy)

1/ρ(y) with

ρ(y) = 1+ q and ℓy > 0 being a constant (see Park et al. (2000)). In this case, the condition

annβ → ∞ reduces to β > 1/(1 + q).

It should be clear that the main results of Cazals et al. (2002) are corollaries of our

Theorems 1 and 2. Indeed, when the real parameter s(γ) ∈ [1,∞) in our approach is

taken to be a positive integer m = 1, 2, . . ., we recover Theorems 3.1 and 3.2 of Cazals

et al. (2002). However, we hope to have shown that the sufficient condition my(n) =

O (βn log(n)P(Y ≥ y)) of Cazals et al. (2002, Theorem 3.2) on the trimming parameter

my(n) ≡ s(γy(n)) is somewhat premature and should be replaced by (6).

Alternative estimators of the conditional extremile ξγ(y) can be constructed from ex-

pression (3). Instead of the sample extremile (4), one may estimate the ordinary extremile

ξZy(γ) by

ξ̃Zy(γ) =
1

n

n∑

i=1

Jγ

(
i

n + 1

)
Zy

(i).

This estimator which is in fact first-order equivalent with ξ̂Zy(γ) (see Daouia and Gijbels,

2009) leads to the alternative estimator ξ̃γ(y) of ξγ(y) defined as ξ̃γ(y) = ξ̃Zy(γ)/{P̂(Y ≥
y)}s(γ). In the particular case considered by Cazals et al. (2002) where s(γ) is only a positive

integer, the statistic

ξ∗Zy(γ) =
s(γ)

n

n−s(γ)+1∑

i=1




s(γ)−1∏

j=1

(n − i + 1 − j)

(n − j)



Zy
(i)

is an unbiased estimator of the ordinary extremile ξZy(γ) with the same asymptotic normal

distribution as ξ̂Zy(γ) and ξ̃Zy(γ) (Daouia and Gijbels, 2009). This provides an attractive es-

timator ξ∗γ(y) = ξ∗Zy(γ)/{P̂(Y ≥ y)}s(γ) for the order-s(γ) expected minimum input function

ξγ(y) ≡ ϕs(γ)(y).

4 Empirical illustration

Let Ny be the number of the Yi observations greater than or equal to y, i.e. Ny =
∑n

i=1 1I(Yi ≥
y), and, for j = 1, . . . , Ny, denote by Xy

(j) the jth order statistic of the Xi’s such that Yi ≥ y.

It is then clear that Xy
(j) = Zy

(n−Ny+j) for each j = 1, . . . , Ny, and the estimator ξ̂γ(y) can be

easily computed as

ξ̂γ(y) =
ξ̂Zy(γ)

{n−1Ny}s(γ)
= Xy

(1) +

Ny−1∑

j=1

(
1 − j

Ny

)s(γ) {
Xy

(j+1) − Xy
(j)

}
.
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This estimator always lies above the FDH ϕ̂(y) = Xy
(1) and so is more robust to extremes

and outliers. Moreover, being a linear function of the data, ξ̂γ(y) suffers less than the

empirical γth quantile Q̂γ(y) to sampling variability or measurement errors in the extreme

values Xy
(j). The quantile-based frontier only depends on the frequency of tail costs and

not on their values. Consequently, it could be too liberal (insensitive to the magnitude of

extreme costs Xy
(j)) or too conservative following the value of γ. In contrast, putting more

weight to high and low observations in the input-orientation, the extremile-based frontier is

always sensible to desirable extreme costs. Nevertheless, being a linear function of all the

data points (L-statistic), it remains resistant in the sense that it could be only attracted by

outlying observations without envelopping them.

We first apply Theorem 2 in conjunction with these sensitivity and resistance properties

to estimate the optimal cost of the delivery activity of the postal services in France. The

data set contains information about 9521 post offices (Yi, Xi) observed in 1994, with Xi being

the labor cost (measured by the quantity of labor which represents more than 80% of the

total cost of the delivery activity) and the output Yi is defined as the volume of delivered

mail (in number of objects). See Cazals et al. (2002) for more details. Here, we only use the

n = 4000 observations with the smallest inputs Xi to illustrate the extremile-based estimator

ξ̂γy(n)(y) of the efficient frontier ϕ(y). The important question of how to pick out the order

γy(n) in practice can be addressed as follows.

We know that the condition of Theorem 2 provides an upper bound on the value of

γy(n). Remember also that in most situations described so far in the econometric literature

on frontier analysis, the joint density of (Y, X) is supposed to be strictly positive at the

frontier. In this case, the upper bound for γy(n) is given by

γ(C) = 1 −
{

1 − 1

Ny

} (1+q) log(2)
(2+q) log(Cn)

,

where the number of outputs q equals here 1 and the positive constant C should be selected

so that log(Cn) 6= 0, i.e., C > 1/n. The practical question now is how to choose C > 0.00025

in such a way that ξ̂γ(C)
provides a reasonable estimate of the frontier function ϕ. This can

be achieved by looking to Figure 1 which indicates how the percentage of points below the

curve ξ̂γ(C)
decreases with the constant C. The idea is to choose values of C for which the

frontier estimator ξ̂γ(C)
is sensible to the magnitude of desirable extreme post offices and, at

the same time, is robust to outliers (or at least not being drastically influenced by outliers

as is the case for the FDH estimator).

The evolution of the percentage in Figure 1 has clearly an “L” structure. This devia-

tion should appear whatever the analyzed data set due to both sensitivity and resistance

properties of extremiles. The percentage falls rapidly until the circle, i.e., for C ≤ 0.000257.

12



2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

x 10
−4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Values of C

%
 o

f o
bs

er
va

tio
ns

 b
el

ow
 fr

on
tie

rs

Figure 1: Evolution of the percentage of observations below the frontier ξ̂γ(C)
with C.

This means that the observations below the frontiers {ξ̂γ(C)
: C < 0.000257} are not really

extreme and could be interior observations to the cloud of data points. So it is not judicious

to select C < 0.000257. In contrast, the percentage becomes very stable from the triangle on

(i.e. C ≥ 0.000276), where precisely 1.4% of the 4000 observations are left out. This means

that these few 1.4% observations are really very extreme in the input-direction and could be

outlying or perturbed by noise. Although the frontier ξ̂γ(C)
, for C ≥ 0.000276, is resistant to

these suspicious extremes, it can be severely attracted by them due to its sensitivity. This

suggests to choose C < 0.000276. Thus, our strategy leads to the choice of a constant C

ranging over the interval [0.000257, 0.000276) where the decrease of the percentage is rather

moderate.

The two extreme (lower and upper) choices of the frontier estimator ξ̂γ(C)
are graphed in

Figure 2, where the solid line corresponds to the lower bound Cℓ = 0.000257 and the dotted

line corresponds to the upper bound Cu = 0.000276. The frontier estimator ξ̂γ(C)
in dashed

line corresponds to the medium value Cm = (Cℓ + Cu)/2. The obtained curves are quite

satisfactory.

Let us now test this strategy on a data set of 100 observations simulated following the
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Figure 2: ξ̂γ(Cℓ)
in solid line, ξ̂γ(Cu)

in dotted line and ξ̂γ(Cm)
in dashed line.

model

Y = exp (−5 + 10X)/(1 + exp (−5 + 10X)) exp (−U),

where X is uniform on (0, 1) and U is exponential with mean 1/3. Five outliers indicated

as “*” in Figure 3, right-hand side, are added to the cloud of data points (here n = 105).

The picture on the left-hand side of Figure 3 provides the evolution of the percentage of

observations below the frontier ξ̂γ(C)
with C. This percentage falls rapidly until the circle

(i.e., for C ≤ 0.0122) and then becomes very stable suggesting thus the value 0.0122 for

the constant C. The resulting estimator ξ̂γ(.0122)
and the true frontier ϕ are superimposed in

Figure 3, right-hand side. The frontier estimator ξ̂γ(.0122)
(in solid line) has a nice behavior:

it is somewhat affected by the five outliers, but remains very resistant.

We did the same exercise without the five outliers. The results are displayed in Figure 4.

The percentage of observations below the extremile-based frontiers becomes stable from the

circle on (i.e., for C ≥ 0.0167) and so it is enough to choose the value 0.0167 for the constant

C. One can also select C in the interval [Cℓ = 0.0167, Cu = 0.0244) which corresponds to the

range of points between the circle and the triangle. As expected, in absence of outliers, both

estimators ξ̂γ(Cℓ)
(solid line) and ξ̂γ(Cu)

(dashed line) are very close from the FDH frontier

(i.e., the largest step and nondecreasing curve envelopping below all observations). However,
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Figure 3: Left-hand side, the percentage curve. Right-hand side, the frontiers ϕ and ξ̂γ(.0122)

superimposed (in dotted and solid lines respectively). Five outliers included as “*”.
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Figure 4: As above without outliers. Here ξ̂γ(Cℓ)
in solid line and ξ̂γ(Cu)

in dashed line.

as desired, here also ξ̂γ(Cℓ)
and ξ̂γ(Cu)

capture the shape of the efficient boundary of the cloud

of data points without envelopping the most extreme observations.

5 Conclusions

Instead of estimating the full cost frontier we rather propose in this paper to estimate a

boundary well inside the production set Ψ but near its optimal frontier by using extremiles

of the same non-standard conditional distribution considered by Cazals et al. (2002) and

Aragon et al. (2005). The extremile cost function of order γ ∈ (0, 1) is proportional to a
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specific conditional probability-weighted moment. It defines a natural concept of a partial

cost frontier instead of the m-trimmed frontier suggested by Cazals et al. (2002). The

concept is attractive because the “trimming” is continuous in terms of the transformed

index s(γ), where s(γ) ∈ [1,∞), whereas m ∈ {1, 2, . . .}. In the particular case where s(γ)

is discrete (i.e. s(γ) = 1, 2, . . .), the corresponding γth extremile-based function coincides

with the expected minimum input function of order m = s(γ). So the family of order-m

frontiers of Cazals et al. (2002) is a subclass of the order-γ extremile frontiers. As a matter

of fact, the discrete order m being replaced with the continuous index s(γ), the general class

of extremile-based cost functions can be viewed as a fractional variant of expected minimum

input functions. This new class benefits from a similar “benchmark” interpretation as in

the discrete case. Moreover, the continuous trimming in terms of the new order γ allows the

partial γth extremile boundaries to cover the attainable set Ψ entirely giving thus a clear

information of the production performance, which is not the case for the discrete order-m

frontiers.

The class of extremile-type cost functions characterizes the production process in much

the same way the quantile-type cost functions introduced by Aragon et al. (2005) do. More-

over, while the γth quantile-type function can be expressed as the median of a specific power

of the underlying conditional distribution, the γth extremile-type function is given by its

expectation. Being determined solely by the tail probability γ, the γth quantile-based cost

frontier may be unaffected by desirable extreme observations, whereas the γth extremile-

based cost frontier is always sensible to the magnitude of extremes for any order γ. In

contrast, when the γ-quantile frontier becomes very non-robust (breaks down) at γ ↓ 0,

the γ-extremile frontier being an L-functional, is more resistant to outliers. So the class

of extremile-based cost frontiers steers an advantageous middle course between the extreme

behaviors of the quantile-based cost frontiers. We also show in the standard situation in

econometrics where the joint density of (Y, X) has a jump at the frontier that the γth quan-

tile frontier is asymptotically closer (as γ ↓ 0) to the true full cost frontier than is the γth

extremile frontier when q ≤ 2, but the latter is more spread than the former when q > 2.

The new concept of a γth extremile-based cost frontier is motivated via several angles,

which reveals its specific merits and strength. Its various equivalent explicit formulations

result in several estimators which satisfy similar asymptotic properties as the nonparametric

expected minimum input and quantile-type frontiers. Nevertheless, the underlying condi-

tional distribution function even does not need to be continuous, which is not the case for

the empirical conditional quantiles whose asymptotic normality requires at least the differ-

entiability of this distribution function with a strictly positive derivative at the conditional

quantile. On the other hand, by choosing the order γ as an appropriate function of the
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sample size n, we derive an estimator of the true full cost frontier having the same limit

distribution as the conventional FDH estimator. Combining the sensitivity and resistance

properties of this frontier estimator with the theoretical conditions on the order γ = γ(n), we

show how to pick out in practice reasonable values of γ(n). Our empirical rule is illustrated

through a simulated and a real data set providing remarkable results. It should be clear

that, unlike the approaches of Cazals et al. (2002) and Daouia and Simar (2007), the con-

ditional extremile approach is not extended here to the full multivariate case (multi-inputs

and multi-outputs). This problem is worth investigating.
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