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Abstract

This paper measures dynamic technical and all@catefficiency of a sample of horticultural
firms over the period 1997-1999. Dynamic techniicefficiency is measured using a directional
distance function and assumes that firms face g costs in adjusting capital. Allocative
inefficiency is determined residually using the ldudetween the dynamic directional distance
function and the long-term cost function. Resulggest that substantial long-term cost savings
(44%) can be obtained. Technical inefficiency i ldrgest component of cost inefficiency
allowing for an average improvement of 33%. Therage allocative inefficiency is 0.10. A
bootstrap method is used to regress allocativaestthical inefficiency as well as the cost
inefficiency of individual inputs on socio-econonwariables. Modernity of structures has a
negative impact on technical inefficiency. Modeyrof machinery and installations has a
significant impact on the inefficiency in the udaralividual inputs. Location in the
glasshouse district, family labour, operator’'s agd modernity of structures have significant

impacts on the inefficiency of individual inputs.
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1. Introduction

The economics literature counts numerous studias dhalysed technical and allocative
efficiency of a sample of firms. In the literatune nonparametric efficiency analysis, only
very few authors have acknowledged the dynamicreaifiseveral factors of production like
labour and capital Doing so is essential when assessing the acttiahtial for improving the
performance in the short and long run. Many pastiss in the static context have used a
two-stage approach, where overall technical orcatige efficiency is estimated in the first
stage, and then the efficiency estimates are regglesn a set of explanatory (socio-economic)
variables. Simar and Wilson (2007) have proposedastrap method that yields consistent
parameter estimates in the second stage regresgsiditularly since the efficiency estimates
are left truncated and are correlated in a comiglccavay.

The focus of past studies on the explanation ofralvéechnical and allocative
efficiency ignores the potential heterogeneity ime tefficiency of individual inputs.
Heterogeneity may be substantial as demonstrateduale Lansink and Ondersteijn (1996)
for a sample of Dutch glasshouse firms. Chamberal.e(1998), developed a directional
distance function and show that its applicatiorovali for disaggregating overall cost
inefficiency into the contributions of individuahputs. The directional distance function has
been extended to the dynamic case by Silva and Qangnk (2010). Application of the two
stage approach to explain cost inefficiency of widiial inputs allows for a more in-depth
assessment of the driving factors of dynamic iogfficy.

The objective of this paper is to empirically intrgate the driving factors behind
dynamic overall technical and allocative ineffi@gnand dynamic cost inefficiency of
individual inputs. The empirical application focasen panel data of Dutch vegetables
producers over the period 1997-1999. A robust sibglotstrap approach developed by Simar
and Wilson (2007) is used to regress socio-econorar@bles on overall technical and
allocative inefficiency and cost inefficiency ofdinidual inputs.

The remainder of this paper is structured as faloWhe next section elaborates the
concept of dynamic technical and allocative inéfficy and shows how measures of cost

inefficiency can be obtained for each input. Thisfollowed by the specification of the

2 Sengupta (1995) uses the first-order conditiordyafimic optimisation to generate a dynamic Data
Envelopment Analysis (DEA) model. In the contektt® adjustment-cost theory of investment, Nenzotd
Goto (1999,2003) develop dynamic efficiency measuisng the stock of capital at the end of thegakais an
output and incorporate it in the conventional DEAdal. Silva and Stefanou (2003) develop a nonpetiaen
revealed preference approach to the dynamic thefquyoduction in the context of an adjustment-cost
technology and intertemporal cost minimization.indshis theoretical framework, Silva and Stefa@007)
propose lower and upper bounds on input-based dgnamasures of technical, allocative and cost iefficy.



empirical DEA models and the presentation of thi.ddext, results are discussed and the

paper concludes with comments.
2. Dynamic Efficiency M easur ement

At any base period D[O,+oo), firms are assumed to minimize the discounted fidvcosts

over time:
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where wOO", is a vector of rental prices of the variable inpeictor x(s)J0O!) and

cO0O°f, is a vector of rental prices of the capital steektor K(s) OO, ; 1(t)D0OF is the

vector of gross investments. The vectarandc represent current market prices (i.e s att)

that the firm expects to persist indefinitely. Thésthe static expectations hypothesis. The

dynamic directional distance functiod,(([) )is defined as :
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and is continuous, concave, increasingirecreasing in andy and non-decreasing i.
Moreover, the dynamic directional distance functieatisfies the translation property
(Chambers, 1996; Silva and Oude Lansink, 2010).

The discount rate is> 0 and the is a diagonaF x F matrix of depreciation rates. The firm
is assumed to have the same discount rate anaitie depreciation matrix in all base periods
to discount future costs and depreciate the cagltaks. Given this assumptianandé can

be suppressed as arguments of the optimal valwtidan/\(.).

Following Chambers (1996) and Silva and Oude L&ngR010), overall inefficiency is
defined as:

(2) OE\ = \N,X+C,K +val'(g)'(—|V_Vd(<))'g rW(y, K'W,C) = Iji (y! KIX’ l ' gx' gl ) + AEI '




with AE; > 0. Note that dynamic cost inefficiency (and theayic directional input distance
function) depends on the directional vector setb¢te,, g, ).

A directional distance function for dynamic fac@an be derived as a special case of
the dynamic directional input distance function:

(3) Di (y, K, %, 1;0,,g,)=max B : &I+ g XV (y:K)),

with g, =0, and Di (v, K,x,1;0,,9,)= 0. Properties ofIZﬁ)iI (.)are derived from the

properties of f)i (.) (e.g., strict concavity if, increasing inx). The directional distance

function in (3) provides a measure of technicaffioency of dynamic factors of production.

The shadow cost inefficiency of dynamic factors barexpressed as
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whereAE; > 0 is the allocative inefficiency of dynamic factohe shadow cost inefficiency
of dynamic factors is the difference between tredsiv value of actual gross investments and
the shadow value of optimal gross investments, abred by the shadow value of the
direction vectoy, .

Equation in (4) can be further decomposed intoctir@ributions of individual quasi-

fixed factors of production.
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whereOE, is the shadow cost inefficiency of tif& dynamic factor. This decomposition
allows identifying the dynamic factors that are mwevested OF, <O0) or under-invested
(OE,, >0). The shadow cost inefficiency of tifedynamic factors can be all zero or all

negative. HoweverOE, cannot be all positive due to the properties oftéwanology.



The directional variable input distance functionaigarticular case of the dynamic

distance function and is given by

(6) Dy (v, K, %, 1;0,,0: )= max{ B, :&k- 5,9, .1 OV (y :K)

with g, =0 and Bix(y, K,x1;9,,0- )= 0. The properties of)ix(.) are inherited from the

properties of the dynamic directional input dis&rfignction. Those properties are similar to
the properties of the directional input distancection developed by Chambers, Chung and

Fare (1996) including two additional propertiﬁ;(.) is decreasing ih and nondecreasing in
K.
Duality betweenlﬁix(.) and the variable cost functio@(y,K,I,w) allows for expressing

overall variable cost inefficiency as

_Wx=C(y, K ,w _
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where Bix(y, K, X 1;0,,0-) is the technical inefficiency measure of variaipiguts andAEy
> 0 is the allocative inefficiency of variable inputThe cost inefficiency of variable inputs is
the normalized difference between actual varialdstsc and minimum variable costs. The

normalization is the market value of the directiactor g, .

The cost inefficiency of variable inputs in (7) da@decomposed as follows:

N
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where C(y,K,l,w) =wx and OE, is the cost inefficiency of tha™ variable input. The
decomposition in (8) allows identifying variableists that are either overusedg, >0) or
underused QE, < R The cost inefficiency of thil inputs can be all zero or all positive.

However,OE, cannot be all negative due to the properties ofebknology.



3. Empirical Models
Consider a data serif%éyj XL K w ¢ ) Cj= l,...,J} representing the observed behavior

of each firmj at each timé and including information ow andc for each observatiopat
each timd. The dynamic directional input distance functioeasure of technical inefficiency
for all factors of production can be generatedefach observationas follows:
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wherey is the (x1) intensity vectorJ is the total number of firms in the sample. The

direction vector adopted in the empirical applicatiis (g,,9,)=(x 1), i.e. the actual

guantities of variable inputs and investments.
The flow version of the current value of the optimelue function for each

observation is generated as:
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where W, =W, (y',K',w',c' ) is the vector of shadow values (or marginal coft o
adjustment) of capital for observationi=1,...,J. The problem in (10) can be solved by
expressing the Kuhn-Tucker conditions of (10) inreear Complementarity Problem form as
in Silva and Stefanou (2007), or by solving theldfaproblem (10) as in Silva and Oude
Lansink (2010).

The solution to (10) provides the optimal varialsiput and dynamic factor vectors,
the flow version of current value of the optimalueafunction and the value of the underlying
shadow values of the quasi-fixed factors. Usirgséhvalues, the dynamic cost inefficiency
measure in (8) can be generated; the allocativi@aieacy in (8) is calculated residually.

The technical inefficiency measure fdynamic factorsn (8) can be generated for

each observation as follows:
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The directional vector is defined &g,,9,) = (0 .,1).

Given the technical inefficiency measure for thealyic factors in (11), the shadow
value of capital and the optimal level of the dymafactors from solving (10), the allocative
inefficiency measure can be calculated residuadingi (4). The shadow cost inefficiency of
each dynamic factor can be computed using (10).

The technical inefficiency measure wériable inputsin (7) for observation is

generated as follows:
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where I' =1" . The optimal level of dynamic factors for each ebation is obtained from

solving (10). The direction vector adopted &, 9,) = (x0: ).

The minimum variable cost for each firm can be gatesl as
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The cost inefficiency of each variable input carchkulated using (8).

4. Data
Panel data on specialised vegetables firms covénmgeriod 1997-1999 are obtained from a
stratified sample of Dutch glasshouse firms keepiogpunts on behalf of the LEI accounting
system. The data set contains 265 observation8dfirins, so the panel is unbalanced.

One output and six inputs (energy, materials, isesy structures, installations and
labour) are distinguished. Output mainly consi$tgegetables, potted plants, fruits and flowers.

Energy consists of gas, oil and electricity, aslvesl heat deliveries by electricity plants.



Materials consist of seeds and planting materjaésticides, fertilisers and other materials.
Services are those provided by contract workerdrana storage and delivery of outputs.

Quasi-fixed inputs are structures (buildings, gtasises, land and paving) and
installations. Capital in structures and instadiasi is measured at constant 1991 prices and is
valued in replacement cokts Labour is a fixed input and is measured iniguabrrected man-
years, including family as well as hired laboubbur is assumed to be a fixed input because a
large share of total labour consists of family labo Flexibility of hired labour is further
restricted by the presence of permanent contrattsbg the fact that hiring additional labour
involves search costs for the firm operator. Thelity correction of labour is performed by
the LEI and is necessary to aggregate labour friole+laodied adults with labour supplied by
young people (e.g., young family members) or patibabled workers.

Tornqvist price indexes are calculated for outpuatriable inputs and quasi-fixed
inputs with prices obtained from the LEI/CBS. Tgrece indexes vary over the years but not
over the firms, implying differences in the comp@si of inputs and output or quality diffe-
rences are reflected in the quantity (Cox and Werdgnt 1986). Implicit quantity indexes are
generated as the ratio of value to the price indemore detailed description of the data can
be found in Table 1.

Dynamic technical and allocative inefficiency aodst inefficiency for individual
inputs are regressed in a second stage on socim®o variables. The variables reflect
characteristics of the firm (modernity machinery atructures, share of family labor, size)
and firm operators (age) and environmental conastidocation in the glasshouse district
which is a region characterised by an extremel ldgnsity of glasshouses). Descriptive

statistics of the socio-economic variables are fsad in Table 1.



Table 1: Variables and Descriptive Statistics

Variable Dimension Mean Standard Deviation
Quantities
Output 1000 Guilders 1124.20 984.60
Energy 1000 Guilders 132.79 121.99
Materials 1000 Guilders 124.82 99.91
Services 1000 Guilders 85.59 73.56
Structures 1000 Guilders 833.38 697.18
Installations 1000 Guilders 229.39 243.31
Labor Man years 6.62 5.17
Investments Structures 1000 Guilders 46.70 156.43
Investments Installations 1000 Guilders 41.34 128.90
Prices
Energy 1991=1 1.14 0.03
Materials 1991=1 1.05 0.02
Services 1991=1 0.94 0.02
Structures 1991=1 1.51 0.13
Installations 1991=1 1.08 0.03
Socio-economic variables
Glasshouse district =1 for glasshouse district 0,57 0,50
Family Labour Share family labour 0,50 0,25
Age Operator years 46,14 10,38
Modernity Structures book value/new value 0,56 0,21
Modernity Machinery book value/new value 0,23 0,14
Size Standardised firm units 0,67 0,53
5. Results

Inefficiency scores are generated for each hotticalfirm in each year over the 1997-
1999 period. Table 2 reports average values of technical, allee and cost inefficiency of
variable and dynamic factors of production for egear and for the whole time period.

Table 2 shows that the average cost inefficienogr dlie 1997-1999 period is 0.44
implying that substantial cost savings (44%) canobtained. Technical inefficiency is the
largest component of cost inefficiency for eachrysad for the whole time period, allowing

for an improvement between 39% (1997) and 26% (L999he average allocative
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inefficiency of 0.10 suggests that Dutch vegetalitess can reduce costs by 10% through a
better mix of variable and dynamic factors in tight of prevailing prices.

Table 2: Technical, Allocative and Cost Ineffiadgrof All Factors of Production

Period TE AE OE
1997 0.39 0.09 0.48
1998 0.34 0.11 0.45
1999 0.26 0.13 0.39
11997-1999 033 o010 0.44

Table 3 presents measures of cost inefficiencyefmh variable and dynamic factor
input separately. The results in Table 3 suggesttls, on average, overuse of all variable
inputs in the whole period 1997-1999. Overuse fargy and materials is particularly high as
costs of energy and materials could be reducedverage, by 32% and 26%, respectively.
Cost inefficiency is lowest for services; for 199@re is a small underuse rather than overuse
of this variable input. The relatively large caseéfficiency for energy may be due to the fact
that firms use a large variety of heating technigl®egA group of firms uses more advanced
and efficient technologies such as co-generat@at, $torage and heat delivery by electricity
plants, whereas a majority of firms still uses itiadal heating technologies based on a
combustion heater (Oude Lansink and Silva 2003 f@sults on the cost inefficiency of
dynamic factors of production suggest that firmsthee over-invest nor under-invest in
structures and installations in 1997 and 1998.tReryear 1999, the values of -0.40 and -0.02
indicate a large overinvestment in structures ansimall overinvestment in installations.
Inspection of the data reveals that average invasignin structures and installations are
indeed much higher in 1999 than in the two preagdjears: Therefore, firms have
substantially increased their investment level 894 compared to the previous years.

However, they have been over-investing in bothcstines and installations.
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Table 3: Cost Inefficiency of Variable and Dynark&ctors of Production

Period 1997 1998 1999 1997-1999
Energy 0.33 0.33 0.31 0.32
Materials 0.26 0.25 0.27 0.26
Services 0.07 0.03 -0.02 0.03
Structures 0.01 -0.00 -0.40 -0.12
Installations 0.01 0.00 -0.02 -0.00

Variation in dynamic technical and allocative ing#ncy are regressed on several exogenous
variables capturing the effects of household anchagdgaphic characteristics, location and
investment in physical capital (Table 4). Techhi@nd allocative inefficiency are
left truncated and are correlated between obsenstn a complicated way. A single bootstrap
method (Simar and Wilson, 2007) has been addptetbtain consistent parameter estimates.
Two of the seven parameters are found to be statigtsignificant at the critical 5% level in the
technical inefficiency and the allocative ineffieey regression. Modernity of structure
significantly reduces technical inefficiency whishggests that firms can improve their technical
performance by investing in the construction okgloouses. Examples of such new glasshouse
technologies are energy screens and heat storage. siynificantly increases allocative
inefficiency, which suggests that large firms aessl successful in achieving an optimal
allocation of variable and dynamic factor inputgigen prices.
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Table 4: Results of second stage regression tealramcl allocative inefficiency

Variable Mean Std. Err. 95% Conf. Interval

Technical Inefficiency

Intercept 0,570 0,049 0,494 0,653
Glasshouse district -0,006 0,018 -0,034 0,024
Family Labour -0,002 0,046  -0,080 0,075
Age Operator -0,001 0,001 -0,002 0,001
Modernity Structure -0,279 0,057 -0,376  -0,190
Modernity Machinery -0,037 0,079  -0,165 0,098
Size -0,005 0,022  -0,040 0,031
“Allocative Inefficiency
Intercept 0,043 0,086 0,106 0,182
Glasshouse district 0,015 0,030 -0,035 0,063
Family Labour 0,086 0,079 -0,041 0,218
Age Operator -0,002 0,002 -0,004 0,001
Modernity Structures -0,112 0,082 -0,254 0,005
Modernity Machinery -0,172 0,132 -0,402 0,039
Size 0,131 0,038 0,072 0,195

*) Significant at 5%

Results in Table 5 provide more detailed insights the drivers of dynamic inefficiency of
individual inputs. Socio-economic factors of Talllaave been regressed on variation in cost
inefficiency of individual variable and dynamic facinputs. Ordinary Least Squares is
appropriate here since cost inefficiency is noa¢ated, i.e. it can take positive and negative
values. The goodness of fit of the regression ucsires, and to a lesser extent materials are
much higher than the goodness of fit of the oth&lso, particularly the structures equation
outperforms the others in terms of the numbergrfificant parameters: five out of seven
parameters are significant at the critical 5% le8#&luctures are a major cost item and the
results suggest that their cost inefficiency ar# @eplained by the selected socio-economic
variables.

Location in the glasshouse district increases ioes$ticiency of structures and
services, suggesting that firms located in thesglagse district are less technically and

allocatively efficient in using these inputs. Firmghe glasshouse district tend to overuse
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these inputs, which may be a result of better actesr higher costs of these inputs in this
region.

The share of family labour in total labor decreabescost inefficiency implying that
firms that are predominantly operated by familydabare more inclined towards minimizing
costs of energy and services.

Age of the firm operator increases cost inefficientstructures and decreases cost
inefficiency of energy. These results suggest dhadgr firm operators are more successful in
reducing costs of energy, possibly resulting inernde. Higher cost inefficiency for older
firm operators suggests that older operators aetexhnically and/or allocatively efficient in
using structures.

Modernity of structures has a very significant riegaimpact on the cost inefficiency
of structures. This result suggests that investingew technologies improves the allocative
and/or technical efficiency of the use of strucsuiavestments offer an opportunity to firm
operators to bring the quantity of capital investedtructures in line with its long-term
efficient quantity (allocative efficiency) and tmprove the technical performance
characteristics of the glasshouse (improving texdirgfficiency).

Modernity of machinery decreases cost inefficieatynachinery, a result that can be
explained along the same lines as the impact ofenmityy of structures on cost inefficiency of
structures. Interestingly, modernity of machinelsoadecreases the cost inefficiency of
structures and energy. These results suggestgtesand energy are used more efficiently if
the technology of machinery is improved. Most lik#lis effect is caused by the fact that
machinery and equipment predominantly consisteatihg installations. Clearly new heating
systems decrease the cost ineffiency of energy;niay also decrease the inefficiency of
structures, particularly where it concerns the gyneaving part of structures (e.g. energy

screens).
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Table 5: Second stage regression of cost inefiigierh dynamic and variable inputs

Coefficient Std, Err, t
Structures (B=0,59)
Intercept 0,844** 0,449 1,880
Glasshouse district 0,733 0,160 4,590
Family Labour 0,635 0,428 1,480
Age Operator 0,017 0,008 2,060
Modernity Structure -7.177 0,380 -18,900
Modernity Machinery 5,696 0,678 8,400
Size 0,296 0,200 1,480
Machinery (R=0,04)
Intercept -0,137** 0,074 -1,840
Glasshouse district 0,010 0,026 0,370
Family Labour 0,069 0,071 0,970
Age Operator 0,001 0,001 0,920
Modernity Structure -0,052 0,063 -0,820
Modernity Machinery 0,316 0,112 2,820
Size -0,012 0,033 -0,360
Energy (R=0,05)
Intercept 0,493 0,045 10,900
Glasshouse district -0,020 0,016 -1,210
Family Labour -0,146 0,043 -3,390
Age Operator -0,002** 0,001 -1,860
Modernity Structure -0,012 0,038 -0,320
Modernity Machinery -0,187 0,068 -2,740
Size 0,055 0,020 2,730
Materials (R=0,23)
Intercept 0,241 0,035 6,810
Glasshouse district 0,013 0,013 1,030
Family Labour 0,001 0,034 0,040
Age Operator 0,000 0,001 -0,180
Modernity Structure 0,005 0,030 0,160
Modernity Machinery 0,162 0,053 3,030
Size -0,043 0,016 -2,720
Services (R=0,09)
Intercept -0,024 0,034 -0,690
Glasshouse district 0,023** 0,012 1,850
Family Labour 0,137 0,033 4,030
Age Operator 0,000 0,001 -0,110
Modernity Structure 0,000 0,029 -0,010
Modernity Machinery 0,032 0,052 0,620
Size -0,043 0,015 -2,830
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Conclusions

This paper measures dynamic technical and allecatefficiency of a sample of horticultural
firms over the period 1997-1999. Dynamic technigefficiency is measured using a directional
distance function; cost inefficiency is estimatsthg a dynamic cost function, assuming that
firms face adjustment costs in adjusting capi@obst inefficiency is decomposed into the
contributions of variable and dynamic factors afdarction.

Results suggest that substantial long-term cosbhgav44%) can be obtained. Technical
inefficiency is the largest component of cost im@#hcy suggesting that firms can reduce
costs by 33% through improvements of dynamic texdinnefficiency. The average dynamic
allocative inefficiency is 0.10.

A bootstrap method is used to regress dynamicatile and technical inefficiency, and cost
inefficiency of individual dynamic and variable s on socio-economic variables.
Modernity of structures has a negative impact @naverall technical inefficiency. Modernity
of machinery and installations has a significarpact on the inefficiency in the use of
individual inputs. Location in the glasshouse dtistthe share of family labour in total labor,
age of the firm operator and modernity of struciurave significant impacts on the efficiency

of individual variable and dynamic factor inputs.
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