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Abstract 

This paper measures dynamic technical and allocative inefficiency of a sample of horticultural 

firms over the period 1997-1999. Dynamic technical inefficiency is measured using a directional 

distance function and assumes that firms face adjustment costs in adjusting capital. Allocative 

inefficiency is determined residually using the duality between the dynamic directional distance 

function and the long-term cost function. Results suggest that substantial long-term cost savings 

(44%) can be obtained. Technical inefficiency is the largest component of cost inefficiency 

allowing for an average improvement of 33%. The average allocative inefficiency is 0.10.  A 

bootstrap method is used to regress allocative and technical inefficiency as well as the cost 

inefficiency of individual inputs on socio-economic variables. Modernity of structures has a 

negative impact on technical inefficiency. Modernity of machinery and installations has a 

significant impact on the inefficiency in the use of individual inputs. Location in the 

glasshouse district, family labour, operator’s age and modernity of structures have significant 

impacts on the inefficiency of individual inputs. 
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1. Introduction 

The economics literature counts numerous studies that analysed technical and allocative 

efficiency of a sample of firms. In the literature on nonparametric efficiency analysis, only 

very few authors have acknowledged the dynamic nature of several factors of production like 

labour and capital2. Doing so is essential when assessing the actual potential for improving the 

performance in the short and long run. Many past studies in the static context have used a 

two-stage approach, where overall technical or allocative efficiency is estimated in the first 

stage, and then the efficiency estimates are regressed on a set of explanatory (socio-economic) 

variables. Simar and Wilson (2007) have proposed a bootstrap method that yields consistent 

parameter estimates in the second stage regression, particularly since the efficiency estimates 

are left truncated and are correlated in a complicated way. 

The focus of past studies on the explanation of overall technical and allocative 

efficiency ignores the potential heterogeneity in the efficiency of individual inputs. 

Heterogeneity may be substantial as demonstrated by Oude Lansink and Ondersteijn (1996) 

for a sample of Dutch glasshouse firms. Chambers et al. (1998), developed a directional  

distance function and show that its application allows for disaggregating overall cost 

inefficiency into the contributions of individual inputs. The directional distance function has 

been extended to the dynamic case by Silva and Oude Lansink (2010). Application of the two 

stage approach to explain cost inefficiency of individual inputs allows for a more in-depth 

assessment of the driving factors of dynamic inefficiency.  

The objective of this paper is to empirically investigate the driving factors behind 

dynamic overall technical and allocative inefficiency and dynamic cost inefficiency of 

individual inputs. The empirical application focuses on panel data of Dutch vegetables 

producers over the period 1997-1999. A robust single bootstrap approach developed by Simar 

and Wilson (2007) is used to regress socio-economic variables on overall technical and 

allocative inefficiency and cost inefficiency of individual inputs.  

The remainder of this paper is structured as follows. The next section elaborates the 

concept of dynamic technical and allocative inefficiency and shows how measures of cost 

inefficiency can be obtained for each input. This is followed by the specification of the 

                                                 
2 Sengupta (1995) uses the first-order conditions of dynamic optimisation to generate a dynamic Data 
Envelopment Analysis (DEA) model.  In the context of the adjustment-cost theory of investment, Nemoto and 
Goto (1999,2003) develop dynamic efficiency measures using the stock of capital at the end of the period as an 
output and incorporate it in the conventional DEA model.  Silva and Stefanou (2003) develop a nonparametric 
revealed preference approach to the dynamic theory of production in the context of an adjustment-cost 
technology and intertemporal cost minimization.  Using this theoretical framework, Silva and Stefanou (2007) 
propose lower and upper bounds on input-based dynamic measures of technical, allocative and cost efficiency. 
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empirical DEA models and the presentation of the data. Next, results are discussed and the 

paper concludes with comments. 

 

2. Dynamic Efficiency Measurement 

 

At any base period [ )+∞∈ ,0t , firms are assumed to minimize the discounted flow of costs 

over time: 
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where Nw ++ℜ∈  is a vector of rental prices of the variable input vector Nsx +ℜ∈)(  and 

Fc ++ℜ∈  is a vector of rental prices of the capital stock vector FsK ++ℜ∈)( ; FtI +ℜ∈)(  is the 

vector of gross investments. The vectors w and c represent current market prices (i.e., at s = t) 

that the firm expects to persist indefinitely. This is the static expectations hypothesis. The 

dynamic directional distance function ( )(⋅iD
r

 )is defined as : 
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and is continuous, concave, increasing in x, decreasing in I and y and non-decreasing in K. 

Moreover, the dynamic directional distance function satisfies the translation property 

(Chambers, 1996; Silva and Oude Lansink, 2010).  

The discount rate is r > 0 and the δ is a diagonal F × F matrix of depreciation rates. The firm 

is assumed to have the same discount rate and the same depreciation matrix in all base periods 

to discount future costs and depreciate the capital stocks. Given this assumption, r and δ can 

be suppressed as arguments of the optimal value function W(.).  

Following Chambers (1996) and Silva and Oude Lansink (2010), overall inefficiency is 

defined as: 
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with AEi ≥ 0. Note that dynamic cost inefficiency (and the dynamic directional input distance 

function) depends on the directional vector selected ),( Ix gg . 

 A directional distance function for dynamic factors can be derived as a special case of 

the dynamic directional input distance function: 

 

(3)  { }( , , , ;0 , ) max : ( , ) ( : ))iI N I I I ID y K x I g x I g V y Kβ β= + ∈
ur

,        

 

with 0x Ng =  and ( , , , ;0 , ) 0iI N ID y K x I g ≥
ur

.  Properties of (.)iID
r

are derived from the 

properties of (.)iD
r

(e.g., strict concavity in I, increasing in x).  The directional distance 

function in (3) provides a measure of technical inefficiency of dynamic factors of production.  

The shadow cost inefficiency of dynamic factors can be expressed as 
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where AEiI ≥ 0 is the allocative inefficiency of dynamic factors. The shadow cost inefficiency 

of dynamic factors is the difference between the shadow value of actual gross investments and 

the shadow value of optimal gross investments, normalized by the shadow value of the 

direction vector Ig . 

Equation in (4) can be further decomposed into the contributions of individual quasi-

fixed factors of production.  
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where
fiIOE  is the shadow cost inefficiency of the fth dynamic factor.  This decomposition 

allows identifying the dynamic factors that are over-invested ( 0<
fiIOE ) or under-invested 

( 0>
fiIOE ).  The shadow cost inefficiency of the F dynamic factors can be all zero or all 

negative.  However, 
fiIOE cannot be all positive due to the properties of the technology. 
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The directional variable input distance function is a particular case of the dynamic 

distance function and is given by 

(6)  { }( , , , ; ,0 ) max :( , ) ( : )ix x F x x xD y K x I g x g I V y Kβ β= − ∈
r

         

 

with 0I Fg =  and ( , , , ; ,0 ) 0ix x FD y K x I g ≥
ur

.  The properties of (.)ixD
r

 are inherited from the 

properties of the dynamic directional input distance function. Those properties are similar to 

the properties of the directional input distance function developed by Chambers, Chung and 

Färe (1996) including two additional properties: (.)ixD
r

is decreasing in I and nondecreasing in 

K. 

Duality between (.)ixD
r

 and the variable cost function ),,,( wIKyC  allows for expressing 

overall variable cost inefficiency as 
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where ( , , , ; ,0 )ix x FD y K x I g
ur

 is the technical inefficiency measure of variable inputs and AEix 

≥ 0 is the allocative inefficiency of variable inputs.  The cost inefficiency of variable inputs is 

the normalized difference between actual variable costs and minimum variable costs. The 

normalization is the market value of the direction vector xg . 

The cost inefficiency of variable inputs in (7) can be decomposed as follows: 
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where *´),,,( xwwIKyC =  and 
nixOE is the cost inefficiency of the nth variable input.  The 

decomposition in (8) allows identifying variable inputs that are either overused ( 0>
nixOE ) or 

underused ( 0<
nixOE ).  The cost inefficiency of the N inputs can be all zero or all positive.  

However, 
nixOE cannot be all negative due to the properties of the technology.  
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3. Empirical Models  

Consider a data series ( ){ }, , , , , ; 1,...,j j j j j jy x I K w c j J=  representing the observed behavior 

of each firm j at each time t and including information on w and c for each observation j at 

each time t. The dynamic directional input distance function measure of technical inefficiency 

for all factors of production can be generated for each observation i as follows: 
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where γ is the (J×1) intensity vector, J is the total number of firms in the sample.  The 

direction vector adopted in the empirical application is ( , ) ( , )x Ig g x I= , i.e. the actual 

quantities of variable inputs and investments. 

The flow version of the current value of the optimal value function for each 

observation is generated as: 
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where ),,,( iiii
K

i
K cwKyWW =  is the vector of shadow values (or marginal cost of 

adjustment) of capital for observation i, i=1,…,J.  The problem in (10) can be solved by 

expressing the Kuhn-Tucker conditions of (10) in a Linear Complementarity Problem form as 

in Silva and Stefanou (2007), or by solving the dual of problem (10) as in Silva and Oude 

Lansink (2010). 

The solution to (10) provides the optimal variable input and dynamic factor vectors, 

the flow version of current value of the optimal value function and the value of the underlying 

shadow values of the quasi-fixed factors.  Using these values, the dynamic cost inefficiency 

measure in (8) can be generated; the allocative inefficiency in (8) is calculated residually. 

The technical inefficiency measure for dynamic factors in (8) can be generated for 

each observation as follows: 
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The directional vector is defined as ( , ) (0 , )x I Ng g I= . 

 Given the technical inefficiency measure for the dynamic factors in (11), the shadow 

value of capital and the optimal level of the dynamic factors from solving (10), the allocative 

inefficiency measure can be calculated residually using (4). The shadow cost inefficiency of 

each dynamic factor can be computed using (10). 

The technical inefficiency measure of variable inputs in (7) for observation i is 

generated as follows: 
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where *ii II = . The optimal level of dynamic factors for each observation is obtained from 

solving (10). The direction vector adopted is ( , ) ( ,0 )x I Fg g x= . 

The minimum variable cost for each firm can be generated as 
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The cost inefficiency of each variable input can be calculated using (8). 

 

 

4. Data 

Panel data on specialised vegetables firms covering the period 1997-1999 are obtained from a 

stratified sample of Dutch glasshouse firms keeping accounts on behalf of the LEI accounting 

system. The data set contains 265 observations on 103 firms, so the panel is unbalanced.  

 One output and six inputs (energy, materials, services, structures, installations and 

labour) are distinguished.  Output mainly consists of vegetables, potted plants, fruits and flowers.  

Energy consists of gas, oil and electricity, as well as heat deliveries by electricity plants.  
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Materials consist of seeds and planting materials, pesticides, fertilisers and other materials.  

Services are those provided by contract workers and from storage and delivery of outputs. 

 Quasi-fixed inputs are structures (buildings, glasshouses, land and paving) and 

installations. Capital in structures and installations is measured at constant 1991 prices and is 

valued in replacement costs1.   Labour is a fixed input and is measured in quality-corrected man-

years, including family as well as hired labour.  Labour is assumed to be a fixed input because a 

large share of total labour consists of family labour.  Flexibility of hired labour is further 

restricted by the presence of permanent contracts and by the fact that hiring additional labour 

involves search costs for the firm operator.  The quality correction of labour is performed by 

the LEI and is necessary to aggregate labour from able-bodied adults with labour supplied by 

young people (e.g., young family members) or partly disabled workers.  

 Tornqvist price indexes are calculated for output, variable inputs and quasi-fixed 

inputs with prices obtained from the LEI/CBS.  The price indexes vary over the years but not 

over the firms, implying differences in the composition of inputs and output or quality diffe-

rences are reflected in the quantity (Cox and Wohlgenant 1986).  Implicit quantity indexes are 

generated as the ratio of value to the price index. A more detailed description of the data can 

be found in Table 1. 

 Dynamic technical and allocative inefficiency and cost inefficiency for individual 

inputs are regressed in a second stage on socio economic variables. The variables reflect 

characteristics of the firm (modernity machinery and structures, share of family labor, size) 

and firm operators (age) and environmental conditions (location in the glasshouse district 

which is a region characterised by an extremely high density of glasshouses). Descriptive 

statistics of the socio-economic variables are also found in Table 1. 
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Table 1: Variables and Descriptive Statistics 

Variable Dimension Mean Standard Deviation 

Quantities    

Output 1000 Guilders 1124.20 984.60 

Energy 1000 Guilders 132.79 121.99 

Materials 1000 Guilders 124.82 99.91 

Services 1000 Guilders 85.59 73.56 

Structures 1000 Guilders 833.38 697.18 

Installations 1000 Guilders 229.39 243.31 

Labor Man years 6.62 5.17 

Investments Structures 1000 Guilders 46.70 156.43 

Investments Installations 1000 Guilders 41.34 128.90 

Prices    

Energy 1991=1 1.14 0.03 

Materials 1991=1 1.05 0.02 

Services 1991=1 0.94 0.02 

Structures 1991=1 1.51 0.13 

Installations 1991=1 1.08 0.03 

Socio-economic variables    

Glasshouse district =1 for glasshouse district 0,57 0,50 

Family Labour Share family labour 0,50 0,25 

Age Operator years 46,14 10,38 

Modernity Structures book value/new value 0,56 0,21 

Modernity Machinery book value/new value 0,23 0,14 

Size Standardised firm units 0,67 0,53 

 

 

5. Results 

Inefficiency scores are generated for each horticulture firm in each year over the 1997-

1999 period.2 Table 2 reports average values of technical, allocative and cost inefficiency of 

variable and dynamic factors of production for each year and for the whole time period.  

Table 2 shows that the average cost inefficiency over the 1997-1999 period is 0.44 

implying that substantial cost savings (44%) can be obtained. Technical inefficiency is the 

largest component of cost inefficiency for each year and for the whole time period, allowing 

for an improvement between 39% (1997) and 26% (1999).  The average allocative 
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inefficiency of 0.10 suggests that Dutch vegetables firms can reduce costs by 10% through a 

better mix of variable and dynamic factors in the light of prevailing prices.   

 

Table 2:  Technical, Allocative and Cost Inefficiency of All Factors of Production 

Period TE AE OE 

1997 0.39 0.09 0.48 

1998 0.34 0.11 0.45 

1999 0.26 0.13 0.39 

1997-1999 0.33 0.10 0.44 

 

Table 3 presents measures of cost inefficiency for each variable and dynamic factor 

input separately. The results in Table 3 suggest there is, on average, overuse of all variable 

inputs in the whole period 1997-1999. Overuse for energy and materials is particularly high as 

costs of energy and materials could be reduced, on average, by 32% and 26%, respectively. 

Cost inefficiency is lowest for services; for 1999 there is a small underuse rather than overuse 

of this variable input. The relatively large cost inefficiency for energy may be due to the fact 

that firms use a large variety of heating technologies. A group of firms uses more advanced 

and efficient technologies such as co-generators, heat storage and heat delivery by electricity 

plants, whereas a majority of firms still uses traditional heating technologies based on a 

combustion heater (Oude Lansink and Silva 2003). The results on the cost inefficiency of 

dynamic factors of production suggest that firms neither over-invest nor under-invest in 

structures and installations in 1997 and 1998. For the year 1999, the values of -0.40 and -0.02 

indicate a large overinvestment in structures and a small overinvestment in installations. 

Inspection of the data reveals that average investments in structures and installations are 

indeed much higher in 1999 than in the two preceding years.3 Therefore, firms have 

substantially increased their investment level in 1999 compared to the previous years. 

However, they have been over-investing in both structures and installations. 
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Table 3: Cost Inefficiency of Variable and Dynamic Factors of Production 

 

Period 1997 1998 1999 1997-1999 

Energy 0.33 0.33 0.31 0.32 

Materials 0.26 0.25 0.27 0.26 

Services 0.07 0.03 -0.02 0.03 

Structures 0.01 -0.00 -0.40 -0.12 

Installations 0.01 0.00 -0.02 -0.00 

 

 

Variation in dynamic technical and allocative inefficiency are regressed on several exogenous 

variables capturing the effects of household and demographic characteristics, location and 

investment in physical capital (Table 4).  Technical and allocative inefficiency are  

left truncated and are correlated between observations in a complicated way. A single bootstrap 

method  (Simar and Wilson, 2007)  has been adopted to obtain consistent parameter estimates. 

Two of the seven parameters are found to be statistically significant at the critical 5% level in the 

technical inefficiency and the allocative inefficiency regression. Modernity of structure 

significantly reduces technical inefficiency which suggests that firms can improve their technical 

performance by investing in the construction of glasshouses. Examples of such new glasshouse 

technologies are energy screens and heat storage. Size significantly increases allocative 

inefficiency, which suggests that large firms are less successful in achieving an optimal 

allocation of variable and dynamic factor inputs at given prices. 
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Table 4: Results of second stage regression technical and allocative inefficiency 

Variable Mean Std. Err. 95% Conf. Interval 

Technical Inefficiency     

Intercept 0,570*  0,049 0,494 0,653 

Glasshouse district -0,006 0,018 -0,034 0,024 

Family Labour -0,002 0,046 -0,080 0,075 

Age Operator -0,001 0,001 -0,002 0,001 

Modernity Structure -0,279*  0,057 -0,376 -0,190 

Modernity Machinery -0,037 0,079 -0,165 0,098 

Size -0,005 0,022 -0,040 0,031 

Allocative Inefficiency     

Intercept 0,043*  0,086 0,106 0,182 

Glasshouse district 0,015 0,030 -0,035 0,063 

Family Labour 0,086 0,079 -0,041 0,218 

Age Operator -0,002 0,002 -0,004 0,001 

Modernity Structures -0,112 0,082 -0,254 0,005 

Modernity Machinery -0,172 0,132 -0,402 0,039 

Size 0,131*  0,038 0,072 0,195 

*) Significant at 5% 

 

Results in Table 5 provide more detailed insights into the drivers of dynamic inefficiency of 

individual inputs. Socio-economic factors of Table 4 have been regressed on variation in cost 

inefficiency of individual variable and dynamic factor inputs. Ordinary Least Squares is 

appropriate here since cost inefficiency is not truncated, i.e. it can take positive and negative 

values. The goodness of fit of the regression on structures, and to a lesser extent materials are 

much higher than the goodness of fit of the others. Also, particularly the structures equation 

outperforms the others in terms of the number of significant parameters: five out of seven 

parameters are significant at the critical 5% level. Structures are a major cost item and the 

results suggest that their cost inefficiency are well explained by the selected socio-economic 

variables. 

Location in the glasshouse district increases cost inefficiency of structures and 

services, suggesting that firms located in the glasshouse district are less technically and 

allocatively efficient in using these inputs. Firms in the glasshouse district tend to overuse 
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these inputs, which may be a result of better access to or higher costs of these inputs in this 

region. 

The share of family labour in total labor decreases the cost inefficiency implying that 

firms that are predominantly operated by family labour are more inclined towards minimizing 

costs of energy and services. 

Age of the firm operator increases cost inefficiency of structures and decreases cost 

inefficiency of energy. These results suggest that older firm operators are more successful in 

reducing costs of energy, possibly resulting in underuse. Higher cost inefficiency for older 

firm operators suggests that older operators are less technically and/or allocatively efficient in 

using structures. 

Modernity of structures has a very significant negative impact on the cost inefficiency 

of structures. This result suggests that investing in new technologies improves the allocative 

and/or technical efficiency of the use of structures. Investments offer an opportunity to firm 

operators to bring the quantity of capital invested in structures in line with its long-term 

efficient quantity (allocative efficiency) and to improve the technical performance 

characteristics of the glasshouse (improving technical efficiency). 

Modernity of machinery decreases cost inefficiency of machinery, a result that can be 

explained along the same lines as the impact of modernity of structures on cost inefficiency of 

structures. Interestingly, modernity of machinery also decreases the cost inefficiency of 

structures and energy. These results suggest structures and energy are used more efficiently if 

the technology of machinery is improved. Most likely this effect is caused by the fact that 

machinery and equipment predominantly consists of heating installations. Clearly new heating 

systems decrease the cost ineffiency of energy; they may also decrease the inefficiency of 

structures, particularly where it concerns the energy saving part of structures (e.g. energy 

screens). 
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Table 5: Second stage regression of cost inefficiency of dynamic and variable inputs 

 Coefficient Std, Err, t 

Structures (R2=0,59)    

Intercept 0,844** 0,449 1,880 

Glasshouse district 0,733* 0,160 4,590 

Family Labour 0,635 0,428 1,480 

Age Operator 0,017* 0,008 2,060 

Modernity Structure -7,177* 0,380 -18,900 

Modernity Machinery 5,696* 0,678 8,400 

Size 0,296 0,200 1,480 

Machinery (R2=0,04)    

Intercept -0,137** 0,074 -1,840 

Glasshouse district 0,010 0,026 0,370 

Family Labour 0,069 0,071 0,970 

Age Operator 0,001 0,001 0,920 

Modernity Structure -0,052 0,063 -0,820 

Modernity Machinery 0,316* 0,112 2,820 

Size -0,012 0,033 -0,360 

Energy (R2=0,05)    

Intercept 0,493* 0,045 10,900 

Glasshouse district -0,020 0,016 -1,210 

Family Labour -0,146* 0,043 -3,390 

Age Operator -0,002** 0,001 -1,860 

Modernity Structure -0,012 0,038 -0,320 

Modernity Machinery -0,187* 0,068 -2,740 

Size 0,055* 0,020 2,730 

Materials (R2=0,23)    

Intercept 0,241* 0,035 6,810 

Glasshouse district 0,013 0,013 1,030 

Family Labour 0,001 0,034 0,040 

Age Operator 0,000 0,001 -0,180 

Modernity Structure 0,005 0,030 0,160 

Modernity Machinery 0,162* 0,053 3,030 

Size -0,043* 0,016 -2,720 

Services (R2=0,09)    

Intercept -0,024 0,034 -0,690 

Glasshouse district 0,023** 0,012 1,850 

Family Labour 0,132* 0,033 4,030 

Age Operator 0,000 0,001 -0,110 

Modernity Structure 0,000 0,029 -0,010 

Modernity Machinery 0,032 0,052 0,620 

Size -0,043* 0,015 -2,830 
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Conclusions 

This paper measures dynamic technical and allocative inefficiency of a sample of horticultural 

firms over the period 1997-1999.  Dynamic technical inefficiency is measured using a directional 

distance function; cost inefficiency is estimated using a dynamic cost function,  assuming that 

firms face adjustment costs in adjusting capital.  Cost inefficiency is decomposed into the 

contributions of variable and dynamic factors of production. 

Results suggest that substantial long-term cost savings (44%) can be obtained. Technical 

inefficiency is the largest component of cost inefficiency suggesting that firms can reduce 

costs by 33% through improvements of dynamic technical inefficiency. The average dynamic 

allocative inefficiency is 0.10.   

A bootstrap method is used to regress dynamic allocative and technical inefficiency, and cost 

inefficiency of individual dynamic and variable inputs on socio-economic variables. 

Modernity of structures has a negative impact on the overall technical inefficiency. Modernity 

of machinery and installations has a significant impact on the inefficiency in the use of 

individual inputs. Location in the glasshouse district, the share of family labour in total labor, 

age of the firm operator and modernity of structures have significant impacts on the efficiency 

of individual variable and dynamic factor inputs. 
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