

Reform of EU-Dairy Market Policy in 2003.
Price volatility on the EU-dairy market increased since 2007. Public debates on the level and the volatility of farm prices. Public debates on the role of retailers in setting prices for consumers and negotiating prices with dairies.

Hypothesis I: Retailers execute market power.
Hypothesis II: Market power results in asymmetric cost pass through.
Hypothesis III: National brands and retailers with a larger assortment of goods have more market power.

BACKGROUND

MEYER AND CRAMON-TAUBADEL (2004) point out the major difficulties to prove the relationship between market power and asymmetric cost pass through. The studies either present only one pair of time series (prices and costs) with likely no change in market power over time or use a cross section panel that fails to account for differences between products and/or countries (see PELTZMAN, 2000).

CITATIONS ON PRICE ASYMMETRY

What Goes Up Need Not Come Down?

"Those who are doing the gouging will hear from the president." -Treasury Secretary Nicholas Brady. The Wall Street Journal, (Shribman and McQueen) August 9, 1990.
"Retail (gasoline) prices go up much faster than they come down." -a spokesman for the Automobile Association of America. The Wall Street Journal, (Solomon) August 9, 1990.
"Pump prices are fast to respond to rising prices but slower to fall when crude prices fall." -Antonio Szabo, oil consultant with Bonner \& Moore. The Wall Street Journal, (Business Bulletin) August 3, 1989.
"Whenever oil prices fall, there is always this stickiness in gasoline prices on the way down. You never see this stickiness on the way up." -Ed Rothschild, energy expert at Citizen Action. New York Times, (Wald) July 2, 1990.
"When crude prices go up, product prices tend to rise with crude prices. But when crude prices go down, product prices tend to lagthey go down slowly." -John Hilton, oil industry analyst for Argus Research Corp. St. Louis Post-Dispatch, (Crudele) June 19, 1990.

LITERATURE I							
Author(s)	Kinnucan, Forker	Serra, Goodwin	Chavas, Mehta	Jensen, Møller	Baumgartner et al.	European Commission	Stewart, Blayney
Year	1987	2003	2004	2007	2009	2009	2011
Journal ${ }^{\text {a }}$	AJAE	AE	AJAE	WP	WP	RP	ARE
Relationship ${ }^{\text {b }}$	$\mathrm{Pf} \leftrightarrow \mathrm{Pr}$	$\mathrm{Pf} \leftrightarrow \mathrm{Pr}$	$\mathrm{Pw} \leftrightarrow \mathrm{Pr}$	$\mathrm{Pf} \leftrightarrow \mathrm{Pw} \leftrightarrow \mathrm{Pr}$	$\mathrm{Pf} \leftrightarrow \mathrm{Pr}$	$\mathrm{Pf} \leftrightarrow \mathrm{Pr}$	$\mathrm{Pf} \leftrightarrow \mathrm{Pr}$
Product	Milk, Butter, Cheese, Ice Cream	Milk, Cheese, Cream Caramel	Butter	Milk	Milk, Butter, Cheese	Milk, Butter, Cheese and Other	Milk, Cheese
Country	USA	Spain	USA	Denmark	Austria	EU-27	USA
Frequency	Monthly						
Result (Asymmetry)	Yes	Yes ${ }^{\text {d }}$	Yes	Yes	Yes	Yes	Yes
Form of Asymmetry	Positive	Positive	Positive	Positive ${ }^{\text {e }}$	Positive ${ }^{\text {f }}$	Positive	Positive ${ }^{\text {E }}$
Model ${ }^{\text {c }}$	DLM	TECM	ECM	ECM	TVECM	DLM	ECM/TECM/STECM
\# Regimes	2	3	2	2	3	2	1/2/3
			[\%	¢ = \% =		
Holm T., 1.P. Loy and C. Steinhagen (2012)							

LITERATURE II

TRANSFOP

GOPINATH, G.; GOURINCHAS, P.-O.; HSIEH, C.-T.; AND LI, N. (2011): InTERNATIONAL PRICES, COSTS, AND MARKUP DIFFERENCES. In: American Economic Review 101(6): 2450-2486.

EICHENBAUM, M.; JAIMOVICH, N.; AND REBELO S. (2011): Reference Prices, Costs, and Nominal Rigidities". American ECONOMIC REVIEW 101(1): 234-262.

Nakamura, E. and D. Zerom. 2010. "Accounting for Incomplete Pass-Through." Review of Economic Studies 77: 1192-1230

THEORY

TRANSFOP

Market power (tacit collusion: Green and Porter, 1984, E.;Tirole, 1988; Borenstein et al., 1997, QJE)

Search costs (Tappata, 2009, RJE)
Menu costs (Ball and Mankiw, 1994, TEJ)
Storage (Reagan and Weitzman, 1982, JET; Blinder, 1982, AER)

Spatial demand (Azzam, 1999, AJAE)

CONTRIBUTION TO THE LITERATURE

Weekly scanner data
Many time series for different brands and retailers (2650)
Period with strong cost shocks
Wholesale prices instead of farm prices as cost indicator
Consideration of sales prices
Three regime threshold error correction model
Testing the number of regimes and threshold co-integration
Model with estimated dependent variables to analyze the determinants of cost pass through

DATA

Milk with 3.5 \% fat content in Tetra-Pak
Butter 250g packed in Paper
Weekly Scanner Data
327 to 447 different stores
71 to 90 different brands
Wholesale prices for milk and butter for the same qualities
Further variables: type of retailer, retail chain, national brand and private label, cooperate and private dairies, price promotions, volumes, fresh milk UHT-milk, butter with and without extra label

DATA (MILK IN €-CENT PER LITER)

A	Milk (in Eurocents/Litre)					
	Brands (Price Series) Market Share		Prices			
			Mean	St.Dev.	Min.	Max
Wholesale Price			49	5	44	60
Retail Price Series	(919)		77	14	53	106
Brands	71 (919)					
National Brands	50 (633)	41.6\%	84	8	53	106
Cooperative Dairies	35 (297)	22.3\%	78	8	53	93
Non-Cooperative Dairies	15 (335)	19.3\%	89	7	58	106
Private Labels	21 (286)	58.4\%	60	3	56	100
Type of Milk						
Fresh Milk	35 (320)	23.4\%	79	11	53	102
UHT Milk	36 (599)	76.6\%	75	14	58	106
	Stores (Price Series)					
Stores	327 (919)					
Supermarket	72 (168)	6.8\%	76	15	59	106
Small Consumer Market	60 (175)	9.3\%	77	14	59	96
Large Consumer Market	71 (233)	25.7\%	78	13	56	97
Hypermarket	83 (276)	50.6\%	78	12	53	93
Discounter	39 (67)	7.6\%	65	11	56	90

DATA (BUTTER IN €-CENT PER 250G)

MODELING

Time series properties (unit roots, lags etc.)
Granger causality
Co-Integration, Threshold Co-Integration (Enders and Siklos, 2001)

Testing non linearity and \# of regimes (Strikholm und Teräsvirta, 2006)
Estimation TECM
Model with estimated dependent vaiables
Estimators of TECM
Average margin (Lerner Index)
Asymmetry
Menu costs

MODELING I

Three Regime Threshold-Error Correction Model (TECM)

$$
\Delta p_{t, i}^{R}=\left\{\begin{array}{lr}
\alpha_{0, i}+\delta_{i} E C T_{t-1, i}+\sum_{j=1} \lambda_{j, i} \Delta p_{t-j, i}^{R}+\sum_{k=0} \varphi_{k, i} \Delta p_{t-1, i}^{N}+\varepsilon_{t, i} \quad \text { if } E C T_{t-1}<\theta^{-} \\
\alpha_{0, i}+\delta_{i}^{0} E C T_{t-1, i}+\sum_{j=1} \lambda_{j, i} \Delta p_{t-j, i}^{R}+\sum_{k=0} \varphi_{k, i} \Delta p_{t-1, i}^{W}+\varepsilon_{t, i} \quad \text { if } \theta^{-}<E C T_{t-1}<\theta^{+} \\
\alpha_{0, i}+\delta_{i}^{+} E C T_{t-1, i}+\sum_{j=1} \lambda_{j, i} \Delta p_{t-j, i}^{R}+\sum_{k=0} \varphi_{k, i} \Delta p_{t-j, i}^{W}+\varepsilon_{t, i} & \text { if } E C T_{t-1}>\theta^{+}
\end{array}\right.
$$

MODELING II

Model with estimated dependent variable:

$$
\begin{aligned}
& \text { Non-Cooperative Brands Private Labels } \\
& \begin{aligned}
\hat{\delta}_{i}=\beta_{0}+\beta_{1} N C B_{i}+ & \beta_{1} P L_{i}+\beta_{1} Q u_{i}+\sum_{i=2} \beta_{j} D C_{i, t}+\omega_{i} \\
& \text { Additionally Labeled / Retailer } \\
& \text { Fresh Milk }
\end{aligned}
\end{aligned}
$$

RESULTS MODEL I

Prices are I(1) (ADF 5 \% and KPSS 95 \%)
Linear Co-Integration (67 bzw. 15 \%)
Threshold-Cointegration (96 bzw. 82 \%)
Grander-Causality ($90 \% \mathrm{Pw} \rightarrow \operatorname{Pr} 50 \% \mathrm{Pr} \mid \rightarrow \mathrm{Pw}$)
\# of Regimes ($90 \%>=1,50-75 \%>=2$)
Milk: 104149
Butter: 62074
Asymmetry:
Milch: $\mathrm{Ho}: \delta \neq \delta^{+}$
Butter: Ho: $\delta \neq \delta^{+}$

	SM	SC	LC	HM	D
Cooperative Dairies	79%	71%	82%	65%	80%
Non-Cooperative Dairies	56%	50%	68%	41%	n.a.
Private Labels	54%	80%	57%	100%	89%
		SM	SC	LC	HM
	D				
		Cooperative Dairies	61%	63%	55%

SUMMARY

TECM:

Wholesale prices are mainly exogenous,
Non-linear relationships,
Lagged adjustments,
Statistically significant positive asymmetries,
Inner regimes with almost no adjustments,
Significant variation of price relationships and coeffcients

SUMMARY

Estimated dependent variable regression

Private labels indicate the least markups and menu costs but adjust fastest to cost changes.

Large markups are adjusted faster in retail formats other than discounter.

The levelof asymmetric price adjustment is not korreleted with averag emarkups (market power)
Menu costs are as expected not related to the level of asymmetry but slighly positively related to market power.
The speed of adjusment is negatively korrelated with market power.

