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Abstract

In this paper, we analyze the equilibrium of a sequential game-theoretical model of
lobbying, due to Groseclose and Snyder (1996), describing a legislature that vote over
two alternatives, where two opposing lobbies compete by bidding for legislators�votes.
In this model, the lobbyist moving �rst su¤ers from a second mover advantage and will
make an o¤er to a panel of legislators only if it deters any credible counter-reaction
from his opponent, i.e., if he anticipates to win the battle. This paper departs from
the existing literature in assuming that legislators care about the consequence of their
votes rather than their votes per se. Our main focus is on the calculation of the smallest
budget that the lobby moving �rst needs to win the game and on the distribution of this
budget across the legislators. We study the impact of the key parameters of the game
on these two variables and show the connection of this problem with the combinatorics
of sets and notions from cooperative game theory.

�We are grateful to an anonymous referee and the editor of this journal for their comments that helped to
improve the writing of this paper. The second author was supported by the Spanish Ministerio de Ciencia
e Innovación under projects SEJ2006-05455 and ECO2009-11213, co-funded by the ERDF. The article is
an enhanced and modi�ed version of Discussion Paper 8/2009, Department of Business and Economics,
University of Southern Denmark at Odense, Denmark.

yToulouse School of Economics (Gremaq, Idei and Iuf), France. Email: lebreton@cict.fr
zDepartment of Business and Economics and COHERE, University of Southern Denmark, Campusvej

55, 5230 Odense M, Denmark. E-mail: psu@sam.sdu.dk
xToulouse School of Economics (LERNA-INRA). Email: vzaporoz@toulouse.inra.fr



1 Introduction

In this paper, we consider a theoretical model of lobbying describing a legislature1 that votes
over two alternatives2, and two opposing lobbies, Lobby 0 and Lobby 1, which compete by
bidding for legislators�votes3. We examine how the voting outcome and the bribes o¤ered
to the legislators depend on the lobbies�willingness to pay, legislators�preferences and the
decision making process within the legislature.

There are many di¤erent ways to model the lobbying process. In this paper, we adopt
the sequential model pioneered by Groseclose and Snyder (1996) and followed up by Banks
(2000) and Diermeier and Myerson (1999). In their model, the competition between the two
lobbies is described by a targeted o¤ers game where each lobby gets to move only once, and
in sequence. Lobby 1 is pro-reform and moves �rst while Lobby 0 is pro-status quo and
moves second. Votes are assumed to be observable. A strategy for each lobby is a pro�le
of o¤ers where the o¤er made to each legislator is assumed to be based on his/her vote and
to be honored irrespective to the voting outcome. The net payo¤ of a lobby is its gross
willingness to pay less the total amount of payments made to the legislators who ultimately
vote for the policy advocated by this lobby. The legislators are assumed to care about
the way they vote (and not the outcome of the vote process) and about monetary o¤ers.
We focus on the complete-information environment where the lobbies�and the legislators�
preferences are known to the lobbies when they bid. We characterize the main features of
the subgame perfect equilibrium of this game as a function of the following key parameters
of the environment:

� The maximal willingness to pay of each lobby for winning4 (i.e., to have their favorite
policy selected). These two numbers represent the economic stakes under dispute and
determine the intensity and asymmetry of the competition.

� The voting rule describing the legislative process.
1We depart from a voluminous literature based on the common agency setting in abandoning the as-

sumption that policies are set by a single individual or by a cohesive, well-disciplined political party. In
reality, most policy decisions are made not by one person but by a group of elected representatives acting as
a legislative body. Even when the legislature is controlled by a single party (as it is necessarily the case in
a two-party system if the legislature consists of a unique chamber), the delegation members do not always
follow the instructions of their party leaders.

2Hereafter, we will often refer to the two alternatives as being the status quo (alternative 0) versus the
change or reform (alternative 1). While simplistic, many policy issues �t that formulation like for instance:
to ratify or not a free-trade agreement, to forbid or not a free market for guns, to allow or not abortion.

3By legislators we mean here all individuals who have a constitutional role in the process of passing
legislation. This may include individuals from what is usually referred to as being the executive branch like
for instance the president or the vice-president.

4Or, under an alternative interpretation, their respective budgets.
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� The heterogeneity across legislator�s preferences.

The binary setting considered in this paper is the simplest setting where we can tackle the
joint in�uence of these three inputs on the �nal outputs. The �rst item consists of a single
number per lobby: how much money this lobby is willing (able) to invest in this competition.
The second item is also very simple. In this simplistic institutional setting, with no room
for agenda setting or other sophisticated legislative action which would arise in the case of
large multiplicity of issues5, we only need to know what are the winning coalitions, i.e., the
coalitions of legislators in position to impose the reform if the coalition unanimously supports
this choice. Despite its apparent simplicity, this combinatorial object is extremely rich to
accommodate a wide diversity of legislatures. Banks (2000) and Groseclose and Snyder
(1996) focus on the standard majority game while Diermeier and Myerson (1999) consider
the general case as we do. The third item describes the di¤erences between the legislators
other than those already attached to the preceding item if these legislators are not equally
powerful or in�uent in the voting process. This �second� heterogeneity dimension refers
to the di¤erences between their intrinsic preferences for the reform versus the status quo.
This di¤erence measured in monetary units can be large or small and negative or positive.
Diermeier and Myerson (1999) disregard this dimension by assuming that legislators are
indi¤erent between the two policies while Banks (2000) and Groseclose and Snyder (1996)
consider the general situation but derive their results under some speci�c assumptions. We
assume that legislators prefer unanimously the reform to the status quo but di¤er with
respect to the intensity of their preference.

All the papers in this literature assume that a legislator cares about his vote and not about
the outcome of the vote as assumed in this paper. Legislators who care about outcomes
are called consequential in contrast to procedural legislators who are those caring about
their vote (Le Breton and Zaporozhets (2010)). Both assumptions are perfectly legitimate
depending upon the type of policy issue under examination. The second assumption o¤ers
a technical advantage as legislators are not playing a game anymore since the votes of the
other legislators do not in�uence their vote. In contrast, the �rst assumption preserves the
game theoretical nature of the voting stage as many legislators want to know if they are
pivotal and must therefore predict the voting behavior of the others.

The �rst contribution consists in identifying the conditions under which the lobby moving
�rst will make positive o¤ers to some legislators. In this sequential game, the lobby moving
last has an advantage as it can react optimally to the o¤ers of its opponent without any
further counter-reaction. If the asymmetry is too weak, Lobby 1 will abandon the prospect

5Many formal models of the legislative process have been developed by social scientists to deal with more
complicated choice environments. We refer the reader to Grossman and Helpman (2001) for lobbying models
with more than two alternatives.
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of in�uencing the legislature as it will be rationally anticipating its defeat; in fact, it will make
o¤ers only if it anticipates to win for sure. If it does not make any o¤er, it is enough for Lobby
0 to compensate a minimal winning coalition of legislators for their intrinsic preferences
towards reform. Lobby 1 will participate if its willingness to pay or budget is larger than the
willingness to pay or budget of Lobby 0. This minimal amount of asymmetry, that we call
the victory threshold, de�nes by what proportion the stake of Lobby 1 must exceed the stake
of Lobby 0 in order to compensate the second mover advantage, i.e., to make sure that Lobby
1 wins the game. Our �rst result states that the calculation of the victory threshold amounts
to calculating the supremum of a linear form over a convex polytope which is closely related
to the polytope of balanced families of coalitions introduced in cooperative game theory
to study the core and other solutions. The practical value of this result relies on the fact
that we can take advantage of the voluminous amount of work which has been done on
the description of balanced collections. When heterogeneity across legislators�preferences is
ignored, the victory threshold only depends upon the simple game describing the rules of the
legislature. It corresponds to what has been called by Diermeier and Myerson (1999), the
hurdle factor of the legislature. Quite surprisingly, this single parameter acts as a summary
statistic as long as we want to predict the minimal budget that Lobby 1 needs to invest
to win the game. We will illustrate the connections between the computation of the hurdle
factor and the covering problem, which is one of the most famous, but also di¢ cult, problems
in the combinatorics of sets or hypergraphs6.

The second contribution consists in showing that the victory threshold can be alternatively
calculated, surprisingly, as the maximum of speci�c criteria of equity over the set of imputa-
tions of a cooperative game with transferable utility (TU game) attached to the simple game
of the legislature. The speci�c equity criterion is the minimum over all coalitions of the ratio
of the di¤erence between what the members of the coalition get in the imputation and what
they could get on their own and the size of the coalition, i.e., the �rst component in the lex-
icographic order supporting the per-capita nucleolus that was introduced by Grotte (1970).
The connection with the theory of cooperative games turns out to be even more surprising
as it allows to provide a complete characterization of the second dimension of the optimal
o¤er strategy of Lobby 1. From what precedes, we know that the size of the lobbying budget
is the victory threshold times the willingness to pay (or budget) of Lobby 0. It remains to
understand how this budget is going to be allocated across the legislators. This is of course
an important question as we would like to understand what are the characteristics of a leg-
islator which determine the willingness of Lobby 1 to buy its support and the amount that
he will receive for the selling his vote. As already discussed, legislators may di¤er along two
lines: the intensity of their preference for Lobby 1 and their position/power in the legislature.

6Of course, once it is noted that the hurdle factor is the fractional covering number of a speci�c hyper-
graph, we can take advantage of the enormous body of knowledge in that area of combinatorics.
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Likely the price of the vote of a legislator will be a function of both parameters. We show
that the set of equilibrium o¤ers is the per-capita least core of the cooperative game used to
calculate the victory threshold. We investigate their dependency upon the desirability of the
legislators and we show that it is not always the case that more desirable legislators receive
better o¤ers. We also show how to calculate these prices in the case of some important real
world simple games. One important conclusion is that these prices have little to do with
the power of a legislator as calculated through either the Banzhaf index (Banzhaf (1965),
(1968)) or the Shapley-Shubik index (Shapley and Shubik (1954)). This suggests that the
axiomatic theory of power measurement may not be fully7 relevant to predict the payo¤s of
the players in a game like this one8, where complete preference information and a speci�c
game form are assumed.

Related Literature

The literature on lobbying is very dispersed and voluminous9. The closest papers to ours are
Banks (2000), Dekel, Jackson and Wolinsky (2008, 2009), Diermeier and Myerson (1999),
Groseclose and Snyder (1996), Le Breton and Zaporozhets (2010), Young (1978a,b,c) and
Shubik and Young (1978). All these papers consider a binary setting but in contrast to this
paper, they assume that legislators care about their vote and money rather than the outcome.
As already mentioned, the two-round sequential vote buying model that we consider is
derived from the fundamental contribution of Groseclose and Snyder (1996). Banks (2000) as
well as Diermeier andMyerson (1999) also consider this game. Their speci�c assumptions and
focus are however quite di¤erent from ours. Banks (2000) and Groseclose and Snyder (1996)
are primarily interested in identifying the number and the identity of the legislators who
will receive an o¤er in the case of the simple majority game. By considering this important
but speci�c symmetric game, they eliminate the possibility of evaluating the impact of the
legislative power on the outcome. However, they consider more general pro�les of legislators�
preferences: Instead of our unanimity assumption in favor of a reform, Banks (2000) assumes
that a majority of legislators has an intrinsic preference for the status quo. This implies that
Lobby 1 needs to bribe at least a majority to win; Banks (2000) provides conditions on
the pro�le under which this majority will be minimal or maximal but does not determine
the optimal size in the general case. Diermeier and Myerson (1999) assume instead that
legislators do not have any intrinsic preference but consider an arbitrary simple game. Their
main focus is on the architecture of multicameral legislatures and on the optimal behavior of
each chamber under the presumption that it can select its own hurdle factor to maximize the

7We do not mean that our approach is universally superior to existing axiomatic theories of power
measurement, but we want to point out that these theories may be helpless in predicting the payo¤s of
the actors in a speci�c game.

8This echoes Snyder, Ting and Ansolabehere (2005).
9We refer the reader to Grossman and Helpman (2001) for a description of the state of the art.
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aggregate o¤er made to its members. Our paper is very much related to the contributions of
Young (1978a,b,c) who has analyzed a similar game and derived independently Proposition
4.1. He should receive credit for being the �rst one to point out the relevance of the least core
and the nucleolus to predict some dimensions of the equilibrium strategies of the lobbyists.

Dekel, Jackson and Wolinsky (2008, 2009) examine an open-ended sequential game where
lobbies alternate in increasing their o¤ers to legislators. By allowing lobbies to keep respond-
ing to each other with counter-o¤ers, their game eliminates the asymmetry and the resulting
second mover advantage of the game investigated by Groseclose and Snyder (1996). Several
settings are considered depending upon the type of o¤ers that lobbies can make to legis-
lators (Up-front payments versus promises contingent upon the voting outcome) and upon
the role played by budget constraints10. The di¤erence in the budgets of the lobbies plays
a critical role in determining which lobby is successful when lobbies are budget constrained,
and the di¤erence in their willingness to pay plays an important role when they are not
budget constrained. When lobbies are budget constrained, their main result states that the
winning lobby is the one whose budget plus half of the sum of the value that each legislator
attaches to voting in favor of this lobby exceeds the corresponding magnitude calculated for
the other lobby. In contrast, when lobbies are not budget constrained, what matters are the
lobbies�valuations and the intensity of preferences of a particular �near-median�group of
legislators. The lobby with a-priori minority support wins when its valuation exceeds the
other lobby�s valuation by more than a magnitude that depends on the preferences of that
near-median group. With our terminology, we can say that their main results are motivated
by the derivation of the victory threshold. Once the value of this threshold is known, the
identity of the winner as well as the lobbying expenditures and the identity of bribed legis-
lators follow. Note however that they limit their analysis to the simple majority game and
are not in position to evaluate the intrinsic role of the simple game and the legislative power
of legislators.

Note �nally that our game would have the features of a Colonel Blotto game if the two
lobbies make their o¤ers simultaneously instead of sequentially. This game is notoriously
di¢ cult to solve and very little is known in the case of asymmetric players.

2 The Model and the Game

In this section, we describe formally the main ingredients of the problem as well as the
lobbying game which constitute our model of vote-buying by lobbyists.

10These considerations which are irrelevant in the case of our two-round sequential game are important in
their game.
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The external forces that seek to in�uence the legislature are represented by two players,
whom we call Lobby 0 and Lobby 1. Lobby 1 wants the legislature to pass a bill (change,
proposal, reform) that would change some area of law. Lobby 0 is opposed to this bill and
wants to maintain the status quo. Lobby 0 is willing to spend up to W0 > 0 dollars to
prevent passage of the bill while Lobby 1 is willing to pay up to W1 dollars to pass the bill.
Sometimes, we refer to these two policies in competition as being policies 0 and 1. We assume
that �W � W1 �W0 > 0. While this assumption may receive di¤erent interpretations11,
we will assume here that the two lobbies represent faithfully the two opposite sides of the
society on this binary social agenda and therefore that policy 1 is the socially e¢ cient policy.
We could consider that the two lobbies represent more private or local interests and that W1

and W0 ignore the implications of these policies on the rest of the society: In that case the
reference to social optimality should be abandoned. Finally, we could consider instead the
budgets B1 and B0 of the two lobbies, and assume that they are budget constrained, i.e.,
that B1 � W1 and B0 � W0. Under that interpretation, the ratio W1

W0
should be replaced by

the ratio B1
B0
. This ratio which is (by assumption) larger than 1 will be a key parameter in

our equilibrium analysis. Depending upon the interpretation, it could measure the intensity
of the superiority of the reform as compared to the status quo or the ex ante advantage of
Lobby 1 over Lobby 0 in terms of budgets.

The legislature is described by a simple game12, i.e., a pair (N;W); where N = f1; : : : ; ng is
the set of legislators and W, the set of winning coalitions, satis�es (i) ; =2 W 3 N and (ii)
S 2 W and S � T implies T 2 W. Sometimes, we identify a simple game (N;W) with its
corresponding TU game (N; V ) de�ned by V (S) = 1 if S 2 W and V (T ) = 0 if T 2 2N nW.
The interpretation is the following. A bill is adopted if and only if the subset of legislators
who voted for the bill forms a winning coalition. From that perspective, the set of winning
coalitions describes the rules operating in the legislature to make decisions. A coalition C is
blocking if N nC is not winning: At least one legislator from C is needed to form a winning
coalition. We will denote by B the subset of blocking coalitions13; from the de�nition, the
status quo is maintained as soon as the set of legislators who voted against the bill forms a
blocking coalition. The simple game is called proper if S 2 W implies N nS =2 W. The simple
game is called strong if S =2 W implies N nS 2 W and constant-sum if it is both proper and
strong, i.e., equivalently if B =W14. The simple game is called symmetric if S 2 W implies

11As explained forcefully in Dekel, Jackson and Wolinsky (2008, 2009), in general, the equilibrium predic-
tions will be sensitive to the type of o¤ers that can be made by the lobbies and whether they are budget
constrained or not. As explained later, these considerations are not relevant in the case of our lobbying
game.
12In social sciences (Shapley (1962)), it is sometimes called a committee or a voting game. In computer

science, it is called a quorum system (Holzman, Marcus and Peleg (1997)) while in mathematics, it is called
a hypergraph (Berge (1989), Bollobás (1986)). An excellent reference is Taylor and Zwicker (1999).
13In game theory, (N;B) is often called the dual game.
14When the simple game is constant-sum, the two competing alternatives are treated equally.
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T 2 W for all T � N such that #T = #S. The set of minimal (with respect to inclusion)
winning (blocking) coalitions will be denoted Wm(Bm): A legislator is a dummy if he is not
a member of any minimal winning coalition, while a legislator is a vetoer if he belongs to
all blocking coalitions. A group of legislators forms an oligarchy if a coalition is winning i¤
it contains that group, i.e., each member of the oligarchy is a vetoer and the oligarchy does
not need any extra support to win (legislators outside the oligarchy are dummies). When
the oligarchy consists of a single legislator, the game is called dictatorial.

In this paper, all legislators are assumed to be biased towards policy 1, i.e., all of them
will vote for policy 1 against policy 0 if no other event interferes with the voting process.
It is introduced here for the sake of simplicity as, otherwise, we would have to consider an
additional parameter of di¤erences among the legislators that we prefer to ignore for the time
being. Indeed, in contrast to Banks (2000) and Groseclose and Snyder (1996), our assumption
on the preferences of legislators rule out the existence of horizontal heterogeneity. However,
legislators also value money and we introduce instead some form of vertical heterogeneity.
Precisely, we assume that legislators may di¤er according to their willingness to depart from
social welfare. The type of legislator i, denoted by �i � 0; is the minimal amount of dollars
that he needs to receive in order to sacri�ce one dollar of social welfare. Therefore if the
policy adopted generates a level of social welfare equal to W , the payo¤ of legislator i if he
receives a transfer ti is

ti + �iW:

To promote passage of the bill, Lobby 1 can promise to pay money to individual legislators
conditional on their supporting the bill. Similarly, Lobby 0 can promise to pay money
to individual legislators conditional on their opposing the bill. We denote by ti0 � 0 and
ti1 � 0 the (conditional) o¤ers made to legislator i by lobbies 0 and 1 respectively. The
corresponding n-dimensional vectors will be denoted respectively by t0 and t1.

The timing of actions and events that we consider to describe the lobbying game is the
following.

1. Nature draws the type of each legislator.

2. Lobby 1 makes contingent monetary o¤ers to individual legislators.

3. Lobby 0 observes the o¤ers made by Lobby 1 and makes contingent monetary o¤ers to
individual legislators.

4. Legislators vote.

5. Payments (if any) are implemented.

This game has n+ 2 players. A strategy of Lobby 1 is a vector in Rn+. A strategy of Lobby
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0 assigns a vector in R+ to any strategy of Lobby 0. Each legislator can chose among two
(pure) actions: to oppose or to support the bill. Hence, a strategy of a legislator speci�es,
for any vectors of o¤ers made by the lobbies, one of the two actions.

To complete the description of the game, it remains to specify the information held by the
players when they act. In this paper, we have already implicitly assumed that the votes
of the legislators are observable, i.e., open voting, and that the vector � = (�1; �2; : : : ; �n)
of legislators� types is common knowledge and without loss of generality such that �1 �
�2 � � � � � �n. We refer to this informational environment as political certainty. It has two
implications: First, the lobbies know the types of the legislators when they make their o¤ers
and second, each legislator knows the type of any other legislator when voting15.

3 The Victory Threshold

In this section, we begin our examination of the subgame perfect Nash equilibria of the
lobbying game. Hereafter, we will refer to them simply as equilibria. Our �rst objective is to
calculate a key parameter of the game, that we call the victory threshold. Once calculated,
this parameter leads to the following preliminary description of the equilibrium. Either, W1

is larger than or equal to the victory threshold and then Lobby 1 makes an o¤er and wins
the game, or W1 is smaller than the victory threshold and then Lobby 1 does not make any
o¤er and Lobby 0 wins the game. The victory threshold depends both upon the vector of
types � and the simple game (N;W).

A coalition T � N will be called blocking+ if S = T n fig 2 B for all i 2 T . Let us denote by
B+m the family of minimal blocking+ coalitions. To prepare for the �rst proposition, let us
examine intuitively the reaction t0 = (ti0)i2N of Lobby 0 to the vector of o¤ers t1 = (t

i
1)i2N

made by Lobby 1. The legislators can be partitioned into three groups. The �rst group
S1 consists of the legislators i such that ti0 < ti1. The second group S2 consists of all the
legislators i such that ti1 � ti0 < ti1+�i�W . The third group S3 consists of all the legislators
i such that ti0 � ti1 + �i�W .

Voting for the reform is a dominant strategy for the legislators from the �rst group while
voting for the status quo is a weakly dominant strategy for the legislators in the third group.
The strategic interaction and the necessity to evaluate the probability of being pivotal only
apply to the legislators from the second group. If a legislator does not consider himself to be
pivotal, then it is optimal to vote for the status quo. Instead, if he considers his vote to be

15The environment where the type �i of legislator i is a private information, to which we refer as political
uncertainty, is analyzed in Le Breton and Zaporozhets (2007) in the case where the two lobbies move
simultaneously.
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pivotal, then it is optimal to vote for the reform. That is, in this case we consider any Nash
equilibrium of the game in which one of these pivotal legislators in S2 votes for the reform,
whereas all other players of S2 support the status quo16. We want the pro�le of votes from
the legislators in that group to form a Nash equilibrium. Let S be the coalition of legislators
being in the second or third group, i.e., S = S2 [ S3. When is it the case that the pro�le
where all the legislators in S vote for the status quo is a Nash equilibrium?

From what precedes, it is necessary and su¢ cient that no legislator i from S2 considers his
vote to be pivotal. This will be the case if S n fig 2 B. By slightly abusing the notation, for
any S 2 B let

S2(S) = S2 = fi 2 S j S n fig 2 Bg

and S3(S) = S3 = S n S2. Let bBm be the family of minimal coalitions in B according to the
partial order C de�ned as follows for all S; S 0 2 B: S C S 0 if S � S 0 and S3(S) � S3(S 0).

The strategic optimal response of Lobby 0 is now easy to describe. From its perspective, the
cheapest coalitions belong to the family bBm. To any such coalition S = S2 [S3, the smallest
cost is equal to X

i2S2

ti1 +
X
i2S3

�
ti1 + �

i�W
�
:

It is interesting to see what coalitions are elements of bBm. First, all the coalitions S in Bm
belong to bBm. They correspond to the case where S2 = ;. Their cost is thereforeX

i2S

�
ti1 + �

i�W
�
:

At the other extreme, all the coalitions S in B+m belong to bBm. They correspond to the case
where S3 = ;. Their cost is therefore X

i2S
ti1:

This reasoning calls for two observations. We note �rst that in the case where the simple
game is symmetric, we obtain: bBm = Bm [B+m. Second, it is important to note that we have
determined conditions under which there exists a Nash pro�le of votes leading to rejection
of the reform. This does not mean of course that this Nash equilibrium is unique. For the
sake of illustration, consider the case of a symmetric game for which the minimal size of a

16In our subgame perfect equilibrium, the Nash equilibrium of the continuation voting game implements the
status quo whenever such equilibrium exists. A more detailed description of the subgame perfect equilibrium
can be obtained from the authors upon request. Note that in the case where the parameters �i are equal
to zero for all i our construction of the Nash equilibrium in the continuation voting game amounts to break
the ties in favor of Lobby 0.
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blocking coalition is b and let S 2 B+m with the o¤er de�ned above. From above, we know
that voting against the reform for all voters in S leads to a Nash equilibrium: The b + 1
voters in S vote �no�if ti0 = t

i
1+ " where " > 0 for all i 2 S and ti0 = 0 otherwise. There are

however other Nash equilibria. For instance take two legislators, say 1 and 2, out of the b+1
legislators and let them vote for the reform while the b � 1 others keep voting against the
reform. This pro�le of votes induces the reform as b� 1 is not enough to block. It is a Nash
equilibrium. The voters in S who keep voting against the reform play optimally as they are
not pivotal. The voters 1 and 2 who vote in favor of the reform also vote optimally as they
are pivotal, t11+�

1�W > t10 and t
2
1+�

2�W > t10. This new Nash equilibrium calls for some
coordination and there are b(b+1)

2
any such equilibria. The calculation of the cheapest o¤er

is subordinated to the selection of this particular continuation equilibrium17 which focuses
on the worst case from the perspective of Lobby 1: Following its vector of o¤ers, what is the
worst Nash equilibrium in the continuation game?

The �pessimistic� subgame-perfect equilibrium of this sequential version of the lobbying
game can be easily described. Let t1 = (t11; t

2
1; : : : ; t

n
1 ) 2 Rn+ be Lobby 1�s o¤ers. Lobby 0 will

�nd it pro�table to make a counter-o¤er if there exists a coalition S = S2 [ S3 2 bBm such
that X

i2S2

ti1 +
X
i2S3

�
ti1 + �

i�W
�
< W0:

Indeed, in this case, there exists a vector t0 = (t10; t
2
0; : : : ; t

n
0 ) of o¤ers such that

ti1 + �
i�W < ti0 for all i 2 S3, ti1 < ti0 for all i 2 S2 and

X
i2S
ti0 < W0:

Therefore, if Lobby 1 wants to make an o¤er that cannot be canceled by Lobby 0, it must
satisfy the list of inequalitiesX

i2S2

ti1 +
X
i2S3

�
ti1 + �

i�W
�
� W0 for all S = S2 [ S3 2 bBm:

The cheapest o¤er t1 meeting these constraints is the solution of the following linear program

mint12Rn+
P

i2N t
i
1

subject to the constraintsP
i2S2 t

i
1 +

P
i2S3 (t

i
1 + �

i�W ) � W0 for all S = S2 [ S3 2 bBm
(3.1)

Lobby 1 will �nd it pro�table to o¤er the optimal solution t�1 of Problem (3.1) if the optimal
value to this linear program is less than W1: It is then important to be able to compute

17There are also some mixed Nash equilibria.
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this optimal value. To do so, we �rst introduce the following de�nition from combinatorial
theory.

De�nition 3.1 Let C be a family of coalitions. For i 2 N de�ne Ci = fS 2 C j i 2 Sg:

(1) A vector � 2 R#C is called a vector of subbalancing coe¢ cients for C ifX
S2Ci

�(S) � 1 for all i 2 N

and �(S) � 0 for all S 2 C:

(2) The collection C is balanced if there exists � 2 R#C, called vector of balancing coe¢ -
cients for C, such that X

S2Ci
�(S) = 1 for all i 2 N

and �(S) � 0 for all S 2 C:

(Hence, a balanced collection is nonempty.)

For any S � N let

V (S) =

8<: W0 �
P

i2S3 �
i�W , if S = S2 [ S3 2 bBm;

0 , if S =2 bBm; (3.2)

that is, the worth of a coalition in S 2 bBm is the di¤erence betweenW0 and the change in the
aggregate utility of the pivotal players in S when passing from the status quo to the reform.
Note that the game (N; V ) is an auxiliary TU game. The following result summarizes the
equilibrium analysis of the sequential game.

Proposition 3.2 (1) If W1 �
P

S2 bBm �(S)V (S) for all vectors of subbalancing coe¢ cients
� for bBm, then there exists a subgame perfect equilibrium in which Lobby 1 makes an
o¤er t�1 selected among the optimal solutions to Problem (3.1) and Lobby 0 reacts on
this o¤er by o¤ering 0 to any legislator so that the bill is passed.

(2) If W1 <
P

S2 bBm �(S)V (S) for at least one vector of subbalancing coe¢ cients � for bBm,
then, for any S 2 bBm that satis�es W � �

P
i2S3 �

i�W = min
T2 bBm

P
i2T3 �

i�W < W0,

there exists a subgame perfect equilibrium in which Lobby 1 o¤ers 0 to any legislator,
Lobby 0 reacts on this o¤er by o¤ering t�0 where t

�i
0 = �

i�W for all i 2 S3 and t�j0 = 0
for all j 2 N n S3 so that the bill is not passed.
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Proof : Let v�
� bB; �� be the optimal value of Problem (3.1). From the duality theorem of

linear programming, v�
� bB; �� is the optimal value of the following linear program

max
�

X
S2 bBm

�(S)

"
W0 �

X
i2S3

�i�W

#
subject to the constraintsX
S2 bBim

�(S) � 1 for all i 2 N

and �(S) � 0 for all S 2 bBm:
The conclusion follows. �

When � = 0, the determination of the cheapest o¤er for Lobby 1 simpli�es to

min
t12Rn+

P
i2N t

i
1

subject to the constraints

and
P

i2S t
i
1 � W0 for all S 2 Bm:

(3.3)

It is immediate to see that the optimal value v�
� bB;0� of (3.3) is proportional to W0. Here-

after, it will be denoted simply by 
�(B)W0 where 
�(B) is the hurdle factor as de�ned by
Diermeier and Myerson (1999) which is the value of the problem

max
�

P
S2B �(S)

subject to the constraintsP
S2Bi �(S) � 1 for all i 2 N
and �(S) � 0 for all S 2 B :

It is straightforward to show that the value v�
� bB; �� of (3.1) lies somewhere between


�(B)W0 � �W
P

i2N �
i and 
�(B)W0. This is not surprising since this linear program

has more constraints than the linear program attached to the procedural behavioral model
and therefore v� (B; �) is at least equal to the victory threshold derived in the procedural
case.

From above, we deduce that if we are in Case 1 of Proposition 3.2, then

W1

W0

�

�(B) +

P
i2N �

i

1 +
P

i2N �
i
: (3.4)
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The practical value of Proposition 3.2 is to reduce the derivation of the victory threshold to
the exploration of the geometry of a convex polytope: the polytope of vectors of subbalancing
coe¢ cients. To use it e¢ ciently, it may be appropriate to consider an arbitrary family
of balanced coalitions, i.e., with edges not necessarily in bBm. In the statement, we can
trivially replace �

P
S2 bBm �(S) �W0 �

P
i2S3 �

i�W
�
for all vectors of subbalancing coe¢ cients

� for bBm�by �PS�N �(S)V (S) for all vectors of balancing coe¢ cients � for 2
N�. The �rst

formulation is useful as soon as we are in position to characterize the vector of subbalancing
coe¢ cients attached to the family of coalitions bBm, i.e., to the simple game18. This amounts
essentially to explore the combinatorics of the simple game. A classi�cation of simple games
was �rst provided by von Neumann and Morgenstern (1944) and further explored by Isbell
(1956, 1959). The second formulation takes advantage of the tremendous volume of research
accomplished in cooperative game theory. Indeed, it is well known since Bondareva (1963)
and Shapley (1967) that a TU game has a nonempty core i¤ it is balanced. As pointed out by
Shapley, this amounts to checking the balancedness inequalities for the extreme points of the
polytope of balanced collections of coalitions. He demonstrated that vector � is an extreme
point of the polytope of balanced collections i¤the collection of coalitions fS � N j �(S) > 0g
is minimal in terms of inclusion within the set of balanced collections of coalitions. A minimal
balanced collection has at most n sets19. Peleg (1965) has given an algorithm for constructing
the minimal balanced sets inductively. We illustrate the mechanical use of Proposition 3.2
through a sequence of simple examples.

Example 3.3 Consider the simple majority game with 3 legislators where S 2 Bm i¤ #S =
2, i.e., S = f1; 2g, f1; 3g, f2; 3g and B+m = fNg. Hence, bBm = fS � N j #S � 2g. Besides
the partitions, the unique minimal balanced family of coalitions is ff1; 2g ; f1; 3g ; f2; 3gg with
the vector of balancing coe¢ cients

�
1
2
; 1
2
; 1
2

�
. Let C be a minimal balanced collection and let �C

be the unique vector of balancing coe¢ cients for C. Then v�(B; �) = max
P

S2C �
C(S)V (S)

where the maximum is taken over all minimal balanced collection C. If C is the partition
into singletons, then

P
S2C �

C(S)V (S) = 0. If C = fNg, then
P

S2C �
C(S)V (S) = W0.

From the ordering of the �i, that is, 0 � �1 � � � � � �n, if C is any other partition, thenP
S2C �

C(S)V (S) =W0 � (�1 + �2)�W � W0. We conclude that

v�(B; �) = max

�
3W0 � 2 (�1 + �2 + �3)�W

2
;W0

�
and


�(B) =
3

2
:

18Holzman, Marcus and Peleg (1997) contains results on the polytope of balancing coe¢ cients for an
arbitrary proper and strong simple game.
19We refer the reader to Owen (2001) and Peleg and Sudhölter (2003) for a complete and nice exposition

of this material.
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We conclude that v�(B; �) = W0 whenever 2 (�1+�2+�3)�W � W0. When �1 = �2 = �3,
this happens when

W1 �
1 + 6�1

6�1
W0:

When making use of Proposition 3.2, it is important to notice that the parameterW1 appears
not only on the left hand side of the inequalities but also on the right hand side because
v�(B; �) depends also upon W1 through �W . Indeed, increasing W1 decreases the right
hand side �

P
S2 bBm �(S)V (S)�because it increases the cost �i�W of each legislator i. For

the sake of illustration, in the case of Example 3.3, when �1 = �2 = �3, it works as follows.
If W1 � (1 + 1

6�1
)W0, then v�(B; �) = W0. In this case Lobby 1 makes an o¤er t1 such

that
P

i2N t
i
1 = W0. If W1 < (1 +

1
6�1
)W0, then v�(B; �) = 3W0�6�1�W

2
. Two subcases may

occur. If W1 � 3W0�6�1(W1�W0)
2

, i.e., if W1 � (1 + 1
2+6�1

)W0; Lobby 1 makes an o¤er t1
such that

P
i2N t

i
1 =

3W0�6�1�W
2

. If W1 < (1 +
1

2+6�1
)W0, then Lobby 1 does not make any

o¤er. To summarize, we have here three cases de�ned by two thresholds (1 + 1
2+6�1

)W0 and
(1 + 1

6�1
)W0.

We will examine later how to derive the optimal o¤ers of Lobby 1 and in particular the
personal characteristics of the legislators who are o¤ered some positive amount. This will
depend obviously on two main features: �i, i.e., his personal propensity to vote against
social welfare and also its position in the family of coalitions. If legislator i is a dummy then,
obviously, ti1 = 0. But if he is not a dummy, then in principle all situations are conceivable:
He may receive something in all optimal o¤ers, in some of them or in none of them. It will be
important to know the status of a legislator according to this classi�cation in three groups.

Example 3.4 Consider the simple game with 4 legislators20 where S 2 Bm i¤ S = f1; 2g,
f1; 3g, f1; 4g or f2; 3; 4g. According to Shapley (1967), besides the partitions, the minimal
balanced families of coalitions are (up to permutations) the collections

ff1; 2; 3g ; f1; 2; 4g ; f1; 3; 4g ; f2; 3; 4gg ; ff1; 2g ; f1; 3g ; f1; 4g ; f2; 3; 4gg ;
ff1; 2g ; f1; 3g ; f2; 3g ; f4gg ; ff1; 2g ; f1; 3; 4g ; f2; 3; 4gg :

with the respective vectors of balancing coe¢ cients
�
1
3
; 1
3
; 1
3
; 1
3

�
;
�
1
3
; 1
3
; 1
3
; 2
3

�
;
�
1
2
; 1
2
; 1
2
; 1
�
and�

1
2
; 1
2
; 1
2

�
: We deduce from the proof of Proposition 3.2 that

v�( bBm; �) = max

8<:
4W0�(3�1+�2+�3+�4)�W

3
;
5W0�3(�1+�2+�3+�4)�W

3
;
2W0�(2�1+�2+�3)�W

2
;

3W0�(2�1+2�2+�3+�4)�W
2

; W0 � (�1 + �2)�W;W0; 0

9=; ;

�(B) = 5

3
:

20As demonstrated by von Neumann and Morgenstern ((1944), Theorem 52 :C), this is the unique proper
and strong simple four-person game without dummies.
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When �1 = �2 = �3 = �4, we obtain

v�( bBm; �) = 1

6
max

�
8W0 � 12�1�W; 10W0 � 24�1�W; 9W0 � 18�1�W; 6W0

	
:

The representation of the di¤erent a¢ ne functions of �1 that appear in the above expression
leads to

v�( bBm; �) =
8>>><>>>:

10W0�24�1�W
6

, if 0 � �1 � W0

6�W
;

8W0�12�1�W
6

, if W0

6�W
� �1 � 7W0

12�W
;

W0 , if �1 � 7W0

12�W
:

Example 3.5 Consider the following simple game with 3 legislators and S 2 Bm i¤ S =
f1; 2g or f1; 3g. The set of vectors of balancing coe¢ cients has already been described in
Example 3.3. We deduce easily that

v�( bBm; �) = max
�
W0 � �1�W; 0

	
and


�(B) = 1:

If we reverse the order of plays between the two lobbies, then it su¢ ces to replace B byW in
all the statements above. Using the same technique, we would compute v�(W ; �) and 
�(W).
In contrast to the �primal�victory threshold v�(B; �) and the �primal�hurdle factor 
�(B)
we will call the number v�(W ; �) the dual victory threshold and the number 
�(W) the dual
hurdle factor.

4 Complements and Extensions

Proposition 3.2 constitutes an important element of the toolkit to determine the victory
threshold. In this section, we continue the exploration of the problem having in mind to
add more elements in the toolkit. In the �rst subsection, we show that in the special case
where � = 0, our problem is strongly connected to one of the most famous problems in
the combinatorics of sets. We elaborate on the relationship with this branch of applied
mathematics and show how to take advantage of this body of knowledge to get a better
understanding21 of our own questions, on top of which is the determination of the hurdle

21An earlier version of this paper (available as Discussion Paper 8/2009 of the Depart-
ment of Business and Economics, University of Southern Denmark at Odense, Denmark, at
http://static.sdu.dk/media�les//Files/Om SDU/Institutter/Ivoe/Disc papers/Disc 2009/dpbe8 2009.pdf)
contains a more lengthy exposition of the existing literature on covering problems in hypergraphs. We refer
the reader to existing textbooks for a comprehensive survey of the state of the arts.
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factors attached to a simple game. In the second subsection, we illustrate the use of this
branch of mathematics through a selected sample of examples. In the third subsection, we
show that, quite surprisingly, the set of equilibrium o¤ers to the legislators made by the
�rst mover lobby coincides with the per capita least core of the simple game. We show that
this per capita least core coincides with the least core (and therefore contains the nucleolus)
when � = 0.

4.1 Fractional Matchings and Coverings

The main purpose of this subsection is to connect our problem to the covering problem which
is considered to be one of the most famous problems in the combinatorics of sets. As pointed
out by Füredi (1988), �the great importance of the covering problem is supported by the
fact that apparently all combinatorial problems can be reformulated as the determination of
the covering number of a certain hypergraph�. A hypergraph is an ordered pair H = (N;H),
where N is a nonempty �nite set of n vertices and H is a nonempty collection of nonempty
subsets of N called edges.

Given a positive integer k, a k-cover of H is a vector t 2 f0; 1; : : : ; kgn such thatX
i2S
ti � k for all S 2 H: (4.5)

A k-matching of H is a vector � 2 f0; : : : ; kgH such thatX
S2Hi

�(S) � k: (4.6)

A 1-cover (1-matching) is simply called a cover (matching) of H. Note that the covers of
H may simply be identi�ed with subsets of N that have nonempty intersections with any
edge22. Similarly, the matchings of H may be identi�ed with collections of pairwise disjoint
members of H. A k-cover t� minimizing

P
i2N t

i subject to the constraints (4.5) is called
an optimal k-cover and 
�k(H) �

P
i2N t

�i is called the k-covering number. A k-matching
�� maximizing

P
S�N �(S) subject to the constraints (4.6) is called an optimal k-matching

and ��k(H) �
P

S�N 

�(S) is called the k-matching number. Hence, 
�1(H) is the minimum

cardinality of the covers and is called the covering number of H while ��1(H) is the maximum
cardinality of a matching and is called the matching number of H.

22Indeed, if t is a cover of H, then T = fi 2 N j ti = 1g satis�es T \ E 6= ; for all E 2 H and, vice versa,
if T � N with T \E 6= ; for all E 2 H, then �T 2 Rn de�ned by �iT = 1 if i 2 T and �

j
T = 0 if j 2 N n T is

a cover of H.
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A fractional cover of H is a vector t 2 Rn such thatX
i2S
ti � 1 for all S 2 H (4.7)

and ti � 0 for all i 2 N . (4.8)

A fractional matching of H is a vector � 2 R#H such thatX
S2Hi

�(S) � 1 for all i 2 N (4.9)

and �(S) � 0 for all S 2 H: (4.10)

A fractional cover t� minimizing
P

i2N t
i subject to the constraints (4.7) and (4.8) is called

an optimal fractional cover and 
�(H) �
P

i2N t
�i is called the fractional covering number.

A fractional matching �� maximizing
P

S2H �(S) subject to the constraints (4.9) and (4.10)
is called an optimal fractional matching and ��(H) �

P
S�N �

�(S) is called the fractional
matching number.

4.2 Hurdle, Integral Dual and Uniform Hurdle Factors

It follows immediately from these de�nitions that the hurdle factor 
�(B) is the fractional
covering number of H = (N;B), while the dual hurdle factor 
�(W) is the fractional covering
number of H = (N;W). If, in contrast to what has been assumed in the preceding section,
money is available in indivisible units, then the appropriate parameter becomes 
�W0

(C) where
the integer W0 is the value of policy 0 for Lobby 0 (when C = B, i.e., when Lobby 0 is the
follower) expressed in monetary units. The case where W0 = 1 is of particular interest as it
describes the situation where Lobby 0 has a single unit of money to spend in the process. The
problem is now purely combinatorial: To whom of the legislators should Lobby 1 spend one
unit to prevent Lobby 0 from targeting a unique pivotal legislator23? Hereafter, the integer

�1(B) will be called the integral hurdle factor and the integer 
�1(W) will be called the integral
dual hurdle factor. While we will focus mostly on the divisible case, it is interesting to note
the implications of indivisibilities on the equilibrium outcome of the lobbying game. The
following developments apply equally to both hurdle factors and we will often use the symbol
H without specifying whether H = B or H = W. For an arbitrary hypergraph H, we have
the inequalities

��1(H) �
��k(H)

k
� ��(H) = 
�(H) � 
�k(H)

k
� 
�1(H). (4.11)

23To support that interpretation, we need however to assume that a legislator who is indi¤erent breaks
the tie in direction of Lobby 0.
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We deduce immediately from these inequalities that the value of the hurdle factor24 increases
with the �degree� of indivisibilities; indivisibilities act as additional integer constraints in
the linear program describing the determination of the optimal fractional matchings and
coverings. The relationships between these numbers are intricate and their investigation is
an active subject of research in the theory of hypergraphs. The calculation of the covering
number of an arbitrary hypergraph is an NP-hard problem in contrast to the determination
of the fractional covering number which amounts to solve a linear program without any
integer constraints.

It is often assumed that the simple game (N;W) is proper. In such case, it is clear that
the pattern of intersections of winning coalitions plays some role in the determination of the
integral and fractional dual hurdle factors. Since a cover is a set which intersects every edge,
we deduce that any set in W is a cover. This implies that the dual integral hurdle factor
is then smaller than minE2W #E and that Lobby 0 will have to bribe a subset of legislators
no larger than the size of the smallest winning coalition. Lobby 0 may have to pay less like
for instance in the case where all minimal winning coalitions contain a prescribed subset of
legislators (the vetoers); in such case, 
�1(W) = 1.

4.3 Uniform Hurdle Factor

Besides integer constraints (due to the indivisibility of money), we have also excluded restric-
tions on the o¤ers made by the lobbies to the legislators. In particular, the o¤ers of a lobby
can di¤er across legislators. In this subsection, we are going to sort out the implications of
assuming that all the legislators receiving an o¤er from a lobby receive the same o¤er25. This
means that from the perspective of any one of the two lobbies, the population of legislators
is partitioned into two groups: those who receive an o¤er from that lobby and those who
do not. Let T1 denote the group of legislators receiving an o¤er from Lobby 1 and let s1 be
the amount of the o¤er to each member of T1, i.e., ti1 = s1�T1. Since this limitation applies
equally to both, Lobby 0 and Lobby 1, the cheapest o¤er s1 meeting these constraints is the
solution of the following linear program

min
(T1;s1)22N�R+

s1 �#T1

24It has been demonstrated by Chung, Füredi, Garey and Graham (1988) that for any rational number x,
there exists a, hypergraph H = (N;H) such that ��(H) = x.
25This assumption is made by Le Breton and Zaporozhets (2007) in their examination of the uncertainty

setting. Morgan and Vardy (2007, 2008) refer to these o¤ers as non-discriminatory vote buying.
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subject to the constraints (4.12)

s1 �#S � W0 for all S 2 Bm
and S \ T1 6= ; for all S 2 Bm:

On one hand, the second set of constraints excludes the cases where S \ T1 = ;. Indeed, in
such case ti1 = 0 for all i 2 S and Lobby 0 can easily bribe coalition S. On the other hand,
if the inequality s1 �#S � W0 is violated, i.e., t1 �#S < W0; then there exists s0 > s1 such
that s0 � #S < W0. An o¤er of an amount equal to s0 to each of the legislators in S will
be accepted by all legislators in S \ T1 and trivially by all those who are not in T1. It is
important to note that the constraint s1 � #S � W0 is less demanding than the constraint
s1 � #(S \ T1) � W0 which would describe the situation where Lobby 0 is not constrained
by the uniformity assumption. The solution of the above problem is strongly connected
to the solution of the covering problem. Since it is linear in W0, let W0 = 1. First, we
note immediately from the second set of constraints that the set T1 must be a cover for the
hypergraph (N;Bm). On the other hand, the tightest constraints in the �rst set of constraints
are those attached to the smallest S in Bm. If (T �1 ; s�1) is an optimal solution of (4.12), then
we may deduce that

s�1 =
1

min
S2Bm

#S

and T �1 is a minimal cover of (N;B). Using our notations, we deduce that the value of the
above linear program with integer constraints, called hereafter the uniform hurdle factor and
denoted 
�u(B), is equal to


�u(B) =

�1(Bm)
min
S2Bm

#S
:

We would determine similarly the dual uniform hurdle factor, denoted 
�u(W), as


�u(W) =

�1(W)
min
S2W

#S
:

We have obtained, a quite surprising connection between the uniform hurdle factors and
the integral hurdle factors. It provides an extra justi�cation to compute the integral hurdle
factors. Both uniform hurdle factors are smaller than their integral counterparts meaning
that the uniformity constraint hurts less Lobby 1 than the indivisibility constraint. Note
also that whenever W is a proper simple game, then


�u(W) � 1:

If we consider the simple game of Example 3.4, we obtain that 
�u(B) = 1 which is less than

�(B) = 5

3
. Note also that in such case, if Lobby 0 was not constrained by uniformity, the

factor would jump to 2 which is, as expected, larger than 
�(B).
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4.4 Weighted Majority Games

In this section, we focus on the class of weighted majority games. A simple game is a
weighted majority game if there exists a vector ! = (!1; : : : ; !n; q) of (n + 1) nonnegative
real numbers such that a coalition S is in W i¤

P
i2S !

i � q so that, by the de�nition of
a simple game, (i) q > 0 and (ii)

Pn
i=1 !

i � q. Note that !i is the weight attached to
legislator26 i. The vector ! is called a representation of the simple game. It is important to
note that the same game may admit several representations. A simple game is homogeneous
if there exists a representation ! such that

P
i2S !

i =
P

i2T !
i for all S; T 2 Wm.

Throughout, we assume that N = f1; : : : ; ng with n � 2. Consider an arbitrary TU game
(N; V ) and let x 2 Xn � fy 2 Rn j

Pn
i=1 y

i = V (N); yj � V (fjg)8j 2 Ng. Let �(x) be
the 2n � 2-dimensional vector27 whose components are the numbers V (S) �

P
i2S x

i for
; 6= S $ N arranged according to their magnitude, i.e., �i(x) � �j(x) for 1 � i � j � 2n�2.
Similarly, let b�(x) be the 2n � 2 dimensional vector whose components are the numbers
V (S)�

P
i2S x

i

#S
for ; 6= S $ N also arranged according to their magnitude, i.e., b�i(x) � b�j(x)

for 1 � i � j � 2n�2. The nucleolus and the per-capita nucleolus28 of (N; V ) are the unique
vectors x�; bx� 2 Xn such that �(x�) and b�(x�) are minimal, in the sense of the lexicographic
order, of the sets f�(y) j y 2 Xng and

nb�(y) j y 2 Xn

o
, respectively. For the de�nition and

uniqueness of x� and bx� see Schmeidler (1969), Justman (1977), and Wallmeier (1983). The
least core and the per-capita least core29 are the subsets of Xn consisting of the vectors x
such that �1(x) = �1(x�) and b�1(x) = b�1(bx�), respectively. These polytopes will be denoted
LC(V;N) and cLC(V;N). Note that, by construction x� 2 LC(V;N) and bx� 2 cLC(V;N).
26In most legislatures, legislators belong to political parties. Party discipline refers to the situation where

any two legislators belonging to the same party vote similarly. Then, if two legislators i and j belonging to
the same party are such that �i = �j , it is appropriate to assume that the players are the parties rather
than the legislators themselves; in such case, !k denotes the number of legislators a¢ liated to Party k.
27This vector is called the vector of excesses attached to x.
28Strictly speaking, this is the (per-capita) prenucleolus. The nucleolus and the per-capita nucleolus

are de�ned on the set of individually rational payo¤s. If the cooperative game is zero-monotonic, i.e., if
V (S [ fig)� V (S) � V (fig) for all i 2 N and S � N n fig, the di¤erence between the prenucleolus and the
nucleolus vanishes. A simple game is always zero-monotonic unless, for some i 2 N and S � N n fig, fig
and S are members of W. The per-capita prenucleolus may be di¤erent from the per-capita nucleolus even
for a zero-monotonic weighted majority game: Let n = 4 and (N;V ) be represented by ! = (1; 1; 1; 0; 2),
i.e., (N;W) arises from the simple 3-person majority game by just adding a null-player. The per-capita
prenucleolus coincides with 1

8 (3; 3; 3;�1) and, hence, assigns a negative amount to the nullplayer, whereas
the per-capita nucleolus coincides with the prenucleolus and the nucleolus given by 1

3 (1; 1; 1; 0).
29The notion of the (per-capita) least core was �rst introduced by Maschler, Peleg and Shapley (1979). The

example in Footnote 28 shows that the per-capita least core may contain elements that are not individually
rational even for zero-monotonic games. However, each payo¤ vector of the least core of a zero-monotonic
game is individually rational.
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Let Pn = 2N n f;; Ng. To any TU game V we attach the linear program

min
t2Rn

P
i2N t

i

subject to the constraintsP
i2S t

i � V (S) for all S 2 Pn:

(4.13)

Let 
 (V ) be the value of this problem. Then V is balanced i¤ V (N) � 
(V ). Moreover, let

C�(V ) � min
y2Xn

max
S2Pn

V (S)�
P

i2S y
i

#S
: (4.14)

The following simple assertion holds.

Proposition 4.1 If (N; V ) is a TU game, then 
(V ) = V (N) + nC�(V ):

Proof : Let " = 
(V )�V (N)
n

and let t� be an optimal solution of the linear program (4.13).
De�ne x = t� ��N and observe that

P
i2N x

i = V (N). Moreover,

V (S)�
P

i2S x
i

#S
=
V (S)�

P
i2S t

i � " �#S
#S

� " for all S 2 Pn

so that C�(V ) � ".

To prove the opposite inequality let y 2 Xn such that

max
S2Pn

V (S)�
P

i2S y
i

#S
= C�(V )

and de�ne z = y + C�(V )�N : Then, for any S 2 Pn,X
i2S
zi =

X
i2S
yi + C�(V ) �#S � V (S)

so that
V (N) + nC�(V ) =

X
i2N

zi � 
(V ) = V (N) + n"

and, hence, C�(V ) � ": �

The argument is also quite instructive by itself as it demonstrates that the set of solutions
of the linear program (4.13) above is strongly connected to the per-capita least core30 of the

30Strictly speaking it is the least core whenever the core of the game is empty. Here, we will focus almost
exclusively onto that case.
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cooperative TU game V . In the case of the determination of the optimal o¤er(s) by Lobby
1, the TU game V is de�ned by (3.2).

Remark 1. Proposition 3.2 remains valid if the TU game V de�ned by (3.2) is replaced
by the TU game V 0 that di¤ers from V only inasmuch as bBm is replaced by B, i.e., the TU
game V 0 is de�ned by

V 0(S) =

8<: W0 �
P

i2S3 �
i�W , if S = S2 [ S3 2 B;

0 , if S 2 2N n B:
(4.15)

Indeed, as bBm � B and V (S) = V 0(S) for all S 2 bBm,
max

( P
S2 bBm�(S)V (S)

����� � is a vector of subbalancing coe¢ cients for bBm
)

� max

� P
S2B
�(S)V 0(S)

���� � is a vector of subbalancing coe¢ cients for B� :
In order to show the opposite inequality, note that, for any S 2 B, there exists bS 2 bBm such
that bS � S and bS3 = S3. Now, if � is a vector of subbalancing coe¢ cients for B, then we
may de�ne a vector b� of subbalancing coe¢ cients for bBm byb�(T ) =Xf�(S) j bS = Tg for all T 2 bBm:
As V 0(S) = V (bS) for all S 2 B,X

T2 bBm
b�(T )V (T ) =X

S2B
�(S)V (S):

When � = 0, the above calculations can be further simpli�ed. Indeed in such a case, the
game V 0 is up to the multiplication by W0, the simple game

V 0(S) =

8<: 1; if S 2 B;

0; otherwise.

Applying (4.14) to V 0 yields

C�(V 0)= min
y2Xn

max
S2Pn

V 0(S)�
P

i2S y
i

#S
=min
y2Xn

max

�
max

S2BnfNg

1�
P

i2S y
i

#S
;� min

T22Nn(B[f;g)

P
i2S y

i

#T

�
:

This implies that the hurdle factor 
�(B) is equal to 1 + nC�. Let

C�� � max
y2fz2Rn+j

P
i2N z

i=1g
min
S2Bm

X
i2S
yi:
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Following the same line of arguments as above, it is easy to show that 
�(B) = 1
C�� . Moreover,

any x 2 Rn+ that satis�es
P

i2N x
i = 1 and

P
i2S x

i � C�� for all S 2 Bm, is an element
of LC(V 0; N), provided that V 0 is zero-monotonic. This means that in this case, the hurdle
factor can be computed either via the least core or the per-capita least core. A similar
statement is valid for the dual hurdle factor. From now on, we focus on the case where
� = 0.

In some cases it will be possible to order, partially or totally, the legislators according to
desirability as de�ned by Maschler and Peleg (1966). Legislator i 2 N is at least as desirable
as legislator j 2 N if S [ fjg 2 W implies S [ fig 2 W for all S � N n fi; jg. Legislators i
and j are symmetric or interchangeable if S [fjg 2 W i¤ S [fig 2 W for all S � N nfi; jg.
Legislator i is said to be strictly more desirable than legislator j if S [ fjg 2 W implies
S[fig 2 W for all S � N nfi; jg and S[fig 2 W and S[fjg =2 W for some S � N nfi; jg.
Example 4.2 below shows that two symmetric legislators do not necessarily receive the same
o¤er from Lobby 1 in all equilibria of the lobbying game.

Example 4.2 Consider the proper and strong weighted majority game that has the repre-
sentation

(17; 9; 8; 6:5; 6:5; 5; 3; 2; 2; 30):

According to Krohn and Sudhölter (1995), the least core is the convex hull of the normalized
vectors of weights that correspond to the weights of the representation except for players 4
and 5 who may receive 7/59 and 6/59 or symmetrically 6/59 and31 7/59.

In the foregoing example, the violation of desirability relation applies to two legislators
who are interchangeable and to a situation where the least core does not degenerate on the
nucleolus. Note that this �pathological�behavior of legislator�s prices do not extend to strict
desirability. Peleg (1968) has demonstrated that for a proper and strong weighted majority
game, any imputation in the least core is a representation. Since a representation assigns a
bigger weight to a strictly more desirable player, it follows that the price o¤ered to legislator
i is larger than the price o¤ered to legislator j in all equilibria, if legislator i is strictly more
desirable than legislator j. This monotonicity property does not extend to weighted majority
games which are not proper and strong as demonstrated by Example 4.3 below.

Example 4.3 Consider the following 6-person game with representation

(5; 5; 4; 3; 2; 2; 14)

31The least core of each proper and strong weighted majority game with less than 9 legislators is a singleton
so that in this case symmetric legislators receive the same o¤er.
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taken from Kopelowitz (1967). We claim that the vector x = (1; 1; 0; 1; 0; 0)=3 belongs to the
least core. According to Kopelowitz, the nucleolus is (4,4,3,2,1,1)/15 and, hence, it assigns
2/3 to the winning coalition {1,2,5,6}. Now, the vector x assigns to each winning coalition
at least 2/3 and it is nonnegative. Hence, the maximal excess is 1/3 in both cases. However,
player 3 is strictly more desirable than 4.

5 Some Applications

In this last section, we illustrate the techniques and notions introduced before by considering
di¤erent families of simple games. First, we consider simple games where winning coalitions
are large and therefore blocking coalitions are small. We show how to use some results from
the theory of graphs to compute the hurdle factor(s) or to obtain approximation of these
numbers. In the second part, we look at speci�c real world simple games described as vector-
weighted majority games of low dimension and we also calculate the relevant parameters.

5.1 Simple Games with LargeWinning Coalitions (Small Blocking
Coalitions)

When we consider the hypergraph of the minimal blocking coalitions of a simple game,
the fractional and integral covering numbers are likely to be large numbers when its set of
edges contains many small coalitions. This will happen as soon as in the simple game, a
coalition is winning if it contains most of the players. The extreme case of such situation
is unanimity according to which a coalition is winning if it contains all the legislators. In
such case, any singleton is a blocking coalition and then ��1(B) = 
�(B) = 
�1(B) = n. The
�closest� situation to unanimity is the case where each winning coalition contains at least
n� 1 legislators. This case has been extensively studied by several authors including Lucas
(1966), Maschler (1963) and Owen ((1968), (1977)). We now consider the more general case
that each winning coalition contains at least n� 2 legislators and that for any three-person
coalition T � N there is i 2 T with N n (T n fig) =2 W. In such a case each minimal
blocking coalition consists either of a single vetoer or it is a pair of legislators. Hence, in the
particular subcase that each (n�1)-person coalition is winning, i.e., that vetoers are absent,
the hypergraph (N;Bm) of minimal blocking coalitions is, in fact, an ordinary graph, and
we may reconstruct from B, via duality, the set W of winning coalitions: Indeed, S 2 Wm

if and only if either S = N n fig for some i 2 N such that fi; jg 2 B for all j 2 N n fig or
S = N n fi; jg for some i; j 2 N such that fi; jg =2 B.

In such a case, we can take advantage of the results established in the theory of graphs
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to derive information on the di¤erent hurdle factors. In that respect, it will also be useful
to calculate the matching and fractional matching numbers to obtain lower bounds on the
hurdle factor(s) via (4.11). The largest possible value of 
�(B) is n

2
which is realized, for

instance, when the graph is complete. From the point of view of matchings32, it corresponds
to what is called in graph theory as a perfect matching. If there is a perfect matching,
we deduce from (4.11) that 
�(B) = n

2
. If the graph is bipartite, Hall�s theorem provides

necessary and su¢ cient condition for the existence such a perfect matching. For an arbitrary
graph, Tutte�s theorem33 also provides necessary and su¢ cient condition for the existence
such a perfect matching.

When there is no perfect matching, we can still explore the set of maximum matchings and
obtain a lower bound on 
�(B) through inequality (4.11). Further, we know from Lovász
(1975) that


�(H) � ��1(H) + 

�
1(H)

2
:

Note �nally that in order to make the best possible use of Proposition 3.2 in such case, it is
important to characterize the family of balanced collections. It has been demonstrated by
Balinski (1972) that � is an extreme point of the polytope of fractional matchings i¤ there
exists a collection Q of node-disjoint edges and odd cycles such that

�(fi; jg) =

8>>><>>>:
1 if fi; jg 2 Q;
1
2
if fi; jg belongs to an odd cycle of Q;

0 otherwise.

This important result suggests to identify the partitions of N with the largest number of
vertices either belonging to an odd cycle or a to a pair. The length of the longest odd cycle
or the cumulate length of a disjoint family of odd cycles provide lower bounds for 
�(B).
However, these questions are not easy from a computational perspective.

5.2 Vector Weighted Majority Games

Every simple game is a vector weighted majority games as de�ned by Taylor and Zwicker
(1999). A simple game (N;W) is a vector-weighted majority game if there exists a positive
integer k, an assignment of k-tuple weights to the players

�
wij
�
1�j�k for all i 2 N , and a

32The results on matching theory to which we refer here can be found in Lovàsz and Plummer (2006). A
friendly presentation is o¤ered by Simeone (2006).
33It also follows from that theorem that ��2(H) = 2


�(H) = 
�2(H).
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k-tuple quota q = (qj)1�j�k such that for every coalition S � N , S 2 W i¤
P

i2S w
i
j � qj

for all j = 1; : : : ; k: A simple game is said of dimension k if it can be represented using
k-tuples as weights and quota but cannot be represented using (k� 1)-tuples as weights and
quotas. Hereafter we shall focus on vector-weighted majority games with a small dimension.
This class includes all the weighted majority games (i.e., vector-weighted majority game
of dimension 1) as de�ned earlier (like for instance the United Nations Security Council)
but also many important real world examples which are not weighted majority games like
for instance the Canadian constitutional amendment scheme, the US legislative system, the
European rule(s) and voting by count and account. In this subsection we derive the hurdle
factors for a sample of real world34 vector weighted majority games describing the decision
making process of some important organizations35.

Example 5.1 (The United Nations Security Council) The voters are the 15 coun-
tries that make up the security council, 5 of which are called permanent members whereas
the other 10 are called nonpermanent members. Passage requires a total of at least 9 votes,
subject to approval from any one of the 5 permanent members. It is easy to show that this
simple game is a weighted majority game: Assigning a weight of 7 to each permanent member,
a weight of 1 to any nonpermanent member and a quota equal to 39 provides a representa-
tion. If Lobby 1 acts to pass a reform (here a resolution), the problem of determination of
the least core reduces to the minimization of 5x1 + 10x2 with respect to (x1; x2) 2 R2+ under
the constraints

x1 � 1 and 7x2 � 1:

We deduce that the least core consists of the unique vector
�
1; 1

7

�
(which is the nucleolus)

and that the hurdle factor 5 + 10
7
is approximately equal to 6:43:

If instead Lobby 0 acts �rst in order to block a reform, the problem of determination of the
least core reduces to the minimization of 5x1 + 10x2 with respect to (x1; x2) 2 R2+ under the
constraint

5x1 + 4x2 � 1:

Now we obtain that the least core consists of the unique vector
�
1
5
; 0
�
(which is the nucleolus)

34Le Breton and Zaporozhets (2010) compute the hurdle and dual hurdle factors of the U.S. legislative
system and Le Breton, Montero and Zaporozhets (2011) provide similar computations for the EU council of
ministers from 1958 to nowadays.
35Whether there is some evidence supporting the view that some members of these organizations are or

can be responsive to the o¤ers of lobbies is a question which is not addressed here. The fact that vote buying
and vote trading are pervasive activities in many international organizations is well documented (see, for
instance, Dreher and Vreeland (2011) and references there in) but we don�t want to infer from these studies
that the two particular organizations considered below act under the in�uence of lobbies (on the UN security
council see e.g. Tamura and Kunieda (2005)). We proceed as if it was the case and explore the consequences
of that assumption.
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and that the dual hurdle factor is equal to 1. Here, only the permanent members receive an
o¤er and with a hurdle factor equal to 1, lobbying expenditures by Lobby 1 remain moderate.
We could wonder what would be the consequences of limiting somehow the veto power of the
permanent members and/or changing the level of the quali�ed majority to pass a reform. For
instance, suppose that passage requires a total of at least 9 votes, subject to approval of at
least 3 permanent members. The constraints now become

3x1 + 6x2 � 1 and 5x1 + 4x2 � 1:

In that case, if as above, Lobby 0 acts to block a reform, both permanent and nonpermanent
members are likely to receive o¤ers as the least core consists of the convex hull of the vectors�
1
3
; 0
�
and

�
1
9
; 1
9

�
and the dual hurdle factor 5

3
is approximately equal to 1:66: Consider �nally

the case where passage requires a total of at least 10 votes, subject to approval of at least 3
permanent members. The constraints now become

3x1 + 7x2 � 1 and 5x1 + 5x2 � 1:

It is straightforward to show that the least core consists of the unique vector
�
1
10
; 1
10

�
(which

is the nucleolus) and that the dual hurdle factor is equal to 1:50:

From 1954 to 1965, the simple game (N;W) describing the council had 5 permanent members,
6 nonpermanent members and the quali�ed majority was equal to 7. Proceeding as above,
we obtain that the hurdle factor 
� (B) was equal to 6:20 while 
� (W) = 1. The 1965
system is less vulnerable to lobbying than the 1954�s one. It would be interesting to use this
apparatus to evaluate some of the proposals to reform membership and voting rules of the
United Nations Security Council. Many countries criticize the lack of representativeness of
the current council. Among the proposals, we can �nd:

� The G4 proposal which ask the addition of 6 new permanent members without veto
power and 4 new nonpermanent members.

� The African proposal which is similar to the G4 proposal except for the fact that it
asks that the new permanent members also had a veto power and 5 new nonpermanent
members instead of 4.

� The �United for Consensus� proposal which simply asks for the addition of 10 new
permanent members.

These proposals suggest to increase the current size of 15 members to 25 or 26 members. In
our setting being a permanent member without veto power is equivalent to being a nonper-
manent member. No speci�cation of the required quali�ed majority is provided but given the
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historical attachment to a supermajority requirement of 60 � 63%, we could expect a quota
equal to 15. The �rst, second, and third proposal, respectively, leads to a hurdle factor 
� (B)
equal to approximately 8:67; 12:25, and 8:67. A way to compromise between the �rst and
second proposal could consist in o¤ering to each pair (or triple) of new permanent members
a veto power. To compromise with the third, we could increase the quota from 15 to 18. In
general, a council composed of n1 permanent members with regular veto power, n2 permanent
members with veto power o¤ered to the pairs, n3 = n�n1�n2 nonpermanent members, and
a quota equal to q, where n1 + n2 < q < n� 1, leads to a hurdle factor equal to

n1 +
n2
2
+

n3
n1 + n2 + n3 + 1� q

:

Example 5.2 (Amending the Canadian Constitution) We consider �rst the impres-
sive scheme for amending the Canadian constitution, proposed at the Victoria conference
in 1971 (Stra¢ n (1993)). The problem in designing a constitutional amendment scheme
for Canada is that the Canadian provinces are very jealous of their constitutional preroga-
tives and extraordinarily diverse both in politics and in size. The provinces of Ontario and
Québec together contained 64% of the Canadian population in 1970, whereas the four small
�Atlantic�provinces together contained less than 10%. This extreme diversity suggests asym-
metric treatment of the provinces in a constitutional amendment scheme, but exactly how to
do it is a delicate matter. The Victoria scheme proposed that a constitutional amendment
would have to be approved by

� both Ontario (O) and Québec (Q), and

� at least two of the four Atlantic provinces (New Brunswick (NB), Nova Scotia (NS),
Newfoundland (NF) and Prince Edward Island (PEI)), and

� British Columbia (BC) and at least one of the prairie provinces (i.e., Alberta (A),
Saskatchewan (S), Manitoba (M)) or all three prairie provinces.

The three componentsW1,W2 andW3 of this tricameral simple gameW are easy to analyze:
W1 is the unanimity game with two players, W2 is the symmetric game with four players
and a quota equal to 2 and W3 is the apex game (Example 3.4) with four players. We deduce
that the dual hurdle factor 
�(W) of W is equal to min (
�(W1); 


�(W2); 

�(W3)) = min�

1; 2; 5
3

�
= 1. Similarly the hurdle factor of the dual game B, 
�(B), is equal to 
�(B1) +


�(B2) + 
�(B3) = 2 + 4
3
+ 5

3
= 5. For this last simple game, O and Q receive each 20 %,

each of the four Atlantic provinces receives 6.67 %, BC receives 13.33 % while A, S and M
receive each 6.67 %.
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The constitutional amendment scheme which Canada �nally adopted in 1982 was far less
equitable than the Victoria scheme, in the sense that voting power as measured by either in-
dex does not approximate population at all (Kilgour (1983)). According to this scheme, to be
approved, an amendment needs the support of at least two-thirds of the provinces that have,
in the aggregate, according to the then latest general census, at least �fty percent of the pop-
ulation of all the provinces. The �rst principle implies that at least 7 of out the 10 provinces
are needed to pass the amendment or equivalently any 4 provinces can block an amendment.
On the basis of the 1981 census, no single province can block an amendment; the minimal
blocking coalitions are fO;Qg, fO;BC;Ag ; fO;BC;Mg ; fO;BC; Sg, fO;BC;NSg, and all
4-person coalitions that do not contain any of the foregoing coalitions. It can be veri�ed that

�(B) = 3. Here the least core of G = (N;B) does not collapse on the nucleolus. The game
(N;W) is not strong and for instance there are imputations in the least core of G that do not
strictly respect the desirability relation. Moreover, the desirability relation of G is complete,
but G is not a weighted majority game.

6 Concluding Remarks

In this paper, we have examined the equilibrium behavior of two lobbyists playing sequen-
tially to buy the votes of legislators. In doing so, we have highlighted the key role played by
the hurdle factor which is a parameter of the simple game describing the decision making
process in the legislature. When the hurdle factor is large, it is less likely to observe lobbying
at equilibrium but when it happens, lobbying activities are more signi�cant. We have pointed
out the connection between the computation of the hurdle factor and the covering problems
in graph theory. Among the applications, a special attention has been devoted to two cases:
on the one hand, the case where minimal blocking coalitions are pairs of legislators and on
the other hand, the case of vector weighted majority games.

This last topic calls for more applications of our methods. One important class of games is
the class of linear games with consensus (Carreras and Freixas (2004)), pioneered by Peleg
(1992) under the heading �voting by count and account�(Peleg (1992)). The 1982 consti-
tutional amendment scheme is part of this family. The general question of the computation
of the hurdle factor and the characterization of the least core for such class of games is still
unexplored. The account side appears in organization where the �nancial contributions of
the members play a role in the determination of their voting rights like in the IMF where
only the �nancial weight matters. This voting system leads to some under-representation of
the developing and transition countries and have been criticized on several grounds. Some
new voting rules have been suggested (Bräuninger (2003), Hirokawa and Vlach (2006), Leech
(2002), Morgan (2007), O�Neill and Peleg (2000), Rapkin and Strand (2006)). It would be
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useful to evaluate the hurdle factors and least cores of these new alternative schemes.
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