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Abstract
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This paper o¤ers various interpretations of a risk-aversion coe¢cient,

[u(w) ¡ u(0)]=u0(w) in standard notation, that was …rst introduced by Au-

mann and Kurz (1977). This coe¢cient, coined the “fear of ruin” (FR)

coe¢cient, captures an individual’s “attitude toward risking his fortune”.1

There has not been to date any systematic analysis of this coe¢cient. This

paper …lls this gap by identifying situations in which the FR coe¢cient con-

trols the behavior of expected utility maximizers. These situations involve

choices among binary lotteries with a …xed worse outcome.

1 Fear of Ruin in the Small and in the Large

How much would an individual be willing to pay to be fully insured against

the possibility of ruin? Suppose that this individual maximizes his expected

utility, with an increasing von Neumann Morgenstern utility function u and

current wealth w (assume w > 0). He may lose his entire wealth w with

probability p. The insurance premium z(p) is de…ned by2

u(w ¡ z(p)) = (1 ¡ p)u(w) + pu(0): (1)

Assume that u is di¤erentiable. Di¤erentiating (1) with respect to p gives

z0(p) = u(w)¡u(0)
u0(w¡z(p)) . Suppose that the probability p is small enough so that

z(p) may be reasonably approximated by pz0(0) since z(0) = 0. A …rst-

order Taylor approximation of the insurance premium z(p) is then given by

z(p) ¼ pu(w)¡u(0)u0(w) .

This insurance premium “in the small” thus depends separately on the
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characteristics of the risk and of the individual. In accord with intuition, the

premium is proportional to the probability of ruin p. Moreover, it depends

on the characteristics of the individual’s utility function only through the

ratio u(w)¡u(0)u0(w) : Observe that this ratio is invariant to a¢ne transformations

of utility.

As in Aumann and Kurz (1977), we scale the utility function by assuming

u(0) = 0. This is done for expositional convenience and without loss of

generality since the utility function is de…ned up to an a¢ne transformation.

In this case, the insurance premium is

z(p) ¼ p u(w)
u0(w)

(2)

The coe¢cient u=u0 corresponds to the “fear of ruin” coe¢cient, as it was

…rst introduced by Aumann and Kurz (1977). From now, and throughout

the paper, we will refer to u=u0 as the coe¢cient of fear of ruin, or FR.3

Observe that our approximation for the insurance premium does not di-

rectly depend on the Arrow-Pratt coe¢cient, ¡u00=u0. This is because we

approximate this premium for a small change in the probability p, not for

a small change in the variation of terminal wealth, as in Pratt (1964) and

Arrow (1971). Consequently, we can derive a …rst-order approximation of the

insurance premium by simply examining the rate of increase of the insurance

premium with respect to p.4

Furthermore, observe that u(w)=u0(w) is always strictly positive under

u(:) increasing, since u(0) = 0. Moreover, under risk-aversion, it is easy to
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see that this coe¢cient always increases with wealth w. Intuitively, there

are two reasons why the insurance premium increases with wealth. First,

when the agent is wealthier, there is more to lose. As a result, the agent is

willing to pay more in the face of the risk of losing his entire wealth. This

is the e¤ect related to the numerator, u(w); which increases in w. Second,

under risk-averse preferences, the marginal value of money is smaller when

the agent is wealthier, so he is willing to sacri…ce a larger amount of money

in face of the same risk. This e¤ect is related to the term 1=u0(w); which also

increases in w under risk-aversion.

Also, simply observe that, under risk neutrality, the FR coe¢cient reduces

to w. Moreover, if u is concave,

u(w)
w

¸ u0(w):

This inequality states that the slope of the tangent to the utility function at

w is always smaller than the slope of the chord drawn from 0 to w. Multi-

plying both sides of this inequality by w=u0(w) shows that the FR coe¢cient

is always larger under risk-aversion than under risk-neutrality. This is con-

sistent with the intuitive requirement that one’s fear of ruin is lower when

one is risk-neutral.5

Previous remarks interpret FR as a measure of local risk aversion or

local propensity to insure against a small chance of ruin. We next examine

comparative properties of the FR coe¢cient for any probability of ruin p. To

do so, we …rst introduce two De…nitions.
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De…nition 1 We de…ne z(u;w; p); the insurance premium of agent u

facing the risk of losing wealth w with probability p; by

u(w ¡ z(u;w; p)) = (1 ¡ p)u(w):

De…nition 2 We de…ne c(u; w; p); the compensating premium of agent u

facing the risk of losing wealth w with probability p; by

u(w) = (1 ¡ p)u(w + c(u; w; p)):

The quantity z(u; w; p) is the insurance premium that agent u with cur-

rent wealth w is willing to pay to avoid the possibility that a ruin occurs

with probability p. The quantity c(u; w; p) is the compensating premium

that agent u is willing to accept to face a possibility of ruin, namely to end

up with wealth 0 with probability p or with wealth w + c(u; w; p) otherwise.

Following the approach developed by Pratt (1964), we now compare the

FR of two individuals u and v for all w and p. Under the normalization at

0 adopted above, we introduce the following natural de…nition of “more fear

of ruin”.

De…nition 3 Agent v is said to have more fear of ruin (FR) than agent

u if and only if for all w;

v(w)
v0(w)

¸ u(w)
u0(w)

:

Using the three De…nitions above, we can now state the …rst Proposition

of this paper.6
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Proposition 1 Consider two agents with strictly increasing and di¤eren-

tiable utility functions u and v such that u(0) = v(0) = 0. For all p 2 [0; 1]

and all strictly positive wealth w; the following four conditions are equivalent:

i) Agent v has more FR than agent u, namely v(w)
v0(w) ¸ u(w)

u0(w) ;

ii) Agent v has a higher insurance premium than agent u, namely z(v; w; p) ¸

z(u; w; p);

iii) Agent v has a higher compensating premium than u, namely c(v; w; p) ¸

c(u;w; p);

iv) There exists an increasing and di¤erentiable function T (:) = v±u¡1(:)

such that T (0) = 0 and for all x; T (x)x is decreasing in x.

A sketch of the proof follows. We prove the equivalence between i), ii)

and iv). First, ii) implies i) by (2). Second, we show that i) implies iv).

Observe that since u and v are increasing and di¤erentiable functions, there

always exists a unique, increasing and di¤erentiable function T = v±u¡1 such

that v = T ± u. Also, v (0) = T ± u (0) = T (0) = 0: Moreover, from u
u0 · v

v0 ;

we have T 0(u) · T (u)
u ; which must be true for all u. This latter condition is

equivalent to iv). Third, we show that iv) implies ii). By De…nition 1

v(w ¡ z(u; w; p)) = T (u((w ¡ z(u;w; p))) = T ((1 ¡ p)u(w)):

Since T (x)=x is decreasing in x, we get T ((1¡p)u(w)) ¸ (1¡p)T (u(w)). We

thus have v(w ¡ z(u; w; p)) ¸ (1 ¡ p)v(w) = v(w ¡ z(v; w; p)). This implies

ii). The proof of the equivalence between i), iii) and iv) is similar.
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The result would trivially generalize to a risk premium ¼(u;w; p), namely

the insurance premium net of the expected value of the risk ¼(u; w; p) =

z(u; w; p) ¡ pw.

2 Applications

In this section, we show that the FR coe¢cient is applicable to a wide variety

of models. Consistent with the previous section, these applications involve

choices among lotteries with just two possible outcomes in which the worse

outcome of the lotteries is the same, equal to the “ruin point” (normalized

to zero).

2.1 Value-of-Statistical-Life

Let us interpret u(0) in model (1) as the utility when dead. In other words,

the ruin point is the death point. The expected utility equals (1 ¡ p)u(w);

there is no bequest motive. The value-of-statistical-life (VSL) is usually

de…ned as the rate of substitution between wealth w and mortality risk p

(see, e.g., Viscusi, 1993). We have

VSL =
dw
dp

=
u(w)

(1 ¡ p)u0(w) =
FR[u(w)]
(1 ¡ p)

where FR[u(:)] ´ u(:)=u0(:). In this simple model, it is clear that there is

a one-to-one relation between VSL and FR. An individual has, other things

being equal, a higher VSL if and only if he has more FR.

Let us slightly adapt the model now to allow for insurance opportunities.

More precisely, assume that there is an annuity market in which survivors
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are o¤ered fair tontines shares (Rosen, 1988). In a large group of identical

individuals, a proportion p die and their wealth is distributed to (1 ¡ p)

survivors. A survivor’s consumption thus equals initial wealth w plus the

tontine share pw=(1 ¡ p), that is a total of w=(1 ¡ p). The state-dependent

expected utility thus equals (1 ¡ p)u(w=(1 ¡ p)) and we have

VSL = FR[u(w=(1 ¡ p))] ¡ w
1 ¡ p

There is still a one-to-one relation between VSL and FR in this model intro-

duced by Rosen (1988).

Interestingly, FR plays an important role in a life-cycle model as well. To

see this point, consider the following two-period model

V ´ max
c
u(c) + ¯(1 ¡ p)u(R(w ¡ c))

where ¯ is a discount factor, R the interest factor, c consumption in period

1 and (1 ¡ p) the survival probability from period 1 to period 2. (Observe

again that there is no bequest motive.) Then compute the VSL de…ned by

the rate of substitution between wealth w and survival probability p, i.e.

dw=dp = ¡(@V@p =
@V
@w ). Using the Envelope Theorem, it is equal to 1=(1¡ p)R

times the FR coe¢cient computed at the optimal period 2 consumption.7

2.2 First-Price Auctions

Let us consider the standard …rst-price auction model. There are N agents,

i = 1; :::; N each with identical utility function u where u(0) = 0. They par-

ticipate in an auction where they all bid for an indivisible object. Each agent
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i has a private value xi for the object. This value is drawn independently

from a common distribution F (:) with density f(:) on a support [x; x]. The

highest bidder wins the object. His payo¤ is the value of the object minus

the bid, i.e. xi ¡ bi: Other bidders have payo¤ 0 (or 0 is the status quo).

Agent i chooses bi so as to maximize

piu(xi ¡ bi);

with pi ´ Pr(bi > B(xj); 8j 6= i) and where B(:) is the optimal bidding strat-

egy. It is well-known that the …rst order condition for the Nash equilibrium

bidding strategy B(x) is given by the di¤erential equation8

B0(x) = (N ¡ 1)
f(x)
F (x)

u(x¡B(x))
u0(x¡B(x)) ; with B(x) = x.

What is the e¤ect of increased risk aversion in the sense of more FR on

the equilibrium bidding function B(x)? Assume that bidders v have more

FR and let us compare, ceteris paribus, the outcome of a …rst-price auction

populated by bidders v instead of bidders u.9 Using straightforward notation

we …nd

B0v(x) ¡B0u(x) = (N ¡ 1)
f (x)
F (x)

[
v(x¡Bv(x))
v0(x¡Bv(x))

¡ u(x¡Bu(x))
u0(x¡Bu(x))

]

¸ (N ¡ 1)
f (x)
F (x)

[
u(x¡Bv(x))
u0(x¡Bv(x))

¡ u(x¡Bu(x))
u0(x¡Bu(x))

];

by v(:)
v0(:) ¸ u(:)

u0(:) . From that last result, we easily …nd that, for all x;

Bv(x) = Bu(x) implies B0v(x) ¸ B0u(x).
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We thus have obtained a single crossing property. This property means

that Bv can only cross Bu from below. Since Bv(x) = Bu(x) = x, the function

Bv(x) will always be larger than Bu(x) for any x such that x ¸ x: Therefore,

more FR always raises the bidding price equilibrium. This …nding leads to

the following Proposition.

Proposition 2 The equilibrium price of a …rst-price auction with indepen-

dent private values increases when bidders have more FR.

This result extends that of Milgrom and Weber (1982), who showed that

introducing risk-aversion raises the bidding price compared to the risk-neutral

case.

2.3 Con‡ict and Bargaining Games

A con‡ict game may be described as follows (see, e.g., Skaperdas, 1997). Two

agents, say 1 and 2, possess one unit of a resource. They may convert this

resource and invest it into arms, in quantities y1 and y2 respectively. The

winner of the con‡ict gets a prize that depends on the remaining productive

resources of both agents, while the loser gets 0. The prize is a function

C ´ C(1¡y1; 1¡y2) which is increasing in both arguments. Let p ´ p(y1; y2)

and 1 ¡ p denote the winning probability of agent 1 and 2 respectively, and

u1 and u2 their utilities so that they respectively maximize

pu1(C) and (1 ¡ p)u2(C):
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It can be shown that, in such a game, an agent with more FR always invests

more into arms and has a higher probability of winning the con‡ict when

C is symmetrical. See Skaperdas (1997, page 117, Eq. 4). Moreover, when

two identical agents simultaneously have more FR, the total amount invested

into arms increases as well. The intuition for this is straightforward. On the

one hand, increasing investment into arms decreases payo¤ C in the case of

victory. On the other hand, increasing investment decreases the chance of

losing the con‡ict, and so helps to avoid ruin (notice that the loser’s payo¤

is the ruin point here). The trade-o¤ is thus similar to the one presented

in the previous models. It is not surprising that FR controls the amount of

resources invested into arms in this model.10

Another application in strategic games is the Nash bargaining problem,

as …rst noticed by Aumann and Kurz (1977, p. 1149). To see that, consider

two agents u1 and u2 who bargain over the division of a cake of size w. The

well-known Nash solution to this problem calls for maximizing

u1(y1)u2(y2) subject to y1 + y2 = w:

It is easy to show that this solution equates the two individuals’ FR computed

at the optimal bargaining points. The intuition is as follows (see also Svejnar,

1986): In the bargaining problem, the ruin point u(0) = 0 can be interpreted

as the threat utility if the bargaining process fails. As a result, at each stage

of the bargaining process, each agent considers a gamble in which he risks

losing the entire net gain which he has won so far against an additional gain
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of a small amount. More fear of ruin thus reduces the willingness to accept

this gamble and so is a disadvantage in bargaining. See Roth and Rothblum

(1982) for a general analysis.

2.4 Contingent Background Risk

Take model (1) but replace the term u(w) by the term u"(w) ´ E"u(w + e")

and assume Ee" = 0. The individual thus faces a background risk e" only if

ruin does not occur. What is the e¤ect of this contingent background risk?

From Proposition 1, it is clear that the insurance premium always decreases

if and only if

u"
u0"

· u
u0

Observe that, given risk-averse preferences, Ee" = 0 implies u"(:) = Eu(: +

e") · u(:) by the Jensen inequality. Similarly, given prudence, Ee" = 0 implies

u0"(:) = Eu0(:+ e") ¸ u0(:) by the Jensen inequality. Hence, under the condi-

tions of positive risk-aversion and prudence, FR decreases with a contingent

background risk. Some implications directly follow. For instance, the VSL

of risk-averse and prudent individuals decreases in face of a background risk

contingent on being alive.11

Let us now consider an implication of this observation concerning the …rst-

price auction model. This implication arises when the value of the auctioned

object is uncertain. Here, we follow Eso and White (2004). Take the standard

model of section 3.2. Assume that the private value of the auctioned object

is no longer xi but instead is xi+ "i; where "i is the realization of a random
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variable e"i. Random variables e"i are identically distributed as e", and are

independent of private values xi. Thus, the highest bidder now receives an

ex post payo¤ xi+"i¡bi. Losing bidders still receive payo¤ of 0. This model

implies that the background risk is contingent upon winning the auction. Ex

ante, agent i chooses bi so as to maximize

piE"u(xi + e"¡ bi) ´ piu"(xi ¡ bi)

with pi de…ned as above. It is immediately clear that the di¤erential equation

characterizing the equilibrium strategy in the noisy auction takes on the

following form

B0(x) = (N ¡ 1)
f (x)
F (x)

u"(x¡B(x))
u0"(x¡B(x)) ; with B(x) = x.

In other words, analyzing the e¤ect of the noise e" on the equilibrium bid-

ding price amounts to comparing the equilibrium with utilities u"(:) to the

equilibrium with utilities u(:). This leads to the following Proposition.

Proposition 3 Consider a …rst-price auction with independent private val-

ues and with risk-averse and prudent bidders. Then uncertainty over the

value of the auctioned object decreases the equilibrium price.

The intuition is two-fold. First, when preferences are risk-averse, utility is

reduced if one wins the object u"(:) · u(:). Hence, the object is less desirable.

Second, given prudence, the marginal utility of income increases u0"(:) ¸ u0(:).

Individuals thus bid less aggressively in the noisy auction because they value
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an extra dollar of income more. This Proposition shows that Eso and White

(2004)’s result that decreasing absolute risk-averse (DARA) individuals bid

smaller amounts in a noisy …rst-price auction also holds for any risk-averse

prudent bidders (i.e., DARA is su¢cient for prudence but the converse is not

true).

Overall, these applications suggest that FR may be useful to sign various

comparative statics results in a large class of models used throughout the

economics literature.

3 Comparison with the Arrow-Pratt and the
Asymptotic Risk-Aversion Coe¢cients

We have demonstrated in the previous section that more risk-aversion in the

sense of FR increases the bidding price in a model of …rst-price auctions, and

also controls risk-aversion motives in other models. This raises the question

of the e¤ect of an increase in risk-aversion à la Arrow-Pratt in those models.

The answer to the question is given in the present section, as we precisely

examine the link between FR and the Arrow-Pratt coe¢cient.

Following Jones-Lee (1980), it is useful to distinguish three di¤erent risk-

aversion coe¢cients

FR[u(:)] ´ u(:)
u0(:)

AP [u(:)] ´ ¡u00(:)
u0(:)

(3)

AS[u(:)] ´ u0(:)
u¤ ¡ u(:) :

14



The last coe¢cient corresponds the asymptotic risk aversion coe¢cient (AS)

introduced by Jones-Lee (1980). The AS coe¢cient measures the individual’s

willingness to participate in a “small-stake large-prize gamble”. It assumes

that u is bounded above, where u¤ is the supremum of u.12

The complementarity of these three coe¢cients is apparent when one

approximates insurance premia “in the small”. Indeed, it is well-known that

the Arrow-Pratt coe¢cient appears when considering risks with small gains

and small losses. On the other hand, we have seen that the FR coe¢cient

appears when the risk is a small probability of ruin. Finally, the AS risk

aversion coe¢cient appears for a small loss/large gain risk, like gambling

for the jackpot. See Jones-Lee (1980) for an interesting presentation and

discussion.

In this section, we ask: to what extent is an individual v who is more risk-

averse than an individual u in one speci…c sense also more risk-averse with

respect to another sense? In other words, we want to compare the partial

orderings induced by these three risk-aversion coe¢cients. To do so, let the

statement “v is more risk averse than u in the sense of I” be condensed into

v ¶I u and de…ned as follows.

De…nition 4 Consider the three coe¢cients I = fFR;AP;ASg as they

are introduced in (3). Then

i) v ¶FR u holds if and only if FR[v(w)] ¸ FR[u(w)] for all w,

ii) v ¶AP u holds if and only if AP [v(w)] ¸ AP [u(w)] for all w,

iii) v ¶AS u holds if and only if AS[v(w)] ¸ AS[u(w)] for all w:
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Conversely, the ordering v +I u means that there exists w such that u is

locally more risk averse than v in the sense of I.

The claim that an individual v is more risk averse than an individual u

(in the sense of AS, AP or FR) can be fully characterized by setting the

corresponding properties on a function T such that v = T ± u. First, from

Pratt (1964, Theorem 1) we know that v ¶AP u if and only if v = T ±u with

T increasing, twice di¤erentiable and concave. Second, from Proposition 1,

we know that v ¶FR u if and only if v = T ±u where T is increasing, di¤eren-

tiable, T (0) = 0 and T (x)=x decreasing in x. Finally, it is easy to show that

v ¶AS u if and only if v = T ±u where T is increasing, di¤erentiable on [0; x]

and T 0(x) ¸ T (x)¡T (x)
x¡x , with x = u¤ = supw u (w). Hence, the comparative

analysis of the di¤erent risk-aversion coe¢cients can be presented by equiv-

alent characterizations on such transformations T without any reference to

the underlying utility functions u and v.13

INSERT FIGURE 1 ABOUT HERE

It is immediate that if a function T is concave on [0; x] then T (x)=x

is decreasing in x, which is equivalent to T (x)=x > T 0(x), and to T 0(x) ¸
T (x)¡T (x)
x¡x : Figure 1 illustrates this result. First, observe on the Figure that the

slope of the chord drawn from the end-point x to any point x1, i.e. T (x)¡T (x1)x¡x1 ;

is always lower than the slope of the tangent at this point T 0(x1). Second,

observe that the slope of the chord drawn from the origin to any point x2,

16



i.e. T (x2)=x2, is larger than the slope of the tangent at this point T 0(x2).

The results for partial orderings are summarized as follows.

Proposition 4 Let u and v be two strictly increasing, twice di¤erentiable

and concave functions that are bounded above with u¤ = supw u (w) and v¤ =

supw v (w). Moreover, assume that u (0) = v (0) = 0. Then v ¶AP u implies:

i) v ¶FR u

ii) v ¶AS u:

This Proposition shows that if an agent is more risk-averse in the classical

sense of AP then he is also more risk-averse in the sense of AS and FR.

Proposition 4 is of clear mathematical signi…cance. As mentioned above, v

is more risk-averse than u in the sense of AP if and only if v is obtained by a

concave transformation of u. This is a very intuitive mathematical property,

as any coe¢cient of curvature of a function should in principle increase when

one “concavi…es” a function. The Proposition shows that this is actually the

case for AS and FR coe¢cients.

Proposition 4 shows that ¶FR and ¶AS are weaker orderings than ¶AP .

Moreover, it is possible to show that these orderings are strictly weaker. To

see this, take the function T1 (x) = (x¡ 2)3+8 over the interval [0; x] where

x = 2:8 . This function is such that T1(x)=x is decreasing in x over this entire

interval while T 001 (x) > 0 together with T1(x)¡T1(x)
x¡x > T 01(x) for some x over

this interval. In other words, there exists an individual v who has globally

more FR than u but who is also locally less risk-averse than u in the sense

17



of AS and of AP. Similarly, let T2 (x) = x¡ 2 ¡ [T1 (x) ¡ x¡ 8]1=3 over the

interval [0; T1(x)] where T1 is the function just de…ned above.14 Function T2

is such that T2(T1(x))¡T2(x)T1(x)¡x < T 02(x) over this entire interval while T2(x)=x is

increasing in x and T 002 (x) > 0 for some x over this latter interval. In other

words, there also exists an individual v who is globally more risk-averse in

the sense of AS than u but who is locally less risk-averse in the sense of FR

and of AP.

To conclude this section, we remark that ¶FR, ¶AS and ¶AP are equiv-

alent for some important classes of utility functions. This is the case if we

restrict our attention to power functional forms. Technically, the curvature

of power functions is often captured by one single parameter and the AP,

FR and AS coe¢cients may vary monotonically with this parameter.15 The

equivalence result follows.

4 Conclusion

In this paper, we have investigated the basic properties of the “fear of ruin”

(FR) coe¢cient introduced by Aumann and Kurz (1977). First, we have de-

rived an approximation of the insurance premium that an individual would

be willing to pay in face of a small chance of losing his entire wealth. This pre-

mium has been shown to be proportional to the FR coe¢cient. We have then

provided equivalent characterizations for comparing the FR of two agents.

Speci…cally, we have shown that an agent v has globally more FR than an

agent u if and only if v’s premium to insure against the risk of ruin is always
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larger than u’s premium. We also have given a characterization of more FR

in terms of the properties required of an increasing transformation T , such

that v = T ± u. Furthermore, we have shown that the FR coe¢cient plays a

crucial role in strategic games with risk-averse players. For instance, in …rst

price auctions, we have demonstrated that the equilibrium bidding price of

an auctioned object is always higher if auctioneers have more FR, and that

uncertainty over the value of the auctioned object always leads the equilib-

rium bidding price to decrease under prudence. In addition, we have shown

that the FR coe¢cient may be instrumental in simple mortality risk models.

Finally, we have compared the FR’s coe¢cient with other coe¢cients of risk-

aversion. In particular, we have shown that if an agent v is more risk-averse

than u in the sense of Arrow-Pratt, then v has more FR than u.
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Notes
1Aumann and Kurz note that this interpretation is an outcome of a conversation they

had with Kenneth Arrow.

2The model could allow any arbitrary wealth w in the case of ruin. Here, we simply
assume, without loss of generality, that w = 0. We also assume that u(0) is …nite.

3Hence, the reader should remember that the appropriate FR coe¢cient in the general
case is [u(w) ¡ u(0)]=u0(w).

4The equivalent …rst-order e¤ect for a variation in terminal wealth is zero in Pratt,
so that he examines the second order e¤ect. See Gollier (2001, p. 21-24) for a detailed
analysis of Pratt (1964)’s “in the small” approximation.

5Moreover observe that the fear of ruin is even lower when preferences are risk-seeking.

6Detailed proofs are available upon request. See also Foncel and Treich (2003).

7Garber and Phelps (1997) indicate that u=u0 is a “central component” in their lifetime
medical spending model. Also, in a recent unpublished paper, Bommier (2003) shows that
FR is a crucial coe¢cient when one wants to compare lotteries involving lives of di¤erent
lengths. He calls the FR coe¢cient the “general rate of substitution between the length
of life and consumption at the end of life”.

8See for instance Milgrom (2004, pages 123-125).

9The assumption that private values are independent of private characteristics, like
risk-aversion, obviously facilitates the comparative statics analysis here.

10The FR coe¢cient is also at play in contest games (Skaperdas and Gan, 1995), or in
rent-augmenting and rent-seeking games (Konrad and Schlesinger, 1997). However, more
FR is not enough to control the comparative statics of more risk-aversion in those games
as the loser’s payo¤ generally depends on the agents’ actions, and so the ruin point varies.

11This observation relates to Eeckhoudt and Hammitt (2001)’s analysis of the e¤ect of
a …nancial background risk on the VSL.

12What is actually important is that both the ruin point and u¤ are very bad and very
good points beyond which it is not possible to go. In particular, the utility u needs not
be bounded above if we set an upper limit for wealth.

13In order to compare these di¤erent characterizations T , we need to restrict our atten-
tion to any increasing, di¤erentiable T de…ned over [0; x] and such that T (0) = 0.

14Observe that T1 appears in the characterization of T2. This can be easily understood
once we explain how these counter-examples were generated. In short, we used the fact
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that …nding T1 such that we have ¶F R and +AS is equivalent, up to a change of reference
axes, to …nding T2 such that +FR and ¶AS . Mathematically, the change of reference axes
is such that T2(x) = x ¡ T¡1

1 (T1(x) ¡ x).

15Foncel and Treich (2003) derive a formal proof of this equivalence for a generic class
of power utility functions. This generic class Uz is the class of increasing and concave
function of w that takes the form (z+w)1¡m

1¡m ¡ z1¡m

1¡m ; and de…ned for all positive parameter
m 6= 1 and over the interval [0; w]. (This result does not hold for all functions with a single
parameter of power form.)
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Y=T(x)

x
x1 x2 x0

Y

Figure 1:

Figure 1 represents an increasing and concave function T with T (0) = 0.

This function is such that T (x)=x > T 0(x) together with T 0(x) > T (x)¡T (x)
x¡x

for all x 2 [0; x]:
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