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1. Introduction

Asymmetric information is present on all markets. Whatever the product or service sold, the seller almost

never knows the buyer’s preferences, nor the maximum price she would be willing to pay to acquire it.

Similarly, the buyer is in general unlikely to have much information about the seller’s production technology

or marginal costs. Most of the time, however, this asymmetry is irrelevant. In a perfectly competitive setting,

the seller would not benefit from a detailed knowledge of the buyer’s willingness to pay, because he has to

charge the competitive price; and the buyer needs no information about the technology, since again all the

information she needs is contained in the price. Hence, asymmetric information is in general both paramount

and inconsequential.

A common feature of the examples above is that the value of the hidden information is private (in the

sense that the payoff of the uninformed party does not depend on it for a given contract). Fagart (1996)

proves under weak assumptions that competition in the private values case always leads to an equilibrium,

which is moreover efficient. For want of a better term, we will call such a case “irrelevant asymmetric

information” in the present paper. The main innovation of the literature on asymmetric information, as

pioneered by Akerlof (1970), Rothschild and Stiglitz (1976) and many others, was to exhibit cases in which,

on the contrary, asymmetric information was indeed relevant—and actually had important consequences

for the existence and efficiency of competitive equilibrium. The key property driving this conclusion is the

presence of “common values”, in the form of a link between an agent’s hidden information and the other

party’s payoff. In the market for lemons for instance, the buyer’s payoff depends on the quality of the car,

which is only known by the seller. Similarly, an insurer’s profit depends on the risk of the insurees who buy

contracts from him.

When considering empirical applications of such models, the previous remarks have important conse-

quences. One is that evidence of information asymmetries, while relatively easy to produce, are often of little

interest unless the asymmetries are of the relevant type. To give only one example, agents are often faced

with menus of contracts. Menus of contracts are indeed suggestive of asymmetric information. Most of the

time, however, this asymmetry is irrelevant. New cars are offered in different colors, which indeed reflects

the seller’s ignorance about the buyer’s taste. Still, market equilibrium will typically exist and be efficient as

usual, as the buyer’s taste does not directly affect the seller’s payoff. Different levels of insurance coverage

may be proposed to insurees, reflecting asymmetric information about risk aversion. Insofar as differences
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in risk aversion have no impact on the insurer’s profit, however, the Akerlof-Rothschild-Stiglitz conclusions

do not apply, and standard analysis is still valid. This simply reflects the fact that, in a competitive setting,

the insuree’s true risk matters to the insurer, even conditional on the insuree’s contract choice, while risk

aversion does not. The former is a case of common values, and the latter a case of private values.

Clearly, one should primarily be interested in testing for asymmetric information in the “relevant” case.

The main purpose of the paper is precisely to proposerobustempirical tests ofrelevantinformation asym-

metries. Throughout the paper, we concentrate on the particular case of insurance contracts, both because the

main theoretical contributions to competition under adverse selection (starting with Rothschild and Stiglitz’s

seminal paper) used this framework, and because a large fraction of existing empirical literature deals with

insurance contracts. However, our conclusions are general, and the methodology developed here could be

useful in other cases.

In the literature on insurance, the general notions just sketched lead to a well-known property, on which

recent empirical work has largely focussed1. Under both moral hazard and “relevant” adverse selection, one

should observe a positive correlation (conditional on observables) between risk and coverage: if different

insurance contracts are actually sold to observationally identical agents, then the frequency of accidents

among the subscribers of a contract should increase with the coverage it offers. In the Rothschild and Stiglitz

(1976) model of competition under adverse selection, where riskiness is an exogenous and unobservable

characteristic of agents, the correlation stems from the fact that “high risk” agents are ready to pay more than

“low risk” ones for additional coverage, and will therefore choose contracts with higher coverage. Under

pure moral hazard, as in Arnott and Stiglitz (1988), an opposite causality generates the same correlation: an

agent who, for any unspecified (and exogenous) reason, switches to a contract with greater coverage makes

less effort and thus becomes riskier.

Popular as the “positive correlation” prediction may be, its robustness may however be questioned—a

standard problem facing any empirical work on the topic. Theoretical models of asymmetric information

typically use oversimplified frameworks, that can hardly be directly transposed to real life situations. Roth-

schild and Stiglitz’s model assumes that accident probabilities are exogenous (which rules out moral hazard),

that only one level of loss is possible, and more strikingly that agents have identical preferences which are

moreover perfectly known to the insurer. The theoretical justification of these restrictions is straightforward:

analyzing a model of “pure”, one-dimensional adverse selection is an indispensable first step. But their
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empirical relevance is dubious, to say the least. In real life, moral hazard can hardly be discarded a priori

(and interacts with adverse selection in a non-trivial way, as precaution depends on risk and preferences2);

losses are continuous variables, often ranging from small amounts to hundreds of thousands of dollars; and

preference heterogeneity is paramount and largely unobserved.

The first part of our paper is devoted to a theoretical analysis of this issue. We show that the positive

correlation property derived from Rothschild-Stiglitz extends to much more general models, as already con-

jectured by Chiappori and Salanié (2000), although its form and robustness vary with the type of competition

at stake. Specifically, we extend the property in two directions. First, we consider the case of competitive

markets, and show that relevant asymmetric information (with any combination of adverse selection and

moral hazard that generates common values) indeed implies a positive correlation between risk and cover-

age, for suitably defined such notions. This result is a direct extension of Rothschild-Stiglitz’s initial idea to

a very general framework (entailing heterogeneous preferences, multiple level of losses, multidimensional

adverse selection plus possibly moral hazard, and even non-expected utility). Secondly, we study the case of

imperfect competition, and we underline the key role of the agent’s risk aversion. If it is public information,

then some form of positive correlation must hold. In particular, with only one level of loss and expected util-

ity, contracts with higher coverage must exhibit a larger frequency of accidents. Conversely, if risk-aversion

is private information, the property does not necessarily hold: this was shown in Jullien, Salanié and Salanié

(2007). Risk aversion thus is a key parameter whose informational status drives the testable implications of

simple models in the presence of market power.

In the second part of the paper, we illustrate the theoretical analysis by testing the predictions it generates

on a dataset collected by a large French car insurer. We first test the general relevance of our setting,

and in particular of the assumption that agents correctly assess their accident probability. Our test uses a

revealed preference argument that is robust to any assumption on the information structure or the nature of

competition. We find that the data strongly corroborate the predicted property, which validates our approach.

We then test for the positive correlation property, and we find evidence of a positive (generalized) correlation.

A closer examination of the data suggests that the insurer’s profits are probably higher for contracts with a

higher coverage, contrary to the predictions of competitive models. This suggests that more work should be

devoted to analyzing imperfectly competitive models of insurance markets.

Section 1 builds a general model of insurance under asymmetric information. In Section 2, we apply

a revealed preference argument to obtain a first testable implication, that relates the premium differential
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to expected indemnities. Section 3 analyses the robust version of the correlation property; we show that it

holds both when competition drives profits to zero and when risk aversion is public information. Section 4

tests the properties derived in Sections 2 and 3. Section 5 concludes.

2. The model

The general framework

Suppose that we observe a population of insurance policy holders, their insurance policies and their insur-

ance claims. Since we want to derive testable predictions about the insured agents’ choices, we must deal

with heterogeneity across agents. Throughout this paper, we denote byX the characteristics of the insured

which are observable by insurers, and we assume that the econometrician observesX (from the insurers’

files). A group of agents sharing the same values forX are ex-ante indistinguishable from the insurers’

viewpoint, and so must have access to the same set of insurance contracts. To derive predictions on their

choice of a particular contract, we focus on such a group, which simply means that we work conditionally

on the value ofX; for convenience we often omit the variableX.

Our theoretical framework thus focusses on unobservable heterogeneity. Agents face the risk of an

accident, which we assume to be equivalent to a monetary lossL ≥ 0. Each agent is characterized by a

parameterθ ∈ Θ, which is his private information and may affect his preferences and/or his risk. An agent

of typeθ may secretly choose the distribution of lossesG in some setGθ. This set may be a singleton, as in

pure adverse selection models, or include more than one choice, as when agents choose prevention efforts

in moral hazard models.

Each agent can also buy an insurance contractC = (R(.), P ), which specifies a premiumP and an

indemnityR(L) ≥ 0 for every possible claimL ≥ 0. By definition,R(0) = 0. In some situations the agent

may also choose not to report a loss, for example if the loss is smaller than the deductible in the contract.

For conciseness in notation, we identify claims and losses here, but we shall see that our predictions extend

to more complex settings. Hence the final wealth of the agent isW (L) = W0 + R(L)− L− P , whereW0

denotes initial wealth. Throughout the paper, we concentrate on reimbursement schedules such that a higher

loss is always bad news for the agents, in the sense that the net lossL−R(L) is non-decreasing withL. Not
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only is this property satisfied empirically, but it also relies on compelling theoretical arguments3.

To compare two contractsC1 andC2 proposed on the market, we rely on the following simple definition:

Definition 1 ContractC2 covers more than contractC1 if R2(L)−R1(L) is non-decreasing.

In the oft-treated case of two eventsL ∈ {0, L̄}, the condition reduces toR2(L̄) ≥ R1(L̄). In the

empirically prevalent case of contracts with straight deductiblesRi(L) = max{L − di, 0}, the definition

amounts tod2 ≤ d1. Similarly, for contracts offering constant copaymentRi(L) = αiL, our criterion is

equivalent toα2 ≥ α1. As it turns out, most real life contracts (including the contracts considered in our

empirical application) belong to these classes.

¿From a more theoretical viewpoint, the definition requires thatC2 offer relatively greater indemnities

whenL is higher; one implication is that a contract with more coverage reduces the risk on final wealth, in

a precise sense which is discussed below. Obviously, the “order” induced by our notion of coverage is only

partial; i.e., for two arbitrary contracts, it may well be the case that none covers more than the other. Then

an agent’s decision (and the empirical tests based on it) cannot be analyzed without a precise knowledge of

the agent’s preferences.

Behavioral assumptions

Within this very general setup, we state the following assumptions:

A1 Each agent’s preferences can be represented by a state-independent preference ordering over the dis-

tribution of final wealth4, monotonic with respect to first order stochastic dominance.

A2 Agents are risk-averse in the sense that they are averse to mean-preserving spreads on wealth.

A3 “Realistic Expectations”: When agents choose a contract, they correctly assess their accident proba-

bility and loss distribution; i.e., they use the true loss distributionG.

The first two assumptions are very weak. Assumption 3 is stronger, but indispensable for empirical

applications, since the agents’ subjective assessments of their risk are not observable. Our first task will be

to provide a test allowing to check the empirical relevance of this assumption.
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Before describing such a test, one should first emphasize that the class of models we consider encom-

passes most existing contributions, including the following works which all assume a von Neumann Mor-

genstern utility functionuθ(W,G):

• Pure adverse selection(Rothschild and Stiglitz (1976) or Stiglitz (1977)): hereGθ is a singleton. The

Von Neumann-Morgenstern utility functionuθ does not depend onG, but it may depend onθ as in

the multidimensional model of Landsberger and Meilijson (1999).

• Pure moral hazard(e.g., Arnott and Stiglitz (1988)): hereΘ is a singleton, since agents are ex ante

identical, whileGθ has at least two elements.

• Moral hazard plus adverse selection on prevention cost(Chassagnon and Chiappori (1997)): here

uθ(W,G) = v(W )− cθ(G), wherev is common to all types of agents.

• Moral hazard plus adverse selection on risk aversion. In de Meza and Webb (2001), utility takes the

form uθ(W,G) = vθ(W )−c(G); in Jullien, Salaníe and Salanié (2001),uθ(W,G) = vθ(W −c(G)).

In both models,c is common to all types of agents, which differ only through their utility of wealth

vθ.

Lastly, it is important to stress what our results donot require. Although we allow for a general form of

adverse selection (including multidimensional characteristics) plus possibly moral hazard, we do not impose

any single-crossing condition. We do not restrict the number of types, nor their distribution. Neither do we

assume expected utility maximization; our results hold in a non-expected utility framework as well, provided

agents are risk-averse.

3. Testing the realistic expectations assumption

A test of Assumption A3 above must check that the agent’s subjective assessment of her own risk is not

at odds with her true loss distribution. Since subjective representations are not directly accessible, they

must be inferred from the agent’s decision, i.e. contract choice. Hence, ultimately, the test must boil down

to some consistency property between agent’s choices and true underlying probabilities. Ideally, the test
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should be valid irrespectively of the information structure (i.e., whether information is symmetric or not)

and the competitive context. We now present a general test that meets these criteria.

A revealed preference argument

The test relies on a simple but robust revealed preference property. Assume that an agent prefers a contract

C1 to a contractC2 which covers more. First notice that asR2(L) is larger thanR1(L) for all L, the

premium must be higher for contractC2 (P2−P1 > 0), for otherwise choosingC1 would violate first order

stochastic dominance. Risk aversion allows to strengthen this bound on the premia differential:

Lemma 1Assume that an agent prefers contractC1 to C2, andC2 covers more thanC1. Let G be the

distribution of claims as anticipated by the agent underC1. Then under Assumptions A1 and A2

P2 − P1 ≥
∫

[R2(L)−R1(L)]dG(L). (1)

Proof: see Appendix A.

The proof relies on a standard argument. Under Definition 1, for any given distributionG the final wealth

underC1 is riskier than the final wealth underC2. Since the insured dislikes mean-preserving spreads, it

must then be that the final wealth underC1 has a higher expectation, to compensate for its higher riskiness;

otherwise the agent would gain by buyingC2 while keeping the same distribution of claims.

In words, if an agent chooses one contract over another with better coverage, the decrease in premium

must be sufficient for the expected income of the agent to increase at unchanged behavior. As this result only

uses revealed preference, it is very general. For instance, it still holds if there is some compulsory insurance,

as it only involves the comparison between two available contracts, conditional on the fact that the agent

buys a contract. Also, it is valid with symmetric or asymmetric information, and it does not require perfect

competition—the property holds under monopoly or oligopoly as well.

Lemma 1 was obtained under the assumption that the agent reports all losses. However, it turns out that

it can be extended to more complex settings. We refer the reader to Appendix B for a proof that Lemma 1

still holds when this assumption is relaxed.
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A testable prediction

Lemma 1 was phrased in terms of a revealed preference argument, valid at the agent’s level. To obtain a

testable prediction, let us consider a group of indistinguishable agents, with the same values for the observ-

able variablesX. Assume that the insurers’ data show that some of them bought contractC1 while others

bought contractC2. The premiaP2 andP1 are known, and the data also allow to compute an empirical

distribution of claimsF1(L) for contractC1. We then have the following result:

Proposition 1 Suppose that contractC2 covers more than contractC1, and that both contracts are sold to

indistinguishable agents with realistic expectations. Then under assumptions A1, A2 and A3

P2 − P1 ≥
∫

[R2(L)−R1(L)]dF1(L). (2)

In most cases, insurers set the levels of premia according to observablesX but leave indemnities un-

changed for each contract. Then the prediction must hold for any group of indistinguishable agents, that is

for any value ofX, and one may test the following family of inequalities:

∀X, P2(X)− P1(X) ≥
∫

[R2(L)−R1(L)]dF1(L|X).

To illustrate the prediction, let us apply it to the case when there are only two eventsL ∈ {0, L̄}. In this

case letqi be the empirical probability of a claim under contractCi. If contract2 covers more than contract

1, thenR2(L̄) > R1(L̄), and (2) obviously gives

P2 − P1 ≥ q1(R2(L̄)−R1(L̄)). (3)

The result may also be applied to the case of two contracts with straight deductiblesRi(L) = max{L−

di, 0} with d1 ≥ d2. From the data we can compute the probabilityq1 = Prob(L > d1) that a positive

indemnity is transferred underC1. Then (R2 − R1) is zero in the absence of claim or whenL < d2, is

non-negative forL ∈ [d2, d1], and is equal to (d1 − d2) otherwise. We get
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Corollary 1 Suppose thatC2 andC1 are two straight deductible contracts, andC2 covers more thanC1

(d1 ≥ d2). Let q1 be the probability thatL is aboved1 underC1. Then

P2 − P1 ≥ q1(d1 − d2). (4)

Proposition 1 provides a test of the realistic expectations assumption, in the sense that the property

should hold under the null that agents perfectly know their distribution of losses. Its power should however

be qualified, for the following reason. Assume that agents are subject to biases in their risk perceptions. Then

(1) only applies to the distributionG as perceived by each agent, and not to the agent’s true distribution of

claimsF . Suppose however that agents are pessimistic and overestimate the risk, in the sense thatG ≤ F .

Then

∫
[R2(L)−R1(L)][dG(L)− dF (L)] =

∫
d

dL
[R2(L)−R1(L)][F (L)−G(L)]dL ≥ 0

and (1) remains valid when replacingG by F . Hence Proposition 1 and the above applications still hold

when agents are pessimistic.

Technically, we thus test the null of realistic expectations against the assumption that agents are op-

timistic, in the sense that they systematically underestimate their risk. Note, however, that optimism is

frequently assumed in the literature. For instance, in a model analyzed by Koufopoulos (2005), competitive

equilibria are such that optimistic agents choose a low coverage but do not make any prevention effort, while

pessimistic agents choose a high coverage and exert some effort to reduce their probability of accident. Then

both (1) and the positive correlation property below may be violated, if some agents are optimistic enough.

4. The positive correlation property

The result in Proposition 1 provides a test that does not rely on the market structure, but which does not

translate obviously into a correlation structure between risk and coverage. This is not surprising. In contrast

with the previous results, the positive correlation property cannot be expected to hold independently of the

competitive context or the information structure. We study below two cases in which the property indeed

holds. Once again, we omit the observable variablesX, although it should be clear that all results are
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conditioned on it.

A prediction in a competitive environment

As is well known, the mere definition of a competitive equilibrium under asymmetric information is a

difficult task, on which it is fair to say that no general agreement has been reached. For the moment,

we only assume that competition, whatever its particular form, leads to profits that are non-increasing in

coverage. Also, we assume away proportional costs; moreover, while fixed administrative costs are allowed

for, we assume they are identical accross contracts.5 Technically, letFi be the empirical distribution of

claims underCi, and letπ(Ci) be the profit the insurer makes on contractCi . Then

π(Ci) = Pi −
∫

Ri(L)dFi(L)− Γ

whereΓ denotes fixed costs associated with the contract. We then assume the following:

Non-Increasing Profit assumption (NIP): if C2 covers more thanC1, thenπ(C2) ≤ π(C1).

This assumption holds trivially in the Rothschild-Stiglitz model and in fact in most theories of com-

petitive equilibrium that have been proposed in the literature, where competition drives profits to zero on

every contract. It is however more general than a standard zero-profit assumption, since also holds in the

cross-subsidies model of Miyazaki (1977), where the losses made on the full coverage contract (chosen by

high risk agents) are subsidized by the profits stemming from the alternative, partial coverage contract (that

attracts low risk agents). Of course, it need not hold in non-competitive models such as Stiglitz (1977) or

Jullien, Salaníe and Salanié (2001).

Now the NIP assumption may be rewritten as

P2 − P1 ≤
∫

R2(L)dF2(L)−
∫

R1(L)dF1(L)

and replacing in (2) we get:
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Proposition 2 Assume that assumptions A1, A2, A3 and NIP hold. If two contractsC1 andC2 are bought

in equilibrium, andC2 covers more thanC1, then∫
R2(L)dF2(L) ≥

∫
R2(L)dF1(L). (5)

The result states that the empirical risk is larger for the contract with the higher coverage, in the sense

that the average indemnity would be smaller with the distribution of claims of the other contract. The general

insight can be summarized as follows. First assume that competition leads to actuarially fair contracts and

yet our result does not hold: at least two contractsC1 andC2 are sold at equilibrium, andC1 covers less

thanC2 but has ex post riskier buyers. SinceC1 has higher ex post risk, its “unit price” (i.e., the ratio of

premium to coverage) will be larger. But this leads to a contradiction, as under fair pricing, rational agents

will never choose a contract entailing less coverage at a higher unit price.

Note that in models of pure adverse selection on preferences (risk aversion for instance) the distribution

of claims is identical across contracts. Just as in models with symmetric information, (5) then is obvious, as

F1 andF2 are identical. This is the “irrelevant” case of private values discussed in the introduction. Agents

do have some private information, but this information is of no relevance for the insurer: it is clear from the

expression of profits that only hidden information that affects the distribution of risk matters to him.

Of course, the interesting part of Proposition 2 is that whenever information asymmetry on the distri-

bution of risk is involved and a menu of different contracts are offered and sold at equilibrium, astrict

inequality must hold. In that case, the asymmetry is relevant, in the sense that the insuree’s information mat-

ters for the insurer’s profit. All the specific features derived in the literature (cream-skimming, non-existence

or inefficiency of equilibrium, etc.) can only occur in this case. This obviously includes adverse selection

on risk, but also adverse selection on risk aversion in the presence of moral hazard.

It is easy to derive consequences of (5). Of particular theoretical interest is the case in which contracts

specify a fixed level of reimbursement for any accident. Denote againqi the probability of a claim under

contractCi. Then the empirical riskiness must be positively correlated with the coverage, which is the test

performed in Chiappori and Salanié (1997; 2000):

Corollary 2 Assume that assumptions A1, A2, A3 and NIP hold and thatL ∈ {0, L̄}. If two contractsC1

andC2 are bought in equilibrium, andC2 covers more thanC1, thenq1 ≤ q2.
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In the case of general loss distributions, letC1 andC2 be straight deductible contracts, assume that losses

smaller than the value of the deductible are not reported, and define the expected claims under contractCi

asEi[L] =
∫

LdFi(L). Then we obtain

E2[L]− E1[L] ≥ d2(q2 − q1). (6)

Thus if contractC2 leads to a higher probability of a claim, it must also generate larger expected claims. In

particular, a contract with full insurance, if available, must generate larger expected claims than any other

straight deductible contract (apply (6) withd2 = 0).

Testing the prediction

Testing Proposition 2 or its corollaries only requires observing the variablesX in the insurer’s files, two

contracts, one of which has higher coverage, and being able to estimate the conditional distributions of

claims. In particular it does not require knowing the premia under the two contracts. Rejecting the prediction

would thus tend to indicate that our first prediction (2) or/and the NIP assumption do not hold.

In practice the definition of profits may need to be refined. Taxation of premia (or indemnities) may

have to be taken into account. Similarly it is often reported that insurers compute premia by applying a

constant “loading factor”λ to the expectation of indemnities. In such cases, one has to rewrite the definition

of profits accordingly:

π(Ci) =
Pi

1 + t
− (1 + λ)

∫
Ri(L)dFi(L).

Then the NIP assumption still allows to compute an upper bound for the premia differentialP2 − P1.

Replacing in (1) then yields a testable prediction:∫
R2(L)dF2(L)−

∫
R2(L)dF1(L) ≥ K(E1[L]− E2[L]), (7)

denotingK = (1 + t)(1 + λ)− 1. This prediction still does not depend on premia, and can be tested given

reasonable values oft andλ, as discussed in the following Section.

Finally, if fixed costs vary between contracts, the condition may still apply, but under a different form.

Namely, if

π(Ci) = Pi −
∫

Ri(L)dFi(L)− Γi
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with Γ1 6= Γ2, then (NIP) must be replaced by the following property: ifC2 covers more thanC1, then

π(C2) + Γ2 ≤ π(C1) + Γ1. Under zero profit, it follows thatΓ1 ≥ Γ2; this implies, for instance, that

a contract involving less coverage has a higher fixed cost. This property may however fail to hold. For

example, a contract with higher coverage may also be more comprehensive6, so that costs per claim may be

higher. Under general contracts and costsci(L) which may differ across contracts, the result in Proposition

2 becomes ∫
R2(L)[dF2(L)− dF1(L)] ≥

∫
c1(L)dF1(L)−

∫
c2(L)dF2(L)

and whether the left-hand-side remains positive now becomes an empirical question. Clearly more informa-

tion is needed on costs per claim to provide a fully convincing test; but one may still estimate the left-hand

side from the data and compare its value to a reasonable estimate of the right-hand side.

The main conclusion of this discussion, thus, is that whatever the cost function of the insurers, if we

have enough information about it then we can test some well-defined implication of asymmetric information

(which may not look like a positive correlation property any more7).

Expected utility with public risk aversion

While the previous section was dealing with competitive environments, we now allow for market power

and imperfect competition. This generalization comes at a cost. In order to keep the positive correlation

property, we need to assume that (i) the agent has a von Neumann-Morgenstern utility functionuθ(W,F ),

and (ii) observationally identical agents exhibit the same risk aversion8, the latter thus being independent of

the distributionF. Under this assumption the utility function is determined up to an affine transformation:

There exist functionsv(W ) , aθ andcθ such that, for anyθ, one can write

uθ(W,F ) = aθ(F )v(W )− cθ(F )

with aθ(F ) > 0.

The class of models satisfying this assumption includes the standard models of pure adverse selectionà

la Stiglitz (1977) and pure moral hazardà la Arnott and Stiglitz (1988), as well as more complex frameworks.

Let two contractsC1 andC2 be bought in equilibrium by some individuals within the population at

stake. Fori = 1, 2, denotewi(L) = v(−L + Ri(L)− Pi) the utility under contracti after a lossL. For any
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agent buyingC1 and choosing a distribution of claimsG1 underC1, we must have (after simplifying thea

andc terms) ∫
w1(L)dG1(L) ≥

∫
w2(L)dG1(L).

If agents have realistic expectations, by aggregating over the types buyingC1 we find that∫
w1(L)dF1(L) ≥

∫
w2(L)dF1(L)

whereF1 is the empirical distribution of losses underC1. A similar argument applied onC2 yields∫
w2(L)dF2(L) ≥

∫
w1(L)dF2(L).

Now substract these inequalities to get

∫
(w2(L)− w1(L))(dF2(L)− dF1(L)) ≥ 0. (8)

Notice that this result is valid whatever the contracts. If we moreover assume thatC2 covers more

thanC1, then it can be shown thatw2 − w1 is negative, then positive, whenL increases. (8) then looks

like a positive correlation property: in a weighted sense,F2 puts more weight thanF1 on high losses and

less weight on low losses. Nevertheless the result involves the utility functionv, which is unknown to the

econometrician. Its implication is clearest for the case of two events, accident and no accident:

Corollary 3 Assume that risk aversion is public, expectations are realistic, andL ∈
{
0, L̄

}
. If two contracts

C1 andC2 are bought in equilibrium, andC2 covers more thanC1, thenq1 ≤ q2.

This result was already known in the Rothschild-Stiglitz case. Our contribution here is to highlight the

key role played by the assumption of identical risk-aversion. In particular, once agents have chosen their

preventive efforts they can be ordered according to their riskiness; and then the assumption guarantees that

agents which areex-postriskier indeed prefer contracts with higher coverage.

The assumption of identical risk-aversion is necessary for the result to hold. The underlying intuition is

simple, and can be described in the polar case of an insurance monopoly. Start with the benchmark situation

where agents have identical risks, but different risk aversion. Then in the optimal monopoly contract, partial

coverage is used to screen agents according to their risk aversion, exploiting the fact that more risk averse
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individuals are willing to pay more for additional coverage; typically, more risk averse agents are fully

covered, while less risk averse clients reveal their type (and benefit from a lower premium) by accepting

partial coverage. Now, introduce an infinitesimal difference in risk that is fully correlated with risk aversion;

specifically, the more risk averse agents have a (slightly) smaller accident probability. The optimal contract

will still offer more coverage for the more risk averse individuals, at a higher price, despite the fact that the

aggregate risk for that population is (slightly) smaller - a pattern that creates anegativecorrelation between

risk and coverage.9

5. An empirical test

Tests of the positive correlation between risk and coverage on insurance contracts have provided mixed

results. Most papers on automobile insurance (see, e.g., Chiappori and Salanié (2000)) cannot reject the

no-correlation null: there in fact appears to be no correlation between the coverage of a contract and the ex

post riskiness of its subscribers. Puelz and Snow (1994) was an early exception; but Dionne, Gouriéroux

and Vanasse (2001) attribute their result to the spurious effect of a linear specification. Cawley and Philip-

son (1999) find no evidence of a positive correlation in their study of life insurance contracts. On the other

hand, the market for annuities seems to be plagued by adverse selection problems, as documented by Bru-

giavini (1993) and more recently Finkelstein and Poterba (2004); Bach (1998) reaches similar conclusions

in her study of mortgage-related unemployment insurance contracts.

Since all of these papers rest on a simplified analysis of the insurance market, it is interesting to see

whether the more general predictions we obtained in this paper fare better when taken to the data. Note that

the maintained assumptions of the theory are different for each of our results. Proposition 1 only relies on

a revealed preference argument, while Proposition 2 adds a non-increasing profit condition and Corollary 3

assumes that risk-aversion is public and losses are 0-1.

We use a dataset on car insurance that was given to us by an association of large French insurers. This

dataset covers the full year 1989 and contains information on insuree characteristics, contract variables and

claims for 9 insurance companies. The dataset we use in the application comprises 94,251 policies. About

half (50,971) of these policies entail comprehensive coverage. These policies are straight deductible con-

tracts, with varying deductible levels. The range of deductibles10 is shown in Table 1. We use these contracts
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as contractsC2, setting the deductible and the premium at the average level for given individual character-

istics. The other half of contracts are compulsory contracts that do not provide coverage for responsible

claims, and we will use these as our contractC1.

We start by testing Proposition 1, which tells us that we should have

P2 − P1 ≥
∫

[R2(L)−R1(L)]dF1(L)

For every claim in France, insurance experts assign responsibilities to the policyholders involved. A policy-

holder that is deemed not to be responsible is fully reimbursed; a responsible policyholder is only reimbursed

if (s)he has a comprehensive policy, and then only up to the deductible. Thus we should clearly focus on

claims in which the policyholder was responsible, had only a compulsory coverage, and incurred some

damage; there are 1352 such claims in the data11, so that the averageq is about0.031. (For the sake of

comparison, the third column of Table 1 gives the average value ofq at various levels of deductibles for

comprehensive contracts; the average value is0.036).

Remember that our predictions are conditional on all variablesX that are observed by the insurer (and

hopefully by the econometrician). There are a large number of such variables in the data. As in Chiappori

and Salaníe (2000), our approach is to define “cells” of policyholders with identical values of thoseX

variables that prior studies have identified as the most relevant. We choose five 0-1X variables:

• whether the policyholder has the best experience rating (a 50% bonus)

• whether his/her car is relatively powerful

• whether his/her car is relatively expensive

• whether the driver is young or old

• whether the car is driven in an urban area.

This defines25 = 32 cells. Each of them holds about 3,000 policyholders on average.

Within each cell we first estimate non-parametrically the distributionF1. A difficulty is that for com-

pulsory contracts we observe the liabilityL′ to third parties (which is covered in any case) but not the own

damageL (that is not covered). Now assume that the distribution ofL conditional onL′ depends only on

the individual’s observed characteristics. We can then use the empirical distribution observed on contractC2
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for similar individuals to construct this conditional distribution. Combined with the observed distribution of

L′ underC1, we finally deduceF1.

Within each cellX, we compute the quantity

T1(X) = P2 − P1 −
∫

[R2(L)−R1(L)]dF1(L)

and a Student statistic by dividingT1(X) by its standard error. This yields a collection of32 numbers.

Under the null hypothesis thatT1(X) = 0 for all X, these numbers should be distributed as aN(0, 1)

normal distribution. It turns out thatall of these numbers are positive, which gives very strong corroborating

evidence for Proposition 1 at any reasonable level of significance.

Our data doesn’t allow to test in a substantive way whetherq2 ≥ q1, as done by Chiappori and Salanié

(2000). Moreover we only derived this theoretical prediction (in corollaries 2 and 3) when there is only one

loss level, while the cost for responsible claims is dispersed in our dataset : some claims are very costly and

some very cheap. Thus the corollaries may not apply, and it is of interest to test the generalized positive

correlation property, as given in Proposition 2. It is indeed possible that while the comprehensive contract

has more claims, these are less costly than under the contract with no deductible. The last column of Table 1

gives some evidence on the size of the average claim under the comprehensive guarantee.

Comprehensive coverage premia were taxed at a rate oft = 18% in 1989. Moreover, we need to

account for the cost structure of insurers. If we knew the value of the loading factorλ, we could directly

test prediction (7). Since we do not know the precise value ofλ, we ran the test for values ofλ from 0

to 100%, which is a rather wide interval (a value of 20% is a reasonable guesstimate). For each of these

values, we compute the Kolmogorov-Smirnov statistic for the null hypothesis that the Studentized statistics

are distributed asN(0, 1). We find that the value of the test statistic is high, with a p-value always below

10%, and reaching 1% atλ = 0.20. Figure 1 shows the estimated nonparametric density of these numbers

(weighted by cell sizes), along with theN(0, 1) density, forλ = 0.20. Our conclusion is that this test gives

evidence for the positive correlation property: the null of zero correlation is rejected. By taking into account

both the dispersion of claims and the cost structure of the insurer, we are able to corroborate the presence of

asymmetric information.

We also investigate the NIP assumption. To test this, we compute profits

πi(X) =
Pi(X)
1 + t

− (1 + λ)
∫

Ri(L)dFi(L|X)
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for λ = 0.2 andt = 0.18, and we testπ1(X) ≥ π2(X). We find strong evidence to the contrary: the data

suggest that in fact,π1 < π2 in most cells and so the NIP assumption is rejected. This is an interesting

finding that points towards the presence of imperfect competition in the French car insurance market.

One possibility is that in testing the NIP assumption, we erred in assuming that the cost structure of the

insurer is well captured by a loading factor. Higher fixed costs per insuree or higher administrative costs per

claim for the contract with higher coverage might restore the validity of the NIP assumption; still, an easy

calculation shows that it would take a very large difference of 2,000 Francs in fixed costs per insuree. As

this is unlikely, a violation of NIP due to imperfect competition remains the most credible culprit for our

finding.

Finally, let us consider experience rating. It is a legal feature of French car insurance, but we neglected it

so far in these empirical tests. It is easy to see that (provided both insuree and insurer have the same discount

rates) introducing experience rating amounts to shifting the reimbursement functionRi(L) by the discounted

sum of increase in premiaci(L) in the objective functions of both insuree and insurer. Since insurees are

free to switch contracts after a responsible claim, it seems reasonable to assume thatc1 = c2 = c. Then

Proposition 1 is unchanged, while the right hand-side of the inequality in Proposition 2 becomes∫
c(dF2(L)− dF1(L))

which is positive ifq2 ≥ q1. It follows that taking experience rating into account would leave our evidence

for Proposition 1 unchanged and weaken our evidence for Proposition 2. We can go a bit further. To the

extent that insurees do not change contracts easily, there may be a case for assuming thatc2 > c1 (as the

experience rating system in France is a multiplicative bonus-malus system, so that a responsible claim brings

a higher increase in premia for the more expensive contract). It is easily seen that this introduces a term∫
(c1(L)− c2(L))dF1(L)

in the right-hand side of the inequality in Proposition 1. But since this new term is negative, this would

strengthen even more our corroborating evidence for Proposition 1.
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6. Conclusion

A first lesson stemming from this paper is that in an asymmetric information context, a positive correlation

between coverage and risk properly restated seems to be a natural and robust consequence of the competitive

assumption. In that sense, our paper provides (somewhata posteriori) a theoretical foundation for many

existing empirical papers, although it points to the fact that the comparison of risk is not unambiguous

and that a proper measure of risk must be used. Proposition 2 is characteristic of a competitive setting.

However, Proposition 2 must be reformulated with proportional loading or taxation, experience rating, or

administrative costs of processing a claim.

Under imperfect competition, the non-increasing profit assumption may not hold, and the correlation

need not be positive. Indeed, the insurance companies extract rent from the policyholders, and optimal

rent extraction may be such that more profit is extracted on contracts entailing more coverage. However,

if risk aversion is public, which encompasses many frameworks (e.g. Rothschild and Stiglitz (1976) or

Chassagnon and Chiappori (1997)) then at least with a single claim size, the positive correlation property

also holds. Notice however that public risk aversion is not a natural assumption in the context of insurance,

as it eliminates any unobserved heterogeneity on a key determinant of the demand for insurance. Risk

aversion clearly affects both the choice of an insurance policy and the precautionary attitude. Moreover it is

an intrinsic property of preferences that cannot easily be observed by insurers.

Empirically, most data sets on automobile insurance (including the one studied in this paper) studied

previously do not reject the null of zero correlation. Although the simplest explanation is the absence

of significant asymmetric information in these data, more complex stories can be evoked (see de Meza

and Webb (2001) and Chiappori and Salanié (2000) for a detailed discussion). Our analysis shows that a

positive correlation hypothesis is accepted when accounting for the dispersion of claims. Our paper, together

with previous findings by Jullien, Salanié and Salanié (2001), suggests also that more attention should be

devoted to market power and adverse selection on risk-aversion12. In fact, the theoretical results in this

paper strongly suggest that there is a crying need for such models. An alternative is to turn the asymmetric

information model on its head, by assuming that the insurer actually knows more than the insured. This is

done by Villeneuve (2000) within an otherwise standard hidden information model; he indeed finds that the

correlation may be reversed, at least in a principal-agent framework. The competitive case however is more

tricky, since competition tends in general (but not always) to result in full revelation.
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Appendix A: Proof of Lemma 1

The proof is based on the following well-known result:

Lemma A1:Suppose thatW2(L) andW1(L) are two non-increasing functions of a random variableL,

and thatW2(L)−W1(L) is non-decreasing withL. ThenX1(L) = W1(L)−EW1(L) is a mean-preserving

spread ofX2(L) = W2(L)− EW2(L).

Indeed denote byHi(x) = Prob(Xi(L) < x) the c.d.f. forXi(L). The assumptions in Lemma A1

imply that the difference (H2(x) − H1(x)) is positive then negative whenx increases. Consequently the

function

D(X) =
∫ X

−∞
[H2(x)−H1(x)]dx

is increasing then decreasing. Moreover,D(−∞) = 0, and by integrating by parts it is easily seen that

D(+∞) = E[X2(L)−X1(L)] = 0.

ThusD is non-negative everywhere, and in fact is positive as soon asW1(L) differs from W2(L) with

positive probability. The result follows, by definition of a mean-preserving spread.Q.E.D.

We can now prove Lemma 1. We know that the agent prefers contractC1 to contractC2, and thus

he must preferC1 underG to C2 underG. Let Wi(L) = Ri(L) − L − Pi be the resulting wealth under

contractCi. Notice that under our assumptions onR1 andR2 Lemma A1 applies. Since the agent dislikes

mean-preserving spreads, it must be that the expectation ofW1 is above the expectation ofW2. This yields

the result.Q.E.D.

Appendix B: On Claims and Losses

First consider the case when the agent incurs some observable costsc(L) when the lossL is realized.

These costs may represent a monetary value for health disease or uncovered damages, or some transaction
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costs incurred when reporting a loss; they may also represent the anticipated increase in premia in subsequent

periods, due to experience rating. This amounts to replacing the indemnityRi(L) under contractCi with

R′
i(L) = Ri(L) − c(L). Definition 1 trivially extends, so that (1) still holds, provided that all assumptions

hold forR′
i instead ofRi.

Let us now show that Lemma 1 extends to the case when the agent may decide not to report a loss if the

indemnity is belowc(L). In such a case13 the distribution of claimsF may differ from the distribution of

lossesG: the latter is determined by the agent’s precautionary behavior and characteristics, while the former

may depend on each contract chosen. Suppose that the agent has chosen the distributionG, and that he

reports a loss only if he finds it advantageous, whatever the contract chosen. Everything is as if the insured

was facing an indemnity

R̂i(L) = max(Ri(L)− c(L), 0)

and would declare a loss only if̂Ri(L) is positive. Under a weak assumption14, the property in Definition

1 is preserved by this transformation, and higher losses are still bad news. Then the proof of Lemma 1 still

applies: we get

P2 − P1 ≥
∫

[R̂2(L)− R̂1(L)]dG(L).

Now recall thatR2(L) is aboveR1(L). DenoteA the set of lossesL which are reported as claims underC1,

and thus such thatR1(L) > c(L). Observe that sinceR1(L) > c(L) impliesR2(L) > c(L), the bracketed

term in the above inequality is equal to (R2(L)−R1(L)) if L ∈ A, and is non-negative otherwise. Therefore

its integral is larger than ∫
A
[R2(L)−R1(L)]dG(L).

Now G does not differ from the empirical distribution of lossesF on A; and forL /∈ A, eitherL > 0 and

thendF (L) = 0, or L = 0 and thenR2(0) = R1(0) = 0. Overall we have shown that

P2 − P1 ≥
∫

A
[R2(L)−R1(L)]dG(L) =

∫
[R2(L)−R1(L)]dF (L)

and Lemma 1 extends to the case when the agent may choose not to report a loss.
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Notes

1See for instance Chiappori and Salanié (2000) and the references in Chiappori (2000). This type of
property has actually been tested in different contexts. For example, one of the first papers to test the Stiglitz
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and Weiss (1981) theory of credit markets is Ausubel (1999), in the context of credit cards. Ausubel finds
convincing evidence of adverse selection, through a similar test of correlation: customers who accept higher
interest rates are more likely to default.

2See Chassagnon and Chiappori (1997)), de Meza and Webb (2001), Jullien, Salanié and Salanié (2001).

3Contracts for whichR(L) increases faster thanL are almost systematically ruled out because of usual
risk-sharing arguments, and because of their perverse incentives properties. Indeed, under such contracts,
the agent gains inexaggeratingthe loss, a type of fraud that is extremely difficult to detect. This point has
been widely emphasized by the litterature on insurance fraud (see Picard (2000)).

4 This implicitly rules out situations in which the agents’ choices are partly driven by extrinsic, unob-
served characteristics such as the reliability of the insurer, its location, etc. It fits well empirical studies
involving choices between different contracts offered by thesamecompany, as is the case in the application
below; it may however be more problematic when different companies are considered.

5Note that this assumption cannot be satisfied in the special case when contractC1 is the no-insurance
contract: then administrative costs are not incurred forC1, and this changes the expression for the actuarial
premium. de Meza and Webb (2001) indeed offer a model in which agents choose between insurance and
no insurance, and in which insured agents may be riskier ex post than uninsured agents.

6Consider for example automobile insurance, for which the basic contract only covers damages to third
parties. Extending the coverage to the damages incurred by the insuree requires that the insurer devote
resources to estimating these damages (we thank David de Meza and David Webb for this remark).

7Assume for instance that the paymentR (L) actually costsκR (L) to the insurer, whereκ > 1,
and that competition drives profits to zero. Then any contract offered at equilibrium must satisfyPi =
κ

∫
Ri(L)dFi(L). It is well-known that, in this case, the optimal contract entails only partial coverage (ac-

tually, a fixed deductible). With homogenous risk but different risk aversions, more risk averse individuals
will optimally choose a contract entailing more coverage (a smaller deductible). Now, let us introduce some
infinitesimal difference in risk that is perfectly correlated with risk aversion; namely, assume that more risk
averse agents are slightly less risky. Then the correlation between risk and coverage is negative—but we can
still test (7).

8This is equivalent to assuming that risk aversion is publicly observable, hence is included in the ob-
servablesX. Notice that when risk-aversion depends on wealth, the assumption requires that wealth be
observable—or at least that enough information about wealth may be inferred from observables.

9Of course, the situation just described is somewhat specific, because it relies on a strong,exogenous
negative correlation between risk and coverage. Assuming, for instance, a positive correlation (risk averse
agents are riskier) would revalidate the positive correlation property. A more interesting approach would
endogenizethe correlation. For instance, Jullien, Salanié and Salanié (2001) consider a model where risk-
aversion is the agent’s private information and agents secretly choose some prevention effort (moral haz-
ard). Then the correlation between preferences and realized risk is endogeneized; the authors show that a
monopoly may optimally propose two contracts that involve a violation of the positive correlation property.

10One franc was about 16 US cents in 1989.

11Some policyholders have more than one responsible claim; we neglect these multiple occurrences in
the following.
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12Using subjective assessments by insurees, Finkelstein and McGarry (2003) find evidence for such a
model in long-term care insurance.

13An obvious illustration is that of a contract with a deductibledi, in which case the agent will not report
losses smaller thandi.

14The slope of the functionR2(L)− c(L) must lie between zero and one when its value is positive.
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Table 1: Deductibles for Comprehensive Policies

Range of deductibles (francs) % Number of policies Averageq Average claim

0-500 2743 0.034 6347
501-1000 34309 0.020 5075

1,001-1500 9381 0.042 6016
1501-2000 2403 0.056 4470
2001-3000 1598 0.066 7761

3001-10000 535 0.047 5123

Chiappori/Salaníe/Salaníe/Jullien

RJE RJE RJE RJE

Table 1 of 1
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Figure 1: Studentized Estimates ofintR2(L)dF2(L)− intR2(L)dF1(L)

Chiappori/Salaníe/Salaníe/Jullien

RJE RJE RJE RJE

Figure 1
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