Use of functionals
in linearization and composite estimation
with application to two-sample survey data

C. Goga J.-C. Devillef A. Ruiz-Gazeri

June 22, 2009

Abstract

An important problem associated with two-sample surveys is estimatioméifiear functions of finite
population totals such as ratios, correlation coefficients or measuresofigninequality. Computation and
estimation of the variance of such complex statistics are made more difffictiie existence of overlapping
units. In one-sample surveys, the linearization method based on thenitélénction approach is a pow-
erful tool for variance estimation. We introduce a two-sample linearizégicmique which can be viewed
as a generalization of the one-sample influence function approachte€hnique is based on expressing
the parameters of interest as multivariate functionals of finite and distretisures and then using partial
influence functions to compute the linearized variables. Under broadhati®ons, the asymptotic variance
of the substitution estimator, derived from [8], is shown to be the variaheeweighted sum of the lin-
earized variables. The paper then focuses on a general class pdsibersubstitution estimators, and from
this class the optimal estimator for minimizing the asymptotic variance is obtakiedlly, the efficiency
of the optimal composite estimator is demonstrated through an empiricgl stud

Keywords:Gini index change; Partial influence function; Substitatestimator; Two-dimensional sampling
design; Variance estimation; Variance optimization.

1 Introduction

The study and the comparison across time or space of incatrédtion and income inequality measures are
of increasing current interest. Most of the properties odsuges such as the Lorenz curve or the Gini index
have been investigated. However, the variance estimatiaigm for sample survey data has only recently
been addressed. Difficulties arise because these measeisdinear functions of population values.

There exist two approaches to variance estimation for cexnglatistics: resampling methods and lin-
earization methods. Various resampling methods [24] estish as the jackknife, the balanced repeated
replication method and the bootstrap. The jackknife [3]his ost often used procedure and consists of
computing the estimator repeatedly leaving out one unieséhmethods can be very computing intensive.
Besides and unlike linearization methods, resampling agtitan only be applied to specific sampling de-
signs. For unequal probability sampling designs, they mayimto great difficulties [30].

In the following, the focus is on linearization methods. Tell-known Taylor linearization method
can be used for nonlinear but continuously differentiablecfions of totals, but the method is not adapted
for the estimation of quantiles, for example. For nonregfuactions of totals, [18] propose an approach
based on the estimating equations technique. A functiopioach is also proposed in [8]. It uses the
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influence function concept and provides a theoreticalfjaation for the linearization proposal of [7] that
gives practical rules for linearising complex statistidé$on-differentiable functions of totals like quantiles
or the Gini index can be handled either by the influence foncipproach or by the estimating equation
technique. More complex parameters such as eigenelenfdntetional data have been considered recently
by the influence function approach, in an unpublished Usityeof Burgundy technical report by H. Cardot,
M. Chaouch, C. Goga and C. Laleme. All the linearization methods consist of computing tmearized
variable’ u;, associated with the parameters of interest for all the unftem the population of size N
and give a first-order expansion formula of the complex stia§ which contains the Horvitz-Thompson
estimator _, _ /7 for the total ofu,. Here,m, = pr(k € s) is the first-order inclusion probability of
k in the samples. We consider the influence function approach, introducedlwist statistics by [13]. [5]
uses the influence function for estimating the variance offex statistics and compares it with a jackknife
variance estimator. [8] uses a slightly modified definitiéthe influence function and provides a powerful
variance-estimation tool for complex survey statistice dives computing rules and applies the technique
to different examples such as quantiles, concentratioitésdand estimators of eigenvalues in principal
component analysis in the one-sample case.

In Deville’s approach, a population parameter of inteflestin be written as a functionalwith respect to
a finite and discrete measuké, namely® = 7'(M). The substitution estimatdr = 7'()/) is the functional
T of arandom measur®/ that is associated with sampling weights, k € U, and is ‘close’ tal/. Suppose
thatT" is homogeneous of degreg so thatT'(rM) = r*T(M), andlimy_,.o N~*T (M) < oco. Under
broad assumptions, Deville shows that

VaN~T(M) - T(M)} = /nN~® / Ip(M, 2)d(M — M)(z) + 0,(1)
N
= VaN"*Y ug(wg — 1) + o, (1). 1)
k=1

The linearized variables,, are the influence functiong-(M, zx ), wherezy is the value of the variable of
interest for thekth unit and

(M) = lim é{T(M +e8,) — T(M)},

whereJ, is the unit mass at point € RP. This definition is slightly different from the one used in usib
statistics [13] which is based on a probability distribatinstead of a finite measurd. A nonstandardised
measure\/ is used in survey sampling because the total mass may be aownlquantity. The influence
function is a Giteaux differential fofl’'(A1) in the direction of the Dirac mass at As a consequence of (1)
and under broad assumptions, the asymptotic varian@¢f) is the variance oEff:l ug (wy —1). For the
Horvitz-Thompson weights), = 1/, this variance is equal to
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where ther, are the second-order probabilities. Deville estimatesiancevar{T ()} by the Horvitz-
Thompson variance estimator
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using the sample estimatoig = IT(M, zy) for the linearized variablesy,, k € s. The main advantage of

this method is that the variance estimators can be impleedentany survey software capable of calculating
the Horvitz-Thompson variance estimator.



All previous methods concern variance estimation for canede survey data, but interest may lie in
studying how statistics change over time or between diffggepulation subgroups. Estimating the change in
the Gini index between two periods of time is one particulameple. Difficulties arise from the existence of
overlapping samples. Work concerning temporal changelynd@als with the estimation of simple statistics
such as the population mean or total under the hypothesislependence of the selection procedure. The
first studies are by [16], [21] and [9]. Cochran (19%Z2.11), gives the most important ideas concerning
repeated sampling and a more thorough discussion is found 7ih All these studies are conducted for
simple random sampling without replacement. More genenalpting designs are considered in [26], [14]
and [19] but they still assume the independence of suceessimnples. Recent works are dedicated to
composite estimators with applications to specific typesuodey [1, 12, 27]. We also mention the review in
an unpublished Institut National de la Statistique et desi& Economiques (INSEE) working paper by N.
Caron and P. Ravalet, the paper by [6] and the recent work by ad [2].

We propose an extension of the influence function approatttettwo-sample case. In classical statistics,
the partial influence function is introduced for estimatoased on more than one sample [22] following the
analogy with derivatives and partial derivatives. In thevey-sampling context, we also propose to extend
the influence function approach to the multiple-sample bgssonsidering partial influence functions. In the
two-sample case, estimators are based on three disjoimglssnvhich naturally lead us to consider three-
variate functionals and their associated partial influénnetions. These partial influence functions equal the
linearized variables and, under broad assumptions, tha@syic variance of the complex statistics is equal
to the variance of a weighted linear sum of the linearizeiatées. The proposed methodology has already
been applied to compute the precision of change estimatahgiFrench employment survey [23].

2 Extension of the asymptotic results to two dimensions

2.1 Partial influence functions

Consider the finite populatioty of size N. Let Z; and Z; be two variables of interest measured on two
different samples; ands, selected from the same populatibnaccording to the sampling designs and

p2. The objective is to estimate a nonlinear functibrof totals of 2, and Z;. The samples, respectively

s, is Of sizeny, respectivelyn,. We consider that the matched samgje= s; N s; is nonempty and of size
ng. Lets;, = s — s9, respectivelyss, = so — s1, be the complementary sample ©fin s, respectively

of s1 in s9, Of Sizeny,, respectivelyns,, and letn = nq,. + n3 + na.. LetD = {1x,3,2x} be the set of
the disjoint samples’ indices and I&t = {1, 2, 3} be the set of the matched samples’ indices. Apart from
particular cases, we assume from now on that D andt¢ € 7. On the matched samplg, we know both

Z, andZ, and we denotéZ;, Z,), by Z;.

Each unitk € U is associated with a vectay,, € RP*,t € T, wherez,;, = Z;(k) is the value of
the p;-dimensional variable of interest; for the kth unit andps = p; + po. We consider the discrete and
finite measured/; = Y",_, 4., , defined onR?* to R taking the mass 1 for each ; with k € U and zero
elsewhere. The measuré$, are of total mass equal &y, the population size, and take into account the
unitsk in U together with the variable of interesgl,. Henceforth, defining an estimatd¥, of M, leads to
definition of an estimator of the total &f; since the total ofZ; equalsf Z:dM; and is a functional of\/;.

Consideration of three different measures is justified beedhe variableg; are measured on different
sampless;, t = 1,2, 3, and the measure®;, may be estimated in different ways. In particuléaf; is useful
if one wishes to estimate covariance terms of the f@ﬁzl 21 121,2 that cannot be expressed directly from
M, and M. Therefore, and by analogy with the one-sample situati@introduce the three-variate func-
tional T'(M1, Mo, Ms) = T (M) with the vectorM = (M,);c7 and consider as parameters of interest any
population total functior® = 7'(M). Let us consider three illustrative examples.

Ex 2.1 Let Z; and Z5 be the same variable of interest but measured on two occasigtih totalsZ; =
fo:l k. The finite population total change = Z,—Z; can be written ag' (M) = [ ZodMo— [ Z1dM;.



Ex 2.2 Consider two bivariate variableg; = (X}, );) for t = 1,2 that may also correspond to two occa-
sions. The functional
VodM, [ V1dM,y
(M) 2T [ XpdMy [ XydM,

is the ratio change. Change of more complex statistics sa¢heGini index or the Lorenz curve can also be
considered.

Ex 2.3 Consider the product of two variable® and Z,, withT'(M) = [ 21 Z,dMs/ [ dMs. This example
illustrates the need to introducks.

We now introduce the partial influence functions of the fiowal 7'(M) [25, 22].

Definition 2.1 The first partial influence functiof 1 (M; z) of T (M) is defined as the first partial &eaux
derivative ofI" with respect ta\/; in the direction of Dirac mass at,

(0 2) = Y TV H 20 M, Mo) = TV, M, M)
£—
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when this limits exists. The second, respectively thirdtiganfluence functionl,r(M; z), respectively
I37(M; 2), is defined in a similar way.

Definition 2.2 The linearized variables,, ; for k € U andt € T are obtained by computing()/; z) at
2 =2kt € RPt, namelyuk,t = ItT(M; Zk,t)-

The partial influence functions @ = AR = Ry — R; = R(Ms)— R(M,), see Example 2, are computed
as partial derivatives of a function. SinBg = R(M>), respectivelyR; = R(M;), is constant with respect to
M, respectivelyMs, the first, respectively second, partial influence functionsists of taking the linearized
variable of the ratidR,, respectivelyR,. To be more precise, we have

1
uk,y = Lr{M;(xr1,y61)} = _E(yk,l — Rizp1),

1
upe = Top{M;(zk2,yr2)} = z(yk,z — Roxy2), 4)
uk73 = 0

For Example 3uy1 = upe = 0 andugs = (1/N) (k1282 — > opey 2k12k2/N). Theuy, depend on
unknown quantities and cannot be calculated.

2.2 The substitution estimator and its asymptotic variance

By analogy with [8], we defindl, = E,]Ll vg,¢0-, , @S an estimator ab/; which associates a weight ;
with each vector;, ¢, for k € s;, and zero elsewhere. The weighjs; will be derived in the next section.

Definition 2.3 The substitution estimator @(1/) is T'(M) whereM = (M, My, Ms).

The estimatorl/ defines the estimatdf(1/). In §3.4, we give three different estimators.af which lead to
three different estimators of the ratio change.

In the following, we give sufficient conditions for the asytojic expansion ofl” to be valid. We need
both the population and the samples sideandn, to go to infinity withn; < N. As in the one-sample case
[15], we consider a sequence of populations and associatgesces of samplas of increasing sizes with



J Z,dM, as an estimator of ZdM,. By analogy with [8] we make the following assumptions, far 7.
Assumptiorl. We assume thaitm y _. o, n;lng € (0,1) andlimy oo N~ 1n; € (0,1).
Assumptior2. We assume thaim y_, ., N ! | Z:dM, exists.
Assumptior8. ASN — oo, N~ !([ ZdM, — J ZidM,) — 0 in probability.
Assumptiost. AsN — oo, {n;'/2N=1([ Z,dM; — [ Z,dM;)}}_, — N(0,%) in distribution.
Let the functionall” also satisfy the following smoothness assumptions.

Assumptiorb. We assume th&t is homogeneous, in that there exists a real nunsber0 dependent on
T such thatl'(rM) = rPT(M) for any reah > 0.

Assumptior6. We assume thaim .., N °T (M) < oc.
Assumptiory. We assume th&t is Frechet differentiable.

Theorem 1 is the most important result of the paper; it gihesfirst-order [29] expansion of the func-
tional 7" at M /N and around\//N.

Theorem 1 Let Assumption& to 7 hold. Then

3
m{T( M)—-T(M)} = %Z / LT(M;2)d(M; — My)(2) + 0p(1)

VIS g
= WZ{Z Ut (Vk,e — 1)} + 0p(1)

t=1 k=1
3 N
and the asymptotic variance f(1/) is equal to the variance 0§ _{» (v — 1)}
t=1 k=1

The proof is given in the Appendix. The strong assumptionrétRet differentiability fofl” ensures that the
remainder of the first-order von Mises expansion is nedligiboreover, when they exist, the&ahet partial
derivatives equal the @eaux partial derivatives, which are the partial influeiicetions. However, the result
can be obtained i’ is only Gateaux or compact differentiable [10] but with some add#icassumptions
[22]. For particular functionald’, one may study the remainder term directly and prove that daf iorder
o,,(n*l/?); see the unpublished report of H. Cardot and others for tlkesample case.

3 A general class of composite estimators

3.1 Preamble

In this section, we derive the weights ; defining the measurek/,. The v+ are expected to satisfy the
unbiasedness conditiod& M;) = M, so that

3 N
ZZ ug ¢ (vke — 1)} = 0. (5)

t=1 k=1



The variables of interest are known on different samplesis€quently, we propose unbiased composite
estimators of\/; that combine information from; ands, considering the interaction between them through
the matched samplg;. First we introduce the two-dimensional sampling desigrcdiesd in an unpublished
INSEE working paper of F. Cotton and C. Hesse, and its coomdipg inclusion probabilities. Next, we
determine the weights;, ; which satisfy the unbiasedness conditions through a kirtdrefsample Horvitz-
Thompson estimation method.

3.2 Two-dimensional sampling design

Definition 3.1 A two-dimensional sampling design is a probability meagyre = (s, s2)} of selecting a
two-samples = (s1,s2) € {P(U)}%. We haven(s) > 0 and}_ cppy2 P(s) = 1.

As described in detail in C. Goga’s unpublished 2003 Ph. &sithfrom the University of Rennes 2, marginal
sampling designs and the distribution of any algebraic doatlon of s; ands, can be deduced from(s).
Each unitk € U may belong to one of the disjointed sampigdor d € D = {1x, 3,2x} or in the comple-
mentary set of; U s,. The sample membership dummy variablgs= 1{kes,y form abasis3 in the algebra
spanned by} andI? and the following definition gives the inclusion probaliiét with respect tds.

Definition 3.2 Letp(s) be a two-dimensional sampling design. For/all € U andd, d’ € D, we define the
first- and second-order two-dimensional inclusion proltiEibs computed with respect 16 as

7l = pr(k € s4) = E(IY), ﬁ,‘:id, =prk € sq&l € sqy) = E(Ig[,fi’),
where the expectation is considered with respegt(£9.

There are therefore three, respectively six, sets of firdem respectively second-order two-dimensional

inclusion probabilities. We mention now some of the prdperofw,f;d/. First of all, ford # d’, the commu-
tative property with respect to two uniksand! no longer holds as in the one-sample selection case. Thus,
rh® # mh® but we haver;” = 7% Whend = d', 75" = =, the usual one-sample second-order
inclusion probabilities, and there are six different se‘t&bd . Finally, fork = [ andd # d’, we have
wzzd = 0.

Differently from the one-sample case, the algebra spanypdg bnd/? contains 7 elements and we have
29 ways of choosing a basis with its corresponding inclugimbabilities; see C. Goga’s thesis for more
details. Note that changing from one basis to another isifpledsy linear transformations. By analogy with
the one-sample case, let us define the size of a two-dimeisample.

Definition 3.3 The size of a two-dimensional sample= (s1, s2) is defined byhs = (114, 13, n2.) With
ng =Y n_, I the size of, for d € D.

The sizen, may be random if at least one of the three components is raadofixed if all the components
are fixed. In§4, we define the two-dimensional simple random samplingauitlieplacement, which is a
fixed-size design whereas the Bernoulli or the Poisson timedsional sampling designs in Goga’s thesis
are random size designs.

3.3 General composite estimation

The construction of the measuté; depends only on the matched sampjend so, by using the unbiased-
ness conditiorf(Ms) = Ms, we have

NI 20
ves = Ip/mh, Mz =) — (6)
k=1 k



Since the disjoint samples .., s3 andss, can be composed in different ways, there are several ways of
defining the estimatora/,, for ¢ = 1, 2, which entail different substitution estimatdf§)/). A general class

of composite estimators is proposed if we define the weightst = 1, 2, as linear combinations of the basis
elementd}*, I? andI?*. To be more precise, sineg ; is zero outside the sampig, ¢t = 1,2, we takeuvy, 1,
respectivelyv », as a linear combination df * andI}, respectively o ?* and}, as follows:

1 7lx 3 713 2% 2% 3 73
Okt = Vi Ly vl vk = Vel A v o I

for some real numbersj)t, whered € {1x,3} fort = 1 andd € {2x, 3} for t = 2. We propose to use the

following weight sets where the?, for d € D, are given in Definition 3.2, and which satisfy the following
unbiasedness conditions:

ol _ % 3 l-ak o bk g 1 —bg
Icl 1% k,1 — 3 k2 2*’ k2 3
T, Tk T Tk

for real numbers, by andk € U. We now apply Theorem 1 to the abové.

Theorem 2 Let the double sample= (s1, s2) be selected according to a two-dimensional sampling design
p(s). DefineM = (M,)e7 by

N N
MIZZ Q. 1*+1—ak13 Z ka s
7T1* k 7r3 k Zk 1 7T k 2,20

k=1 Nk k k=1 k

N

i =Y b
3 — ﬂ_g Zk,39

k=1

for some real numbers, andb,, , and consider thg general composite estimﬂf()M). K
Let Assumptionsto 7 hold. Then/nN ~?{T(M)—T (M)} is approximated by/nN " (Z(ay b)ren} —

Z)ywith Z = S0 (up1 + ug.a + up 3) and

1* I3

. Al | A I
Z{(arbr)rev} = Zakuk 1 < = 7T) + Zbkuk 2 (Wk 771%) + Z(Um +ukz2 + Uk,S)F~

k k=1 k=1 k

The asymptotic variance Gf(M) is the variance o (., b, ).co}-

Theorem 2 is an immediate consequence of Theorem 1, givelthg ST up. ¢ (vg 1 —1) = Zi(ar bi)nen) —

Z. The estimatorZ{(ak,bk)kEU} can be interpreted as a Horvitz-Thompson estimator of tiealtized vari-
ables total, based on the matched sample, added to weightdéksed estimators of zero means, based on the
unmatched samples. This addition improves the estimagiondking use of the correlation of the units from
the matched and unmatched samples. Goga'’s thesis detempiaadby, k € U, that minimize the variance

of Z{ (arbe)rew }- These optimal values, °P' andb™, have rather complicated expressions and depend on
the unknownuy, , forall kK € U andt € 7. In the followmg we consider three particular casesandby,
keU.

3.4 Some particular cases

Letid = > kes, Ukt/mh, fort € T andd € D U 7, the Horvitz-Thompson estimators of the population
total ZkN:1 ug,¢ Using the sample,. For example, ifd = 1x, f;j = Zkeﬁ* uga /7% and, ifd = 1,

Eul = Zkesl uk,l/ﬂ-li'



Casel: The ‘union’ estimatarLet us considet;, = w}* /x}, andby, = m2* /x for all k € U. In this case,
- It
M = Z ﬂkézk L t=1,2
k=1

are the Horvitz-Thompson estimators/gf based on the whole samples andT (M) is called the union
substitution estimator. From Theorem 2, the asymptotimwae of7'(A/"™) is the variance of

7 -
{(mp*/mpm 2 [T ke
k€s kEsa keEss

uk 2 Uk 3

=t +& +1E. (7)

Consider the ratio chang®R = R, — R, from Example 2 ir§2.1. We haveR, = ([ V,dM,) / ([ X, dM;)
and we estimatd/, by M™, ¢ = 1,2. We obtainA R = Ryni — Rwni with

Runi _ fythtuni _ Zke‘zt ykyt/ﬂ—ltc

9 o ) t= ]-7 27
b xdb T Y, wra /T

and the asymptotic variance AfR"™ equals the variance éil + 1?32 where the linearized variablesg, , are
given by (4).

Case2: The ‘intersection’ estimatorLeta, = b, = Oforall k € U. Thethint is the Horvitz-Thompson
estimator ofM; based ory;:

. ]3
M = ZW Oy t=1,2,
k=1"F

From Theorem 2, the asymptotic variance of the intersedidostitution estimatoT(Mi“t) is equal to
the variance of

A U —+u —+u ~
Ziooy = ), g Zts (®)

kess

The ratio chang@\ R is estimated byA Ri"* = Rint — Rint with Rint — (Zkess y:;) / (Zk653 %) and
k k
its asymptotic variance equalsr Zst_o,{(uk:l + ug,2) /73 } with ug 1 anduyg o given by (4).

Case3: The ‘composite’ estimatoif we considel;, = a € R andb, = b € R, then

1-— b 1-0
Uk,l = Ik + Ik al’ld ’ng = 2*I§*+73I]§
k k T Tk

The measures/; are estimated by the composite estimators,

R N I]i* I/f . N 12* I3
M =y (aﬂl* +(1— a)ﬂ_:}z> Ouprr Mso =" <b7T +(1—0b) k) Os - (9)

k=1 k k=1 k

From Theorem 2, the asymptotic variance of the compositetgution estimatotT(]\ZfCO) is given by the
variance of

Zawy = a(f =)+ (2 -8+ Zt (10)



By takinga = b = 0 in (10), we obtainZ g o) given by (8) andl'(M¢°) = T(A1*"*). The union estimator,
defined by (7), belongs to the class defined by (10) if and drihei sampling design is an equal-probability
two-dimensional design with constant weights, 77 andr2* for all k € U. Section 4 provides an example
of such a design.

Consider again the ratio change of Example 2. Replg@ith 1/¢° and obtain the composite estimator
AR® = Ry — R$° with Rg° = [ R,dM¢°. To be more precise,

a Zkesl* yk,l/ﬂ_é* + (1 - CL) ZkEs;g yk,l/ﬂ—lz

REO = * )
aZk‘Esl* xkvl/ﬂé +(1—a) Zk653 zk»l/ﬂz
]f?co _ bZk’Esz* yk»Q/WI%* + (1 - b) ZkEs;; yk',2/7r2
o = .
bZkESQ* Z‘k,g/ﬂ'i* + (1 - b) Zk683 .I‘k,g/ﬂ"%

The asymptotic variance df R is the variance of(, ) = a (f1* — 3 ) +b (25 — ) + 37 & with
U, 1, Uk,2 given by (4).

In an unpublished University of Burgundy technical repgrth Goga, J.-C. Deville and A. Ruiz-Gazen,
composite estimators are developed for other parametdragesést such as the changes of the population
total and of the Gini index.

To calculatevar(Z, ;)), each estimatofﬁt is written as a function of the sample membersk{p namely
N

= up I . We havecov (I, I ) = o — wind = A" . For example,

k=1

ut

N N Y N N S

2wy 1% UE,1 U1 £1x 13 1* 3 Yk,1 Wi, 1 1

var(t,) = E E Ay — e cov(tyr ty, ) = E E Ay )
m

1*
Vs 71'
k k=11=1 l

The variance ofé(aﬁb) may be considered as a two-sample Horvitz-Thompson vaiforenula. It is the
sum of variance terms computed according to a one-sampleiteddthompson variance formula and of
covariance terms which contain the covariance betwgeand ;' for d # d’ and are not common in survey
sampling theory.

3.5 Variance estimator of the composite substitution esti@tor

Consider the composite substitution estimafgn/°°) with 1< = (M°, Ms°, Ms) given by (6) and (9)
and assume that andb are fixed real numbers. We propose to estimate the varian@& af*°) by an
estimatoryarZ, ;. In order to derive such an estimator, we write

var(Z. (ap) = var(A)+var(B) 4 var(C) +2cov(A, B) +2cov(A,C) +2cov(B,C), (11)

B=1i+(1-b)t

u2’

with Z(a,b) =A+ B+ C,where A=1"+(1—a)t;

o C=1t..

The linearized variables; ; and the variance and covariance terms are to be estimatee.lingarized
variables depend on the unknown variables of intefgsind several estimators are possible. Furthermore,
explicit expressions fou;, ; cannot be derived so long as the functiofiais not given precisely. In these
conditions, finding the most suitable estimatorsugf; is not a simple issue. In the following, we simply

estimateu;, , based on the matched samgleby
Ia}gni — ItT(Minta Zk,t)7

but other estimators may be advisable, in particular if tr@ge sizes; andn; are much larger thans.
Consider Example 2 df2.1. We have

~ pin n €z Hin
apl = — (1/ Z ) Ypa — R™wp 1), 4 (1/ Z . 2) Yr2 — Ryt ay 2),

kEss k€Ess




for Ri™, Ri™ as given in§3.4. However, other possible estimators are

i T A uni Tk A uni
apy = — (1/ E : > ko — By ), 4y = (1/ E ) Yk — Ry™Mwk2),

k€sy k€Esa

for Ry andRy™ given in§3.4. We estimatear(C), respectivelyar(A) andvar(B), by Horvitz-Thompson
variance estimators (2) based on the matched saspptespectively ors; andsg, with u;, ; replaced b)ai,gj‘;,
t € 7. To be more precise, we have

~int ’\lnt

Akl U, ,3 U ,3

SCIEDIDY Er R

ke€ss less Tk k !
1%,3 3
1 Al A A
A _ nt 2 _ Kkl _ kl
var(A) = E E 1—1 P + 2a(1 a)ﬂl*ﬂ?) + (1 —a)? R

csy lEs T T kM T

T T ﬂ—kﬂ—l

X 1 A2 A3 A3,
var(B) = Z Z ;T% {52 — L +2b(1—b) 2* p +(1-0)2 3}.
k€sa les

The covariance term

N N AL%3 A3
ki ki
cov(A,C) = Z Zuk,1uz,3 {aﬂ_’}:*ﬂ_g +(1—a)= 3}

k=11=1 ! Tk

is estimated by

1%,3 3
T | A A
sint kl ki
cov(A4,C) E E artgmt g + (1 —a)—==
k,17,3 | mrm ( )71"3 3 (7

™
kEsz lEss k"l

andcov (A, C) andcov(B, C) are estimated in a similar way. Note that the proposed vegiastimator
VarZ(a p) IS no longer unbiased forarZ(a b sincew;”; is generally biased fory ;. However, 4} is a
function of Horvitz-Thompson estimators and is con&sten’uk + asN tends to infinity, implyingns — oo

by Assumption 1.

Theorem 3 Under the Assumptioristo 7 andAl andA2 given in the Appendix;,ér(ZA(a)b)) is a consistent
estimator ofav {7'(M )} = var(Z(, ;).

For the proof, see the Appendix. §, a small simulation study confirms that the variance estma
var{T (M)} = var(Z,,»)) does not differ very much from the asymptotic variangg T'(M<°)} in large
samples.

3.6 Optimal asymptotic variance composite estimator

In this section, we derive real numberandb such that the asymptotic variance of the composite substitu
estimator? (M ¢°) is minimum. Letd = (a,b)’ € R? and rewrite (10) as

Z = ¢ 7;1‘? t:il + § £3 (12)
(a7b) tij t’lsl.g
The asymptotic variance df(M ©)is

3
AV{T(M)} = var(Zap) = 0'T0 + 20"y + var (Z f?;t) (13)
t=1

10



with
tl* o t3 tl* A
I‘zvar(tg;_tg, >7 7260"((;22 t3 ) S8 ) (14)

Theorem 4 Consider a general two-dimensional sampling degigf) and suppose that Assumptidhto 7
hold. The asymptotic variance @{ 17<°) is minimum fofopt = (aopt, bopt)’ = —I' "1y withI" and~y given
by (14) and ifI" is assumed nonsingular. This minimum asymptotic variastke variance oZA(aop“bom)
and is equal to

3
AV opi{T(M$p)} = Var(Z(a,,y bope)) = var (Z ff;) —7'T7 1. (15)

t=1

The proof is given together with the proof of Corollary 5 iretAppendix. The optimal variance is
obtained whatever the two-dimensional sampling desigriglicit expressions for the optimé&l and the
asymptotic variance are given in C. Goga’s thesis for séwmdimensional sampling designs. Expression
(8) leads toav {T'(M"t)} = var(ZA(O,O)) = var(Zle £3 ), which means that, whatever the sampling design
may be,T(Mggt) has a smaller asymptotic variance tHa/ ™).

Unfortunately, the optimal variance (15) depends on unknpepulation variances and covariances and can-
not be calculated. We propose to estimate all the unknowntdigs in (13) using the estimators described
in the above section.

Corollary 5 (|) The variance estimatosv {T'(M<°)} = 0'T0 + 20’4 + var(>_;_, £ ) is minimum for
eopt =-I- L4, if I'is assumed nonsingular.

For (ii) and(iii) , let Assumption& to 7 hold. Suppose also thégpt is a consistent estimator 6§, that
is, for any fixect > 0, limy o pr(||fopt — bopt|| > €) = 0, where|| - || is the Euclidian norm.
(iiy Consider the estimatof(&ophl;opt) given by (2) for éopt = (Gopt, Eopt). The asymptotic variance of
is equal to the variance di’

(doptsi)opt) aoptxbopt)
(iii) Consider now the estimatG?(Mggt) with Mtc‘gpt, t = 1,2, obtained from§) for a = dopy aNdb = bopy.
The asymptotic variance ﬁT(M(‘jgt) is equal to the variance cﬁi’(aophbom).

The proof is given in the Appendix. Part (i) gives the esthmaﬁopt that minimizes the asymptotic
variance estimator for a constatht [20] and [11] obtained a similar result concerning the mjatity of
the regression coefficient. The drawback of Theorem 4 iséifjatis assumed to be known but in practice
it has to be estimated. Corollary 5 (iii) takes the estimmatid 6, into account and states that,d is
estimated consistently, the asymptotic variance of thetitution estimatof’( 1/, ) with estimated,t is

opt
the minimum variance v, »...)) given by (15).

opt

4 Two-dimensional simple random sampling without replacement

Let us focus now on a particular two-dimensional samplingjgle namely two-dimensional simple random
sampling without replacement defined in the working papeFbgotton and C. Hesse and used for two-
sample coordination. In what follows, we consider funcéilend not depending on\/; and we assume
the two-dimensional simple random sampling without repraent design for estimating = 7'(M). This
design can be described as follows.

Definition 4.1 A two-dimensional simple random sampling without replaeeiof fixed sizén ., n3, na.) is
a two-dimensional sampling desigfs) which assigns equal selection probability to all samples (s, s2)
for which s, respectivelys and s,.., have the fixed sizes ., respectivelyis andno,.

11



In this case, the desigr(s) is a discrete uniform probability distribution on the set of

( N ) (m* +ng + n2*> (ns + n2*> (nz*)
Nix + N3 + N2k 1 n3 T2

possible samples of fixed siZe;., n3, na. ), which implies that

77,1*'?7,3'712*'(]\7 — N1x — N3 — TLQ*)'
p{s = (s1,52)} = N :

In their working paper, Cotton and Hesse study this desigihgare some of its properties. The most impor-
tant of them is the fact that the marginal sampling desigasenple random sampling without replacement
from U. This property makes the design very attractive. The firdeotwo-dimensional inclusion probabili-
ties arer{ = ny/N and the second-order probabilities are

4 nd(ng—1) dd _ NdNd

T NN-1) ™ T NN-1)

for d # d’. From a practical point of view, this design can be implemeérttg selecting the simple random
sampless; C U andss C s; and next by selecting,. from U — s; also according to a simple random
design. Such a sampling design can be found in repeated isgni8] when a matched sample of fixed size
is desired in order to improve the estimation of the absathienge of the parameter of interest. Another
way of implementing the two-dimensional simple random gies$s by selecting three nonoverlapping simple
random samples. We selegt, from U, s3 from U — sy, ands,, from U — s, each time using simple random
designs. Such a design is also of interest for reducing sporese burden éndal et al., 1992, p. 67). Note
that the selection of two, not necessarily independentpleimandom samples froii cannot be considered
as a two-dimensional simple random design since the matsaexgple is of random size. Nevertheless,
conditioning onns, we obtain a two-dimensional simple random design.

We consider a functionab = 7'(M) estimated by the composite substitution estimatok/<°) with
asymptotic variance equal to the variance of

Ziawy =a (b —1t3,) +b (0 — 1)) +Zt (16)

We compute the optimal values afandb by using Theorem 4. Left; = ni./ny andhy = nas/no
be the nonoverlapping rates apdhe correlation coefficient of the linearized variablgs, anduy 2. We

denote bym(u;) the population mean af; and bySz = Zszl{uk,t — m(u)}?/(N — 1) the popula-
tion variances of., for t = 1,2, estimated byé%t = Y res, LUk — m(ur)}?/(ny — 1) and by Sy, =
Z,ICV Hur,1 —m(ur) Huw,2 — m(ug)}/(N — 1) the population covariance betweenandu, estimated by

Savis = Ypesy 1k — m(u1) g2 — m(uz)}/(ns — 1), wheredy, , = @, LetS = S,, /S, and let
f3 = ng/N be the overlapping sampling fraction. We have the foIIownglt

Theorem 6 For a two-dimensional simple random design and under Assiongl to 7, the asymptotic
variance ofT'(M<°) is given by(13) with var(£ + 2 ) = N(1 — f3) f3 " Suy Sus (S +2p + 1/9),

N S—tht p ) N ( p+ St )
= 7SU1SU/2 ! — ) = _7Su1‘9u2 .
f3 ( po Skt ) T p+s

The optimal composite substitution estimaIt(rZ\/[ggt) is given by Theorer with

—hihy p? +p(1 —1/hg)S — 1/hy a7
1—p2hihy \ P2+ p(1—1/h1)S™t —1/hy

and has the minimum asymptotic variance calculated acogrth (15).

gopt = (aopta bopt), =

12



The proof is given in the Appendix. The vecty, is unknown and, according to Corollary 5, we obtain
the expression fo@opt by replacing the unknowp andsS with their estimatorg and.S in (17).

In §3.6, we proved that the substitution estimalfefth/™™*) is always less competitive thaﬁ(Mggt),
whatever the sampling design is. For a two-dimensional mgndom design, both estimators have the
same asymptotic variance fpr= —1 andS = 1. R K
The second natural competitor 6 V<o, ) is T'(M ™) with asymptotic variancev {T'(M"™)} = var(t,, +
t2 ). If a = hy andb = h in (16), we have

ZA(hl,h2) =h (571: - {il) + ha (1?72;; - fiz) + (tAftl + £i2) = tA}Ll + 1?7212

which means thazf;1 + t?w belongs to the class of composite estimators defined by (t6hllows that

AV{T(Mggt)} < AV{T(M"™)} = var(tl, + ¢2 ) with equality forp = 0. In particular, one may obtain

AV{T(M"")} using (13) ford = (hy, hy)’ andl’, and~ given by Theorem 6.

5 Empirical study

5.1 General framework

We consider the estimation of a nonlinear functiora:= 7'(M;, M>) based ors = (s1, s2) selected ac-
cording to a two-dimensional simple random sampling desidne empirical studies presented below intend
to give the gain of the optimal composite estimaldd\?lggt) defined in Theorem 6 ovéF(M““i), respec-
tively T(M int) " The gain is defined as the ratio between the asymptoticntzﬁiafT(M uni) “respectively
T(M™), and the asymptotic variance iS‘(Mggt).

In this subsection, we consider a general functichalLet v; andus be the linearized variables of a
functional® = T'(M;, M>). We consider a populatioli of size N = 3000 and a two-dimensional simple
random sample design such that n, + no — nz = 300 andn, = 100. We assume that the variance ratio
S = S.,/Su, is equal to 1 and we consider different values of the coiimiatoefficientp betweenu; and
ug, Namelyp = —0.8, —0.5, 0, 0.5, 0.8. This correlation coefficient depends on the form of the functional
® and on the correlation coefficient between the variablestefést but we cannot give a general expression.

We plot in Fig. 1 (a) and (b) respectively the gainfofd13,) overT (M) andT' (M ) as a function
of the overlapping rates /n. Each curve corresponds to a different correlation coefiici

As can be expected, concerniﬁ@]\?[ int) "the ratio of variances decreases to 1 when the overlappteg r
increases and this ratio is small if the correlation coedfitiis low. When the original variables are highly
negatively correlatedy < —0.8, and as soon as the overlapping rate is greater than 10%, wetdyain
anything by using the optimal estimator instead of usingetémator based on the intersection sample. In

§4, we obtained thal (A" = T(Mgp,) for p = —1 andS = 1 and this is confirmed by the empirical
study. When the correlation is greater than -0.5, the gairbeaubstantial at least when the overlapping rate
is smaller than 30%.

With regard to comparison of the asymptotic varianceg 6f/"") and T(M(‘;gt), Fig. 1 (b) shows
that there is no great difference when the correlation anefft between the linearized variables is low in
absolute valuelp| < 0.5, and, forp = 0, the variance ratio is equal to unity; this confirms the thécaé
result. However, for high values ¢b|, the gain of the optimal estimator over the union estimatanore
important especially whep < 0; the ratios increase as soon as the overlapping rate ishessay 30% and
decrease when the rate is larger than 30%. For very low orhigtyoverlapping rates the two estimators are

not very different but, when the overlapping rate is, Sy, the optimal estimator is much superior.

5.2 Estimating the change of a Gini index

We consider data from the French employment surveys of 1882800, namely the wages 8f = 22 741
wage-earners who have been sampled in both years. We aesieiin estimating the variance of the change
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Figure 1: Simulation study for the general case. The ratith@fasymptotic variances of (a) the intersection
estimator and the optimal estimator and (b) the union estinzand the optimal estimator, as functions of the
overlapping rate and for different correlation coefficeemtheavy solid line fop = —0.8, dotted dashed line
for p = —0.5, dotted line forp = 0, dashed line fop = 0.5, light solid line forp = 0.8).

in the Gini index between the two yearsG = G, — G1, where

_ Jo 2Ry —1}ydMi(y) 1 il
fooo ydM(y) NY; Pt

Gy Ukt 12F (yre) — 1}

is the Gini index and,(y) = (1/N) [, 1{e<,1dM, () is the distribution function in year= 1,2. Since
G involves the step-function}, we cannot apply the Taylor linearization approach. In the-sample case,
the influence function approach [8] and the estimating egusitapproach [18] are two possible methodolo-
gies. In the two-sample situation, we propose to use théaparfluence function approach. The linearized
variables ofAG are

Yk,1 — gk:,1< _ Gl +1 n 1-— G1

ug,1 = —{2F (yx,1) Y, Yk,1 Y; N |2

Uk2 — Uk2< G2+1+1—G2
Yv2 Yk,2 5/2 N )

whereyy, . denotes the mean of thg , lower thany,, ;. The correlation of the linearized variables Aty
between 1999 and 2000 4s= —0.87 and the population variance ratios= 0.97.

We consider a two-dimensional simple random sampling desigizen = 1000 and three different com-
posite estimators: the ‘intersectioAG™, the ‘union’ AG"™ and the ‘optimal composite’ estimaterggt
given by Theorem 6. We calculate the asymptotic variancésesie estimators using (13) with= (0, 0)’ for
the ‘intersection’d = (hy, ho)’ for the ‘union’ andd given by 17 for the ‘optimal composite’ estimator. We
give in Fig. 2 the gain of the optimal composite estimaka¥e?, = G52, — G55, over the two competitors
AG™ and AG"™ as a function of the raties /» and for different sample sizes...

U2 = 2F (y,2)
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The approximate variance of the intersection estimatouigecsimilar to that of the optimal estimator
when the overlapping rate is larger than 30% but can be ldogesmall overlapping rates. Except for very
small or very large overlapping rates, the approximateavene of the union estimator is much higher than
that of the optimal estimator.

In all the above examples we assume that the populationngasaand covariances are known. In order
to verify the quality of the corresponding estimators, weried out a small simulation study for the Gini
example. We estimated the change in the Gini index usingdpgmal composite’ estimator as defined
in Corollary 5 (iii). Since we can compute the true changehim Gini index from the original sample of
22 741 earners, we calculated, as percentages, the relativeriiabarelative root mean squared error of the
change estimator using 000 simulations. We also calculated the relative differendesben the asymptotic
variance given by (15) and the empirical variance, and ttaive bias of the asymptotic variance estimator,
considering the empirical variance as the true variancetifeoasymptotic variance estimation, the linearized
variables are estimated on the overlapping sampleDifferent values foms andn, with ni, = no, are
considered. Table 1 shows that the relative biases, themeah squared errors and the relative differences
are quite low in general and very low for large sample sizes.

(a) (b)
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15
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30 40 50 60 70 80 % 100 0 10 20 30 40 50 60 70 80 % 100
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Figure 2: Gini example. (a) Ratio of the asymptotic varianckthe intersection estimator and the optimal
estimator and (b) ratio of the asymptotic variances of theruestimator and the optimal estimator as func-
tions of the overlapping rate, for different sample sizges(heavy solid line fom,, = 10, dotted dashed line
for ny, = 210, dotted line forn,, = 410, dashed line fony, = 610, light solid line forn,, = 810).

Acknowledgement

We would like to thank Her® Cardot and Guillaume Chauvet for useful discussions thegevith anony-
mous referees for remarks and comments that have improegatéisentation and the contents of the paper.

15



RB (%) for AGggt RRMSE (%) for AGggt RD (%) for Av (A Gopt)  RB (%) for AV (A Gopt)
ny~ 500 1000 3000 500 1000 3000 500 1000 3000 500 1000 3000

100 3.01 138 -055 0.61 0.42 0.23 -3.27 -0.25 0.18 -5.27 2-1.0-0.63
300 -4.23 -157 040 0.58 042 0.23 139 -0.25 -0.75 -4.3735-2. -0.79

Table 1: Gini example. Relative biasass], relative root mean squared errorRMSE) and relative differ-
ences kD), as percentages, for different valueswf = ny- andns.

Appendix

Technical details

Proof 7 (of Theorem1) Lett € 7. From Assumptions 5 and 6, we have that’T' (M) = T (M/N) < cc.
Following [8], let us provide the spacds$Pt, M) with metricsd;, satisfyingd, (Q:/N, M;/N) — 0 if and
onlyif N[ Z2,dQ:(z)— | Z:dM;(z)} — 0 for any variable of interesg;, defined onkP:. In this way,
studying the distancé, between the Horvitz-Thompson measlifeand the true unknownV, is equivalent
to studying the distance between the Horvitz-Thompsomasir for the population total of a variable of
interest,", o, zx¢/7}, = thth(z), and the true unknown totaEkN:1 2k = [ ZdM(z). We also
consider a metrial for the vectors(M/N M/N) associated with the distancés. From Assumption 4, we
have thatd, (M, /N, M,/N) = O,(n; */*) and Assumption 1 gives us thitd/ /N, M/N) = O,(n~1/2).
Using a three-variate [29] expansion and the fact tliats Fréchet differentiable, see Huber (1981, p. 35),
we have

N=B{T(M M)} = Z/ItT< ) (%—%) (2) + o{d(M /N, M/N)},

where I,7-(M; z) are the partial influence functions defined by (3). Finallgchuse the remainder term
is 0,(n~1/2) and the partial Fechet derivatives are linear, Assumption 5 implies that(M/N;z) =
NP (M; 2).

Proof 8 (of Theorem3) The variance vai’(ayb), given by (11), is estimated unbiasedly by the Horvitz-
Thompson variance estimator,

N N ,
5 tt
VaI’HTZ(ayb) = E E E Cprp Ukt Ul ¢ -

tt'eT k=1 1=1

Since the linearized variables are unknown, the propostchatr is

VarZ (a,b) Z Z Z Ckl uk tul ¢

tt'eT k=1 1=1

H / - - 1t - .
where iy, = @ and ¢,/ depends on inclusion probabilities and sample membersidgcators for

t,t' € T ={1,2,3}. Foranyt,t’' € 7, we make the following assumptions.

Assumption ALl. We assume that—# (i ; — uy ¢) = 0,(1) and N =Puy, , = O(1) uniformly ink,
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Assumption A2. We assume thaf = O(n=1) if k # landct! = O(1) if k = [ uniformly ink, I.
We assume also that the Horvitz-Thompson variance estisaiith true linearized variables are design-
consistent for the Horvitz-Thompson variance terms.

We show thatN =2 {var(Z ) — var(Ziap)} = 0p(1), sincevar{T (M)} = var(Z) and,
from Assumptions 1 to Av(T{M}) = var(Z,,)) with var(Z(, )) given by (11). The proofs of con-
vergence are similar for the different variance and covada terms of the sum in (11) and we concen-
trate on the first term, proving thatN —2#{var(A) — var(A)} = o,(1). We havevar(4) — var(4) =
var(A) — vargr(A) + vargp(A) — var(A) withvargp(A) = ST S5 e ug 1ur,1. By Assumption A2,
we haven N =23 {varyr(A) — var(4)} = 0,(1). As a result,

N N

Cp, ’1 (U — wp,1) (U —ug1) +2 Z Z C;lc’ll(ﬂm — Up1)Ui 1
1 k=1 1=1

Mz

N
var(A) — vargy (A Z
k=1

—

and we have that N ~2{var(A) — vargr(A)} = 0,(1) by Assumptions Al and A2. The reader is referred
to [4] for conditions under which Assumption A2 is available

Proof 9 (of Corollary 1) Part (i). The derivative ohVv {T(M €©)} with respect ta is equal 0210 + 27,
which vanishes foff = —I'~ 14 assuming that’ is non- singular.
Part (ii). Following the same reasoning as in [11], we havatth

A — (0 Y t}: - Egl 0’ tAl* - fil > 23
(Gopt bopt) (Oopt — Oopt) t2* _ E,m + Oopt {2* t3 + ;tut

Thus,/nN~=(Z, 5 = Z) = VN (Zayy o) — Z) + 0p(1) SinCeloy is consistent fofl,,,: and
VnN=A(Elx —#3 #2+ —# V' is bounded in probability by Assumption 4 and the fact L, uy ; is of

degrees. This completes the proof.

Part (iii). From the proof of Theorem 1, we have that the resheinof the von-Mises expansionBf opt)
is o{d(MCOt/N M/N)}. Assumptions 1 and 4 and the con5|stenc§)09{ imply that the remainder is of
ordero,(n *1/2) Following the proof of (ii), we have

Vn Vn

co n. s 7%
{T(Mopt) T(M)} = %(Z(doptai)opt) — Z) + OP(I) = W(Z(aoptybopt) — Z) + 0p(1)

and, as a consequence, the asymptotic variande(Mggt) is equal to the variance cff’(aopt,bopt).

Proof 10 (of Theorem5) We have vaitt ) = N2n;'(1 — nd/N)S2 ford € {1x,3}ift = 1 and
d € {2x,3} if t = 2. The covariance terms become edy.t3 ) = —NS2 , coft2, i3 ) = —NS?

1’ u1 w2’ Yu2 uz?
covts 13 ) = Nfy ' (1 — f3)Su,u, and cogtl 12%) = cov(t};,tf‘m) = coV(t} ,i2) = —NSy,u,. TO
conclude, we introduce these values in the expressionisafly given in Theorem 4.
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