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1 Introduction

An important feature of many interesting economic models is that they do not imply an econo-

metric specification with additively separable disturbance terms when they are taken to data.

The properties of nonseparable econometric models have therefore received considerable interest

in the recent literature, being investigated by Chesher (2003), Matzkin (2003), Chesher (2005),

Chernozhukov and Hansen (2005), Hoderlein and Mammen (2007), Chernozhukov, Imbens, and

Newey (2007) and Imbens and Newey (2009), amongst others. One of the most important is-

sues in this context is how to accommodate the presence of endogenous regressors, which are

frequently encountered in microeconometric applications. A possible approach is the use of

so-called control variable techniques (see e.g. Blundell and Powell (2003), Blundell and Powell

(2004), and Florens, Heckman, Meghir, and Vytlacil (2008)). In a recent paper, Imbens and

Newey (2009) use such an approach to establish identification of various quantities of interest in

triangular simultaneous equation models under relatively general conditions. These quantities

include the Average Structural Function, the Quantile Structural Function, Average Derivatives

and Policy Effects.

In this paper, we show that a further interesting class of parameters can be identified under

general conditions in their framework: the class of Unconditional Partial Effects recently been

introduced to the literature by Firpo, Fortin, and Lemieux (2009) in the exogenous case. These

parameters correspond to the following thought experiment: suppose that every member of

the population would experience the same exogenous marginal increase in one of its observable

characteristics. How would this affect the unconditional distribution of the outcome variable?

To give a concrete example, a researcher might be interested in the effect of a marginal increase

in everybody’s income on some feature of the distribution of consumption, such as its moments,

quantiles, Gini coefficient or other measures of inequality. As pointed out by Firpo, Fortin, and

Lemieux (2009), such summary measures are of interest for policy analysis, where the focus is

on aggregate as opposed to individual effects of a variable.

Firpo, Fortin, and Lemieux (2009) establish that in a setting without endogenous variables,

Unconditional Partial Effects are identified under weak conditions, showing that they can be

represented by the average derivative of a projection of the recentered influence function of the

statistic of interest on the regressors. We demonstrate that this result can be generalized to

the triangular nonseparable models discussed in Imbens and Newey (2009) using their control

variable approach. As a further contribution, this paper also provides a slightly different rep-
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resentation of Unconditional Partial Effects compared to the one given in Firpo, Fortin, and

Lemieux (2009). We show that these parameters can be written as simple functionals of the

average derivate of the conditional cumulative distribution function (CDF) of the outcome vari-

able given the regressors and the control variable (where the derivate is taken with respect to the

regressors). This representation is useful to give an explicit expression for Unconditional Partial

Effects when further parametric or semiparametric restrictions are imposed on the model. This

representation is by no means specific to the setting with endogenous variables but holds under

full exogeneity as well, with obvious simplifications. We illustrate this point by considering the

linear quantile regression model as an example.

The remainder of this paper is organized as follows. In the next section, we describe the

model and give a precise definition of Unconditional Partial Effects. Identification is discussed

in Section 3. The final section concludes.

2 Model and Parameters of Interest

The model we consider in this paper is essentially the same as in Imbens and Newey (2009). We

observe a scalar outcome variable of interest denoted by Y , which is linked to a random vector

X = (X1, Z1) of observable determinants and an unobserved disturbance term ε through the

structural equation

Y = g(X, ε). (2.1)

The subvector X1 of X is potentially endogenous and assumed to be determined through a

reduced form equation,

X1 = h(Z, η) (2.2)

where η is another unobserved disturbance and Z = (Z1, Z2) is a vector of instruments that

exert influence on X1 in a sense to be made precise below, but are independent of the error

terms. As in Imbens and Newey (2009), no restrictions on the dimensionality of ε are imposed,

allowing for general forms of unobserved heterogeneity. However, for identification purposes it

will be necessary to impose such a restriction on the disturbance in (2.2), as discussed below.

To simplify the notation, we will focus in the following on the case with X = X1 consisting of

a single endogenous regressor only, but all arguments can easily be generalized to allow for the

presence of multiple endogenous regressors or additional exogenous ones.
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The parameters we are interested in correspond to the effect of a marginal increase in X on

some feature Γ(FY ) of the unconditional distribution of Y . That is, for some constant δ 6= 0,

define the counterfactual random variable Yδ as

Yδ = g(X + δ, ε).

Denote the CDF of Y and Yδ by FY and FY,δ, respectively, and let Γ(·) be a functional of

interest. For example Γ could be the functional that maps a CDF into one of it moments, or

into its quantile function. With this notation, we can now formally define an Unconditional

Partial Effect.

Definition 1 (Unconditional Partial Effect). For any functional Γ : D(−∞,∞)→ S, where S

is some normed space, the quantity

θΓ = lim
δ→0

Γ(FY,δ)− Γ(FY )

δ
(2.3)

is called the Unconditional Partial Effect of X on Γ(FY ), provided that the limit in (2.3) exists.

3 Identification

In order to identify the Unconditional Partial Effects in models with endogeneity, we can use

control variable techniques developed in Imbens and Newey (2009). Generally speaking, a

control variable is an identified random vector that is able to absorb the dependence between

the regressors and the unobserved disturbance term in the outcome equation (2.1), in the sense

that X and ε will be independent conditional on the control variable. Imbens and Newey (2009)

show that in the triangular model such a control variable is available under certain restrictions

on the second equation. We repeat their result here for completeness.

Lemma 1 (Imbens and Newey, 2009). Suppose that h(z, ·) is strictly increasing for all values

of z, that η is continuously distributed with strictly increasing CDF, and that Z⊥(ε, η). Then

ε⊥X|V , where V = FX|Z(X,Z).

The reason V = FX|Z(X,Z) has the properties of a control variable in our model is that the

exclusive source of dependence between X and ε is their joint dependence on the disturbance

term η from equation (2.2). However, under the conditions of Lemma 1, V is simply a one-to-one

transformation of η, which in turn implies the result.
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The conditional independence property can be used to derive an explicit representation for

FY,δ. Using the structure of the model and the law of iterated expectations, we obtain that

FY,δ(y) =

∫
Pr(g(X + δ, ε) ≤ y|X = x, V = v)dFX,V (x, v)

=

∫
Pr(g(X, ε) ≤ y|X = x+ δ, V = v)dFX,V (x, v)

=

∫
FY |X,V (y, x+ δ, v)dFX,V (x, v)

= E(FY |X,V (y,X + δ, V )).

This implies that the function FY,δ is identified if the support of the random vector (X + δ, V )

is contained in the support of (X,V ). For identification of the Unconditional Partial Effect, it

will be sufficient that this condition holds for small values of δ only. The role of this support

condition is to ensure that there is a sufficient amount of variation in the endogenous regressors

induced by the instruments. To see this, assume for a moment that Z does not exert any

influence on X. Then V = FX|Z(X,Z) ≡ t(X) is simply a transformation of the endogenous

regressor. While the conditional independence condition X⊥ε|V will still hold in this case, the

joint support of X and V is now given by {(x, t(x)) : x ∈ supp(X)}, which is generally not a

subset of {(x+ δ, t(x)) : x ∈ supp(X)} for any δ 6= 0.

In order to derive a general formula for the Unconditional Partial Effect of X on Γ(FY )

for some general functional Γ, we first consider the simplest case where Γ = id is the identity

mapping, i.e. Γ(F ) = F . Then

θid(y) = lim
δ→0

FY,δ(y)− FY (y)

δ

= lim
δ→0

E(FY |X,V (y,X + δ, V ))− E(FY |X,V (y,X, V ))

δ

= E(∂xFY |X,V (y,X, V ))

where the last equality follows by dominated convergence. The Unconditional Partial Effect of

X on FY is thus simply the average derivative of the conditional CDF of Y given X and V ,

where the derivative is taken with respect to X. We formally state this preliminary finding in

the following lemma.

Lemma 2. Suppose that the conditions of Lemma 1 hold, and that for some c > 0 and δ ∈

(−c, c) the support of (X + δ, V ) is contained in the support of (X,V ). Then

θid(·) = E(∂xFY |X,V (·, X, V ))

and is thus identified.
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Using the result in Lemma 2, one can now easily extend the analysis of Unconditional

Partial Effects to more general quantities Γ(FY ), if Γ(·) is sufficiently ”smooth”. In particular,

we consider functionals that satisfy a Hadamard differentiability condition, where Γ is called

Hadamard differentiable at F if there exists a continuous linear functional Γ′F such that

lim
δ→0

∥∥∥∥Γ(F + δhδ)− Γ(F )

δ
− Γ′F (h)

∥∥∥∥ = 0 (3.1)

for all sequences of function hδ → h such that F + δhδ is contained in the domain of Γ for some

sufficiently small value of δ. See van der Vaart (2000, Chapter 20.2) for further details.

To derive a general representation of Unconditional Partial Effects on Γ(FY ), define the

function hδ through hδ = (FY,δ − FY )/δ. We then obtain that

θΓ = lim
δ→0

Γ(FY,δ)− Γ(FY )

δ

= lim
δ→0

Γ(FY + δhδ)− Γ(FY )

δ

= Γ′F (θid),

where the last equality follows from the fact that hδ → θid, which was shown above. That is, we

can identify general Unconditional Partial Effects by using the effect of X on the unconditional

CDF of Y as a building block. We formalize this finding in the following Theorem.

Theorem 1. Suppose that the conditions of Lemma 2 hold, and that the functional Γ is

Hadamard differentiable at FY with derivative Γ′F . Then the Unconditional Partial Effect of

X on Γ(FY ) is given by θΓ = Γ′F (θid).

This representation of the Unconditional Partial Effect of X on Γ(FY ) given in Theorem 1 is

convenient for two reasons. First, results on Hadamard differentiability are widely available in

the literature for many functionals of interest. Under appropriate conditions, this smoothness

property is fulfilled for moments and quantiles, but also for inequality measures like the Gini

coefficient and the Lorenz curve. See e.g. Rothe (2010) and the references therein. Second, the

above representation can be useful when further parametric or semiparametric restrictions are

imposed on the relationship of the outcome variable and the regressors, such as e.g. a linear

quantile regression model or a single index model. In this case, the Unconditional Partial Effect

of X on FY itself is usually still easy to compute, and results for other statistics of interest

follow immediately from Theorem 1. Our representation thus allows us to establish a tight link

between the Unconditional Partial Effects and the structural features of the model. This result

is not specific for models with endogeneity, but applies analogously to the exogenous case where
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the control variable V is not present. On the other hand, the general representation in Firpo,

Fortin, and Lemieux (2009) for the exogenous case, using a projection of the recentered influence

function of Γ(FY ) on the regressors, can be more difficult to evaluate for specific models.

We now illustrate this last point by considering the case where the model in equation (2.1)

is a standard linear quantile regression model (see Koenker (2005)). That is, suppose that ε is

now a scalar random variable, normalized to be uniformly distributed on [0, 1], and that

g(X, ε) = β1(ε) +Xβ2(ε),

where β1(·) and β2(·) are strictly monotonic functions. The form of (2.2) can remain unchanged.

Using standard arguments, one obtains that under this specification we have that

∂xFY |XV (y, x, v) = −fY |XV (y, x, v)β2(FY |XV (y, x, v))

and thus the Unconditional Partial Effect of X on FY is given by

θid(·) = −E(fY |XV (·, X, V )β2(FY |XV (·, X, V ))).

Now consider the Unconditional Partial Effect of X on Γ(FY ), where Γ(F )[τ ] = F−1(τ) =

inf{y : F (y) ≥ τ} is the functional that transfers a CDF into its quantile function. Then under

some standard restrictions (ensuring e.g. uniqueness of the quantiles) this map is Hadamard

differentiable at FY with derivative

φ 7→ Γ′FY (φ) = −
(

φ

∂yFY

)
◦ F−1

Y .

Writing F−1
Y (τ) = qτ leads to the following expression for the Unconditional Partial Effect:

θΓ(τ) = −θid(qτ )

fY (qτ )
=

E(fY |XV (qτ , X, V )β2(FY |XV (qτ , X, V )))

fY (qτ )
.

Note that this is a weighted average of the function β2 evaluated at FY |XV (qτ , X, V ), which can

be interpreted as the ”rank” of qτ in the distribution of Y conditional on X and V . Firpo, Fortin,

and Lemieux (2009) obtain a similar result for the exogenous case (compare their Proposition

1). However, while their arguments are specific for the case where Γ(FY ) is the quantile function

only, our analysis can easily generalized to other statistics, such as the Lorenz curve or the Gini

coefficient, via the result in Theorem 1, as long as the Hadamard differentiability condition

holds.

It is also possible to derive a more general link between the Unconditional Partial Effects

and structural function g in equation (2.1). To make the result comparable to Proposition 1
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in Firpo, Fortin, and Lemieux (2009), suppose for simplicity that ε is univariate, and that the

function g(x, ·) is strictly monotonic for all x, and let the function εy(x) be the solution to the

equation y = g(x, εy(x)). Then it can be shown using arguments analogous to the ones in the

proof of Proposition 1 in Firpo, Fortin, and Lemieux (2009) that

θid(y) = −E(∂xg(X, εy(X))fY |XV (y,X, V )).

For the Unconditional Partial Effect of X on the quantile function of Y we then immediately

obtain that

θΓ(τ) =
E(fY |XV (qτ , X, V )∂xg(X, εqτ (X))

fY (qτ )
,

and results for other Hadamard differentiable functionals follow directly as well.

4 Conclusions

In this paper, we established the identification of Unconditional Partial Effects introduced by

Firpo, Fortin, and Lemieux (2009) in general nonseparable models with endogenous regressors

using a control variable approach due to Imbens and Newey (2009). We also show that these

effects can be written in terms of an average derivative of the conditional CDF of the outcome

variable Y given the regressors X and the control variable V , where the derivative is taken

with respect to X. This representation is useful to give an explicit expression for Unconditional

Partial Effects in nonlinear parametric or semiparametric models.
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