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Abstract

We consider the general model of zero-sum repeated games (or stochastic games with
signals), and assume that one of the players is fully informed and controls the transi-
tions of the state variable. We prove the existence of the uniform value, generalizing
several results of the literature. A preliminary existence result is obtained for a parti-
cular class of stochastic games played with pure strategies.
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1 Introduction

The context of this work is the characterization of repeated game models where
the value exists. We first consider here general repeated games defined with finite
sets of states, actions and signals. This model includes usual stochastic games,
standard repeated games with incomplete information and also repeated games
with signals. At each stage the players will play a matrix game depending on
a parameter called state. This state is partially known and evolves from stage
to stage, and after each stage every player receives some private signal on the
current situation. We make two important assumptions. We first assume that
player 1 is informed, in the sense that he can always deduce the current state and
player 2’s signal from his own signal. Second, we assume that player 1 controls
the transitions, in the sense that the law of the pair (new state, signal received
by player 2) does not depend on player 2’s actions. We call “repeated games with
an informed controller” the games satisfying these two assumptions.

This class of games includes Markov chain repeated games with lack of in-
formation on one side introduced in Renault, 2006, where the states follow an
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exogenous Markov chain and actions are perfectly observed at the end of each
stage. It is a much more general class since, in particular, we allow here for transi-
tions of the state depending also on player 1’s actions. It also contains stochastic
games with a single controller and incomplete information on the side of his op-
ponent, as studied in Rosenberg et al., 2004 (see subsection 4.3.3 here). A fortiori
it contains the standard repeated games with incomplete information on one side
and perfect monitoring introduced by Aumann and Maschler. Note that repea-
ted games with an informed controller contains (weak) forms of the three main
features of general repeated games models : the stochastic game aspect (the state
evolves from one stage to another and is controlled here by player 1), the incom-
plete information aspect (player 2 has an incomplete knowledge of the state),
and the signalling aspect (players observe signals rather than actions). We be-
lieve that the existence result presented here is the first one to significantly deal
with these three aspects simultaneously. Yet, repeated games with an informed
controller do not include stochastic games, where the transitions are controlled
by both players (see Mertens and Neyman, 1981 for the existence of the uniform
value in such games).

We prove the existence of the uniform value via several steps, and several
games are considered. These are : our original repeated game where player 1 is
informed and controls the transitions (level 1), an auxiliary stochastic game (level
2), and finally a one-player repeated game, i.e. a dynamic programming problem
(level 3). A crucial point is that in our original game, the set of states K is finite.

The auxiliary stochastic game has the following features. It is played with
pure strategies, and derived from the original game by ‘assuming’ that the mixed
moves of player 1 are observed by player 2 : an action for player 1 will be an
element of ∆(I)K , where I is the original set of pure actions of player 1. The
new set of states is X = ∆(K), the set of probabilities over K, and represents
in the original game the belief of player 2 on the current state 1. In the auxiliary
stochastic game, the new state is known to both players, and actions played are
perfectly observed after each stage. Because we assumed that player 1 is informed
at level 1, he can guarantee in the original game whatever he can guarantee in
the auxiliary game (note that this property is not true for player 2, because in
the original game he needs to know the strategy of player 1 to compute his belief
on the current state). Using minmax theorems and recursive formulas, one can
prove that the n-stage values of the original and the auxiliary game are equal.
This implies that if player 1 can guarantee the limit value in the auxiliary game
so does he in the original game.

Technically, in the auxiliary game it will be convenient to assume that the
initial state is initially chosen according to a probability measure with finite
support on X. We denote by ∆f (X) the set of such measures, and one may think
of ∆f (X) as a slightly extended state space for the auxiliary game. To express an
informational gap, we use the Choquet order of sweeping of probability measures :

1. The idea of considering an auxiliary stochastic game is certainly not new, see for example
Mertens 1986, Coulomb, 2003 or Mertens et al., 1994, Part A, Ch IV, section 3.
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given u and v in ∆f (X), we say that u is better than v, or v is a sweeping of u, if
for every concave continuous mapping f from X to the reals, u(f) ≥ v(f). And
it is essentially possible to model the original informational advantage of player
1 with a “splitting hypothesis” defined via this order. For the topological part,
we use the weak* topology on the set ∆(X) of Borel probability measures on X,
and more precisely the Wasserstein distance. This allows to carefully control the
Lipschitz constant of the value functions.

In order to prove that in the auxiliary game player 1 can guarantee the limit
value, a dynamic programming problem will be derived by letting player 2 play a
best reply at any period. Consequently the role of player 2 disappears, and this
is indeed possible because we assumed that in the original repeated game the
transitions are controlled by player 1 and not by player 2. Technically, the set
of states of the dynamic programming problem is Z = ∆f (X)× [0, 1]. ∆f (X) is
dense in ∆(X) for the weak* topology, so Z can be viewed as a precompact metric
space. We define, for every m and n, a value wm,n as the supremum payoff player
1 can achieve when his payoff is defined as the minimum, for t in {1, ..., n}, of his
average rewards computed between stages m+1 and m+t. One can prove that the
family (wm,n) is uniformly equicontinuous, and together with the precompactness
of the state space, this implies the existence of the uniform value for the the
dynamic programming problem. The proof of this implication can be found in a
companion paper (Corollary 3.8, Renault 2011), which only deals with 1-player
games and can be read independently.

To complete the discussion, it remains to describe what can be guaranteed
by player 2 in the original and auxiliary games. Luckily enough, this is an easier
aspect of the proof since we assumed that the transitions are controlled by player
1, hence player 2 can not make any irreversible, or long term, mistake. Precisely,
any m-stage strategy of player 2 can be extended into an n + m-stage strategy
which is optimal for player 2 in the game with payoff defined as the expected
average payoff between stages m+ 1 and m+ n.

The paper is organized as follows. We start in the next section with a simple
illustrative example. In section 3, we consider a particular class of stochastic
games including our auxiliary games of level 2. We think that this class of games
is interesting in itself. It is defined with hypotheses making no reference to the
original finite set K, and we prefer to start by presenting this class, which can be
considered as both more general and simpler to study than the auxiliary stochastic
games. We prove that these games have a uniform value using the result on
dynamic programming proved in Renault, 2011. In section 4, we consider our
original repeated game and show how the existence of the uniform value in such
a game derives from the existence of the uniform value for the stochastic games of
section 3. Finally, we obtain formulas expressing the uniform value in terms of the
values of some finite games. More precisely, let vm,n be the value of the game where
the global payoff is defined as the average of the payoffs between stage m+ 1 and
stage m + n. We show in particular that infn≥1supm≥0vm,n = supm≥0infn≥1vm,n,
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and that this quantity is the uniform value (see subsection 4.3.1). We conclude
by discussing several hypotheses and present a few open problems.

2 A simple example

We consider the following repeated game with an informed controller. The
set of states is K = {k1, k2}, with initial distribution the uniform probability
p∗ = (1/2, 1/2), the set of pure actions of player 1 is I = {T,B} and the set of
pure actions of player 2 is J = {L,R}. The payoffs for player 1 and the transitions
are the following :

L R L R

T
B

(
1	 0	

0p∗ 0p∗

)
T
B

(
0p∗ 0p∗
0p∗ 1p∗

)
state k1 state k2

For example, if the state is k1 and (T, L) is played then player 1’s payoff is 1 and
the state remains the same, that is k1. If the state is k2 and (B,L) is played,
then the payoff to player 1 is 0 and the next state is chosen according to p∗. To
conclude the description of the game, it remains to describe what is observed by
the players. The set of signals of player 1 is C = K × I, and the set of signals of
player 2 is D = I. At the beginning of every stage, the action previously played
by player 1 is publicly announced, and in addition player 1 learns the new state.
Note that the action of player 2 is not announced to player 1, and the new state
is not announced to player 2.

Let us be very clear about the progress of the game. Initially, the first state
k1 is selected according to p∗ and announced to player 1, but not to player 2.
Then simultaneously player 1 chooses i1 in I and player 2 chooses j1 in J . The
payoff for player 1 and the new state k2 are determined by the above matrices,
and before playing stage 2 the action i1 is publicly announced, whereas k2 is only
told to player 1. Then at any stage t ≥ 2, the new state kt is selected according
to the state kt−1 and the actions (it−1, jt−1) of stage t − 1, then player 1 learns
the signal ct = (kt, it−1) and player 2 learns the signal dt = it−1. Simultaneously,
player 1 chooses it in I and player 2 chooses jt in J , payoffs are determined (but
not observed) and the play proceeds to stage t + 1. All the above description of
the game is known by the players.

Notice that player 1 is informed, in the sense that he can always deduce the
true state and player 2’s signal from his own signal, and that player 1 controls
the transition, in the sense that the law of the pair (new state, signal for player 2)
does not depend on the action of player 2. We will consider in section 4 all games
satisfying these two conditions, see the hypotheses HA’ and HB’ in subsection
4.1. Having in mind a large number of stages, we are interested in the following
questions. What is the long term value ? How should the players behave ? Is it
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important for the players to know precisely the number of stages ?

We now describe the auxiliary stochastic game of level 2 associated to our
example. The set of states is X = ∆(K) = {p = (p1, p2) ∈ IR2

+, p
1 + p2 = 1} and

a state here corresponds to the belief of player 2 on K in the original game. The
set of actions of player 1 is A = ∆(I)K = {a = (a1, a2) ∈ [0, 1]2}, with a1 and a2

being the respective probabilities to play T in state k1 and k2. In the auxiliary
stochastic game, player 2 observes after each stage the action in A played by
player 1 : this is a main difference with the original game. The set of actions of
player 2 is B = ∆(J) = {b ∈ [0, 1]}, with b being the probability to play L. The
payoff to player 1 in the auxiliary game is given by the following mapping g from
X × A×B to [0, 1] :

g(p, a, b) = p1a1b+ p2(1− a2)(1− b).

Suppose that in the original game player 2’s belief on K is given by p, and
that player 1 plays according to some a in A. Then with probability (p1a1 +
p2a2) player 1 plays T and the belief of player 2 on the next state becomes(
p1a1+1/2p2a2

p1a1+p2a2 , 1/2p2a2

p1a1+p2a2

)
, whereas with the remaining probability player 1 plays B

and the belief of player 2 on the next state is p∗. Consequently, the transition in
the auxiliary game is defined by the mapping l from X×A×B to the set ∆f (X)
of probability measures with finite support on X such that (δp ∈ ∆f (X) denotes
the Dirac measure on p) :

l(p, a, b) =
(
p1a1 + p2a2

)
δ“

p1a1+1/2p2a2

p1a1+p2a2 ,
1/2p2a2

p1a1+p2a2

” +
(
p1(1− a1) + p2(1− a2)

)
δp∗ .

Notice that l(p, a, b) does not depend on b, i.e. the transition is controlled by
player 1 (more than this, one can check that all the following hypotheses H1,
..., H7 of section 3 are satisfied here). Note also that the state variable p always
satisfies p1 ≥ 1/2, so that p2 ≤ p1.

The last element for describing the auxiliary game is the initial distribution
on states in X, it is here u = δp∗ in ∆f (X). This game is played as follows : at
any stage t, the state pt is selected according to l(pt−1, at−1, bt−1) (according to u
if t = 1) and announced to both players. Simultaneously, player 1 chooses at in
A and player 2 chooses bt in B. The stage payoffs are g(pt, at, bt) for player 1 and
the opposite for player 2. Then at and bt are publicly announced, and the play
proceeds to stage t+ 1.

From the auxiliary stochastic game, it is then possible to define a dynamic
programming problem of level 3 by assuming that player 2 plays a payoff best-
reply at every stage, i.e. chooses L if p1a1 < p2(1−a2) and R if p1a1 > p2(1−a2).
The study of this dynamic programming problem can be achieved (in this case,
through the Average Cost Optimality Equation, for example as in Hörner et al.
2010) and yields the following results :

The value of the auxiliary stochastic game (and of the dynamic programming
problem) is 1/3, and an optimal stationary strategy for player 1 is given by playing
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a2 = 0, i.e always B in state k2, and a1 = p2/p1, i.e. play T in state k1 with
probability p2/p1 if the state is (p1, p2). This strategy defines a simple Markov
chain with two states on X, the states being p∗ = (1/2, 1/2) and p̂ = (1, 0).
The payoffs are 1/2 in p∗ and 0 in p̂, and the state moves with probability one
from p̂ to p∗, and from p∗ the next state is determined with uniform probability.
Consequently, the unique invariant measure is 2/3 δp∗ + 1/3 δp̂ and the strategy
guarantees player 1 a payoff of (2/3)(1/2) + (1/3)(0) =1/3.

What is an optimal strategy for player 2 in the auxiliary stochastic game ?
If player 2 plays always R, he guarantees 1/2 because player 1 can play B at
every stage. If player 2 plays R if p1 > 1/2 and L if p = p∗, then player 1 can
reply by playing T if p = p∗ and B if p1 > 1/2, and a simple computation of the
induced invariant measure yields an expected payoff of 3/8 for player 1, which
is more than 1/3 and hence too large. We now prove that a stationary optimal
strategy for player 2 is here given by : play R if p1 > 1/2, and play 2/3L+1/3R if
p = p∗. Fix this stationary strategy for player 2, and consider the Markov decision
process (or MDP) faced by player 1. Without loss of generality we assume that
after player 1 has played T , the belief of player 2 on the next state will satisfy
p1 > 1/2 and player 2 plays R, whereas after player 1 has played B, the belief of
player 2 on the next state is p∗ and player 2 plays 2/3L+ 1/3R. Hence, player 1
faces an MDP (which is not the dynamic programming problem of level 3) with
four states : α1 = (k1, T ), α2 = (k2, T ), α3 = (k1, B), α4 = (k2, B), each state α
including the current state in K and the last action played by player 1. Player 1
has two actions T and B. Probability transitions (p) and rewards (r) are given in
the figure below, where only positive rewards are written.

&%
'$

&%
'$

&%
'$

&%
'$

k1, B

k1, T k2, T

k2, B

R

�

	
r = 1

6
r = 2/3

6

�

- �
r = 1/3

�p = 1/2

�p = 1/2 -p = 1/2

-p = 1/2

For example, in α1 = (k1, T ) player 2 will play R, hence player 1 can either play
T , have a reward of 0 and stay in α1 = (k1, T ), or player 1 can play B which will
also give him a reward of 0 but the new state will be α3 = (k1, B) or α4 = (k2, B)
with even probability. Starting from α4 = (k2, B), player 2 will play 2/3L+1/3R,
hence player 1 can either play T , have a reward of 0 and go to α1 and α2 with
even probability, or player 1 can play B, have a (expected) reward of 1/3 and go
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to α3 and α4 with even probability. One can check that in this MDP, player 1
has a stationary optimal strategy given by : play B in α1, α2 and α4, and play T
in α3. The average reward of this strategy is 1/3, which implies that the strategy
(play R if p1 > 1/2, and 2/3L+ 1/3R if p = p∗) is indeed optimal for player 2 in
the auxiliary game.

What about the original repeated game ? Our optimal strategy of player 1
in the auxiliary game naturally induces (see proposition 4.23 later) an optimal
strategy in the original game : player 1 plays T if the state is k1 and his last
action was B, and plays B otherwise, i.e. if the state is k2, or if the state is k1

and the last action of player 1 was T . Regarding player 2, we have here a spe-
cific and simple example because player 2 can roughly determine if his “belief”
is p∗ or not, without knowing the strategy of player 1. Consequently, an optimal
strategy of player 2 in the original game is given by : play R if the last action of
player 1 was T , and play (2/3L + 1/3T ) if the last action of player 1 was B. In
general, it is not possible to deduce an optimal strategy for player 2 in the origi-
nal game from an optimal strategy of this player in the auxiliary stochastic game.

Remark 2.1. The above game belongs to the following family of repeated games
with an informed controller. Keeping the same payoff functions, we define for
every parameter α, β, γ, δ in [0, 1] the repeated game with the same set of states
K = {k1, k2}, the same initial distribution p∗ = (1/2, 1/2), the same sets of pure
actions for the players and the following transitions :

L R L R

T
B

(
1(α,1−α) 0(α,1−α)

0(β,1−β) 0(β,1−β)

)
T
B

(
0(γ,1−γ) 0(γ,1−γ)

0(δ,1−δ) 1(δ,1−δ)

)
state k1 state k2

For example, if the state is k1 and (T, L) is played, then player 1’s payoff is
0, and the next state is k1 with probability α and k2 with probability 1 − α.
The above example corresponds to the case : α = 1, β = γ = δ = 1/2. The
case α = β = 1 − γ = 1 − δ = 1 corresponds to a standard repeated game
with lack of information on one side introduced by Aumann and Maschler (1995)
in the sixties. They proved that the value is 1/4 in this case. The cases where
α = β and γ = δ correspond to Markov chain games with lack of information
on one side, as introduced in Renault 2006 : the sequence of states follows an
exogeneous Markov chain uncontrolled by the players. The symmetric subcase is
when α = β = 1 − γ = 1 − δ, and in this case Hörner et al. (2010) proved that
for α in [1/2, 2/3] the value is α

4α−1
. The value is difficult to compute in general,

and it is still an open problem in many cases, e.g. α = β = 1− γ = 1− δ = 0.9
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3 A certain class of stochastic games

3.1 Model

We consider in this section 2-player zero-sum stochastic games with complete
information and standard observation, played with pure strategies. We assume
that after each stage, the new state is selected according to a probability with
finite support.

If X is a non empty set, we denote by ∆f (X) the set of probabilities on X
with finite support.

We consider :

• three non empty sets : a set of states X, a set A of actions for player
1, and a set B of actions for player 2,

• an element u in ∆f (X), called the initial distribution on states,

• a mapping g from X ×A×B to [0, 1], called the payoff function of
player 1, and

• a mapping l from X×A×B to ∆f (X), called the transition function.

The interpretation is the following. The initial state p1 in X is selected according
to u, and is announced to both players. Then simultaneously, player 1 chooses
a1 in A, and player 2 chooses b1 in B. The stage payoff is g(p1, a1, b1) for player
1, and −g(p1, a1, b1) for player 2, then a1 and b1 are publicly observed, and a
new state p2 is selected according to l(p1, a1, b1), etc... At any stage t ≥ 2, the
state pt is selected according to l(pt−1, at−1, bt−1), and announced to both players.
Simultaneously, player 1 chooses at in A and player 2 chooses bt in B. The stage
payoffs are g(pt, at, bt) for player 1 and the opposite for player 2. Then at and bt
are publicly announced, and the play proceeds to stage t+ 1.

From now on we fix Γ = (X,A,B, g, l), and for every u in ∆f (X) we denote
by Γ(u) = (X,A,B, g, l, u) the corresponding stochastic game induced by u. For
the moment we make no assumption on Γ. We start with elementary definitions
and notations.

A strategy for player 1 is a sequence σ = (σn)n≥1, where for each n, σn
is a mapping from (X × A × B)n−1 × X to A, with the interpretation that
σn(p1, a1, b1, ..., pn−1, an−1, bn−1, pn) is the action prescribed by player 1 at stage
n after (p1, a1, b1, ..., pn−1, an−1, bn−1, pn) occurred. σ1 simply is a mapping from
X to A giving the first action played by player 1 depending on the initial state.
Similarly, a strategy for player 2 is a sequence τ = (τn)n≥1, where for each n, τn
is a mapping from (X ×A×B)n−1×X to B. We denote by Σ and T the sets of
strategies of player 1 and player 2, respectively.

Fix for a while (u, σ, τ), and assume that player 1 plays σ whereas player 2
plays τ in the game Γ(u). The initial state p1 is selected according to u, then
the first actions are a1 = σ1(p1) and b1 = τ1(p1). p2 is selected according to
l(p1, a1, b1), then a2 = σ2(p1, a1, b1, p2), b2 = τ2(p1, a1, b1, p2), etc... By induction
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this defines, for every positive N , a probability measure with finite support on the
set (X ×A×B)N corresponding to the set of the first N states and actions. It is
standard that these probabilities can be uniquely extended to a probability IPu,σ,τ
on the set of plays Ω = (X ×A×B)∞, endowed with the σ-algebra generated by
the cylinders (one can apply, e.g., theorem 2.7.2. p.109 in Ash, 1972). Expectations
with respect to this probability are written IEu,σ,τ .

Definition 3.1. The expected average payoff for player 1 induced by (σ, τ) over
the first N stages in the game Γ(u) is denoted by :

γuN(σ, τ) = IEu,σ,τ

(
1

N

N∑
n=1

g(pn, an, bn)

)
.

Definition 3.2. For u in ∆f (X) and N ≥ 1, the game ΓN(u) is the zero-sum
game with normal form (Σ, T , γuN).

ΓN(u) is called the N -stage game with initial distribution u. This is the normal
form game where player 1’s strategy set is Σ, player 2’s strategy set is T , and
γuN is the payoff function for player 1. It has a value if : supσ∈Σinfτ∈T γ

u
N(σ, τ) =

infτ∈T supσ∈Σγ
u
N(σ, τ). A strategy σ achieving the supremum on the LHS (if any)

is then called an optimal strategy for player 1. Similarly, a strategy τ achieving
the infimum on the RHS (if any) is then called an optimal strategy for player 2.

Notations 3.3.
For p in X, we denote by δp ∈ ∆f (X) the Dirac measure on p. A probability u in
∆f (X) is written u =

∑
p∈X u(p)δp, where u(p) is the probability of p under u.

For u in ∆f (X), if ΓN(u) has a value, we denote it by ṽN(u) ∈ [0, 1]. For p in
X, if ΓN(δp) has a value, we denote it by vN(p) and we have vN(p) = ṽN(δp).

Notice that whenever X is convex and p 6= p′, we have δ1/2p+1/2p′ 6= 1/2 δp+1/2 δp′ ,
so we will not identify a state p with the measure δp. When the value of the N -
stage game exists for every initial distribution, ṽN is a mapping from ∆f (X) to IR,
whereas vN is a mapping from X to IR. It is easy to see that : ∀u ∈ ∆f (X),∀N ≥
1,∀σ ∈ Σ, ∀τ ∈ T ,

IPu,σ,τ =
∑
p∈X

u(p)IPδp,σ,τ and γuN(σ, τ) =
∑
p∈X

u(p)γ
δp
N (σ, τ).

Claim 3.4. If vN(p) exists for each p in X, then ṽN(u) exists for every u in
∆f (X) and ṽN(u) =

∑
p∈X u(p)vN(p).

We now consider an infinite time horizon.

Definition 3.5. Let u be in ∆f (X).

The lower (or maxmin) value of Γ(u) is : v(u) = supσ∈Σ lim inf
n

(infτ∈T γ
u
n(σ, τ)) .
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The upper (or minmax) value of Γ(u) is : v(u) = infτ∈T lim sup
n

(supσ∈Σγ
u
n(σ, τ)) .

v(u) ≤ v(u). Γ(u) is said to have a uniform value if and only if v(u) = v(u), and
in this case the uniform value is v(u) = v(u).

An equivalent definition of the uniform value is as follows. Given a real number
v, we say that player 1 can guarantee v in Γ(u) if for any ε > 0, player 1 has a
strategy that gives him an expected average payoff greater than v−ε in any game
with sufficiently many stages : ∀ε > 0,∃σ ∈ Σ, ∃N0, ∀N ≥ N0,∀τ ∈ T , γuN(σ, τ) ≥
v−ε. Similarly, player 2 can guarantee v in Γ(u) if for any ε > 0, he has a strategy
that gives player 1 an expected average payoff lower than v+ ε in any game with
sufficiently many stages : ∀ε > 0,∃τ ∈ T ,∃N0,∀N ≥ N0,∀σ ∈ Σ, γuN(σ, τ) ≤ v+ε.
If player 1 can guarantee v and player 2 can guarantee w then clearly v ≤ w. We
also have :

Claim 3.6. v(u) = max{v ∈ IR, player 1 can guarantee v in Γ(u) },
v(u) = min{v ∈ IR, player 2 can guarantee v in Γ(u) }.

v can be guaranteed by both players if and only if v is the uniform value of
Γ(u).

Definition 3.7. Whenever the uniform value v of Γ(u) exists, a strategy σ of
player 1 satisfying : ∃N0,∀N ≥ N0,∀τ ∈ T , γuN(σ, τ) ≥ v − ε is called ε-
optimal, and similarly a strategy τ of player 2 such that : ∃N0,∀N ≥ N0, ∀σ ∈
Σ, γuN(σ, τ) ≤ v + ε is called ε-optimal. A 0-optimal strategy is simply called op-
timal.

Assume now that ṽN(u) exists for each N . If player 1 (resp. player 2) can
guarantee v then lim infN ṽN(u) ≥ v (resp. lim supN ṽN(u) ≤ v). As a consequence
we have the following :

Claim 3.8. Assume that ṽN(u) exists for each N .

v(u) ≤ lim inf
N

ṽN(u) ≤ lim sup
N

ṽN(u) ≤ v(u).

So the existence of the uniform value v(u) = v(u) implies the existence of the
“limit value” limN ṽN(u), and whenever the uniform value exists, all notions coin-
cide : v(u) = v(u) = limN ṽN(u).

3.2 An existence result for the uniform value

We define now some hypotheses on Γ that will ensure the existence of the
uniform value for each initial distribution u.

Remark 3.9. In view of the games of section 4, we have in mind repeated games
where player 1 is informed and controls the transition (such as the game of section
2). In these games, there is an underlying finite set of parameters K, and X is
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the set of probabilities over K. Initially, a parameter k is selected according to p,
and is announced to player 1 only. Then the parameter may change from stage
to stage, but it is always known by player 1 and its evolution is independent of
player 2’s actions. It will be possible to check the following hypotheses H1 to H7
in this model. Our point here is to be more general and simpler : we want to write
a model without any reference to the underlying set of parameters, and where
players use pure strategies.

We first make the important assumption that player 1 controls the transitions :

Hypothesis H1 : the transition l does not depend on player 2’s actions, i.e.
∀p ∈ X, ∀a ∈ A, ∀b ∈ B, ∀b′ ∈ B, l(p, a, b) = l(p, a, b′).

In the sequel we consider l as a mapping from X ×A to ∆f (X), and we write
l(p, a) for the distribution on the next state if the actual state is p and player 1
plays a.

Hypothesis H2 : X is a compact convex subset of a normed vector space.

We denote by ∆(X) the set of Borel probability measures on X, and we will
use the weak* topology and the Choquet order on ∆(X). ∆f (X) is now seen as a
subset of ∆(X). We first fix notations and recall some definitions. We start with
the topological aspect : X is in particular a compact metric space, and we denote
by d(p, q) the distance between two elements p and q of X.

Notations 3.10. We denote by C(X) the set of continuous mappings from X to
the reals, and by Lip1(X) the set of non expansive, i.e. Lipschitz with constant 1,

elements of C(X). For u in ∆(X) and f in C(X) we write u(f) =

∫
p∈X

f(p)du(p).

Given f in C(X), we extend f by duality to an affine mapping f̃ : ∆(X) −→ IR
by f̃(u) = u(f).

In the following, ∆(X) will always be endowed with the weak* topology : a
sequence (un)n converges to u in ∆(X) if and only if un(f) −→n→∞ u(f) for
every f in C(X). ∆(X) is itself compact, the weak* topology can be metrized,
and the set ∆f (X) of probabilities on X with finite support is dense in ∆(X)
(see for example Doob, 1994, Ch.VIII, section 5, and Malliavin, 1995, p.99).

Remark 3.11. An important distance on ∆(X) which metrizes the weak* topo-
logy is the following (Fortet-Mourier-)Wasserstein distance, defined by :

∀u ∈ ∆(X),∀v ∈ ∆(X), d(u, v) = supf∈Lip1(X)|u(f)− v(f)|.

One can check that this distance has the following nice properties. For every p, q
in X, d(p, q) = d(δp, δq). Moreover, for f in C(X) and C ≥ 0, f is C-Lipschitz if
and only if f̃ is C-Lipschitz.

11



We will also use the convexity of X. In zero-sum games with lack of informa-
tion on the side of player 2, it is well known that the value is a concave function of
the parameter p : this fundamental property represents the advantage for player 1
to be informed (see for example, Sorin 2002, proposition 2.2 p. 16). In our setup,
we want the initial distribution δ1/2p+1/2p′ to be more advantageous for player 1
than the initial distribution 1/2 δp + 1/2 δp′ . This is perfectly represented by the
following order :

Definition 3.12. For u and v in ∆(X), we say that u is better than v, or that v
is a sweeping of u, and we write u � v, if :

for every concave mapping f in C(X), u(f) ≥ v(f).

This order was introduced by Choquet 2(1960). It is actually an order on
∆(X), the maximal elements are the Dirac measures, and Choquet proved that
the minimal elements are the measures with support in the set of extreme points
of X (see P.A. Meyer, 1966, theorem 24 p. 282). For every f in C(X), we easily
have the equivalence :

Claim 3.13. f is concave if and only if f̃ is non decreasing.

We now define hypotheses H3 to H7.

Hypothesis H3 : A and B are compact convex subsets of topological vector
spaces.

Hypothesis H4 : For every (p, b) in X × B, (a −→ g(p, a, b)) is concave and
upper semi-continuous. For every (p, a) in X ×A, (b −→ g(p, a, b)) is convex and
lower semi-continuous.

We will prove in the sequel a natural dynamic programming principle a la
Shapley (or Bellmann).

Notation 3.14. For f in C(X) and α in [0, 1], we define Φ(α, f) : X −→ IR
with :

∀p ∈ X, Φ(α, f)(p) = supa∈Ainfb∈B

(
α g(p, a, b) + (1− α) f̃(l(p, a))

)
.

Hypothesis H5 : There exists a subset D of Lip1(X) containing Φ(1, 0), and
such that Φ(α, f) ∈ D for every f in D and α in [0, 1].

We state the following hypothesis in full generality, but we will assume H1 so
that l(p, a, b) will not depend on b.

2. For convenience, we reverse here Choquet’s order, i.e. we write u � v instead of u � v.
For u and v in ∆f (X), a simple characterization of u � v will be stated later, see proposition
3.34.
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Hypothesis H6 : For every (p, b) in X × B, (a 7→ l(p, a, b)) is continuous and
concave.

Hypothesis H7 : “Splitting” Consider a convex combination p =
∑S

s=1 λsps in
the set of states X, and a family of actions (as)s∈S in AS. Then there exists a in
A such that :

l(p, a) �
∑
s∈S

λsl(ps, as) and infb∈Bg(p, a, b) ≥
∑
s∈S

λs infb∈Bg(ps , as , b).

H3 and H4 are standard and, by Sion’s theorem, will lead to the existence
of the value of the stage game. H5 is very important and will ensure that all
value functions are 1-Lipschitz. We will provide later a simple condition implying
H5, see remark 3.43. H6 is the unique hypothesis where the topology on ∆(X)
appears, and does not depend on a particular distance metrizing the weak* topo-
logy. H7 is the generalization of the well known splitting lemma for games with
lack of information on one side. Under the hypotheses H1,..., H7, our main result
in theorem 3.17 will be the existence of the uniform value. We will also obtain
several other properties, which are expressed via the following notions.

Definition 3.15. A strategy σ = (σt)t≥1 of player 1 is Markov if for each stage t,
σt only depends on the current state pt. A Markov strategy for player 1 will be seen
as a sequence σ = (σt)t≥1, where for each t σt is a mapping from X to A giving the
action to be played on stage t depending on the current state. We denote the set
of Markov strategies for player 1 by : ΣM = {σ = (σt)t≥1,with ∀t, σt : X −→ A}.
The set of Markov strategies for player 2 is defined similarly and is denoted by
T M .

Definition 3.16. For m ≥ 0 and n ≥ 1, the expected average payoff for player
1 induced by a strategy pair (σ, τ) in Σ × T from stage m + 1 to stage m + n is
denoted by :

γum,n(σ, τ) = IEu,σ,τ

(
1

n

m+n∑
t=m+1

g(pt, at, bt)

)
.

Theorem 3.17. Assume that H1,..., H7 hold.
Then for every initial distribution u, the game Γ(u) has a uniform value v∗(u).

In Γ(u), every player can guarantee v∗(u) with a Markov strategy, i.e. for each
positive ε each player has a Markov strategy which is ε-optimal.

We have : v∗(u) = infn≥1supm≥0ṽm,n(u) = supm≥0infn≥1ṽm,n(u)

= infn≥1supm≥0wm,n(u) = supm≥0infn≥1wm,n(u),

where ṽm,n(u) = supσ∈Σinfτ∈T γ
u
m,n(σ, τ) = infτ∈T supσ∈Σγ

u
m,n(σ, τ), and wm,n(u) =

supσ∈Σinfτ∈T mint∈{1,...,n} γ
u
m,t(σ, τ).

For every m and n, ṽm,n and wm,n are non expansive, and (vn)n uniformly
converges to v∗.
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3.3 Proof of Theorem 3.17

We now prove theorem 3.17, and assume that H1,..., H7 hold. In the proof, we
endow ∆(X) with the Wasserstein distance. We denote by IN∗ the set of positive
integers. By H3 and H4, for every (p, a) ∈ X × A, the infimum is achieved in
infb∈Bg(p, a, b), and we will simply write g(p, a) for minb∈B g(p, a, b). For each p,
(a −→ g(p, a)) is still concave and upper semi-continuous.

Lemma 3.18. For every concave f in C(X) and α in [0, 1], Φ(α, f) is concave.

Proof : Fix a convex combination p =
∑S

s=1 λsps in X, and consider for each s
an element as in A. By the splitting hypothesis H7, one can find a in A such that
l(p, a) �

∑
s∈S λsl(ps, as) and g(p, a) ≥

∑
s∈S λsg(ps , as). f is concave so f̃ is

non decreasing and f̃(l(p, a)) ≥
∑

s∈S λsf̃(l(ps, as)). We obtain :

Φ(α, f)(p) ≥ α
∑
s∈S

λsg(ps, as) + (1− α)
∑
s∈S

λsf̃(l(ps, as)),

=
∑
s∈S

λs

(
αg(ps, as) + (1− α)f̃(l(ps, as))

)
.

This holds for every (as)s∈S, so Φ(α, f)(p) ≥
∑

s∈S λsΦ(α, f)(ps). �

The proof is divided into 4 parts. In subsection 3.3.1, we study the value
of the games with finite horizon and derive an appropriate recursive formula.
In subsection 3.3.2 we introduce a specific function v∗ and show that Player 2
can guarantee v∗(u) in the game Γ(u). The rest of the proof shows that also
Player 1 can guarantee v∗(u) in the game Γ(u). Subsection 3.3.3 is technical and
shows that there is no harm in restricting player 1 to use Markov strategies and
assuming that player 2 plays a best-reply at every stage. Moreover, it introduces
a family of mappings (wm,n) (see theorem 3.17 for one expression of wm,n) and
shows that each of these mappings is non decreasing and non expansive. Finally,
subsection 3.3.4 introduces an equivalent dynamic programming problem where
the role of player 2 has disappeared. We use a result from Renault, 2011 to solve
the dynamic programming problem and conclude the proof of theorem 3.17.

3.3.1 Value of finite games and the recursive formula.

Lemma 3.19. For every state p in X, the game Γ1(δp) has a value which is :

v1(p) = max
a∈A

min
b∈B

g(p, a, b) = min
b∈B

max
a∈A

g(p, a, b) = Φ(1, 0)(p).

v1 is concave and belongs to D. ṽ1 is non decreasing and non expansive.

Proof : Fix p in X, and consider the game with normal form (A,B, g(p, ., .)).
By H3 and H4, we can apply Sion’s theorem (see e.g. Sorin 2002 p.156, thm A.7)
and obtain that this game has a value and both players have optimal strategies.
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By lemma 3.18, we get that v1 is concave, and by H5, we have v1 ∈ D. By claim
3.4, for every distribution u the game Γ1(u) has a value which is precisely ṽ1.
By concavity of v1, ṽ1 is non decreasing. Since v1 ∈ Lip1(X) and we use the
Wasserstein distance, ṽ1 is non expansive. �

We will need to consider not only the n-stage games Γn(u), but a larger family
of games with initial distribution u.

Definition 3.20. Let θ =
∑

t≥1 θtδt be in ∆f (IN
∗), i.e. θ is a probability with

finite support over positive integers. For u in ∆f (X), the game Γ[θ](u) is the
game with normal form (Σ, T , γu[θ]), where :

γu[θ](σ, τ) = IEu,σ,τ

(
∞∑
t=1

θt g(pt, at, bt)

)
.

If θ = 1/n
∑n

t=1 δt, Γ[θ](u) is nothing but Γn(u). Γ[θ](u) can be seen as the game
where after the play, a stage t∗ is selected according to θ and then only the payoff
of stage t∗ matters. If θ =

∑
t≥1 θtδt, define θ+ as the law of t∗−1 given that t∗ ≥ 2.

Define arbitrarily θ+ = θ if θ1 = 1, and otherwise we have θ+ =
∑

t≥1
θt+1

1−θ1 δt. We
now write a recursive formula for the value of the games Γ[θ](u).

Proposition 3.21. For θ =
∑

t≥1 θtδt in ∆f (IN
∗) and u in ∆f (X), the game

Γ[θ](u) has a value ṽ[θ](u) such that :

∀p ∈ X, v[θ](p) = Φ(θ1, v[θ+])(p),

= max
a∈A

θ1g(p, a) + (1− θ1)ṽ[θ+](l(p, a)),

= min
b∈B

max
a∈A

θ1g(p, a, b) + (1− θ1)ṽ[θ+](l(p, a)).

In Γ[θ](u), both players have optimal Markov strategies. v[θ] is concave and belongs
to D. ṽ[θ] is non decreasing and non expansive.

Proof : by induction. If θ = δ1, lemma 3.19 gives the result.
Fix now n ≥ 2, and assume that the proposition is true for every θ with

support included in {1, ..., n − 1}. Fix a probability θ =
∑n

t=1 θtδt, and notice
that θ+ has a support included in {1, ..., n− 1}. Fix also p in X.

Consider the auxiliary zero-sum game Γ′[θ](p) with normal form (A,B, fp[θ]),

where fp[θ](a, b) = θ1g(p, a, b) + (1− θ1)ṽ[θ+](l(p, a)). We will apply Sion’s theorem
to this game. By H3, A and B are compact convex subsets of topological vector
spaces. For every a, (b 7→ fp[θ](a, b)) is convex l.s.c. by H4. Consider now a convex

combination λa+ (1− λ)a′ in A. By H6, we have l(p, λa+ (1− λ)a′) � λl(p, a) +
(1− λ)l(p, a′). By the induction hypothesis, ṽ[θ+] is non decreasing, so :

ṽ[θ+] (l(p, λa+ (1− λ)a′)) ≥ ṽ[θ+] (λl(p, a) + (1− λ)l(p, a′)) ,

= λṽ[θ+](l(p, a)) + (1− λ)ṽ[θ+](l(p, a
′)).
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Since g is concave in a, we obtain that fp[θ] is concave in a. Regarding continuity,

by H6 and the induction hypothesis, (a −→ ṽ[θ+](l(p, a)) is continuous. By H3,
(a 7→ g(p, a, b)) is u.s.c., so (a 7→ fp[θ](a, b)) is u.s.c.. By Sion’s theorem Γ′[θ](p) has
a value which is :

v′[θ](p) = max
a∈A

min
b∈B

θ1g(p, a, b) + (1− θ1)ṽ[θ+](l(p, a))

= min
b∈B

max
a∈A

θ1g(p, a, b) + (1− θ1)ṽ[θ+](l(p, a)).

Consider now the original game Γ[θ](p), and a strategy pair (σ, τ) in Σ × T .
Write a = σ1(p), resp. b = τ1(p), for the first action played by player 1, resp.
player 2, in Γ[θ](p). Denote by σ+

p,a,b the continuation strategy issued from σ after

(p, a, b) has occurred at stage 1. σ+
p,a,b belongs to Σ, and plays at stage n after

(p1,a1,b1,...,pn) what σ plays at stage n + 1 after (p,a,b,p1,a1,b1,...,pn). Similarly
denote by τ+

p,a,b the continuation strategy issued from τ after (p, a, b) has occurred
at stage 1. It is easy to check that :

γp[θ](σ, τ) = θ1g(p, a, b) + (1− θ1)γ
l(p,a)

[θ+] (σ+
p,a,b, τ

+
p,a,b).

Consequently, in the game Γ[θ](p) player 1 can guarantee maxa∈A minb∈B θ1g(p, a, b)+
(1−θ1)ṽ[θ+](l(p, a)) by playing a Markov strategy. Similarly player 2 has a Markov
strategy which guarantees minb∈B maxa∈A θ1g(p, a, b) + (1− θ1)ṽ[θ+](l(p, a)). Since
the two quantities coincide, Γ[θ](p) has a value v[θ](p) = v′[θ](p), and both players
have Markov optimal strategies.

This implies that for every u in ∆f (X), the game Γ[θ](u) has a value which is
the affine extension ṽ[θ](u), and both players have Markov optimal strategies in
Γ[θ](u). v[θ] = Φ(θ1, v[θ+]) and v[θ+] is concave, so by lemma 3.18 v[θ] is concave,
and hence, by claim 3.13, ṽ[θ] is non decreasing. By H5 v[θ] is in D, so v[θ] is
1-Lipschitz, and finally ṽ[θ] is non expansive. �

Among the games Γ[θ](u), the following family will play an important role and
deserves a specific notation.

Definition 3.22. For m ≥ 0 and n ≥ 1, Γm,n(u) is the game with normal form
(Σ, T , γum,n).

Recall that in definition 3.16, we put γum,n(σ, τ) = IEu,σ,τ
(

1
n

∑m+n
t=m+1 g(pt, at, bt)

)
for each (σ, τ). So Γm,n(u) is nothing but Γ[θ](u) with θ = 1/n

∑m+n
t=m+1 δt. We

can apply the previous proposition and denote the value of Γm,n(u) by ṽm,n(u).
v0,n is just the value of the n-stage game vn, and for convenience we put v0 = 0.
We have for all p in X, and positive m and n :

vn(p) = Φ(1/n, vn−1) =
1

n
max
a∈A

min
b∈B

(g(p, a, b) + (n− 1)ṽn−1(l(p, a)) ) ,

=
1

n
min
b∈B

max
a∈A

(g(p, a, b) + (n− 1)ṽn−1(l(p, a)) ) ,

vm,n(p) = Φ(0, vm−1,n) = max
a∈A

ṽm−1,n(l(p, a)).
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In Γm,n(u), the players first play m stages to control the state, then they play
n stages for payoffs. Moreover, player 2 does not control the transitions, so he can
play arbitrarily in the first m stages. The next lemma formalizes the following
idea : if τ is an optimal strategy for player 2 in the n-stage game for each initial
state, then any strategy that coincides with τ between stages m + 1 and m + n
is optimal in the game Γm,n(u) for each u.

Lemma 3.23. Fix n ≥ 1. There exists a Markov strategy τ = (τt)t≥1 for player
2 such that ∀m ≥ 0, ∀τ ′ = (τ ′t)t≥1 in T :

the condition (∀t = 1, ..., n, ∀p ∈ X, τ ′m+t(., ..., p) = τt(p)) implies that for
every u in ∆f (X), τ ′ is an optimal strategy for player 2 in Γm,n(u).

Proof : For each t in {1, ..., n}, define τt as the mapping which plays, if the
current state is p ∈ X, an element b in B achieving the minimum in :

min
b∈B

max
a∈A

1

n− t+ 1
(g(p, a, b) + (n− t)ṽn−t(l(p, a))) = vn+1−t(p).

Using the previous recursive formula, one can show by induction that this construc-
tion of τ is appropriate. �

3.3.2 Player 2 can guarantee infn≥1supm≥0ṽm,n(u) in Γ(u).

We now consider the game with infinitely many stages Γ(u). The following
results are similar to propositions 7.7 and 7.8 in Renault, 2006.

Proposition 3.24. In Γ(u), player 2 can guarantee with Markov strategies the
quantity :

infn≥1 lim sup
T

(
1

T

T−1∑
t=0

ṽnt,n(u)

)
.

Proof : Fix n ≥ 1, and consider τ1,..., τn given by lemma 3.23. Divide the set of
stages IN∗ into consecutive blocks B1, B2,..., Bm,... of equal length n. By lemma
3.23, the cyclic strategy τ ′ = (τ1, ..., τn, τ1, ..., τn, τ1, ..., τn, ....) is optimal for player
2 in the game Γnm,n(u), for each m ≥ 0. τ ′ is a Markov strategy for player 2, and
for every strategy σ of player 1 in Σ we have :

∀m ≥ 0, IEu,σ,τ ′

(
1

n

∑
t∈Bm+1

g(pt, at, bt)

)
≤ ṽnm,n(u),

so ∀M ≥ 1, IEu,σ,τ ′

(
1

nM

nM∑
t=1

g(pt, at, bt)

)
≤ 1

M

M−1∑
m=0

ṽnm,n(u).

And since n is fixed and payoffs are bounded, we obtain that player 2 can gua-

rantee with Markov strategies : lim supM

(
1
M

∑M−1
m=0 ṽnm,n(u)

)
in Γ(u). �
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It is actually possible to prove a slightly stronger result, not needed for the
proof of theorem 3.17 but implying in the end the existence of a 0-optimal strategy
for player 2, see remark 3.42. Anyway, the proof of proposition 3.24 also shows
the following inequality.

Lemma 3.25. ∀u ∈ ∆f (X),∀n ≥ 1, ∀T ≥ 1, ṽnT (u) ≤ 1
T

∑T−1
t=0 ṽnt,n(u).

The following quantity will turn out to be the value of Γ(u).

Notation 3.26. For every u in ∆f (X), we put :

v∗(u) = infn≥1supm≥0ṽm,n(u).

Since v∗(u) ≥ infn≥1 lim supT

(
1
T

∑T−1
t=0 ṽnt,n(u)

)
, by proposition 3.24 player 2 can

also guarantee v∗(u) with Markov strategies in Γ(u). By claim 3.6, v(u) = min{v ∈
IR, player 2 guarantees v in Γ(u) }, so we now have the following inequality
chain :

v(u) ≤ lim inf
N

ṽN(u) ≤ lim sup
N

ṽN(u) ≤ v(u) ≤ v∗(u).

3.3.3 Markov strategies for player 1.

By H1 player 2 does not control the transition, so a Markov strategy σ in-
duces, together with the initial distribution u, a probability distribution IPu,σ
over (X × A)∞, i.e. over sequences of states and actions for player 1. For u in
∆f (X) and σ1 : X −→ A, we denote by H(u, σ1) the law of the state of stage 2
if the initial distribution is u and player 1 plays at stage 1 according to σ1. We
denote by G(u, σ1) the payoff guaranteed by σ1 at stage 1. And we also define
the continuation strategy σ+.

Notations 3.27.
G(u, σ1) =

∑
p∈X u(p)g(p, σ1(p)), and H(u, σ1) =

∑
p∈X u(p)l(p, σ1(p)) ∈ ∆f (X).

If σ = (σt)t≥1 is in ΣM , we write σ+ for the Markov strategy (σt)t≥2.

We now concentrate on what player 1 can achieve in Γ(u) and completely
forget player 2. We use similar notations as in definition 3.20.

Definition 3.28. For θ =
∑

t≥1 θtδt in ∆f (IN
∗), u in ∆f (X) and σ in ΣM , we

put :

γu[θ](σ) = IEu,σ

(∑
t≥1

θt g(pt, at)

)
=
∑
t≥1

θt γ
u
[δt](σ).

For simplicity, we write γ[t] instead of γ[δt] for the payoff induced at stage t. Clearly,
we have for every t ≥ 2 :

γu[t](σ) = γ
H(u,σ1)
[t−1] (σ+).

Lemma 3.29. γu[θ](σ) = minτ∈T γ
u
[θ](σ, τ).
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The proof is easy, the minimum on the RHS being achieved by a Markov stra-
tegy τ such that for every t and pt, τt(pt) achieves the minimum in b of the quan-
tity g(pt, σt(pt), b). As a corollary of lemma 3.29, we obtain that supσ∈ΣMγu[θ](σ) =

supσ∈ΣM infτ∈T γ
u
[θ](σ, τ). By proposition 3.21, Γ[θ](u) has a value, so we get :

Corollary 3.30.
For every θ in ∆f (IN

∗) and u in ∆f (X), supσ∈ΣMγu[θ](σ) = ṽ[θ](u).

As in definition 3.22, we now specify notations for a particular class of proba-
bilities.

Definition 3.31. For n ≥ 1, m ≥ 0, u in ∆f (X) and σ in ΣM , we put :

γum,n(σ) = IEu,σ
1

n

(
n∑
t=1

g(pm+t, am+t)

)
=

1

n

n∑
t=1

γu[m+t](σ).

Finally, we consider a situation where player 1 does not precisely know the
length of the game.

Definition 3.32. Fix m ≥ 0, n ≥ 1, and u in ∆f (X). We define :

wm,n(u) = supσ∈ΣM min{γum,t(σ), t ∈ {1, .., n}}.

The mappings wm,n will play an important role in the sequel, while applying
corollary 3.8 of Renault, 2011. We will show in corollary 3.39 that they are non
expansive. To prove corollary 3.39 we will use the following lemma 3.35 and
propositions 3.34, 3.36 and 3.37. We start by defining an auxiliary game 3.

Definition 3.33. For m ≥ 0, n ≥ 1, and u in ∆f (X), we define A(m,n, u) as
the zero-sum game with normal form (ΣM , ∆({1, ..., n}), f), where :

∀σ ∈ ΣM ,∀θ ∈ ∆({1, ..., n}), f(σ, θ) =
n∑
t=1

θtγ
u
m,t(σ).

InA(m,n, u) player 1 chooses a Markov strategy and an extra player 2 chooses
which stage payoffs will be considered. We will prove later that A(m,n, u) has a
value which is wm,n(u) (see proposition 3.37 below). Notice that in general f(., θ)
is not concave in σ. However, we will show that it is concave-like in σ, i.e. that :
∀σ′, σ′′, ∀λ ∈ [0, 1], there exists σ such that ∀θ, f(σ, θ) ≥ λf(σ′, θ)+(1−λ)f(σ′′, θ).
We start with a characterization for the partial order �.

Proposition 3.34. Let u and v be in ∆f (X). Write u =
∑

p∈X u(p)δp. The
following conditions are equivalent :

(i) u � v, and

3. We proceed similarly as in section 6.2. of Renault, 2011. However the situation is more
technical here, and it will not be possible to apply a standard minmax theorem to the game
A(m, n, u).
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(ii) For every p such that u(p) > 0, there exist S(p) ≥ 1, λp1, ..., λ
p
S(p) ≥

0 and qp1, ..., q
p
S(p) in X such that :

∑S(p)
s=1 λ

p
s = 1,

∑S(p)
s=1 λ

p
sq
p
s = p, and v =∑

p∈X u(p)
(∑S(p)

s=1 λ
p
sδqp

s

)
.

The proof can be easily deduced from a theorem of Loomis (see Meyer, 1966,
T26 p.283), which deals with positive measures on X. Notice that condition (ii)
can be seen as follows : u is the law of some random variable X1 with values in
X, v is the law of some random variable X2 with values in X, and we have the
martingale condition : IE(X2|X1) = X1.

In general, γu[t](σ) is not a non decreasing function of u. However, we have the
following property.

Lemma 3.35. Let n ≥ 1, u and v be in ∆f (X) such that u � v. For every
σ ∈ ΣM , there exists σ′ ∈ ΣM such that :

∀t ∈ {1, ..., n}, γu[t](σ′) ≥ γv[t](σ).

Proof : by induction on n.
If n = 1, there exists σ′ such that γu[1](σ

′) = ṽ1(u). Since ṽ1 is non decreasing,

ṽ1(u) ≥ ṽ1(v) ≥ γv[1](σ).
Fix now n ≥ 1, and assume that the lemma is proved for n. Fix u and

v in ∆f (X) with u � v, and σ in ΣM . We have u =
∑

p∈X u(p)δp, and by

proposition 3.34 it is possible to write v =
∑

p∈X u(p)
(∑S(p)

s=1 λ
p
sδqp

s

)
, with λps ≥ 0,∑S(p)

s=1 λ
p
s = 1, and

∑S(p)
s=1 λ

p
sq
p
s = p for each p such that u(p) > 0. Define for every

such p and s, aps = σ1(qps). By the splitting hypothesis H7, for every p one can
find ap ∈ A such that :

l(p, ap) �
S(p)∑
s=1

λps l(q
p
s , a

p
s) and g(p, ap) ≥

S(p)∑
s=1

λp
s g(qp

s , a
p
s ).

We define what σ′ plays at stage 1 if the state is p as : σ′1(p) = ap.

We have : γu[1](σ
′) =

∑
p u(p)g(p, ap) ≥

∑
p u(p)

∑S(p)
s=1 λ

p
sg(qps , a

p
s) = γv[1](σ),

and H(u, σ′1) =
∑

p u(p)l(p, ap) �
∑

p u(p)
∑S(p)

s=1 λ
p
s l(q

p
s , a

p
s) = H(v, σ1).

Since H(u, σ′1) � H(v, σ1), we apply the induction hypothesis to the continua-
tion strategy σ+. We obtain the existence of some Markov strategy τ = (τt)t≥1

such that : ∀t ∈ {1, ..., n}, γH(u,σ′1)

[t] (τ) ≥ γ
H(v,σ1)
[t] (σ+). Define σ′t = τt−1 for

each t ≥ 2. σ′ = (σ′t)t≥1 is a Markov strategy for player 1, and satisfies :
γu[1](σ

′) ≥ γv[1](σ), and for t ∈ {2, ..., n+ 1} :

γu[t](σ
′) = γ

H(u,σ′1)

[t−1] (σ′+) ≥ γ
H(v,σ1)
[t−1] (σ+) = γv[t](σ). �

Lemma 3.35 is now improved.
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Proposition 3.36. Let n ≥ 1, λ ∈ [0, 1], u, u′ and u′′ in ∆f (X) be such that
u � λu′ + (1− λ)u′′. For every σ′ and σ′′ in ΣM , there exists σ ∈ ΣM such that :

∀t ∈ {1, ..., n}, γu[t](σ) ≥ λγu
′

[t](σ
′) + (1− λ)γu

′′

[t] (σ′′).

Proof : by induction on n.
If n = 1, there exists σ such that γu[1](σ) = ṽ1(u) ≥ ṽ1(λu′ + (1 − λ)u′′)

= λṽ1(u′) + (1− λ)ṽ1(u′′) ≥ λγu
′

[1](σ
′) + (1− λ)γu

′′

[1] (σ
′′).

Assume the proposition is proved for some n ≥ 1, and fix u, u′, u′′, λ, σ′ and
σ′′ with u � λu′+(1−λ)u′′. Write v = λu′+(1−λ)u′′. By lemma 3.35 it is enough
to find σ in ΣM such that : ∀t ∈ {1, ..., n+ 1}, γv[t](σ) ≥ λγu

′

[t](σ
′) + (1−λ)γu

′′

[t] (σ′′).

We have v =
∑

p (λu′(p) + (1− λ)u′′(p)) δp, and v(p) = λu′(p) + (1− λ)u′′(p)
for each p. For every p such that v(p) > 0, we define :

σ1(p) =
λu′(p)

v(p)
σ′1(p) +

(1− λ)u′′(p)

v(p)
σ′′1(p).

σ1(p) belongs to A by convexity. Now,

λγu
′

[1](σ
′) + (1− λ)γu

′′

[1] (σ
′′) = λ

∑
p

u′(p)g(p, σ′1(p)) + (1− λ)
∑
p

u′′(p)g(p, σ′′1(p))

=
∑
p

v(p)

(
λu′(p)

v(p)
g(p, σ′1(p)) +

(1− λ)u′′(p)

v(p)
g(p, σ′′1(p))

)
≤

∑
p

v(p) g(p, σ1(p)) = γv[1](σ),

where the inequality comes from the concavity of g in the variable a (see H4).
Proceeding in the same way with distributions on the second state, we obtain via
the concavity of l in a (see H6) :

λH(u′, σ′1) + (1− λ)H(u′′, σ′′1) = λ
∑
p

u′(p)l(p, σ′1(p)) + (1− λ)
∑
p

u′′(p)l(p, σ′′1(p))

=
∑
p

v(p)

(
λu′(p)

v(p)
l(p, σ′1(p)) +

(1− λ)u′′(p)

v(p)
l(p, σ′′1(p))

)
�

∑
p

v(p) l(p, σ1(p)) = H(v, σ1)

Consequently, we have H(v, σ1) � λH(u′, σ′1)+(1−λ)H(u′′, σ′′1), and by the induc-

tion hypothesis there exists σ+ in ΣM such that ∀t ∈ {1, ..., n}, γH(v,σ1)
[t] (σ+) ≥

λγ
H(u′,σ′1)

[t] (σ′+) + (1 − λ)γ
H(u′′,σ′′1 )

[t] (σ′′+). We naturally define σ = (σ1, σ
+), and

we have, for t ∈ {2, ..., n + 1} : γv[t](σ) = γ
H(v,σ1)
[t−1] (σ+) ≥ λγ

H(u′,σ′1)

[t−1] (σ′+) + (1 −
λ)γ

H(u′′,σ′′1 )

[t−1] (σ′′+) = λγu
′

[t](σ
′) + (1− λ)γu

′′

[t] (σ′′). �
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Proposition 3.37. For every m ≥ 0, n ≥ 1 and u in ∆f (X), the game A(m,n, u)
has a value which is wm,n(u).

Proof : Recall that the payoff function in A(m,n, u) is : f(σ, θ) =
∑n

t=1 θtγ
u
m,t(σ)

for every σ in ΣM and θ in ∆({1, ..., n}).
∆({1, ..., n}) is convex and compact, and f is affine continuous in θ. We

now show that f is concave-like in σ. Let σ′, σ′′ be in ΣM , and λ ∈ [0, 1]. By
the previous proposition, there exists σ in ΣM such that : ∀t ∈ {1, ...,m +
n}, γu[t](σ) ≥ λγu[t](σ

′) + (1 − λ)γu[t](σ
′′). So f(σ, θ) =

∑n
t=1

θt

t

∑t
t′=1 γ

u
[m+t′](σ) ≥∑n

t=1
θt

t

∑t
t′=1

(
λγu[m+t′](σ

′) + (1− λ)γu[m+t′](σ
′′)
)

= λf(σ′, θ)+(1−λ)f(σ′′, θ). By

a theorem of Fan (1953, see proposition A.13 p.160 in Sorin 2002), A(m,n, u) has
a value which is : supσ∈ΣM infθ∈∆({1,...,n})f(σ, θ) = wm,n(u). �

Notation 3.38. For θ =
∑n

t=1 θtδt ∈ ∆({1, ..., n}), and m ≥ 0, we define θm,n

in ∆({1, ...,m+ n}) by :
θm,ns = 0 if s ≤ m, and θm,ns =

∑n
t=s−m

θt

t
if m < s ≤ n+m.

Corollary 3.39. For every m ≥ 0, n ≥ 1 and u in ∆f (X),

wm,n(u) = infθ∈∆({1,...,n})ṽ[θm,n](u).

The mapping wm,n is non decreasing and non expansive.

Proof : Fix m, n and u. wm,n(u) is the value of A(m,n, u), so we have : wm,n(u) =
infθ∈∆({1,...,n})supσ∈ΣMf(σ, θ). But f(σ, θ) =

∑n
t=1 θtγ

u
m,t(σ) = γu[θm,n](σ). So we ob-

tain : wm,n(u) = infθ∈∆({1,....,n})supσ∈ΣMγu[θm,n](σ). Corollary 3.30 gives wm,n(u) =

infθ∈∆({1,....,n})ṽ[θm,n](u). For each θ, ṽ[θm,n] is non decreasing and non expansive by
proposition 3.21, hence the result. �

3.3.4 A dynamic programming problem.

We will conclude the proof of theorem 3.17 and show that the uniform value
exists. Fix the initial distribution u, our stochastic game is defined by Γ(u) =
(X,A,B, g, l, u). We now define an auxiliary Markov Decision Process as follows.

Definition 3.40. The MDP Ψ(z0) associated to Γ(u) is defined as Ψ(z0) =
(Z, F, r, z0), where :

• Z = ∆f (X)× [0, 1] is the set of states of the MDP,

• z0 = (u, 0) is the initial state in Z,

• r is the payoff function from Z to [0, 1] defined by r(u, y) = y for each (u, y) in
Z,
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• and the transition function F is the correspondence from Z to Z such that :
∀z = (u, y) ∈ Z,

F (z) =

{(∑
p∈X

u(p)l(p, a(p)),
∑
p∈X

u(p)g(p, a(p))

)
, ∀p a(p) ∈ A

}
,

= {(H(u, f), G(u, f)), f is a mapping from X to A}.

Notice that F (u, y) does not depend on y, hence the value functions will not
depend on y. F has non empty values. Even with strong assumptions on l and g, F
may not have a compact graph, because in the definition of F (z) we have a unique
a(p) for each p. So even if q is close to p, the image by F of (1/2δp + 1/2δq, 0)
may be quite larger than F (δp, 0).

As in Renault, 2011, we denote by S(z0) = {s = (z1, ..., zt, ...) ∈ Z∞,∀t ≥
1, zt ∈ F (zt−1)} the set of plays at z0. The next proposition shows the strong
links between the stochastic game Γ(u) and the MDP Ψ(z0).

Proposition 3.41. a) For every Markov strategy σ in ΣM , there exists a play
s = (z1, ..., zt, ...) ∈ S(z0) such that ∀t ≥ 1, γu[t](σ) = r(zt).

b) Reciprocally, for every play s = (z1, ..., zt, ...) ∈ S(z0), there exists a Markov
strategy σ in ΣM such that : ∀t ≥ 1, γu[t](σ) = r(zt).

Proof : a) Take a Markov strategy σ = (σt)t≥1 in ΣM . Put u1 = u and y0 = 0,
so that z0 = (u1, y0). Define by induction, for every t ≥ 1, ut+1 = H(ut, σt),
yt = G(ut, σt), and zt = (ut+1, yt) ∈ F (zt−1). s = (zt)t≥1 is a play at z0.

γu[1](σ) = G(u, σ1) = y1 = r(z1), and for t ≥ 2, γu[t](σ) = γ
H(u,σ1)
[t−1] (σ+) =

γu2

[t−1](σ
+) = γu3

[t−2](σ
++) = ... = γut

[1]((σt′)t′≥t) = G(ut, σt) = yt = r(zt).

b) Take a play s = (zt)t≥1 at z0. Write for each t ≥ 0, zt = (ut+1, yt) ∈ ∆f (X)×
[0, 1]. For every t ≥ 1, there exists a mapping ft from X to A which defines
zt = (ut+1, yt) in terms of zt−1, i.e. that ut+1 = H(ut, ft), and yt = G(ut, ft).
Simply define σ = (ft)t≥1. As in point a), one can check that γu[1](σ) = r(zt) for
each positive t. �

For any m ≥ 0, n ≥ 1, and s = (zt)t≥1 in Z∞, we put as in definitions 3.1.,
3.2. of Renault, 2011 :

γm,n(s) = 1
n

∑n
t=1 r(zm+t),

νm,n(s) = min{γm,t(s), t ∈ {1, ..., n}},
vm,n(z0) = sups∈S(z0)γm,n(s), and
wm,n(z0) = sups∈S(z0)νm,n(s).
By proposition 3.41 and corollary 3.30, it is easy to obtain for every m and

n, the equality of the values in the stochastic game Γ(u) and in the MDP Ψ(z0) :
ṽm,n(u) = vm,n(z0). As a consequence, we also have v∗(u) = infn≥1supm≥0ṽm,n(u) =
v∗(z0) (see definitions 3.6 of Renault, 2011 and notation 3.26 here). Similarly, we
have wm,n(z0) = supσ∈ΣM min{γum,t(σ), t ∈ {1, .., n}} = wm,n(u) (see definition
3.32).
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Define now vM(u) as the maximal quantity that can be guaranteed by player
1 in Γ(u) with Markov strategies :

vM(u) = supσ∈ΣM lim inf
n

(infτ∈T γ
u
n(σ, τ)) = supσ∈ΣM lim inf

n
γu0,n(σ).

Recall that the lower value of the MDP is defined by :
v(z0) = sup(zt)t≥1∈S(z0)

(
lim infn

1
n

∑n
t=1 r(zt)

)
. Again, proposition 3.41 gives

the equality vM(u) = v(z0), so that we have the following relations :

v(z0) = vM(u) ≤ v(u) ≤ lim infN ṽN(u) = lim infN vN(z0)
≤ lim supN vN(z0) = lim supN ṽN(u) ≤ v(u) ≤ v∗(u) = v∗(z0).

We can now conclude. We use the Wasserstein distance on ∆f (X), so Z na-
turally is a precompact metric space. For every m and n, by corollary 3.39,
(u 7→ wm,n(u)) is a non expansive mapping from ∆f (X) to [0, 1]. This implies that
(z0 7→ wm,n(z0)) is a non expansive mapping from Z to [0, 1]. As a consequence
the family (wm,n)m≥0,n≥1 is uniformly continuous. By corollary 3.8 of Renault,
2011, we obtain that the MDP Ψ(z0) has a uniform value which is :

v∗(z0) = v(z0) = limNvN(z0) = supm≥0infn≥1wm,n(z0) = supm≥0infn≥1vm,n(z0).

And the convergence from (vn) to v∗ is uniform. Back to our stochastic game
Γ(u), we obtain that (vn)n uniformly converges to v∗, and

v∗(u) = vM(u) = v(u) = limN ṽN(u) = v(u).

So v(u) = v(u), which implies that Γ(u) has a uniform value. Moreover, v∗(u) =
supm≥0infn≥1wm,n(u) = supm≥0infn≥1ṽm,n(u), and using definition 3.6 of Renault,
2011, v∗(u) = infn≥1 supm≥0wm,n(u) = infn≥1supm≥0ṽm,n(u). This concludes the
proof of theorem 3.17.

� � � �

3.4 Comments.

Remark 3.42. Player 2 has 0-optimal strategies.
Under the same hypotheses H1,..., H7, it is possible to slightly modify the proof

of Proposition 3.24 and obtain that player 2 has a Markov strategy τ which is
0-optimal in Γ(u), i.e. such that : ∀ε > 0,∃N0,∀N ≥ N0,∀σ ∈ Σ, γuN(σ, τ) ≤ v+ε.

Divide the set of stages into consecutive blocks B1,..., Bm,..., such that Bm has
cardinal m for each m. By lemma 3.23, there exists a Markov strategy τ = (τt)t≥1

with the property that for every m > 0, τ plays optimally within Bm, in the sense
that τ is an optimal strategy for player 2 in Γm(m−1)/2,m(u). For every strategy σ
of player 1, we have :

∀m ≥ 1, IEu,σ,τ

 1

m(m+ 1)/2

max(Bm)∑
t=1

g(pt, at, bt)

 ≤ 1

m

m∑
i=1

ṽi(i−1)/2,i(u).
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We have seen in subsubsection 3.3.4 that the values in the stochastic game Γ(u)
are the values of the MDP Ψ(z0), so we can apply lemma 3.4 of Renault, 2011 :
∀i ≥ 1,∀k ≥ 1, ṽi(i−1)/2,i(u) ≤ supl≥0wl,k(u) + k−1

i
.

Fix now ε > 0. One can find k such that supl≥0wl,k(u) ≤ v∗(u) + ε. Since
k−1
i
−→i→∞ 0, one can find m0 such that for every m ≥ m0,

IEu,σ,τ

 1

m(m+ 1)/2

max(Bm)∑
t=1

g(pt, at, bt)

 ≤ 1

m

m∑
i=1

(
v∗(u) + ε+

k − 1

i

)
≤ v∗(u)+2ε.

Looking at the size of the blocks, one can show that τ is 0-optimal for player 2.�

Remark 3.43. A simple hypothesis implying H5.
Recall that hypothesis H5 requires the existence of some subset D of Lip1(X)

which contains Φ(1, 0), and is stable under any Φ(α, .). The following hypothesis
is stated in terms of the mappings g and l. The distance d on X is extended to
∆(X) by the Wasserstein distance.

Hypothesis H5’ : ∀p ∈ X, ∀a ∈ A, ∀p′ ∈ X, ∃a′ ∈ A such that :
d(l(p, a), l(p′, a′)) ≤ d(p, p′), and infb∈Bg(p′, a′, b) ≥ infb∈Bg(p, a, b)− d(p, p′).

It is easy to check that H5’ implies that Lip1(X) itself is stable under any
Φ(α, .) so H5’ implies H5. Consequently, the conclusions of theorem 3.17 are true
if H1,H2,H3,H4,H5’,H6, H7 hold.

4 Repeated games with an informed controller

4.1 Model

We first consider a general model of zero-sum repeated game. We have :

• five non empty finite sets : a set of states or parameters K, a set
I of actions for player 1, a set J of actions for player 2, a set C of
signals for player 1 and a set D of signals for player 2.

• an initial distribution π ∈ ∆(K × C ×D),

• a mapping g from K × I × J to [0, 1], called the payoff function of
player 1, and

• a mapping q from K× I×J to ∆(K×C×D), called the transition
function.

Initially, (k1, c1, d1) is selected according to π, player 1 learns c1 and player 2
learns d1. Then simultaneously player 1 chooses i1 in I and player 2 chooses j1
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in J . The payoff for player 1 is g(k1, i1, j1), then (k2, c2, d2) is selected accor-
ding to q(k1, i1, j1), etc... At any stage t ≥ 2, (kt, ct, dt) is selected according to
q(kt−1, it−1, jt−1), player 1 learns ct and player 2 learns dt. Simultaneously, player
1 chooses it in I and player 2 chooses jt in J . The stage payoffs are g(kt, it, jt) for
player 1 and the opposite for player 2, and the play proceeds to stage t+ 1.

From now on we fix Γ = (K, I, J, C,D, g, q), and for every π in ∆(K × C ×
D) we denote by Γ(π) = (K, I, J, C,D, π, g, q) the corresponding repeated game
induced by π. For the moment we make no assumption on Γ, so we have a general
model including stochastic games, repeated games with incomplete information
and imperfect monitoring (signals). We start with elementary definitions and
notations.

Players are allowed to select their actions randomly. A (behavior) strategy
for player 1 is a sequence σ = (σt)t≥1, where for each t, σt is a mapping from
(C × I)t−1 × C to ∆(I), with the interpretation that σt(c1, i1, ..., ct−1, it−1, ct) is
the lottery on actions used by player 1 at stage n after (c1, i1, ..., ct−1, it−1, ct).
σ1 is just a mapping from C to ∆(I) giving the first action played by player 1
depending on his initial signal. Similarly, a strategy for player 2 is a sequence
τ = (τt)t≥1, where for each t, τt is a mapping from (D × J)t−1 ×D to ∆(J). We
denote by Σ and T the sets of strategies of player 1 and player 2, respectively.

It is standard that a pair of strategies (σ, τ) induces a probability IPπ,σ,τ on
the set of plays Ω = (K×C×D×I×J)∞, endowed with the σ-algebra generated
by the cylinders.

Definition 4.1. The payoff for player 1 induced by (σ, τ) in the first N stages is
denoted by :

γπN(σ, τ) = IEπ,σ,τ

(
1

N

N∑
n=1

g(kn, in, jn)

)
.

For π in ∆(K × C × D) and N ≥ 1, the N -stage game game ΓN(π) is the
zero-sum game with normal form (Σ, T , γπN). By Kuhn ’s theorem, ΓN(π) can be
seen as the mixed extension of a finite game, so it has a value vn(π).

The following definitions are similar to those of subsection 3.1 or section 2 of
Renault, 2011.

Definition 4.2. Let π be in ∆(K × C ×D).

The liminf value of Γ(π) is : v−(π) = lim inf
n

vn(π).

The limsup value of Γ(π) is : v+(π) = lim sup
n

vn(π).

The lower (or maxmin) value of Γ(π) is :

v(π) = supσ∈Σ lim inf
n

(infτ∈T γ
π
n(σ, τ)) .
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The upper (or minmax) value of Γ(u) is :

v(π) = infτ∈T lim sup
n

(supσ∈Σγ
π
N(σ, τ)) .

We have v(π) ≤ v−(π) ≤ v+(π) ≤ v(π).

Γ(π) is said to have a uniform value if and only if v(π) = v(π), and in this case
the uniform value is v(π) = v(π).

An equivalent definition of the uniform value is as follows. Given a real number
v, we say that player 1 can guarantee v in Γ(π) if : ∀ε > 0, ∃σ ∈ Σ,∃N0,∀N ≥
N0,∀τ ∈ T , γπN(σ, τ) ≥ v − ε. Player 2 can guarantee v in Γ(π) if : ∀ε > 0,∃τ ∈
T ,∃N0,∀N ≥ N0,∀σ ∈ Σ, γπN(σ, τ) ≤ v+ε. If player 1 can guarantee v and player
2 can guarantee w then clearly w ≥ v. We also have, exactly as in claim 3.6 :

Claim 4.3. v(π) = max{v ∈ IR, player 1 can guarantee v in Γ(π) },
v(π) = min{v ∈ IR, player 2 can guarantee v in Γ(π) }.

A real number v can be guaranteed by both players if and only if v is the
uniform value of Γ(π).

Whenever the uniform value exists, a strategy σ of player 1 satisfying : ∃N0,∀N ≥
N0,∀τ ∈ T , γπN(σ, τ) ≥ v − ε is called ε-optimal for player 1 in Γ(π), and a 0-
optimal strategy is simply called optimal. Optimal strategies for player 2 are
defined similarly. We now consider hypotheses on q and π.

Hypothesis HA : Player 1 is informed of everything, i.e. at any stage t ≥ 1, he
can deduce from his signal ct : the state kt, player 2’s signal dt, and if t ≥ 2, he
can also deduce from ct the action jt−1 previously played by player 2.

Hypothesis HB : Player 1 fully controls the transition, i.e. q(k, i, j) does not
depend on j for each (k, i) in K × I.

HA and HB are very strong hypotheses, and they are incompatible as soon as
J has several elements. We will use weaker hypotheses.

Hypothesis HA’ : Player 1 is informed, in the sense that he can always deduce
the state and player 2’s signal from his own signal. Formally, there exists two
mappings k̂ : C −→ K and d̂ : C −→ D such that, if E denotes {(k, c, d) ∈
K × C ×D, k̂(c) = k and d̂(c) = d}, then :

π(E) = 1, and q(k, i, j)(E) = 1, ∀(k, i, j) ∈ K × I × J.

Notice that HA’ does not mean that player 1 knows everything, see the
example of section 2. Since we did not include the moves in the signals, kno-
wing the signal dt of player 2 at some stage t does not imply knowing the action
jt by player 2. However, not knowing this action will not be a problem for player 1
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because we will also assume that player 2 does not really influence the transitions.

Hypothesis HB’ : Player 1 controls the transition, in the sense that the margi-
nal of the transition q on K ×D does not depend on player 2’s action. For k in
K, i in I and j in J , we denote by q̄(k, i) the marginal of q(k, i, j) on K ×D.

Assume that HA’ and HB’ hold. The pair (new state, signal of player 2) is
selected according to a distribution depending on the current state and player
1’s action, but not depending on player 2’s action. Player 2 may influence the
distribution of player 1’s signal, but still player 1 will be able to deduce the state
and player 2’s new information on the state. So essentially player 2 can influence
player 1’s knowledge about player 2’s action. But this information is not relevant
because it does not affect player 2’s belief on the future states.

Theorem 4.4. Under the hypotheses HA’ and HB’, the repeated game Γ(π) has
a uniform value.

The next subsection is devoted to the proof of theorem 4.4. See subsection 4.3
for other comments on hypotheses, applications and open questions.

4.2 Proof of theorem 4.4

We assume in this subsection that HA’ and HB’ are satisfied. Keeping fixed
all other quantities, increasing the set C of signals for player 1 has no influence
on the existence of the uniform value, so in the sequel we will assume w.l.o.g.
that : The mapping ( c −→ (k̂(c), d̂(c)) ) is a surjection from C to K ×D.

We put X = ∆(K). An element u in ∆f (X) is written u =
∑

p∈X u(p)δp. As
in the previous section, we use the Wasserstein distance, and the (reverse of ) the
Choquet order on ∆(X). ∀u ∈ ∆(X),∀v ∈ ∆(X), d(u, v) = supf :E→IR,1−Lip|u(f)−
v(f)|. And we write u � v iff for every continuous concave real valued mapping
f defined on X , u(f) ≥ v(f).

If S is a finite set, we use the norm ‖.‖1 on IRS . The set of probability distri-
butions ∆(S) is viewed 4 as a subset of IRS .

4.2.1 Value of finite games.

As in definition 3.20, we need to consider a large family of finite games.

Definition 4.5. Let θ =
∑

t≥1 θtδt be in ∆f (IN
∗), i.e. θ is a probability with finite

support over positive integers. For π in ∆(K × C × D), the game Γ[θ](π) is the
game with normal form (Σ, T , γπ[θ]), where :

γπ[θ](σ, τ) = IEπ,σ,τ

(∑
t≥1

θt g(kt, it, jt)

)
.

4. Notice that if we put d(s, s′) = 2 for any distinct elements of S, then for every p and q in
∆(S) we have supf :S→IR,1−Lip|

∑
s psf(s)−

∑
s qsf(s)| = ‖p− q‖1.
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Particular cases : if θ = 1/n
∑n

t=1 δt, Γ[θ](π) is nothing but Γn(π).
For m ≥ 0 and n ≥ 1, we denote by Γm,n(π) the game Γ[θ](π) where θ =

1/n
∑m+n

t=m+1 δt. The payoff function is written in this case : γπm,n(σ, τ). The value
of Γm,n(π) will be denoted by vm,n(π).

Notice that v0,n is just vn, the value of the n-stage game. The following lemma
is true without the hypotheses HA′ and HB′.

Lemma 4.6. For every θ ∈ ∆f (IN
∗) and π ∈ ∆(K×C×D), the game Γ[θ](π) has

a value, denoted by v[θ](π), and both players have optimal strategies. Moreover,
v[θ] is a non expansive mapping from ∆(K × C ×D) to IR.

Proof : The existence of the value and optimal strategies is standard. Notice
that for every θ, π, and strategy pair (σ, τ) :

γπ[θ](σ, τ) =
∑

k1,c1,d1

π(k1, c1, d1) γ
δ(k1,c1,d1)

[θ] (σ, τ).

Since we use ‖.‖1, v[θ] is 1-Lipschitz. �

Definition 4.7. We define a mapping Ψ from ∆(K × D) to ∆f (X) by : for
each probability π on K ×D, Ψ(π) =

∑
d∈D π(d)δπd, where for each d, πd is the

conditional probability on K given d issued from π.

Notation 4.8. Let π be in ∆(K × C × D). We denote by π̄ the marginal of
π on K × D, and denote by π̂ the probability induced by π (or π̄) on X, i.e.
π̂ = Ψ(π̄) =

∑
d∈D π(d)δπd ∈ ∆f (X), where for each d, πd is the conditional

probability on K given d issued from π (or π̄).
We also put ∆E = {π ∈ ∆(K × C × D), π(E) = 1}, where E = {(k, c, d) ∈

K × C ×D, k̂(c) = k and d̂(c) = d}.

Lemma 4.9. Let π and π′ be in ∆E such that π̂ = π̂′. Then v[θ](π) = v[θ](π
′) for

each θ.

Proof : Fix θ in ∆f (IN
∗), π in ∆E, and a strategy pair (σ, τ).

γπ[θ](σ, τ) =
∑
d1

π(d1)
∑
k1

π(k1|d1)
∑
c1

π(c1|d1, k1) γ
δ(k1,c1,d1)

[θ] (σ, τ).

Since π(E) = 1, player 1 can deduce d1 and k1 from c1, so :

supσ∈Σγ
π
[θ](σ, τ) =

∑
d1

π(d1)
∑
k1

π(k1|d1)
∑
c1

π(c1|d1, k1) supσ∈Σγ
δ(k1,c1,d1)

[θ] (σ, τ).

But supσ∈Σγ
δ(k1,c1,d1)

[θ] (σ, τ) does not depend on c1, so for any fixed c∗ in C,

supσ∈Σγ
π
[θ](σ, τ) =

∑
d1

π(d1)
∑
k1

π(k1|d1) supσ∈Σγ
δ(k1,c∗,d1)

[θ] (σ, τ).
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Consequently, supσ∈Σγ
π
[θ](σ, τ) only depends on π̂, τ and θ, and v[θ](π) = infτ∈T

supσ∈Σγ
π
[θ](σ, τ) only depends on π̂ and θ. �

Remember that we assumed w.l.o.g. that the function (k̂, d̂) appearing in
hypothesis HA’ is surjective. It will be convenient in the sequel to use the following
notation.

Notation 4.10. For any (k, d) in K × D, we fix an element c(k, d) in C such
that k̂(c(k, d)) = k and d̂(c(k, d)) = d.

v[θ] has been defined as a mapping from ∆(K ×C ×D) to IR. We now define
value functions with domain X and ∆(X). Let p be in X. We define π in ∆E as
follows : fix d∗ in D, and π chooses, for each k in K, the element (k, c(k, d∗), d∗)
with probability pk. Then π̂ = δp, so by the previous lemma v[θ](π) only depends
on p. We thus define :

v[θ](p) = v[θ](π).

With a slight abuse of notation, v[θ] now also denotes a mapping from ∆(K) to
IR. And we have for each π in ∆E :

v[θ](π) = infτ∈T supσ∈Σγ
π
[θ](σ, τ),

=
∑
d1∈D

π(d1) infτ∈T

(∑
k1

π(k1|d1) supσ∈Σγ
δ(k1,c(k1,d1),d1)

[θ] (σ, τ)

)
,

=
∑
d1∈D

π(d1)v[θ](π
d1).

So we have obtained the following.

Lemma 4.11.

∀π ∈ ∆E,∀θ ∈ ∆f (IN
∗), v[θ](π) =

∑
d1∈D

π(d1)v[θ](π
d1).

Notation 4.12. ṽ[θ] denotes the affine extension of v[θ] on ∆(X), i.e. : ∀u ∈
∆(X), ṽ[θ](u) =

∫
p∈X v[θ](p)du(p).

From the previous computations, ṽ[θ] is clearly linked to the original value
function v[θ].

Claim 4.13.
∀θ ∈ ∆f (IN

∗),∀π ∈ ∆E, v[θ](π) = ṽ[θ](π̂).

So from the knowledge of v[θ] on X, one can deduce its extension ṽ[θ] on ∆(X)
and then the original value function v[θ] on ∆E. We have, for each p in ∆(K) (and
for any d∗ in D) :

v[θ](p) = infτ∈T

(∑
k1
pk1 supσ∈Σ γ

δ(k1,c(k,d∗),d∗)
[θ] (σ, τ)

)
. So v[θ] is a concave and

non expansive mapping from ∆(K) to IR. Consequently, ṽ[θ] is a non decreasing
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and non expansive mapping from ∆(X) to IR.

We finally define :

Definition 4.14. For π in ∆(K × C ×D), we put :

v∗(π) = infn≥1 supm≥0 vm,n(π).

4.2.2 An auxiliary stochastic game.

We now introduce a stochastic game with complete information, to be played
in pure strategies, as in section 3.

Definition 4.15. Recall that X = ∆(K). We put A = ∆(I)K and B = ∆(J),
and define for every p in X, a in A and b in B :

g(p, a, b) =
∑
k∈K

pk
∑
i∈I

∑
j∈J

ak(i)b(j)g(k, i, j) ∈ [0, 1],

g(p, a) = infb∈Bg(p, a, b),

Q(p, a, b) =
∑

(k,i,j)∈K×I×J

pkak(i)b(j)q(k, i, j) ∈ ∆(K × C ×D),

Q̄(p, a) =
∑

(k,i)∈K×I

pkak(i)q̄(k, i) ∈ ∆(K ×D),

l(p, a) = Ψ(Q̄(p, a)) ∈ ∆f (X).

For u in ∆f (X), we write Γ̂(u) for the stochastic game (X,A,B, g, l, u) with
initial distribution u.

By hypothesis HB’, it is easy to see that the marginal of Q(p, a, b) on ∆(K×D)
does not depend on b, and precisely is Q̄(p, a). l(p, a) is nothing but∑

d∈D Q̄(p, a)(d) δQ̄(p,a)d , where for each d, Q̄(p, a)d is the conditional probability
on K given d issued from Q̄(p, a). Notice also that for every (p, a, b), Q(p, a, b)
belongs to the convex set ∆E.

Suppose that in the original game Γ(π), the current state is selected according
to p, player 1 knows k and plays the mixed action ak ∈ ∆(I), whereas player 2
just knows p and plays the mixed action b ∈ ∆(J). Then g(p, a, b) is the (ex-ante)
expected payoff for player 1, and l(p, a) is the (ex-ante) distribution of player 2’s
future belief on the next state.

We will eventually apply theorem 3.17 to Γ̂(π̂), so we have to check the hypo-
theses H1 to H7 of section 3. H1, H2, H3 and H4 are clearly true. We now need
the following properties of the mapping Ψ.

Lemma 4.16. Ψ is concave :

∀π′, π′′ ∈ ∆(K ×D),∀λ ∈ [0, 1], Ψ(λπ′ + (1− λ)π′′) � λΨ(π′) + (1− λ)Ψ(π′′).
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Proof : Write π = λπ′+(1−λ)π′′. Notice that for each d inD, πd = 1
π(d)

(λπ′(d)π′d+

(1− λ)π′′(d)π′′d). Let f be a concave continuous mapping from X to IR, we have
to show that Ψ(π)(f) ≥ λΨ(π′)(f) + (1− λ)Ψ(π′′)(f).

λΨ(π′)(f) + (1− λ)Ψ(π′′)(f) = λ
∑
d

π′(d)f(π′d) + (1− λ)
∑
d

π′′(d)f(π′′d),

=
∑
d

π(d)

(
λπ′(d)

π(d)
f(π′d) +

(1− λ)π′′(d)

π(d)
f(π′′(d)

)
,

≤
∑
d

π(d)f

(
λπ′(d)

π(d)
π′d +

(1− λ)π′′(d)

π(d)
π′′(d)

)
,

=
∑
d

π(d)f(πd) = Ψ(π)(f). �

For any p in X, the marginal Q̄(p, a) is affine in a, so we obtain that l(p, a) =
Ψ(Q̄(p, a)) is concave in a. Hypothesis H6 will then immediately follow from the
next lemma.

Lemma 4.17. Ψ is continuous.

Proof : Let (πn)n be a sequence in ∆(K×D) converging for the norm ‖.‖1 to π.
It is easy to see that for every f continuous, Ψ(πn)(f) =

∑
d πn(d)f(πdn) converges

as n goes to infinity to
∑

d π(d)f(πd) = Ψ(π)(f). �

Remark 4.18. One can show that Ψ is Lipschitz, but it is not 1-Lipschitz when
‖.‖1 and the Wasserstein distance are used.

Lemma 4.19. “Splitting hypothesis” H7. Consider a convex combination p =∑S
s=1 λsps in X, and a family of actions (as)s∈S in AS. Then there exists a in A

such that :

l(p, a) �
∑
s∈S

λsl(ps, as) and g(p, a) ≥
∑
s∈S

λsg(ps , as).

Proof : Define a : K −→ ∆(I) with the well known splitting procedure of
Aumann and Maschler : observe k in K which has been selected according to
p, then choose s with probability λsp

k
s/p

k, and finally play aks . Formally, put

ak =
∑

s∈S
λspk

s

pk aks ∈ ∆(I) if pk > 0, and define arbitrarily ak if pk = 0. We have :

Q̄(p, a) =
∑
k∈K

∑
i∈I

pkak(i)q̄(k, i),

=
∑
s∈S

∑
k∈K

∑
i∈I

λsp
k
sa

k
s(i)q̄(k, i),

=
∑
s∈S

λsQ̄(ps, as)

So by concavity of Ψ, we have l(p, a) �
∑

s λsl(ps, as).
Regarding payoffs, we have for each b in B, g(p, a, b) =

∑
s λsg(ps, as, b), so

infb∈Bg(p, a, b) ≥
∑

s∈S λsinfb∈Bg(ps, as, b). �
Up to now, only H5 remains to be proved.

32



4.2.3 The recursive formula.

We now prove a standard recursive formula for the value functions. As in
definition 3.20, for θ =

∑
t≥1 θtδt we define θ+ as the law of t∗ − 1 given that

t∗ ≥ 2, so that θ+ =
∑

t≥1
θt+1

1−θ1 δt if θ1 6= 1, and θ+ is defined arbitrarily if θ1 = 1.

Proposition 4.20. For θ in ∆f (IN
∗) and p in X,

v[θ](p) = max
a∈A

min
b∈B

(
θ1g(p, a, b) + (1− θ1)ṽ[θ+](l(p, a))

)
,

= min
b∈B

max
a∈A

(
θ1g(p, a, b) + (1− θ1)ṽ[θ+](l(p, a))

)
.

For every π in ∆E, in the game Γ[θ](π) both players have optimal strategies only
depending on π̄ ∈ ∆(K ×D).

Proof : By the proof of lemma 4.9, we know that for any τ in T and fixed c∗ in
C,

supσ∈Σγ
π
[θ](σ, τ) =

∑
d1

π(d1)
∑
k1

π(k1|d1) supσ∈Σγ
δ(k1,c∗,d1)

[θ] (σ, τ).

And τ is optimal in Γ[θ](π) if and only if
∑

d1
π(d1)

∑
k1
π(k1|d1) supσ∈Σγ

δ(k1,c∗,d1)

[θ] (σ, τ)

=
∑

d1
π(d1)infτ ′∈T

∑
k1
π(k1|d1) supσ∈Σγ

δ(k1,c∗,d1)

[θ] (σ, τ ′). Hence player 2 has an op-

timal strategy in Γ[θ](π) that only depends on π̄.
We now show that player 1 has an optimal strategy in Γ[θ](π) that only de-

pends on π̄. For every d1 in D, fix an optimal strategy σ(d1) of player 1 in the
game Γ[θ]

(∑
k1∈K π(k1|d1)δ(k1,c(k1,d1),d1)

)
. Define now σ that plays after each ini-

tial signal c1 exactly what σ(d̂(c1)) plays after the initial signal c(k̂(c1), d̂(c1)).
One can check that σ is optimal in any game Γ[θ](π

′), if π′ ∈ ∆E and π̄′ = π̄.
We now prove the recursive formula by induction on the greatest element in

the support of θ. v1(p) = maxa∈A minb∈B g(p, a, b) = minb∈B maxa∈A g(p, a, b) is
easy by Sion’s theorem.

Fix now n ≥ 2, and assume that the proposition is true for every θ with
support included in {1, ..., n − 1}. Fix a probability θ =

∑n
t=1 θtδt, and notice

that θ+ has a support included in {1, ..., n − 1}. Fix also p in X. The equality
maxa∈A minb∈B (θ1g(p, a, b)+(1−θ1)ṽ[θ+](l(p, a))) = minb∈B maxa∈A (θ1g(p, a, b)+
(1− θ1)ṽ[θ+](l(p, a))) is standard and similar to the proof of proposition 3.21, so
the proof is omitted here.

By definition, we have v[θ](p) = v[θ](π), where π =
∑

k p
kδ(k,c(k,d∗),d∗) ∈ ∆(K×

C ×D), and d∗ is an arbitrary element of D. We thus consider the game Γ[θ](π).
Let (σ, τ) be a strategy pair. Write a = (ak)k = (σ1(c(k, d∗)))k in A = ∆(I)K for
the action played by player 1 at stage 1, and write b = τ1(d∗) ∈ B = ∆(J) for
the first stage action of player 2. We have :

γπ[θ](σ, τ) = θ1g(p, a, b) + (1− θ1)
∑
k,i1,j1

pkak(i1)b(j1)γ
q(k,i1,j1)

[θ+] (σ+
c(k,d∗),i1

, τ+
d∗,j1

),
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where σ+
c(k,d∗),i1

and τ+
d∗,j1

are continuation strategies.

a being fixed, we can choose σ+ an optimal strategy for player 1 in the
game Γ[θ+](Q(p, a, j1)), and this choice can be made independently of j1 since
the marginal Q̄(p, a, j1) does not depend on j1. We have for every j1 in J :∑

k,i1
pkak(i1)γ

q(k,i1,j1)

[θ+] (σ+, τ+
d∗,j1

) = γ
Q(p,a,j1)

[θ+] (σ+, τ+
d∗,j1

) ≥ v[θ+](Q(p, a, j1)) =

ṽ[θ+](l(p, a)). By playing a at stage 1, and then according to σ+ (for any first signal
c(k, d∗) and first action i1), player 1 can thus guarantee : infbθ1g(p, a, b) + (1 −
θ1)ṽ[θ+](l(p, a)). So v[θ](p) ≥ maxa∈A minb∈B(θ1g(p, a, b)+ (1− θ1)ṽ[θ+](l(p, a))).

We finally show that player 2 can defend maxa∈A minb∈B(θ1g(p, a, b) +(1 −
θ1)ṽ[θ+](l(p, a))) in Γ[θ](π). Fix a strategy σ of player 1. a = (σ1(c(k, d∗)))k being
fixed, choose b in B achieving infbg(p, a, b). We also choose τ+ in T an optimal
strategy for player 2 in the game Γ[θ+](Q(p, a, j1)), and this choice can be made
independently of j1. τ+ now being fixed, notice that there exists a strategy σ′ of
player 1 which is a best reply to τ+ in any game Γ[θ+](π

′), with π′ ∈ ∆E. We now
have :

γπ[θ](σ, τ) = θ1g(p, a, b) + (1− θ1)
∑
j1

b(j1)
∑
k,i1

pkak(i1)γ
q(k,i1,j1)

[θ+] (σ+
c(k,d∗),i1

, τ+),

≤ θ1g(p, a) + (1− θ1)
∑
j1

b(j1)
∑
k,i1

pkak(i1)γ
q(k,i1,j1)

[θ+] (σ′, τ+),

= θ1g(p, a) + (1− θ1)
∑
j1

b(j1)γ
Q(p,a,j1)

[θ+] (σ′, τ+),

= θ1g(p, a) + (1− θ1)
∑
j1

b(j1)v[θ+](l(p, a)),

≤ supa∈A
(
θ1g(p, a) + (1− θ1)ṽ[θ+](l(p, a))

)
So v[θ](p) ≤ maxa∈A minb∈B

(
θ1g(p, a, b) + (1− θ1)ṽ[θ+](l(p, a))

)
. �

4.2.4 Player 2 can guarantee v∗(π) in Γ(π).

We first have an analog of lemma 3.23. Recall that a strategy for player 2 is a
sequence τ = (τ1, τ2, ..., τt, ...), where for each t, τt is a mapping from (D×J)t−1×D
to ∆(J).

Lemma 4.21. For every π ∈ ∆E, n ≥ 1 and m ≥ 0, ∀τ1, ..., τm, ∃τm+1, ..., τm+n

such that any strategy of player 2 starting by τ1, ..., τm, ..., τm+n is optimal in the
game Γm,n(π).

Proof : Fix π, m, n, and τ1, ..., τm, with τt : (D× J)t−1×D −→ ∆(J) for every
t ≤ m. Define T † as the set of strategies of player 2 that start with τ1,...,τm.
Let us now consider the zero-sum game Γ†m,n(π) with strategy set Σ for player
1, T † for player 2, and payoff function (the restriction of) vm,n. Stages greater
than m + n do not care, so Γ†m,n(π) can be seen as the mixed extension of a
finite game, where nature plays τ1, ..., τm instead of player 2 for the first m
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stages. Consequently, Γ†m,n(π) has a value which we denote by v†m,n(π). Clearly,
v†m,n(π) ≥ vm,n(π). Now, for any strategy σ of player 1, it is easy to construct,
by the recursive formula of proposition 4.20, a strategy τ that defends vm,n(π)
against σ. So v†m,n(π) = vm,n(π), and considering an optimal strategy of player 2
in Γ†m,n(π) concludes the proof. �

Proposition 4.22. For each π in ∆E, player 2 can guarantee v∗(π) in the game
Γ(π).

Proof : Divide the set of stages into consecutive blocks B1, B2,..., Bm of equal
length n. Define a strategy τ of player 2 as follows. At block B1, pick τ1, τ2, ..., τn
in order to get an optimal strategy in Γ0,n(π). At block B2, use lemma 4.21 to
construct τn+1, ..., τ2n and get an optimal strategy also in Γn,n(π), etc... At block
Bm+1, given τ1,...,τnm, use lemma 4.21 to define τnm+1,..., τn(m+1) to get an optimal
strategy in Γnm,n(π).

For any σ and M ≥ 1, we have :

IEπ,σ,τ

(
1
Mn

∑Mn
t=1 g(kt, it, jt)

)
≤ 1

M

∑M−1
m=0 ṽmn,n(π) ≤ supmṽm,n(π). So player 2

can guarantee v∗(π). �

We now have the following inequality chain, for π in ∆E :

v(π) ≤ v−(π) ≤ v+(π) ≤ v(π) ≤ v∗(π).

4.2.5 Player 1 can guarantee v∗(π) via the auxiliary game.

For f continuous and α in [0, 1], we defined in notation 3.14 the mapping
Φ(α, f) as follows : ∀p ∈ X,

Φ(α, f)(p) = supa∈Ainfb∈B

(
α g(p, a, b) + (1− α) f̃(l(p, a))

)
.

We now simply define the following subset of mappings from X to IR :

D = {v[θ], θ ∈ ∆f (IN
∗)}.

By the recursive formula, we obtain that D is stable under Φ : ∀f ∈ D,∀α ∈ [0, 1],
Φ(α, f) ∈ D. Since v1 = Φ(1, 0) ∈ D and all elements of D are non expansive,
the hypothesis H5 of section 3 is satisfied.

Proposition 4.23.
a) For every u in ∆f (X), the auxiliary game Γ̂(u) = (X,A,B, g, l, u) defined

in definition 4.15 satisfies the hypotheses H1,..., H7 of theorem 3.17.
b) For every θ in ∆f (IN

∗) and u in ∆f (X), the auxiliary game Γ̂[θ](u) defined

from Γ̂(u) in definition 3.20 has a value which corresponds to ṽ[θ](u), as defined
in notation 4.12.

c) For π in ∆E, anything that can be guaranteed by player 1 with Markov
strategies in Γ̂[θ](π̂) can be guaranteed by player 1 in the original game Γ(π).

35



Proof : a) H1,...,H7 have been proved. b) The equality between the value func-
tions of the original game and of the auxiliary game comes from propositions
3.21 and 4.20. c) A Markov strategy of player 1 is a sequence (σt)t≥1, where for
each t σt is a mapping from X to A giving the action to be played on stage t de-
pending on the current state in X = ∆(K). It induces a probability distribution
on (X × A)∞, regardless of player 2’s actions (see subsection 3.3.3). Any such
strategy can be mimicked by player 1 in the original game, since this player can
compute at each stage the belief of player 2 on the state in K. �

Notice that the analog of point c) is not true regarding player 2, because in
the original game this player can compute posterior beliefs on K only if he knows
player 1’s strategy.

We can now conclude the proof of theorem 4.4. Fix π in ∆E, and put u =
π̂ ∈ ∆f (X). For every θ, we have v[θ](π) = ṽ[θ](u) by proposition 4.23 b) and
claim 4.13. So v∗(π) = infnsupmvm,n(π) = infnsupmṽm,n(u) = v∗(u). By theorem

3.17, (ṽn(u))n converges to v∗(u), and player 1 can guarantee v∗(u) in Γ̂(u) with
a Markov strategy. So we obtain that (vn(π))n converges to v∗(π), and player 1
can guarantee this quantity in the original game Γ(π). Finally Γ(π) has a uniform
value which is :

v(π) = v−(π) = v+(π) = v(π) = v∗(π).

� � � �

4.3 Comments and consequences

4.3.1 Byproducts of the proof.

The proof of theorem 4.4 shows, under the very same hypotheses HA’ and
HB’, more than the existence of the uniform value.

In particular, the application of theorem 3.17 to the auxiliary game gives :

v∗(π) = infn≥1supm≥0vm,n(π) = supm≥0infn≥1vm,n(π),

= infn≥1supm≥0wm,n(π) = supm≥0infn≥1wm,n(π).

where vm,n(π) is defined in definition 4.5, and wm,n(π) = infθ∈∆({1,...,n})v[θm,n](π)
(see definition 3.32 and corollary 3.39).

And (vn)n uniformly converges to v∗ on ∆E.
Concerning ε-optimal strategies, we have seen that player 1 can guarantee

v∗(u) with Markov strategies, i.e. with strategies that play at each stage a mixed
action determined by player 2’s current belief on the current state of nature in
K.

Regarding player 2, one can strengthen the construction of proposition 4.22
and show as in remark 3.42 that player 2 has 0-optimal strategies in the game
Γ(π). �

36



4.3.2 HA’ or HB’ can not be withdrawn in theorem 4.4.

An example of a game satisfying HA’ and having no uniform value is given in
Sorin, 1984. It is a particular case of a stochastic game with incomplete informa-
tion, where after each stage the players perfectly observe the actions just chosen.
(There are two possible stochastic games of “Big Match” type, and player 1 only
knows which one is being played.)

An example of a game satisfying HB’ and having no uniform value is given
in Sorin and Zamir, 1985. It belongs to a class of games called repeated games
with incomplete information on one and a half side : at each stage, both players
will play the same matrix game. Player 1 initially receives a signal which tells
him which matrix game will be played, but does not know the initial signal of
player 2, so can not deduce from his signal the belief of player 2 on the selected
matrix game. The transition function q is particularly simple there : q(k, i, j) is
the Dirac measure on (k, j, i).

4.3.3 Applications.

Consider the following model of repeated games with standard monitoring.
There are : a finite set of states K, an initial probability p on ∆(K), finite action
sets I and J , for each state k a payoff matrix (Gk(i, j))(i,j), and for each state k
in K and action i in I there is a probability l(k, i) ∈ ∆(K). At stage 1, a state k1

is selected according to p and told to player 1 only. Then simultaneously player 1
chooses i1 in I and player 2 chooses j1 in J . The payoff for player 1 is Gk1(i1, j1),
and (i1, j1) is publicly announced. At stage t ≥ 2, kt is selected according to
l(kt−1, it−1) and told to player 1 only. Then the players choose it and jt. The
stage payoff for player 1 is Gkt(it, jt), (it, jt) is publicly announced, and the play
goes to stage t+ 1.

This model is a generalization of the model of Markov chain repeated games
with lack of information on one side introduced in Renault, 2006. Here, player
1 is not only informed of the sequence of actions, but also he can influence the
state process. Studying this model has lead to the present paper, and some ideas
developed here already come from Renault 2006. It also contains stochastic games
with a single controller and incomplete information on the side of his opponent, as
studied in Rosenberg et al., 2004. So the present paper generalizes both theorem
2.3 in Renault 2006, and theorem 6 in Rosenberg et al. 2004, and as a consequence
it also generalizes the original existence result of Aumann and Maschler (1995)
for the value of (non stochastic) repeated games with incomplete information on
one side and perfect monitoring.

Notice that our result does not imply the existence of the value for models
when player 1 receives signals without having a perfect knowledge of the belief
of player 2 on the state (see Aumann Maschler 1995, or Zamir, 1992 for repeated
with lack of information on one side, or Neyman 2008 for Markov chain repeated
games with lack of information on one side). When the state is uncontrolled, more
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flexibility on the signalling structure can be allowed.

4.3.4 Open problems.

1. We have seen that hypotheses HA’ and HB’ can not be withdrawn in theo-
rem 4.4. However, strengthening HB’ into HB may allow to weaken HA’ into the
following hypothesis.

Hypothesis HA” : Player 1 is more informed than player 2, i.e. there exists a
mapping d̂ : C −→ D such that : if E denotes {(k, c, d) ∈ K × C ×D, d̂(c) = d},
we have : π(E) = 1, and q(k, i, j)(E) = 1, ∀(k, i, j) ∈ K × I × J.

If we only assume that HA” and HB’ hold, it may be the case that player 2
controls player 1’s signal, hence in some sense player 2 may “manipulate” player
1’s knowledge of the state. So our proof does not apply here, and in our opinion
most likely the value may fail to exist.

The situation is different if we assume HA” and HB. Player 1 always have
more information than player 2 about the state, but the set X = ∆(K) is not
sufficient to characterize, after each stage, the difference of information from
player 1 to player 2. The natural state space here may rather be the set {(u, v) ∈
∆f (X)×∆f (X), u � v}. Does the uniform value exist in this case ?

2. In general, recall that lemma 4.6 is true without hypotheses, so in particu-
lar the n stage values vn always exist. There is no known example of a zero-sum
repeated game (defined with finite data exactly as in subsection 4.1) where limnvn
does not exist.

3. Assume that player 1 always has more information than player 2, i.e. that
player 1 can deduce from his signal both the signal and the action of player 2.
This is the case, e.g., when HA holds. It has been conjectured by Mertens, Sorin
and Zamir (see Mertens, 1986, p.1572, Sorin, 2002, 6.5.8. p.147, or Mertens et al,
1994, Part C, p. 451) that for such repeated games, the limit of (vn(π))n exists
and can be guaranteed by player 1 in Γ(π).

The approach used here might help to prove the conjecture. An important
step would be to obtain an analog of the result on dynamic programming (Re-
nault, 2011) for two-player stochastic games with deterministic transitions and
action-independent payoffs. More precisely, let Z be a state space, A and B be
action sets, r be a payoff function from Z to [0, 1], and f be a transition from
Z × A× B to Z. At each stage, if the current state is z simultaneously player 1
chooses a and player 2 chooses b. Player 1’s payoff is r(z), and (a, b) and the new
state f(z, a, b) are publicly announced. Z being a precompact metric space, can
we find “nice” uniform equicontinuity conditions on some auxiliary value func-
tions that will ensure the existence 5 of the uniform value ?

5. Mertens and Neyman (1981) already provided conditions on the discounted values which
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4. Existence of optimal/stationary strategies. Our proof mainly deals with the
value functions and does not tell much regarding the existence of optimal and/or
stationary strategies for the players. We just obtained the existence of 0-optimal
strategies of player 2 in repeated games with an informed controller and in the
stochastic games of section 3. Regarding player 1, since our existence result in
dynamic programming does not provide the existence of a 0-optimal strategy for
player 1 (see counter example 5.2. in Renault, 2011), we do not obtain such an
existence result in the stochastic games of section 3 and consequently in repeated
games with an informed controller. One just obtains the existence of stationary
ε-optimal strategies for player 1, for each ε > 0 (see remark 5.3 in Renault 2011
or the proof of theorem 2 in Rosenberg et al., 2002).

However, several positive results in this direction can be found in the littera-
ture. For stochastic games with complete information and perfect information in
which player 1 controls the transitions, Filar (1981) as well as Parathasarathy and
Raghavan (1981) proved that if the number of states is finite then both players
have optimal stationary strategies. This is also clearly the case if one considers
the stochastic games of level 2 obtained from standard repeated games with lack
of information on one side a la Aumann and Maschler. Moreover, Rosenberg et
al. proved the existence of a 0-optimal strategy for player 1 in stochastic games
with a single controller and incomplete information on the side of his opponent
(2004). Neyman (2008) proved the existence of a 0-optimal strategy for player 1 in
Markov chain repeated games with lack of information on one side. Consequently,
it may well be the case that player 1 has a stationary 0-optimal strategy for the
stochastic games of section 3, and a 0-optimal strategy for repeated games with
an informed controller. And player 2 may have a stationary optimal strategy in
the stochastic games of section 3.
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guarantee the existence of the uniform value in stochastic games, but it seems difficult to apply
them here.

39



References.

Aumann, R.J. and M. Maschler (1995) : Repeated games with incomplete information.
With the collaboration of R. Stearns. Cambridge, MA : MIT Press.

Ash, R.B. (1972) : Real Analysis and Probability, Probability and Mathematical Sta-
tistics, Academic Press.

Coulomb, J.M. (2003) : Games with a recursive structure. based on a lecture of J-F.
Mertens. Chapter 28, Stochastic Games and Applications, A. Neyman and S. Sorin eds,
Kluwer Academic Publishers.

Doob, J.L. (1994) : Measure Theory. Springer-Verlag, New-York.

Filar, J. (1981) : Ordered field property for stochastic games when the player who
controls transitions changes from state to state. Journal of Optimization Theory and
Applications, 4, 513-515.

Hörner J., D. Rosenberg, E. Solan and N. Vieille (2010) : Markov Games with One-
Sided Information. Operations Research, 58, 1107-1115.

Malliavin, P. (1995) : Integration and probability. Springer-Verlag, New-York.

Mertens, J-F. (1986) Repeated games. Proceedings of the International Congress of
Mathematicians, Berkeley 1986, 1528–1577. American Mathematical Society, 1987.

Mertens, J-F. and A. Neyman (1981) : Stochastic games. International Journal of Game
Theory, 1, 39-64.

Mertens, J-F., S. Sorin and S. Zamir (1994) : Repeated Games. Parts A, B and C.
CORE Discussion Papers 9420, 9421 and 9422.

Meyer, P.A. (1966) : Probabilités et potentiel. Hermann.

Neyman, A. (2008) : Existence of Optimal Strategies in Markov Games with Incomplete
Information. International Journal of Game Theory, 581-596.

Parthasarathy, T and T.E.S. Raghavan (1981) : An orderfield property for stochas-
tic games when one player controls transition probabilities. Journal of Optimization
Theory and Applications, 33, 375-392.

Renault, J. (2006) : The value of Markov chain games with lack of information on one
side. Mathematics of Operations Research, 31, 490-512.

Renault, J. (2011) : Uniform value in Dynamic Programming. Journal of the European
Mathematical Society, vol. 13, p.309-330.

40



Rosenberg, D., Solan, E. and N. Vieille (2002) : Blackwell Optimality in Markov Deci-
sion Processes with Partial Observation. The Annals of Statisitics, 30, 1178-1193.

Rosenberg, D., Solan, E. and N. Vieille (2004) : Stochastic games with a single control-
ler and incomplete information. SIAM Journal on Control and Optimization, 43, 86-110.

Sorin, S. (1984) : Big match with lack of information on one side (Part I), International
Journal of Game Theory, 13, 201-255.

Sorin, S. (2002) : A first course on Zero-Sum repeated games. Mathématiques et Ap-
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