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1. Introduction. Repeated games with complete information are known to have multiple equilibria.
The prominent result in this direction is the folk theorem which asserts that in games with perfect
monitoring and perfectly rational players, every feasible and individually rational payoff can be sustained
by an equilibrium of the repeated game. A more realistic model to study involves games with imperfect
monitoring, where players imperfectly observe other players’ actions, and bounded rationality, where
players have limited information processing abilities.

The literature on games with imperfect monitoring seeks to characterize the set of equilibrium pay-
offs (see e.g., Lehrer [21, 22], Abreu et al. [1], Fudenberg and Levine [15], Tomala [36], Renault and
Tomala [32]), and the literature on games with bounded rationality examines whether equilibrium pay-
offs of the unrestricted repeated game can be approximated by equilibrium payoffs of the repeated game
with bounded rationality (see e.g., Rubinstein [33], Abreu and Rubinstein [2], Kalai and Stanford [18],
Lehrer [20, 23], Ben-Porath [6, 7], Sabourian [34], Neyman [27], Gossner and Hernández [16, 17], Bavly
and Neyman [5]). Typically these two problems have been studied separately in the literature. A notable
exception is a recent paper by Cole and Kocherlakota [11], where a parametric class of repeated games
with imperfect monitoring is examined. These authors study the set of perfect public equilibrium payoffs
which are sustained by strongly symmetric strategies with recall K, that is equilibrium payoffs of the
infinitely repeated games obtained by finite recall strategies. They show that, for some specifications of
the parameters, for large K this set of equilibrium is equal to the whole set of equilibrium payoffs.

The present paper also aims at blending these two approaches by considering equilibria of the repeated
game where each player is restricted to finite recall strategies. Since the problem is quite difficult when
dealt in its generality, as a first step in this direction, we analyze a minority game. In this class of
games each player has two actions and aims at choosing the action that is less popular among all players.
The game is repeated and after each stage the most popular (or equivalently the less popular) action is
publicly announced.

Attention to phenomena where it is advantageous to be in the minority is present in some papers by
Arthur [3, 4]. Motivated by his, ideas a whole literature developed, especially in journals of theoretical
physics. The reader is referred to the recent books by Challet et al. [10] and Coolen [12] for a history of
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the problem, its statistical-mechanics analysis, and some applications to financial markets.

If the analysis of minority games started considering situations involving a huge number of players, some
models with a small number of players capture interesting phenomena and require a strategic analysis.
For instance consider the case where each of three agents can satisfactorily carry out a procedure only if
a minimal throughput is obtained via a communication link. They can choose one of two links and the
minimal throughput is guaranteed only if one agents uses that link alone. This is often the case when
downloading data in P2P systems (see, e.g., Suri et al. [35]).

Renault et al. [29] are the first to consider a minority game from a strategic viewpoint. They prove an
undiscounted folk theorem for this game. In particular, they construct a uniform equilibrium where the
payoff of each player is zero. It is interesting to notice that a folk theorem exists for this game even if no
identifiability condition à la Fudenberg et al. [14] holds. Discounted and finitely repeated versions of the
minority game are studied by Renault et al. [30].

In the present paper, a three-player minority game with imperfect public monitoring and bounded
recall is studied, and only pure strategies are considered. Bounded recall and public signal is a typical
assumption for minority games in the physics literature. We first analyze public equilibria. Public
strategy profile in those games can be represented as the choice of a subgraph in a de Bruijn graph,
together with a coloring of the vertices, i.e. a rule that assigns each vertex to a player. Using these
tools we compute some equilibria. Other authors have used de Bruijn graphs and sequences to model
behaviors with bounded recall: see, e.g., Challet and Marsili [9], Piccione and Rubinstein [28], Gossner
and Hernández [16, 17], Liaw and Liu [25].

We look then at the asymptotic behavior of the set of bounded recall equilibrium payoffs. For any game
with bounded recall and imperfect public monitoring, the set of public equilibria with bounded recall is
a subset of the set of public equilibria with unbounded recall and the set of public-equilibrium payoffs
increases with the size of the recall. But, for some games, it may not converge to the set of unbounded
recall public equilibrium payoffs. For instance, consider a repeated game with a public blank signal.
Since players have no information, the set of unbounded recall equilibrium payoffs is the convex hull of
stage-Nash payoffs. In the game with bounded recall and public strategies, the public memory is always
empty, so players always choose the same action and bounded recall public equilibria are nothing but
stage-Nash equilibria. Other examples of games where convergence fails, even under perfect monitoring,
can be found in a earlier version of this paper (Renault et al. [31]).

For the minority game, we show that the set of public equilibrium payoffs does converge to the set of
unbounded recall public equilibrium payoffs, as the length of recall increases.

The set of private equilibria lacks the nice properties of public equilibria and we exhibit a private
equilibrium with recall 3 whose payoff does not lie in the set of unbounded-recall-private-equilibrium
payoffs. These results are somehow connected to Mailath et al. [26] and Kandori and Obara [19], who
also compare public and private equilibria, but, to the best of our knowledge, this paper is the first that
considers such a comparison in a bounded recall framework.

The paper is organized as follows. Section 2 describes a model of repeated games with imperfect public
monitoring and bounded recall. Section 3 gives the main results for public equilibria. Section 4 deals
with private equilibria.

2. Repeated games with public signals.

2.1 Description of the model. Consider a stage game

G = 〈N, (Ai)i∈N , (gi)i∈N 〉. (2.1)

In this setting N is a set of players, for each i ∈ N , Ai is the set of actions available to player i,
A := ×i∈N Ai is the set of action profiles, and the map gi : A → R is the payoff function for player i.
Denote by g : A → RN the vector payoff function (gi)i∈N . For every i ∈ N , put A−i = ×j∈N,j 6=i Aj ,
therefore a−i ∈ A−i will be a shortcut for (aj : j 6= i) ∈ ×j∈N,j 6=i Aj . Consider then a set of signals U
and a mapping ` : A → U . In the whole paper the sets N,Ai, U are assumed to be non-empty and finite.

This game is repeated over time. At each round t = 1, 2, . . . , players choose actions and if at ∈ A is
the action profile at stage t, they observe a public signal ut = `(at) before proceeding to the next stage.
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The set of histories of length t ≥ 0 for player i is Hi
t := (Ai×U)t, Hi

0 being a singleton, and Hi = ∪t≥0Hi
t

is the set of all histories for player i.

When U = A and ` is the identity mapping on A, each player fully observes the action profile. When
the function ` is constant, no player receives information on the action profile. These two cases will be
referred to as perfect monitoring and trivial monitoring, respectively.

A strategy for player i is a mapping σi : Hi → Ai. The set of strategies for player i is denoted by
Σi, and similar conventions are adopted as for actions: Σ = ×j∈N Σj , Σ−i = ×j∈N,j 6=i Σj . A profile
of strategies σ = (σi)i∈N generates a unique history (at(σ), ut(σ))t≥1 ∈ (A × U)∞, where for each t,
ut(σ) = `(at(σ)). In the whole paper only pure strategies are considered.

Given a strategy profile σ, the average payoff for player i up to time T is γi
T (σ) = 1

T

∑T
t=1 gi(at(σ)),

and γi(σ) = limT→∞ γi
T (σ), when the limit exists.

Let Γ∞ be the infinitely repeated game. The next definition recalls the concept of uniform equilibrium.

Definition 2.1 A strategy profile σ is a uniform equilibrium of Γ∞ if

(a) for all i ∈ N , γi(σ) exists.

(b) for all ε > 0 there exists T0 such that for all T ≥ T0, for all i ∈ N , for all τ i ∈ Σi, γi
T (τ i, σ−i) ≤

γi
T (σ) + ε.

Denote by E∞ the set of uniform equilibrium payoffs of Γ∞, i.e., the set of vectors (γi(σ))i∈N , where
σ is a uniform equilibrium of Γ∞.

2.2 Public strategies.

Definition 2.2 Let i ∈ N . The strategy σi ∈ Σi is called public if for all t ≥ 1, and for all histories of
length t, h = (ai

1, u1, . . . , a
i
t, ut) and h′ = (bi

1, v1, . . . , b
i
t, vt),

(∀s ∈ {1, . . . , t}, ui
s = vi

s) =⇒ σi(h) = σi(h′).

In words a public strategy depends only on public signals. The set of public strategies of player i is
denoted by Σ̂i. A strategy profile σ is a public equilibrium if it is a uniform equilibrium and each player’s
strategy is public. The corresponding set of equilibrium payoffs is denoted by Ê∞. In the case of perfect
monitoring, any strategy is public, since the public history contains all the past.

In repeated games with unbounded recall every pure strategy is equivalent to a public strategy. Know-
ing her own strategy and the history of public signals, a player can deduce the actions she played in the
past (see e.g. Tomala [36]). More precisely, for every σi ∈ Σi, there exists σ̂i ∈ Σ̂i such that, for all
τ−i ∈ Σ−i and for each stage t, at(σi, τ−i) = at(σ̂i, τ−i).

An immediate corollary of this is that Ê∞ = E∞.

To emphasize the dependence on the player’s own past actions, a strategy that is not public will be
called private. As it will be seen in the sequel, in games with bounded recall, considering public or private
strategies makes a big difference.

2.3 Bounded recall. Consider now players who recall only recent observations. Informally, a strat-
egy has recall k, if the player who uses it remembers only what happened on the k previous stages, and
plays in a stationary way, i.e., this player has no clock and relies on her recall, but not on time. The
formal definition is the following.

Definition 2.3 Given an integer k ∈ N, the strategy σi ∈ Σi has recall k if there exists a mapping
f : (Ai × U)k → Ai such that for all t ≥ k and for all histories h = (ai

1, u1, . . . , a
i
t, ut) ∈ Hi

t,

σi(h) = f(ai
t−k+1, ut−k+1, . . . , a

i
t, ut).

By convention, a strategy that has recall 0 is a constant mapping on Hi.



4 Renault, Scarsini, and Tomala: A Minority Game with Bounded Recall
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

Lehrer [20] and Bavly and Neyman [5] use a somewhat different definition: in those papers, a bounded
recall strategy is the choice of an initial recall plus the mapping f . This implies that whenever the initial
recall re-appears during the course of the game, the player will play in the same way as at early stages.
In the definition given here, a player plays as she wishes before stage k and then uses the stationary rule
f . We believe that asymptotic results are unlikely to differ using one or another definition, however for
small values of k, the initialization phase might be critical. Also note that Sabourian [34] uses the same
definition as the one given above.

The set of strategies for player i that have recall k is denoted by Σi
k and Σk := ×i∈N Σi

k. Since the
game is finite, for each σ ∈ Σk, the sequence at(σ) is eventually periodic, i.e. periodic from some stage
on, which implies the existence of γi(σ). The normal form game Γk = 〈N, (Σi

k), (γi)〉 is thus well defined
and the set of Nash equilibrium payoffs of Γk in pure strategies is denoted by Ek.

Let Σ̂i
k = Σ̂i∩Σi

k be the set of public strategies with recall k, Γ̂k = 〈N, (Σ̂i
k), (γi)〉 be the public-strategy

game with recall k, and Êk be the set of its (pure) Nash equilibrium payoffs.

Remark 2.1 In games with bounded recall, considering public strategies is a true restriction. As men-
tioned before, every pure strategy σi is equivalent to a public strategy σ̂i but the bounded recall property
is not preserved. It might be that σi has recall k but σ̂i does not. For example, consider trivial monitoring
(the mapping ` is constant). Given any recall k, there is only one history of public signals, thus a public
strategy with bounded recall is a constant strategy. By contrast, a private strategy (of recall 1) can
simply alternate between two actions. The equivalent public strategy alternates between the two actions
according to time and thus is not a public strategy with bounded recall according to Definition 2.3.

Remark 2.2 In the game with recall 0, strategies are constant and thus Ê0 = E0. This set further
coincides with the set of pure Nash equilibrium payoffs of the stage game.

Remark 2.3 All the equilibrium notions defined in this section might well be empty since we are dealing
with pure strategies. However, when the stage game has a pure Nash equilibrium, playing this equilibrium
at each stage regardless of history is an equilibrium of the repeated game in any sense defined above:
uniform, k-recall public, k-recall private. The rest of the paper deals mainly with the minority game
which has pure Nash equilibria.

The following general lemma will be used in the sequel.

Lemma 2.1 (a) If a strategy profile σ is an equilibrium of Γ̂k, then σ is a uniform equilibrium of Γ∞.
Thus, Êk ⊂ E∞.

(b) If a strategy profile σ is an equilibrium of Γ̂k, then σ is an equilibrium of Γk. Thus, Êk ⊂ Ek.

(c) If a strategy profile σ is an equilibrium of Γ̂k, then σ is an equilibrium of Γ̂k+1. Thus, Êk ⊂ Êk+1.

Proof. (a) This kind of result is common in the literature on games with bounded complexity (see
e.g., Neyman [27], Ben-Porath [7], Lehrer [20, 23]) and relies on a usual dynamic programming argument.
Let σ be an equilibrium of Γ̂k. For each player i, finding a best reply in Σi to σ−i amounts to solving a
dynamic programming problem, where the state space is Uk, the set of public histories of length k, the
action space is Ai, the payoff in state h = (u1, . . . , uk), given action ai is gi(ai, σ−i(h)), and the new state
is (u2, . . . , uk, `(ai, σ−i(h))). It is well known (see Blackwell [8]) that there exists a stationary optimal
strategy. Thus, the best reply of player i to a profile of public strategies with recall k is a public strategy
with recall k (see Abreu and Rubinstein [2, Lemma 1]). Therefore σ is a uniform equilibrium of Γ∞.

(b) This follows directly from the previous point. The game Γ̂k is a subgame of Γk in the sense that the
set of strategies of each player in Γ̂k is a subset of the set of strategies of this player in Γk. Let then σ
be a strategy profile in Γ̂k, if σ is not an equilibrium of Γk, then a player i has a profitable deviation in
Σi

k ⊂ Σi, thus σ is not a uniform equilibrium contradicting the previous point.

(c) The argument is similar to the one used for point (b), Γ̂k is a subgame of Γ̂k+1: any strategy with
recall k can be played in the game with recall k +1. So, if a strategy profile σ in Γ̂k is not an equilibrium
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of Γ̂k+1, then some player i has a profitable deviation in Σ̂i
k+1 ⊂ Σi, thus σ is not a uniform equilibrium

contradicting point (a). �

2.4 The repeated minority game. In the minority game (MG) three players have to choose
simultaneously one of two rooms: L (left) or R (right). For each profile of action a = (a1, a2, a3) ∈ {L, R}3,
call minority room the less crowded room and majority room the most crowed room. Player i’s payoff
is then 1 if she chooses the minority room and 0 otherwise. Hence the payoff matrix of the MG is as
follows, where player 1 chooses the row, player 2 the column, and player 3 the matrix.

L R
L 0, 0, 0 0, 1, 0
R 1, 0, 0 0, 0, 1

L

L R
L 0, 0, 1 1, 0, 0
R 0, 1, 0 0, 0, 0

R

The profile where one player chooses L and the two other players choose R is a Nash equilibrium.
All pure Nash equilibria of this game are obtained by permutation of players and rooms. Denote by
C the convex hull of payoff vectors generated by these equilibria. If e(i) ∈ R3 is the vector whose i-th
component is 1 and the other components are 0, then

C = conv {e(i) : i ∈ {1, 2, 3}} =

{
x ∈ [0, 1]3 :

3∑
i=1

xi = 1

}
.

It is worth noticing that this is also the set of Pareto-efficient payoffs in the game.

Consider now the repeated game where the majority room is publicly observed. At each stage t =
1, 2, . . ., players choose their room and before stage t + 1, the majority room is publicly announced:
U = {L,R}, and

`(a) =

{
L if #{i : ai = L} ≥ 2,

R if #{i : ai = R} ≥ 2.

The rest of the paper deals with the repeated minority game with these public signals. The following
Folk-theorem-like result holds.

Proposition 2.1 In the minority game E∞ = C.

Proof. This follows directly from the characterization given in Tomala [36, Theorem 5.1, page 104],
but we provide a simple direct proof. First note that, since C is the convex hull of Nash equilibrium
payoffs of the one-shot game, then C ⊂ E∞. Given any point x in C, one can find a sequence of Nash
equilibria (at)t of the minority game, such that the average payoff vector along this sequence converges
to x. Then, the strategy profile such that for each player i and stage t, player i plays ai

t at stage t,
irrespective of the history, is clearly a uniform equilibrium with payoff x.

To get the converse inclusion, note that there are two types of action profiles: either two players are
in the same room and the profile is an equilibrium of the MG, or the three players are in the same room.
In the latter case, each player has a profitable deviation (she prefers to switch room) and further this
deviation does not change the majority room, i.e., the public signal. If at a strategy profile the three
players are in the same room on a non-negligible set of stages, then player 1 can switch rooms at these
stages. This increases her payoff at these stages without affecting public signals, hence without affecting
the behavior of the other players. Such a strategy profile cannot be a uniform equilibrium and therefore
E∞ ⊂ C. �

3. Main results.

3.1 Public equilibria and de Bruijn graphs. We give here a combinatorial representation of
k-recall strategies using de Bruijn graphs. We consider a directed graph Tk, where each of the 2k nodes
is labeled by a k-letter word written with the alphabet {L,R}. For i ∈ {1, . . . , k}, let xi ∈ {L,R}. The
word x = (x1, . . . , xk) precedes the word y = (y1, . . . , yk) if (x2, . . . , xk) = (y1, . . . , yk−1). The word y
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succeeds x whenever x precedes y. Hence each node (i. e. the word associated to it) precedes only two
nodes. Such a graph is called de Bruijn graph (see e.g. de Bruijn [13] and Yoeli [37] for some properties
of these graphs). The following figure shows a de Bruijn graph T3 based on sequences written with the
alphabet {L,R}.
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Figure 1. de Bruijn graph T3

A proof of the following result can be found in Yoeli [37](see Lempel [24] for a generalization to any
finite alphabet).

Proposition 3.1 For every p in {1, . . . , 2k}, there exists in the de Bruijn graph Tk a cycle with length
p.

The link with public strategies is the following. Let σ = (σ1, σ2, σ3) be a k-recall strategy profile,
(at(σ))t the induced sequence of action profiles and (ut(σ))t the induced sequence of public signals. We
denote by xt−1 = (ut−k(σ), . . . , ut−1(σ)) the public memory before stage t. Let f i : {L,R}k → {L,R} be
the mapping associated to σi and set f = (f1, f2, f3). The mapping f associates to every public memory
x ∈ {L, R}k the next action profile. From stage k on, the play of the game is perfectly determined by f ,
that is f(xt−1) = at(σ) for each t > k.

The sequence (xt)t is eventually periodic: there exist two integers t0 and p such that xt+p = xt,
∀t ≥ t0. The payoff associated to σ is thus the average payoff over a period:

γi(σ) =
1
p

t0+p∑
t=t0+1

gi(f(xt)).

Let us call a cycle of σ a tuple (xt+1, . . . , xt+p) with t ≥ t0.

Lemma 3.1 If σ is a public equilibrium of Γk, then for each x in the cycle of σ, f(x) is a Nash equilibrium
of the one-shot game.

Proof. Otherwise there is an x in the cycle of σ such that f(x) = (L,L, L) (or = (R,R, R)). Then
player 1 deviates and plays R (or L) whenever the public memory is x and plays like σ1 otherwise. This
deviation does not affect the sequence of public signals and thus does not affect the behavior of other
players. It is profitable since at least once every p stages, player collects a payoff of 1 instead of 0. �

Thanks to this lemma, we can restrict our attention to mappings f that map public memories (i.e.
{L,R}k) to Nash equilibria of the one-shot game. Notice now that a Nash equilibrium of the minority
game is fully described by

(i) the player who gets 1 and
(ii) the majority room.
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That is, to specify the mapping f , we must attach to each public memory

(i) a winning player and

(ii) the next public signal.

We can thus describe a strategy profile in the de Bruijn graphs by selecting one outgoing edge for each
node and by coloring the nodes: each node is assigned to a player, or to nobody if the players are all in
the same room. As we said before, in equilibrium every node is assigned to a player.

Note that a node is assigned to player i when she is the winning player. So if she changes action at
this node, first she gets a bad payoff, and second, she does not change the public signal. A deviation
of player i can thus be regarded as an alternative choice of an outgoing edge at each node that is not
assigned to her.

To sum up, a public equilibrium in the k-recall game can be described as follows:

• for each node of Tk, one outgoing edge and one player are chosen in such a way that

• no player i can induce a more profitable cycle in the graph by changing outgoing edges at nodes
not assigned to her. 1

3.2 Some public equilibria. We describe now some public equilibrium payoffs.

Lemma 3.2 (a) For any k ≥ 0,
(

k
k+1 , 1

k+1 , 0
)
∈ Êk.

(b) For any k ≥ 2,
(

k−2
k , 1

k , 1
k

)
∈ Êk.

(c) For any k ≥ 2,
(

k−2
k , 2

k , 0
)
∈ Êk.

The following notation and terminology will be used in the sequel.

Lp = L . . . L︸ ︷︷ ︸
p times

, Rq = R . . . R︸ ︷︷ ︸
q times

.

Call word any finite sequence of signals. Given two words u = (u1, . . . , up) and v = (v1, . . . , vq), denote
by uv the concatenated word uv = (u1, . . . , up, v1, . . . , vq).

Consider the minority game with recall k, and its associated de Bruijn graph Tk. Call m-cycle a cycle
of length m, and call stable the cycles where all the nodes have the same number of L’s. Among the
stable cycles having s L’s, say, call main all the cycles containing the nodes LsRk−s or Rk−sLs. In Tk

there are k − 1 main k-cycles and 2 main 1-cycles.

Proof of Lemma 3.2. (a) Consider the (k + 1)-cycle that contains Rk and all the nodes whose
label contains just one L. In equilibrium, players cycle on this (k +1)-cycle and elsewhere they go to this
cycle as fast as possible, i.e. through a shortest path in the graph.

Assign node Rk to player 2 and all the other nodes in the graph to player 1.

Player 1 can deviate only on Rk, and she has no incentive to do it, because that would induce a cycle
on the node Rk, that is assigned to player 2. Player 2 can deviate anywhere else, but she has no incentive
to do it, since she cannot find a cycle that contains Rk and is shorter than the equilibrium cycle.

Player 3 can always deviate, but, since she would get a zero payoff anyway, she has no incentive to
deviate.

The following figure shows the above equilibrium for k = 3.

1As an anonymous referee pointed out, this representation does not account for the initial stages. However, these stages

are inessential for public equilibria. By playing altogether the same action, the players can enforce any initial public memory

and we may assume that the game starts anywhere in the graph.
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Figure 2. Equilibrium with 3-recall and payoff
(

3
4 , 1

4 , 0
)

(b) For every s ∈ {1, . . . , k} assign nodes Rk−sLs to player 2, nodes Lk−sRs to player 3, and the other
nodes to player 1. In equilibrium players cycle on the main k-cycles and elsewhere they move to the
closest main cycle.

Assume for instance that we start with the memory Lk. The closest main k-cycle is the cycle of nodes
that contain only one R, i.e. the cycle

Lk−1R,Lk−2RL, Lk−3RL2, . . . , LRLk−2, RLk−1, Lk−1R, . . .

Remark that all nodes are assigned to player 1 except Lk−1R and RLk−1. Assume that player 1
deviates at node Lk−1R. The next node is Lk−2R2 which is not assigned to her. If she deviates again,
the next node is still not assigned to her, and so on. Thus, her only possibility to collect payoffs is to stop
deviating and follow the equilibrium. Indeed, when player 1 is at a node not assigned to her, under the
equilibrium strategy she will be winning at the next k − 2 nodes whereas if she deviates she will spend
more time in nodes where she gets 0.

More generally, consider a node where player 1 could possibly deviate, namely the nodes assigned
either to player 2 or to player 3. One can check that,

(i) any deviation in a node not assigned to player 1 leads to another node not assigned to player 1,

(ii) the shortest path from a node not assigned to player 1 to the closest node assigned to player 1
is via an equilibrium path, the shortest path from that latter node to the closest node assigned
to player 1 is via an equilibrium path, and so on.

Therefore any non-equilibrium cycle that is forced by player 1 with a finite sequence of deviations is longer
than k and the proportion of nodes in this cycle assigned to player 1 cannot be larger than (k − 2)/k.
Thus there is no finite sequence of deviations that would make player 1 better off.

For instance, if k = 3, deviating in LLL (resp. RRR) would force the 1-cycle LLL . . . (resp. RRR . . . ).
Deviating in LLR (resp. RRL) would increase the distance to the next 1-node from 1 to at least 3, hence
the deviation would be profitable only if it induced a 5-cycle with two nodes assigned to player 1, but this
is not possible since player 1 cannot deviate on her own nodes. Deviating in RLL (resp. LRR) would
increase the distance to the next 1-node from 2 to at least 3. Using the same argument as before, we can
see that this deviation is not profitable.

The argument is similar for the other players. Consider now a node where player 2 could possibly
deviate, namely the nodes assigned either to player 1 or to player 3. It is not difficult to verify that,

(i) any deviation in a node not assigned to player 2 leads to another node not assigned to player 2,

(ii) the shortest path from a node not assigned to player 2 to the closest node assigned to player 2 is
via an equilibrium path, the shortest path from that node to the closest node assigned to player 2
is via an equilibrium path, and so on.
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Therefore any non-equilibrium cycle that is forced by player 2 with a finite sequence of deviations is
longer than k and the proportion of nodes in this cycle assigned to player 2 cannot be larger than 1/k.

By symmetry the argument for player 3 is the same.
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Figure 3. Equilibrium with 3-recall and payoff
(

1
3 , 1

3 , 1
3

)

(c) As above. Just assign to player 2 the nodes that were assigned to 3, and repeat the argument.
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Figure 4. Equilibrium with 3-recall and payoff
(

1
3 , 2

3 , 0
)

�

Remark 3.1 Define the effective recall of a strategy as the smallest k for which this strategy has recall
k. In our equilibrium constructions, the effective recall of the three players are different. For instance
when k = 3, in the equilibrium of Lemma 3.2(a) the effective recalls of the three players are 0, 0, and 3,
respectively. In fact player 1 always plays L, player 2 always plays R. In (b) the recalls are 1, 3, and 3,
and in (c) they are 1, 2, and 3. An open question is whether in the game with recall k, there exists an
equilibrium payoff such that in every equilibrium yielding this payoff, each player has effective recall k
(this question was raised by an anonymous referee).

The partial results of Lemma 3.2 enable us to completely describe the set of public equilibrium payoffs
for small values of k.

Proposition 3.2 (a) Ê0 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

(b) Ê1 = Ê0 ∪
{(

1
2 , 1

2 , 0
)
,
(

1
2 , 0, 1

2

)
,
(
0, 1

2 , 1
2

)}
.
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(c) Ê2 = Ê1 ∪
{(

1
3 , 2

3 , 0
)
,
(

1
3 , 0, 2

3

)
,
(
0, 1

3 , 2
3

)
,
(

2
3 , 1

3 , 0
)
,
(

2
3 , 0, 1

3

)
,
(
0, 2

3 , 1
3

)}
.

Note that for k ≤ 2, all public equilibrium payoffs are on the boundary of the triangle C. A direct
consequence of Lemma 3.2 is that

(
1
3 , 1

3 , 1
3

)
∈ Ê3, so when the recall is k ≥ 3 there exists a public

equilibrium payoff in the interior of C.

Proof of Proposition 3.2. (a) By Remark 2.2, the only possible Nash equilibria of Ê0 are
repetitions of the same Nash equilibrium of the stage game.

(b) By Lemma 2.1(c), Ê0 ⊂ Ê1. Furthermore by Lemma 3.2(a) the payoffs
(

1
2 , 1

2 , 0
)
,
(

1
2 , 0, 1

2

)
,
(
0, 1

2 , 1
2

)
∈

Ê1. No other equilibrium payoff can be obtained with recall 1, since the maximal length of a cycle in the
de Bruijn graph T1 is 2.

(c) By Lemma 2.1(c), Ê1 ⊂ Ê2. Furthermore by Lemma 3.2(a) the payoffs
(

1
3 , 2

3 , 0
)
,
(

1
3 , 0, 2

3

)
,
(
0, 1

3 , 2
3

)
,(

2
3 , 1

3 , 0
)
,
(

2
3 , 0, 1

3

)
,
(
0, 2

3 , 1
3

)
∈ Ê2.

The only other possible payoffs with recall 2 are
(

1
3 , 1

3 , 1
3

)
,
(

1
2 , 1

4 , 1
4

)
and its permutations, and

(
3
4 , 1

4 , 0
)

and its permutations. We show now that none of these payoffs can be obtained in equilibrium.

First we prove that
(

1
3 , 1

3 , 1
3

)
6∈ Ê2. In fact the maximal length of a cycle in the de Bruijn graph T2

is 4. Hence, in order to obtain such a payoff in equilibrium, the players would have to cycle on a 3-cycle
of T2, and each node should be assigned to a different player. There are only two such cycles. Take for
instance the cycle LL → LR → RL, and assume that these nodes are assigned to players 1, 2, and 3,
respectively. Then player 2 deviating in RL induces the cycle LR → RL → LR . . . and gets a payoff of
1
2 . An analogous argument can be used for the cycle LR → RR → RL.
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Figure 5. de Bruijn graph T2

We claim now that the payoff
(

1
2 , 1

4 , 1
4

)
(or its permutations) cannot be obtained at equilibrium.

Consider the only 4-cycle in the graph T2, namely, LL → LR → RR → RL. This cycle cannot give a
payoff

(
1
2 , 1

4 , 1
4

)
or its permutations. In fact if we let (i1, i2, i3, i4) denote the strategy profile that assigns

LL to player i1, LR to player i2, RR to player i3 and RL to player i4, then none of the configurations
that give a payoff

(
1
2 , 1

4 , 1
4

)
is an equilibrium:

• (1, 1, 2, 3) is not an equilibrium, since player 3 would deviate in LR,
• (1, 2, 1, 3) is not an equilibrium, since player 3 would deviate in LR, and player 2 would deviate

in RL,
• (2, 1, 3, 1) is not an equilibrium, since player 2 would deviate in LR, and player 3 would deviate

in RL,

All other possible cases are obtained by permuting rooms and players.

The above cycle cannot give the payoff
(

3
4 , 1

4 , 0
)

or its permutations, either. Using the same notation
as before
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• (1, 1, 1, 2) is not an equilibrium, since player 2 would deviate in LR,

• (1, 1, 2, 1) is not an equilibrium, since player 2 would deviate in RL,

As before, the other possible cases are obtained by permuting rooms and players. �

3.3 Convergence of Êk. We use the standard notion of Hausdorff convergence of closed sets and
get the following convergence result.

Theorem 3.1 In the minority game limk→+∞ Êk = E∞ = C, that is for every ε > 0, there exists k0

such that for each x in C and each k ≥ k0, there exists y ∈ Êk such that ‖x− y‖ ≤ ε.

Proof of Theorem 3.1. Let m ≥ 2 be an integer and let Cm be the set of vectors of x ∈ C with
rational components of the form xi = mi/m with mi ≥ 2 integers. The Cm’s are non-empty for m ≥ 6.
Although this sequence of sets is not increasing for inclusion, it is clear that Cm converges to C as m goes
to infinity i.e. supx∈C infy∈Cm ‖x− y‖ goes to 0 as m goes to infinity. Therefore Theorem 3.1 follows
from Lemma 2.1(c) and from Lemma 3.3 below. �

Lemma 3.3 For every integers m ≥ 2 and K ≥ 2m, Cm ⊂ Êk for k = Km.

Remark 3.2 This lemma shows that the whole payoff set is covered up to errors of order 1/m by finite
recall equilibrium payoffs with k = O(m2). So that given m, a polynomial capacity of recall is sufficient.
We thank a referee for this observation.

The strategy construction is in a folk-theorem spirit. First the right payoff is obtained by playing an
adapted main path. In case of a detected deviation, punishments have to be performed. Because of finite
recall, the evidence that a deviation occurred may disappear from the recall. To get a deviating player to
be punished forever, players are asked to rewrite periodically a word in the public recall, indicating that
a deviation has occurred and which actions should be used to punish. This construction relies heavily on
properties of the minority game and the majority room as a signal. The following properties will be used
extensively.

• A player who is in the minority room at some stage cannot change the signal at that stage. This
implies that a player who gets a payoff of 1 at a given stage has no incentive to deviate at that
stage since it can only decrease the stage-payoff and has no impact whatsoever on the future.

• The main path is constructed so that at each stage a Nash equilibrium of the one-shot game is
played. Thus at each stage there is one player in the minority room and the other two players are
in the majority room, both receiving a payoff of zero. If the signal changes, that means that one
of the two players in the majority room deviated, but the public signal does not tell who did. A
simple way to punish the deviating player without knowing her identity is to apply the following
policy: “If I see a wrong signal at stage t, then I remain in the room where I was at stage t.”
This insures that the deviating player, who was in the majority room when the deviation was
detected, remains in the majority room as long as the punishment phase lasts.

• Two players can write any word in the public recall, whatever the behavior of the third player is.

• Each payoff vector of the one-shot game is obtained by exactly two actions profiles. These two
profiles yield different public signals, as they can be deduced from each other by permuting rooms.

The following terminology will be used in the proof of Lemma 3.3. A word of length k is called a public
recall. Given a public recall M , a word u of length l ≤ k is called a sub-word of M if there exist two
words v, w (possibly of length 0) such that M = vuw. The word consisting of L . . . L, q times is denoted
Lq. If u is a sub-word of M , define the position of u in M as the rank of the first letter of u. For instance,
if M begins with u, then u has position 1; if M ends with u, then u has position k − l + 1.

Proof of Lemma 3.3. Let m ≥ 2 be an integer. Pick a point x = (xi)i ∈ Cm. Then x =
∑

i xie(i),
where for each i ∈ N , xi = mi/m, with mi ≥ 2, so xi ≥ 2/m. The aim is to construct a strategy profile
σ with payoff x which is an equilibrium of Γ̂k for k = Km, with K ≥ 2m.

Let H = (a∗1, . . . , a
∗
m) ∈ Am be a sequence of action profiles of length m such that
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(i) the average payoff along H is

x =
1
m

m∑
t=1

g(a∗t ),

(ii) the public history (`(a∗1), . . . , `(a
∗
m)) associated to H is Lm.

Such a sequence exists: it suffices to play a sequence of Nash equilibria of the MG such that player i
gains 1 exactly mi times and the majority room is always L.

For each room r ∈ {L,R}, let r̄ be the other room, and, if a is an action profile, let ā be the action
profile where every player has switched room. Let H̄ ∈ Am be the sequence obtained from H by switching
rooms: H̄ = (ā∗1, . . . , ā

∗
m). The main path will be the periodic repetition of the sequence HH̄. Here is

how to construct a profile of strategies of recall k that generates this periodic sequence of action profiles.

Let W := Lm be the word induced by H. A word w is a sub-word of W if w = Lq with 0 ≤ q ≤ m.
If a periodic repetition of HH̄ is played, at each stage the public recall ends by a word of the type W̄w
or Ww̄ with w sub-word of W (possibly of length 0). Call such words end-words. An end-word writes
either LmRq or RmLq, 0 ≤ q < m. The aim is to play a periodic repetition of HH̄. In order to do that,
at each stage knowledge of the end-word is sufficient to know what action profile should be played at the
next stage. Thus, letting E be the set of end-words, there exists a mapping f which maps E to pure
Nash equilibria of the MG and such that for each end-word e, f(e) = (f i(e))i∈N is the action profile that
follows e in the periodic repetition of HH̄.

Consider now deviations. After each end-word e, f(e) should be played. On the main path f(e) induces
a winning player i(e) and a signal r(e). If r̄(e) is observed, then some player j 6= i(e) has deviated. Let
us call deviation-word, a word of the type er̄(e): a deviation word writes either LmRqL or RmLqR,
0 ≤ q < m. If a deviation-word er̄(e) appears in the recall, the strategy prescribes to keep playing f(e)
as long as the position of er̄(e) is greater than 2m. During this punishing phase the signal is completely
controlled by the punished player, hence this player could write in the recall another deviation-word
e′r̄(e′). To prevent other end-words to appear in the recall, if Lm−1 (resp. Rm−1) appears, all players
must play R (resp. L). Finally, when the position of er̄(e) becomes less than or equal to 2m, the players
must rewrite this word in the recall by all playing the same actions for an appropriate number of times.

The exact definition of the strategy profile σ is given now.

• Initialization. At the first m stages each player plays L. For the next m stages, each player
plays R, for the next m stages each player plays L, and so on until stage k.

• Main path. If the recall contains no deviation-word and ends by the end-word e, each player i
plays f i(e).

• Early punishments.

– If the recall contains a deviation-word er̄(e) whose position is greater than 2m, and if the
recall does not end by Lm−1 or by Rm−1, then each player i plays f i(e).

– If the recall contains a deviation-word er̄(e) whose position is greater than 2m, and if the
recall ends by Lm−1, then each player i plays R.

– If the recall contains a deviation-word er̄(e) whose position is greater than 2m, and if the
recall ends by Rm−1, then each player i plays L.

• Late punishments. If the recall contains a deviation word er̄(e) = LmRqL with 0 ≤ q < m,
let p be its position.

– If m < p ≤ 2m, then each player i plays L.
– If m− q < p ≤ m, then each player i plays R.
– If p = m− q, then each player i plays L.

And similarly for er̄(e) = RmLqR.
• Other memories. For all other memories, each player plays L.

It remains to prove that the above-defined strategy profile σ has payoff x and is an equilibrium of Γ̂k.

If all players play this strategy, the public recall after stage k is either LmRm . . . LmRm or
LmRm . . . LmRmLm depending on the parity of K. It ends by an end-word e and contains no devi-
ation word. The next action profile is then f(e) and the public recall still ends by an end-word so the
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strategy uses f again. By construction of f , this strategy profile generates the periodic repetition of HH̄
and the payoff is indeed x.

Suppose that player i deviates. First, player i cannot modify the signals in the initialization phase,
and, since this phase is transient, it is irrelevant for payoffs. We consider thus deviations at later stages.

If the deviation never changes the signals, then player i changes action only at stages where she was
in the minority room. Therefore she loses payoff at these stages and does not affect the behavior of other
players. Such a deviation is thus not profitable.

Suppose now that player i changes the signal at some stage, therefore i is in the majority room at
this stage. This generates a deviation-word er̄(e). As long as the position of er̄(e) is greater than 2m,
the other players play f(e) so player i receives a payoff of zero, except if she generates words of the type
Lm−1 or Rm−1. In such cases, the other players will play both R or both L. Such situations appear at
most every m stages. So, the only opportunities to player i to gain a payoff of 1 are when other players
rewrite the deviations word (at most 2m stages), and once every m stages for k−2m stages. The average
payoff for player i is thus no more than

2m +
k − 2m

m
k

=
2m + K − 2

Km

≤ 2
K

+
1
m

≤ xi,

since xi ≥ 2/m, and K ≥ 2m. �

Remark 3.3 Theorem 3.1 easily extends to a (2n + 1)-player minority game (each player has to choose
between L and R and receives a payoff of 1 if she is in the minority room and zero otherwise). However,
the proof heavily relies on the specific properties of the game and signal function. Since convergence of
Êk to E∞ is not always guaranteed, see the introduction or the earlier version of this paper (Renault et
al. [31]), a challenging and open problem is to characterize limk Êk.

4. Private equilibria. The following proposition shows that under bounded recall, the set of private
equilibrium payoffs is strictly larger than the set of public equilibrium payoffs. Furthermore, private
equilibria may not be equilibria of the unbounded-recall, i.e. uniform equilibria, and we find a private
equilibrium payoff for k = 3 which lies outside E∞.

Proposition 4.1 (a) E2 differs from Ê2 since
(

1
3 , 1

3 , 1
3

)
∈ E2 \ Ê2.

(b) In the minority game (3/7, 3/7, 0) ∈ E3 and thus E3 6⊂ E∞.

This last point is proved by constructing explicitly an equilibrium σ = (σ1, σ2, σ3) of Γ3 with payoff
(3/7, 3/7, 0). The proof is quite lengthy and involved and seems to indicate that more general results in
this direction are quite hard to obtain.

As mentioned in the introduction, Mailath et al. [26] and Kandori and Obara [19] compare the behavior
of public and private strategies in games with public signals and unbounded recall. Proposition 4.1 does
something of that sort in a bounded recall framework.

Proof of Proposition 4.1. (a) First remark that with private strategies player i can play a
periodic sequence of actions with cycle RLL by using a strategy that relies on her own actions only, and
does not regard public signals whatsoever. Therefore consider the strategy profile obtained by cycling

R L L
L R L
L L R

where the i-th row indicates the strategy of the i-th player. This is clearly an equilibrium of Γ2: it is a
repetition of one-stage Nash equilibria so no player can increase her stage payoff by deviating and further,
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since player do not regard public signals, no player can change the future behavior of her opponents. The
associated payoff is then

(
1
3 , 1

3 , 1
3

)
. By Proposition 3.2(c) the payoff

(
1
3 , 1

3 , 1
3

)
is not in Ê2. 2

(b) We construct an equilibrium σ = (σ1, σ2, σ3) of Γ3 with payoff (3/7, 3/7, 0). Given strategies of recall
3, the action played by a player at some stage depends only on her last 3 actions and on the last 3 public
signals. The last 3 ∧ t actions or signals at time t will be called available.

The profile σ is defined as follows:

(a) If at least one available public signal is R, then σ recommends to each player to switch room,
i.e., to play L if she played R at the previous stage, and vice-versa.

(b) Assume now that all available public signals are L.
(b1) Regarding the first three stages, as long as the public signal is L, σ recommends to play as

follows:
stage → 1 2 3

P1 L L R
P2 R L L
P3 L R L

For example, the symbol R in line P3 means that at stage 2, σ3 asks player 3 to play R if the
public signal of stage 1 was L.

(b2) At every stage t ≥ 3, if the last 3 public signals are L, then each player i ∈ {1, 2, 3} plays the
action f i(ai

t−3, a
i
t−2, a

i
t−1) ∈ {L,R} where ai

t′ denotes the action played by player i at stage t′

and the functions f1, f2, f3 are described below.

last own actions P1 P2 P3
LLL R R L
LLR R L L
LRL L R L
LRR L L L
RLL L L L
RLR L R L
RRL R L L
RRR L L L

Figure 6

At the intersection of column P2 and line RLL, the symbol L means that f2(RLL) = L, i.e., at
any stage t ≥ 3, if the last 3 public signals were L, and the last actions played by player 2 were
R (at stage t − 3), L (at stage t − 2), and L (at stage t − 1), then player 2 following σ2 should
play L. This ends the definition of σ.

The proof is complete once Lemma 4.1 below is proved. �

Lemma 4.1 (a) The payoff induced by σ is (3/7, 3/7, 0).

(b) The strategy σ is an equilibrium of Γ3.

Proof. (a) Assume that σ is played. The induced play can be represented as follows.

stage → 1 2 3 4 5 6 7 8 9 10 11 12 13
action P1 L L ©R ©R L ©R L L L ©R ©R L ©R . . .
action P2 ©R L L L ©R L ©R ©R L L L ©R L . . .
action P3 L ©R L L L L L L L L L L L . . .

public signal L L L L L L L L L L L L L . . .

Figure 7

2An alternative construction was suggested by a referee who showed that this payoff can be obtained by an equilibrium

where only one player plays a private strategy.
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The action of a player in the minority room, if any, is emphasized with a circle. The public signal is L
at every stage, the induced play eventually has period 7 (one can see a period from stage 3 to stage 9),
and the induced payoff is (3/7,3/7,0).

(b) This part is a direct consequence of the next three lemmas, where the best reply condition is checked
for every player. �

Lemma 4.2 In Γ3, σ3 is a best reply against σ−3.

Proof. Let τ3 be any strategy of player 3 in Σ3
3. It is necessary to prove that γ3(τ3, σ−3) ≤ γ3(σ) = 0.

Assume in the sequel that (τ3, σ−3) is played, and distinguish two cases.

Case 1. Assume that the sequence of public signals never contains the symbol R. Then the sequence of
actions played by players 1 and 2 is the same as in Figure 7. So at stages 3, 4, 5, 6 player 3 is playing L
(otherwise the public signal will be R at some stage). Since τ3 has recall 3, it implies that player 3 will
play L at every stage t ≥ 3. Since L is at each stage the majority room, γ3(τ3, σ−3) = 0.

Case 2. Assume that at some stage the public signal is R. Consider the first stage t̄ where this happens.
Up to stage t̄, the actions played by player 1 and 2 correspond to Figure 7, so at stage t̄ it is not possible
that both players 1 and 2 play R. Consequently, at stage t̄: either (players 1 and 3 play R and player 2
plays L), or (players 2 and 3 play R and player 1 plays L). Recall now that σ1 and σ2 ask players 1 and
2 to change rooms whenever one of the available signals is R.

As long as one of the available public signals is R, players 1 and 2 will exchange rooms at each stage
and, since players 1 and 2 are not in the same room, the payoff for player 3 will be zero. So to get out of
this punishment phase, player 3 has to play three consecutive times L in order to induce three consecutive
signals L. So it is possible to assume w.l.o.g. that there exists a stage t where the situation is as follows:

stage → t t + 1 t + 2 t + 3
action P1 L R L L(a)

action P2 R L R R(b)

action P3 L L L
public signal L L L

or

stage → t t + 1 t + 2 t + 3
action P1 R L R L(c)

action P2 L R L R(d)

action P3 L L L
public signal L L L

Figure 8
(a) because f1(L, R,L) = L (see Figure 6),
(b) because f2(R,L,R) = R,
(c) because f1(R,L,R) = L,
(d) because f2(L,R,L) = R.

If player 3 plays R at stage t + 3, then at this stage (players 1 and 3 play R and player 2 plays L) or
(players 2 and 3 play R and player 1 plays L), and player 3 does not get out of the punishment phase
where players 1 and 2 exchange rooms at each stage, and player 3’s payoff is zero at each stage.

So let us assume that player 3 plays L at stage t+3. But since τ3 has recall 3, player 3 will continue to
play L as long as the public signal is L. The situation at the end of stage t + 2 is similar to the situation
at the end of stage 7 (left table) or stage 6 (right table) of Figure 7, and from this stage on player 3 will
be in the majority room (the L room) hence will also have payoff zero. So γ3(τ3, σ−3) = 0. �

Lemma 4.3 In Γ3, σ1 is a best reply against σ−1.

Proof. Let τ1 be a strategy profile of player 1 in Σ1
3. It is necessary to prove that γ1(τ1, σ−1) ≤

γ1(σ) = 3/7. Assume that (τ1, σ−1) is played. Two cases are possible.

Case 1. Assume that at each stage the public signal is L. Then the situation is as follows:
stage → 1 2 3 4 5 6 7 8 9 10 11

action P1 L L X Y L Z L L
action P2 ©R L L L ©R L ©R ©R L L L
action P3 L ©R L L L L L L L L L . . .

public signal L L L L L L L L L L L . . .
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with X, Y , Z in {L,R}.

If (X, Y ) = (L,L), then player 1 only plays L since σ1 has recall 3. And γ1(τ1, σ−1) = 0 ≤ 3/7. So it
is possible to assume w.l.o.g. that (X, Y ) 6= (L,L). The same argument shows that Z = R.

If (X, Y ) = (L, R), then the actions played by player 1 are LLLRLRLL. Since signals are assumed to
be L at each stage, the next action of player 1 depends on her available actions only, and one sees that
in this word the first appearance of LRL is followed by R and the second il followed by L. This sequence
of actions is thus unachievable with recall 3. If (X, Y ) = (R,L), then player 1 plays LLR LLR LLR
LLR. . . . But then at some stage the public signal will be R, yielding a contradiction.

The last case to consider is (X, Y ) = (R,R). In such a case:

stage → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
action P1 L L ©R ©R L ©R L L T U
action P2 ©R L L L ©R L ©R ©R L L L ©R L ©R ©R L
action P3 L ©R L L L L L L L L L L L L L L . . .

public signal L L L L L L L L L L L L L L L L . . .

If T = R, then player 1 plays the following sequence with period 6: LLRRLR LLRRLR LLRRLR. . . .
Since player 2 plays a sequence with period 7 and gcd(6, 7) = 1, at some stage the signal will be R,
yielding a contradiction. So T = L.

Now if U = L, the memory of player 1 at stage 10 is the same as at stage 9. She will thus play always
L and get a payoff of zero. If U = R, this is exactly in the case of Figure 7, and γ1(τ1, σ−1) = 3/7.

Case 2. Assume that there exists some stage where the public signal is R. It is possible to proceed as in the
proof of Lemma 4.2 (Case 2). Since f2(L,R,L) = f2(R,L,R) = R and f3(L,R,L) = f3(R,L,R) = L,
also in this case γ1(τ1, σ−1) = 0 ≤ 3/7. �

Lemma 4.4 In Γ3, σ2 is a best reply against σ−2.

Proof. Let τ2 in Σ2
3 be a strategy of player 2. It is necessary to show that γ2(τ2, σ−2) ≤ 3/7 = γ2(σ).

Assume for the sake of contradiction that γ2(τ2, σ−2) > 3/7.

Claim. It cannot happen that at some stage, both players 1 and 3 play R.

Assume on the contrary that there exists a first stage t̄ where both player 1 and player 3 play R.
Necessarily t̄ ≥ 3 and since player 3 plays R at t̄, t̄ cannot be the first stage where the signal is R. So
there exists some stage t̂ < t̄ such that the signal at stage t̂ is R, and the signal at every stage t, t̂ < t < t̄
is L.

Since player 3 plays R at t̄, then t̄ ≤ t̂+3. By definition of t̄, at stage t̂: the signal is R, either player 1
or player 3 play L, and player 2 plays R. So after stage t̂, players 1 and 3 start to exchange rooms and
this contradicts the fact that both player 1 and player 3 play R at t̄.

Given this claim, two cases, and several sub-cases are possible.

Case 1. Assume that eventually the sequence of signals only contains L. There exists t̄ with ut(τ2, σ−2) =
L for all t ≥ t̄.

Then for each stage t ≥ t̄+3, player 3 will play L (see Figure 6), and given the definition of f1, player 1
will eventually play the following sequence with period 7: LLLRRLR LLLRRLR LLLRRLR. . .

Since it was assumed that γ2(τ2, σ−2) > 3/7, there must exist 7 consecutive stages among which
player 2 is in the minority room for at least 4 stages. Since the majority room should be L from some
stage on, the sequence played by player 2 depends on her own actions only and therefore has period at
most 23 = 8. One can then check that the only possibility for player 2 to win at least 4 times out of seven
is to play the periodic sequence RRRLLRL RRRLLRL RRRLLRL . . . , so there must exist t ≥ t̄ such
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that the play is:

stage → t +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13
action P1 L L L ©R ©R L ©R L L L ©R ©R L ©R
action P2 ©R ©R ©R L L ©R L ©R ©R ©R L L ©R L
action P3 L L L L L L L L L L L L L L

public signal L L L L L L L L L L L L L L

This sequence of actions of player 2 will be denoted by ω in the sequel.

Subcase 1.a. Assume that all signals are L. Then the situation is as follows.

stage → 1 2 3 4
action P1 L L R R
action P2 X L L L
action P3 L R L L

public signal L L L L

It must be X = R otherwise player 2 only plays L and γ2(τ2, σ−2) = 0. So player 2, at stage 4, plays L
after RLL. This is not compatible with the sequence ω.

Subcase 1.b. Assume that there exists a last stage t̄ where the public signal is R. Since player 1 and
player 3 never play R at the same time, two possibilities can occur at stage t̄.

Subsubcase 1.b.1. If player 1 plays R at stage t̄, then

stage → t̄ +1 +2 +3 +4 +5 +6 +7
action P1 R L(a) R(a) L(a) L(b) L(c) R(d)

action P2 R L(e) L(e) L(e) X Y L(e)

action P3 L R(a) L(a) R(a) L L L L
public signal R L L L L L L L

(a) player 1 and player 3 change rooms after a public signal R,
(b) because f1(L,R,L) = L,
(c) because f1(R,L,L) = L,
(d) because f1(L, L, L) = R,
(e) by assumption, the signal has to be L at every stage ≥ t̄ + 1.

If X = L, then player 2 will always play L and have a payoff of zero. So X = R. Then Y = L
because of the periodic sequence ω. But using ω again, at stage t̄ + 6 player 2 should play R, yielding a
contradiction.

Subsubcase 1.b.2. If player 3 plays R at stage t̄, then

stage → t̄ +1 +2 +3 +4 +5 +6 +7 +8 +9
action P1 L R L R L L L R R L
action P2 R L L L X Y Z L L
action P3 R L R L L L L L L

public signal R L L L L L L L L L

It must be that X = R, otherwise player 2 will always play L after t̄. The sequence ω then gives Y = L,
and Z = R. But by ω again at stage t̄ + 7, player 2 should play R, yielding a contradiction.

Case 2. It remains to consider the case with an infinite number of stages where the public signal is R.

Take any interval of stages {t1, . . . , t2}, where t1 < t2, ut1(τ
2, σ−2) = ut2(τ

2, σ−2) = R, and for every
t ∈ {t1 + 1, . . . , t2 − 1}, ut(τ2, σ−2) = L. To conclude the proof, it is sufficient to show that the average
payoff of player 2 at stages t1, . . . , t2 − 1 is at most 3/7.

Assume by contradiction that it is not the case, i.e., assume that the average payoff of player 2 at
stages t1, . . . , t2 − 1 is greater than 3/7. Since player 1 and player 3 never play R at the same stage, at
stage t1, either (players 1 and 2 play R, player 3 plays L) or (players 3 and 2 play R, player 1 plays L).
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In each case, players 1 and 3 are going to exchange rooms at stages t1 + 1, t1 + 2, t1 + 3, so the payoff
of player 2 is zero at each stage t in {t1, t1 + 1, t1 + 2, t1 + 3}. It was assumed that the average payoff
of player 2 between stage t1 and stage t2 − 1 is greater than 3/7. This implies that t2 ≥ t1 + 8. So the
signal at stages t1 + 1, . . . , t1 + 7 is L. Two cases are possible.

Subcase 2.a. At stage t1, player 3 plays L.
stage → t1 +1 +2 +3 +4 +5 +6 +7 +8 . . . t2

action P1 R L ©R L L L ©R ©R L . . . R
action P2 R L L L X Y L L Z . . . R
action P3 ©L ©R L ©R L L L L L . . . ©L

public signal R L L L L L L L L . . . R

By a standard argument X = R (otherwise player 2 plays only L and gets 0). If Y = L, then, since
player 2 has recall 3

t1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 t2
P1 R L ©R L L L ©R ©R L ©R L L L ©R R L R
P2 R L L L ©R L L L ©R L L L ©R L L L R
P3 ©L ©R L ©R L L L L L L L L L L L L ©L

signal R L L L L L L L L L L L L L L L R

Then t2 = t1 + 16, and the average payoff of player 2 is 3/16. So to conclude subcase 2.a., it remains
to consider the case when Y = R.

stage → t1 +1 +2 +3 +4 +5 +6 +7 +8 +9
action P1 R L ©R L L L ©R ©R L R
action P2 R L L L ©R ©R L L Z T
action P3 ©L ©R L ©R L L L L L L

public signal R L L L L L L L L

Whatever Z is, we have T = R. Thus, t2 = t1 + 9 and the average payoff of player 2 is at most 3/9.

Subcase 2.b. At stage t1, player 1 plays L.
stage → t1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10

action P1 ©L ©R L ©R L L L ©R ©R L(d) R(f)

action P2 R L L L ©R (a) Y Z L L(b)

action P3 R L ©R L L L L L L L(d) L(f)

public signal R L L L L L L L L(c) L(e)

(a) standard argument because player 2 has recall 3,
(b) the only possibility is L otherwise there is no chance for the average payoff of player 2 to be greater
than 3/7. Furthermore (b) implies (c), (c) implies (d), (d) implies (e), and (e) implies (f).

Now, (Y, Z) = (L,L) is not possible because player 2 would play LLLL at stages t1+5, t1+6, t1+7, t1+8.
The case (Y,Z) = (L,R) also is not possible, because player 2 would have to play the same action at
both stages t1 + 6 and t1 + 8.

Assume that (Y, Z) = (R,L). Then
stage → t1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10

action P1 ©L ©R L ©R L L L ©R ©R L R
action P2 R L L L ©R ©R L L L ©R R
action P3 R L ©R L L L L L L L ©L

public signal R L L L L L L L L L R

Here t2 = t1 + 10. The average payoff for player 2 at stages t1, t1 + 1, . . . , t2 − 1 is only 3/10. The last
case to consider is (Y, Z) = (R,R).

stage → t1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10
action P1 ©L ©R L ©R L L L ©R ©R L R
action P2 R L L L ©R ©R ©R L L X ′ Y ′

action P3 R L ©R L L L L L L L L
public signal R L L L L L L L L L
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Necessarily Y ′ = R, and t2 = t1 + 10. The average payoff for player 2 is then at most 4/10 (< 3/7). �
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