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Abstract

This paper develops a framework to study the economic impact of infectious diseases by integrating epidemio-
logical dynamics into a neo-classical growth model. There is a two way interaction between the economy and the
disease: the incidence of the disease affects labor supply, and investment in health capital can affect the incidence
and recuperation from the disease. Thus, both the disease incidence and the income levels are endogenous. The
disease dynamics make the control problem non-convex thus usual optimal control results do not apply. We show
existence of an optimal solution, continuity of state variables, show directly that the Hamiltonian inequality holds
thus establishing optimality of interior paths that satisfy necessary conditions, and of the steady states. There
are multiple steady states and the local dynamics of the model are fully characterized. A disease-free steady state
always exists, but it could be unstable. A disease-endemic steady state may exist, in which the optimal health
expenditure can be positive or zero depending on the parameters of the model. The interaction of the disease and
economic variables is non-linear and can be non-monotonic.

Keywords: Epidemiology; Infectious Diseases; Existence of equilibrium, Sufficiency; Health Expenditure; Eco-
nomic Growth; Bifurcation.
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1. Introduction

This paper develops a theoretical framework to jointly model the determination of income and disease prevalence

by integrating epidemiological dynamics into a continuous time neo-classical growth model. It allows us to address

the issue of what is the optimal investment in health when there is a two way interaction between the disease

transmission and the economy: the incidence of diseases affects the labor force and thus, economic outcomes, while

economic choices on investment in health expenditure affect the disease transmission - expenditure in health leads

to accumulation of health capital which reduces infectivity to and increases recovery from the disease. In this

paper we study what is the best that society can do in controlling the disease transmission by taking into account

the externality associated with its spread (see Geoffard and Philipson (1997) and Miguel and Kremer (2004) on

externalities of disease transmission). Thus, we look at the social planning problem (see Hall and Jones (2007)

which takes a similar approach for non-infectious diseases). We show a steady state with disease prevalence and

zero health expenditure could be optimal as it depends on the relative magnitude of marginal product of physical

capital investment and health expenditure.
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The key contribution of this paper is that we model both disease dynamics and accumulation of physical and

health capital. The existing literature does not simultaneously model these together (see e.g. Bell, et al. (2003),

Delfino and Simmons (2000), Geoffard and Philipson (1997), Gersovitz and Hammer (2004), Goenka and Liu (2010),

Kremer (1996)). In modeling the interaction between infectious diseases and the macroeconomy, we expect savings

behavior to change in response to changes in disease incidence. Thus, it is important to incorporate this into the

dynamic model to be able to correctly assess the impact of diseases on capital accumulation and hence, growth

and income. As the prevalence of diseases is affected by health expenditure, which is an additional decision to the

investment and consumption decision, this has to be modeled as well. Without modeling both physical and health

capital accumulation and the evolution of diseases at the same time, it is difficult to understand the optimal response

to disease incidence. As the literature does not model both disease dynamics and capital accumulation explicitly, the

existing models are like a black-box: the very details of disease transmission and the capital accumulation process

that are going to be crucial in understanding their effects and for the formulation of public policy, are obscured.

We find that even when the strong assumption of log-linear preferences is made (which is usually invoked to justify

fixed savings behavior) there can be non-linear and non-monotonic changes in steady state outcomes.

In order to model the disease transmission explicitly we integrate the epidemiology literature (see Anderson

and May (1991), Hethcote (2009)) into dynamic economic analysis. In this paper we examine the effect of the

canonical epidemiological structure for recurring diseases - SIS dynamics - on the economy. SIS dynamics char-

acterize diseases where upon recovery from the disease there is no subsequent immunity to the disease. This covers

many major infectious diseases such as flu, tuberculosis, malaria, dengue, schistosomiasis, trypanosomiasis (human

sleeping sickness), typhoid, meningitis, pneumonia, diarrhoea, acute haemorrhagic conjunctivitis, strep throat and

sexually transmitted diseases (STD) such as gonorrhea, syphilis, etc (see Anderson and May (1991)). While this

paper concentrates on SIS dynamics, it can be extended to incorporate other epidemiological dynamics. An easy

way to understand epidemiology models is that they specify movements of individuals between different states based

on some ‘matching’ functions or laws of motion. Thus, the modeling strategy in the paper can be applied to other

contexts such as labor markets with search, diffusion of ideas (Jovanovic and Rob (1989)), etc. In particular, the

joint modeling of the non-concave law of motion and capital accumulation in the current paper may be applicable

to these models.

As the SIS dynamics are non-concave, care has to be taken in using optimal control techniques. To study optimal

solutions there are two sets of problems. First, while the existence of optimal solutions relies on compactness and

continuity arguments, this is subtle in continuous time models. We show, under weak assumptions, that the feasible

set is weakly compact and state variables are absolutely continuous (Lemma 1). The latter rules out jumps in

state and co-state variables in the interior of the feasible set as may happen in non-concave models. We show that

convergent sequences are in fact feasible and using concavity of the utility function show that optimal solutions exist

(Theorem 1). d’Albis, et al (2008) also have an existence result in an abstract model: our proof is more direct and

constructive. Second, to characterize optimal solutions it is usual to study the associated Hamiltonian. However,
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while the first order conditions (and transversality conditions) of the Hamiltonian are necessary they may not be

sufficient. We show directly that for any path where disease are endemic and health expenditures are positive is

locally optimal. In particular, the steady states are indeed optimal. This is done by showing that inequality for the

maximality of the Hamiltonian holds at the interior paths where the necessary conditions hold, and thus, it also

holds at the endemic steady state with positive health expenditures.1 To check the maximality of the Hamiltonian

we can decompose it into two parts: the first depends only on the control variables. As we have concavity in the

objective function in control variables, using standard results, the difference between the candidate solution and

any other solution is non-negative. The second part depends on the co-state and the state variables. This is helpful

as the the non-concavity in the problem arises from the law of evolution of labor only, and we explicitly show this

term converges to zero by using a transversality type argument.

In this paper we find a disease-free steady state always exists. It is unique when the birth rate is high. The

basic intuition is that healthy individuals enter the economy at a faster rate than they contract the disease so

that eventually it dies out even without any intervention. As the birth rate decreases, disease-free steady state

undergoes a trans-critical bifurcation and there are multiple steady states. The disease-free steady state still exists

but is unstable. An endemic steady state also exists with positive or zero health expenditure depending on the

relative magnitude of marginal product of physical capital investment and health expenditure. We show that in

an endemic steady state it is socially optimal not to invest in health capital if the discount rate (which indexes

longetivity) is sufficiently high or people are very impatient, while there are positive health expenditures if it is low

or people are patient. A sufficient condition is provided to guarantee the local saddle-point stability.

This paper sheds light on two strands of recent empirical literature: studies on the relationship between economic

variables and disease incidence, and the relationship between income and health expenditure share. The former

tries to quantify the impact of infectious diseases on the economy and one important issue is solving the endogeneity

of disease prevalence (see Acemoglu and Johnson (2007), Ashraf, et al (2009), Bloom, et al (2009), Young (2005)).

Our model, which endogenizes both income and disease incidence, shows that reduced form estimation by assuming

a linear relationship is not well justified as non-linearity is an important characteristic of models associated with the

disease transmission, and this nonlinearity in disease transmission can become a source of non-linearities in economic

outcomes. The latter tries to identify the cause of the changing share of health expenditures. Our findings suggest

increase in longevity or decrease in the fertility rate could also generate a positive relationship between income and

health expenditure share as observed in the data.

In this paper we abstract away from disease related mortality. This is a significant assumption as it shuts down

the demographic interaction. This assumption is made for three reasons. First, several SIS diseases have low

mortality so there is no significant loss by making this assumption. Secondly, from an economic modeling point of

view, we can use the standard discounted utility framework with a fixed discount rate if there is no disease related

1The other two steady states that may exist are essentially neoclassical steady states for which optimality is well known.
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mortaility. Thirdly, introducing disease related mortality introduces an additional state variable, population size,

and does not permit analysis in per capita terms. In the paper we, however, study the effect of changes in the

discount rate on the variables of interest. As discussed in the literature, an increase in longevity reduces discounting,

and thus the analysis of varying the discount rate captures some effects of change in mortality.

The paper is organized as follows: Section 2 describes the model and in Section 3 we establish existence of an

optimal solution. Section 4 studies the steady state equilibria, Section 5 studies sufficiency conditions and Section

6 contains the stability and bifurcation analysis of the steady states. Section 7 studies the effect on steady states

of varying the discount and birth rates, and the last section concludes.

2. The Model

In this paper we study the canonical deterministic SIS model which divides the population into two classes:

susceptible (S) and infective (I) (see Figure 1). Individuals are born healthy but susceptible and can contract

the disease - becoming infected and capable of transmitting the disease to others, i.e. infective. Upon recovery,

individuals do not have any disease conferred immunity, and move back to the class of susceptible individuals. Thus,

there is horizontal incidence of the disease so the individuals potentially contract the disease from their peers. This

model is applicable to infectious diseases which are absent of immunity or which mutate rapidly so that people will

be susceptible to the newly mutated strains of the disease even if they have immunity to the old ones.2 There is

homogeneous mixing so that the likelihood of any individual contracting the disease is the same, irrespective of

age. Let St be the number of susceptibles at time t, It be the number of infectives and Nt the total population

size. The fractions of individuals in the susceptible and infected class are st = St/Nt and it = It/Nt, respectively.

Let α be the average number of adequate contacts of a person to catch the disease per unit time or the contact

rate. Then, the number of new cases per unit of time is (αIt/Nt)St. This is the standard model (also known as

frequency dependent) used in the epidemiology literature (Hethcote (2009)). The basic idea is that the pattern

of human interaction is relatively stable and what is important is the fraction of infected people rather than the

total number. If the population increases, the pattern of interaction is invariant. Thus, only the proportion of

infectives and not the total size is relevant for the spread of the disease. The parameter α is the key parameter

and reflects two different aspects of disease transmission: the biological infectivity of the disease and the pattern

of social interaction. Changes in either will change α. The recovery of individuals is governed by the parameter γ

and the total number of individuals who recover from the disease at time t is γIt.

Many epidemiology models assume total population size to be constant when the period of interest is short, i.e.

less than a year, or when natural births and deaths and immigration and emigration balance each other. As we are

interested in long run effects, we assume that the net population growth rate is non-negative.

Assumption 1. The birth rate b and death rate d are positive constant scalars with b ≥ d.

2As there is no disease conferred immunity, there typically do not exist robust vaccines for diseases with SIS dynamics.

4



 

S 

b 

I 

d 

 α(I/N) 

γ 

d 

Figure 1: The Transfer Diagram for the SIS Epidemiology Model

Thus, the SIS model is given by the following system of differential equations (Hethcote (2009)):

dSt/dt = bNt − dSt − αStIt/Nt + γIt

dIt/dt = αStIt/Nt − (γ + d)It

dNt/dt = (b− d)Nt

St, It, Nt ≥ 0∀t;S0, I0, N0 > 0 given with N0 = S0 + I0.

Since Nt = St + It for all t, we can simplify the model in terms of the susceptible fraction st:

ṡt = (1− st)(b+ γ − αst) (1)

with the total population growing at the rate b − d. Note that while it may appear from equation (1) that the

dynamics are independent of d, it should be kept in mind that s is the susceptible fraction and both the number

of susceptibles and the total population depend on d. In this pure epidemiology model, there are two steady states

(ṡt = 0) given by: s∗1 = 1 and s∗2 = b+γ
α . We notice s∗1 (the disease-free steady state) exists for all parameter values

while s∗2 (the endemic steady state) exists only when b+γ
α < 1. Linearizing the one-dimensional system around its

equilibria, the Jacobians are Ds|s∗1 = α− γ − b and Ds|s∗2 = γ + b− α. Thus, if b > α− γ the system has only one

disease-free steady state, which is stable; and if b < α− γ the system has one stable endemic steady state and one

unstable disease-free steady state (See Figure 2). Hence, there is a bifurcation point, i.e. b = α − γ, where a new

steady state emerges and the stability of the disease free steady state changes.3

In this paper, we endogenize the parameters α and γ in a two sector growth model. The key idea is that the

epidemiology parameters, α, γ, are not immutable constants but are affected by (public) health expenditure. As

there is an externality in the transmission of infectious diseases, there may be underspending on private health

3Note equation (1) can be solved analytically and these dynamics are global. Since ṡt = (1 − st)(b + γ − αst), with initial value

s0 < 1, is a Bernoulli differential equation, the explicit unique solution is: st = 1 − e[α−(γ+b)]t

α
α−(γ+b)

e[α−(γ+b)]t+ 1
1−s0

− α
α−γ−b

(for b 6= α − γ)

and st = 1− 1
αt+ 1

1−s0
(for b = α− γ).
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Figure 2: The Steady States, Local Stability and Bifurcation Diagram for SIS Model

expenditure, and due to the contagion effects, private expenditure may not be sufficient to control incidence of the

disease.4 We want to look at the best possible outcome which will increase social welfare. Thus, we study the social

planner’s problem and concentrate on public health expenditure. In this way, the externalities associated with the

transmission of the infectious diseases can be taken into account in the optimal allocation of health expenditure.

We now develop the economic model. There is a population of size Nt growing over time at the rate of b − d.

Each individual’s labor is indivisible: We assume infected people cannot work and labor force consists only of

healthy people with labor supplied inelastically.5 Thus, in time period t the labor supply is Lt = Nt − It = St and

hence, Lt inherits the dynamics of St, that is,

l̇t = (1− lt)(b+ γ − αlt),

in terms of the fraction of effective labor lt = Lt/Nt. We allow for health capital to affect the epidemiology param-

eters, hence, allowing for a two-way interaction between the economy and the infectious diseases. We endogenize

them by treating the contact rate and recovery rate as functions of health capital per capita ht. This takes into ac-

count intervention to control the transmission of infectious diseases through their preventive or therapeutic actions.

When health capital is higher people are less likely to get infected and more likely to recover from the diseases. We

assume that the marginal effect diminishes as health capital increases. We further assume that the marginal effect

is finite as health capital approaches zero so that a small public health expenditure will not have a discontinuous

effect on disease transmission.

4The literature on rational epidemics as in Geoffard and Philipson (1996), Kremer (1996), Philipson (2000) looks at changes in
epidemiology parameters due to changes in individual choices. Individual choice is more applicable to disease which transmit by
one-to-one contact, such as STDs.

5This can be extended to incorporate a partial rather than full loss of productivity due to the illness. Endogenous labor supply could
also be introduced and see Goenka and Liu (2012) for details. They show the dynamics are invariant to introduction of endogenous
labor supply choice under certain regularity conditions.
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Assumption 2. The epidemiology parameter functions α(ht), <+ → <+ and γ(ht): <+ → <+ satisfy:

1. α is a C∞ function with α′ ≤ 0, α′′ ≥ 0, limht→0 |α′| <∞, limht→∞ α′ = 0 and α→ α as ht → 0;

2. γ is a C∞ function with γ′ ≥ 0, γ′′ ≤ 0, limht→0 γ
′ <∞, limht→∞ γ′ = 0 and γ → γ as ht → 0. 6

We assume physical goods and health are generated by different production functions. The output is produced

using physical capital and labor, and is either consumed, invested into physical capital or spent in health expenditure.

The health capital is produced only by health expenditure.7 For simplicity, we assume the depreciation rates of two

capitals are the same and δ ∈ (0, 1). Thus, the physical capital kt and health capital ht are accumulated as follows.

k̇t = f(kt, lt)− ct −mt − δkt − kt(b− d)

ḣt = g(mt)− δht − ht(b− d),

where ct is consumption and mt is health expenditure.

The physical goods production function f(kt, lt) and health capital production function g(mt) are the usual neo-

classical technologies. The health capital production function is increasing in health expenditure but the marginal

product is decreasing. The marginal product is finite as health expenditure approaches zero as discussed above.

Assumption 3. The production function f(kt, lt) : <2
+ → <+:

1. f(·, ·) is C∞;

2. f1 > 0, f11 < 0, f2 > 0, f22 < 0, f12 = f21 > 0 and f11f22 − f12f21 > 0;

3. limkt→0f1 =∞, limkt→∞f1 = 0 and f(0, lt) = f(kt, 0) = 0.

Assumption 4. The production function g(mt) : <+ → <+ is C∞ with g′ > 0, g′′ < 0, limmt→0g
′ < ∞,

limmt→∞g
′ = 0, and g(0) = 0.

It is worth noting that in our model, h can in principle be unbounded. We further assume utility function

depends only on current consumption,8 is additively separable, and discounted at the rate θ > 0.

Assumption 5. The instantaneous utility function u(ct) : <+ → <+ is C∞ with u′ > 0, u′′ < 0 and limct→0 u
′ =

∞.

Given concavity of the period utility function, any efficient allocation will involve full insurance. Thus, con-

sumption of each individual is the same irrespective of health status and we do not need to keep track of individual

health histories. So we could look at the optimal solution where the social planner maximizes the discounted utility

of the representative consumer:9

6For analysis of the equilibria C2 is required and for local stability and bifurcation analysis at least C5 is required. Thus, for
simplicity we assume all functions to be smooth functions.

7This health capital production function could depend on physical capital as well. If this is the case, there will be an additional first
order condition equating marginal product of physical capital in the two sectors and qualitative result of the paper still hold.

8We could instead assume utility function depends on both consumption and leisure. As long as we assume it is separable in
consumption and leisure, the social planner’s problem is well defined. See Goenka and Liu (2012) for details.

9Alternatively instead of maximizing the representative agent’s welfare we could maximize the total welfare by using∫∞
0 e−θte(b−d)tN0u(ct)dt (see the discussion in Arrow and Kurz (1970)). It is equivalent to having lower discounting. The quali-

tative results of this paper still remain although the optimal allocation may vary slightly.
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max
c,m

∫ ∞
0

e−θtu(c)dt (P )

subject to

k̇ = f(k, l)− c−m− δk − k(b− d) (2)

ḣ = g(m)− δh− h(b− d) (3)

l̇ = (1− l)(b+ γ(h)− α(h)l) (4)

k ≥ 0, h ≥ 0, c ≥ 0,m ≥ 0, 0 ≤ l ≤ 1 (5)

k0 > 0, h0 ≥ 0, l0 > 0 given. (6)

It is worthwhile noting here that we have irreversible health expenditure as it is unlikely that the resource spent

on public health can be recovered. For simplicity, we drop time subscript t when it is self-evident.

3. Existence of an optimal solution

In the problem we study, the law of motion of the labor force (equation (4)) is not concave reflecting the increasing

return of controlling diseases so that the Mangasarian conditions do not apply.10 In addition the maximized

Hamiltonian, H∗, may not be concave as it is possible that ∂2H∗

∂2l > 0. Thus, the Arrow sufficiency conditions may

not apply. To obtain a characterization of optimal solutions we first show that there is a solution to the planning

problem We then study steady state solutions to the associated Hamiltonian (Section 4) and then show that these

are indeed optimal (Section 5) so that they correspond to the solution shown to exist in this section.

The argument for existence of solutions relies on compactness of the feasible set and some form of continuity

of objective function. In continuous time models, the relevant variables may be restricted to lie in L1 but the

problem is that a ball in this space is not compact. Thus, we use the weak topology and show weak compactness

of the feasible set which is then used to obtain existence of an optimal solution.11 We first prove the uniform

boundedness of the feasible set that deduces the Lebesgue uniformly integrability. Let us denote by L1(e−θt) the

set of functions f such that
∫∞

0
|f(t)| e−θtdt < ∞. Recall that fi ∈ L1(e−θt) weakly converges to f ∈ L1(e−θt)

for the topology σ(L1(e−θt), L∞) (written as fi ⇀ f) if and only if for every q ∈ L∞,
∫∞

0
fiqe

−θtdt converges to∫∞
0
fqe−θtdt as i→∞ (written as

∫∞
0
fiqe

−θtdt −→
∫∞

0
fqe−θtdt). When writing fi −→ f, we mean that for every

t ∈ [0,∞), limi→∞ fi(t) = f(t), i.e. there is pointwise convergence.

We make the following assumption:

Assumption 6. There exists κ ≥ 0, κ 6=∞ such that −κ ≤ k̇/k.

10This can be seen from the Hessian:

(
2α −γ′ − α′ + 2α′l

−γ′ − α′ + 2α′l (1− l)(γ′′ − α′′l)

)
.

11d’Albis, et al (2008) also establish existence of an optimal solution in an abstract model which can be applied to our problem. We
give here a direct, more constructive proof.
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This reasonable assumption implies that it is not possible that the growth rate of physical capital converges to

−∞ rapidly and is weaker than those used in the literature (see, e.g. Chichilnisky (1981), LeVan and Vailakis (2003),

d’Albis et al. (2008)). LeVan and Vailakis (2003) use this assumption in a discrete-time optimal growth model with

irreversible investment: 0 ≤ (1− δ)kt ≤ kt+1 or −δ ≤ (kt+1− kt)/kt. δ > 0 is the physical depreciation rate in their

model, and thus is equivalent to κ. Let us define the net investment : ι = k̇ + (δ + b − d)k = f(k, l) − c −m. A.6

then implies there exists κ ≥ 0, κ 6= ∞ such that ι + [κ − (δ + b − d)]k ≥ 0. If the standard assumption 2 (v) in

Chichilnisky (1981) holds (non-negative investment, ι ≥ 0) then A.6 holds with κ = δ + b− d. Therefore, assuming

non-negative investment is stronger than A.6 in the sense that κ can take any value except for infinity.

We divide the proof into two lemmas. The first lemma proves the relatively weak compactness of the feasible

set. For this we show that the relevant variables are uniformly bounded and hence, are uniformly integrable. As

a result we are also able to show that the state variables are absolutely continuous which rules out jumps that

may arise in a non-concave problem. The continuity property is important in establishing sufficiency conditions for

optimality of steady states. Using the Dunford-Pettis Theorem we then have relatively weak compactness of the

feasible set.

Lemma 1. Let us denote by K = {(c, k, h, l,m, k̇, ḣ, l̇)} the feasible set satisfying equations(2)-(6). Then
i) K is relatively weak compact in L1(e−θt).
ii) State variables k, h, l are absolutely continuous.

Proof. i) Since limk→∞f1(k, l) = 0, for any ζ ∈ (0, θ) there exists a constant A0 such that f(k, 1) ≤ A0 + ζk.

Hence, we have

f(k, l) ≤ f(k, 1) ≤ A0 + ζk. (7)

Since k̇ = f(k, l)− c−m− k(δ + b− d), it follows that

k̇ ≤ f(k, l) ≤ A0 + ζk.

Multiplying by e−ζτ we get e−ζτ k̇ − ζke−ζτ ≤ A0e
−ζτ . Thus,

e−ζtk =

∫ t

0

∂(e−ζτk)

∂τ
dτ + k0 ≤

∫ t

0

A0e
−ζτdτ =

−A0e
−ζt

ζ
+
A0

ζ
+ k0.

This implies k ≤ −A0

ζ
+

(A0 + k0ζ)eζt

ζ
. Thus, there exists a constant A1 such that

k ≤ A1e
ζt. (8)

Therefore, note that ζ < θ,
∫∞

0
ke−θtdt ≤

∫∞
0
A1e

(ζ−θ)tdt < +∞.

Moreover, since −k̇ ≤ κk and k̇ ≤ A0 + ζk ≤ A0 + ζA1e
ζt there exists a constant A2 such that | k̇ | ≤ A2e

ζt.
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Thus ∫ ∞
0

| k̇ | e−θtdt <
∫ ∞

0

A2e
(ζ−θ)tdt < +∞.

Because −k̇ ≤ κk and c = f(k, l)− k̇ −m− δk − k(b− d), it follows from (7) and (8) that

c ≤ f(k, l) + k(κ− δ − b+ d)

≤ A0 + (κ− δ − b+ d+ ζ)k

≤ A0 + (κ− δ − b+ d+ ζ)A1e
ζt.

Thus, we can choose a constant A3 large enough such that c ≤ A3e
ζt which implies

0 ≤
∫ ∞

0

ce−θtdt ≤
∫ ∞

0

A3e
(ζ−θ)tdt < +∞.

Similarly there exists A4 such that m ≤ A4e
ζt and m ∈ L1(e−θt).

Now we prove | ḣ |, h belong to the space L1(e−θt).

From Assumption 4, there exists a constant B1 such that ḣ ≤ g(m) ≤ B1e
ζt.

Clearly h =
∫ t

0
ḣdτ + h0 ≤

∫ t
0
B1e

ζτdτ + h0 = B1

ζ e
ζt − B1

ζ + h0 which means there exist B2 such that h ≤ B2e
ζt

or h ∈ L1(e−θt). Moreover, −ḣ ≤ (δ+ b− d)h because g(m) ≥ 0. Therefore, −ḣ ≤ (δ+ b− d)B2e
ζt. So | ḣ | ≤ B3e

ζt

with B3 = max{B1, (δ + b− d)B2}. Thus, | ḣ |∈ L1(e−θt).

Obviously, l ∈ L∞ and limt→∞ le−θt = 0. It follows that

∫ ∞
0

l̇e−θtdt = −l0 + θ

∫ ∞
0

le−θtdt ≤ −l0 + θ

∫ ∞
0

e−θtdt < +∞.

Finally, we will prove that | l̇ |∈ L1(e−θt). Since 0 ≤ l ≤ 1 and α(h) is decreasing, we have

| l̇ | ≤ b+ |γ(h)|+ |α(h)|

≤ b+ |γ(h)|+ |α(0)|

= γ(h) + b+ α(0).

Since limh→∞ γ′(h) → 0, there exists a constant B4 such that γ(h) ≤ B4 + ζh ≤ B4 + ζB2e
ζt. Thus, there exists

B5 such that | l̇ | ≤ B5e
ζt. This implies | l̇ |∈ L1(e−θt). We have proven that K is uniformly bounded on L1(e−θt).

Moreover, lima→∞
∫∞
a
ke−θtdt ≤ lima→∞

∫∞
a
A1e

(ζ−θ)tdt = 0. This property is true for other variables in K.

Therefore K satisfies Dunford-Pettis theorem and it is relatively compact in the weak topology σ(L1(e−θt), L∞).

ii) We have shown that every state variable and their derivatives lie in L1(e−θt). Thus, they belong to the

Sobolev space, W 1
1 (e−θt). Functions which lie in a Sobolev space are continuous. (Proposition 1, Ashkenazy and

Le Van (1999), and Theorem 1, Maz’ja (1985)). A function is absolutely continuous if its derivative is intergrable.
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As we have shown that the time derivatives of the state variables lie in L1(e−θt), the state variables are absolutely

continuous.

We know from above that as the feasible set is weakly compact, the control variables and derivatives of state

variables weakly converge. The following Lemma shows that in fact, the state variables converge pointwise. In

addition, the limit of the sequence of the time derivatives of the state variables, is the time derivative of the limit

point of the state variables (Second part of Lemma 2.1). The second part of the Lemma (i.e. 2.2) notes that as

we are considering a feasible sequence, the weight ωi(n) is the same for all the variables in the sequence. This

fact becomes important in the main existence proof. The continuity of the state variables plays an important role

in subsequent properties of the Hamiltonian and is used to characterize optimal solutions including the showing

optimality (Section 5). However, this does not play an immediate role in Theorem 1 which shows existence of an

optimal solution.

Lemma 2. 1. For any state variable and its derivative, i.e. (xi, ẋi) ∈ K, suppose that (xi, ẋi) ⇀ (x∗, y). Then
xi −→ x∗as i→∞ and y = ẋ∗.

2. There exists a function N : N → N and a sequence of sets of real numbers {ωi(n) | i = n, ...,N (n)}
such that ωi(n) ≥ 0 and

∑N (n)
i=n ωi(n) = 1 such that for any variable fi ∈ K, the sequence vn defined by

vn =
∑N (n)
i=n ωi(n)fi → v∗ as n→∞.

Proof. 1) Since K is relatively compact in the weak topology σ(L1(e−θt), L∞), a sequence (xi, ẋi) in K has a

subsequence (denoted again by xi for simplicity of notation) which weakly converges to some limit point (x∗, y) in

L1(e−θt) as i→∞.

For any xi ∈ K by hypothesis, xi ⇀ x∗. We first claim that, for t ∈ [0,∞),
∫ t

0
xids →

∫ t
0
x∗ds. Note that

xi ⇀ x∗ for the topology σ(L1(e−θt), L∞) if and only if for every q ∈ L∞,
∫∞

0
xiqe

−θtdt→
∫∞

0
x∗qe−θtdt.

Pick any t in [0,∞) and let

q(s) =


1

e−θs
if s ∈ [0, t]

0 if s > t.

Therefore, q ∈ L∞ and we get
∫ t

0
xids =

∫∞
0
xiqe

−θsds→
∫∞

0
x∗qe−θsds =

∫ t
0
x∗ds .

Now, given that xi ⇀ x∗ and ẋi ⇀ y. By the claim, for all t ∈ [0,∞) we have
∫ t

0
ẋids→

∫ t
0
yds . This implies,

for any t, xi →
∫ t

0
yds+ z0. Thus

∫ t
0
yds+ x0 = x∗. Therefore, xi → x∗ and y = ẋ∗.

2) A direct application of Mazur’s Lemma.

We are now in a position to prove the existence of solution to the social planner’s problem. The difficulty is

that while we have convergence of the feasible sequences, as only the closure of the feasible set is closed, and not

the feasible set, we do not know that the limit point is in fact feasible. This is shown below.

Theorem 1. Under Assumptions A.1-A.6, there exists a solution to the social planner’s problem.

Proof. Since u is concave, for any c̄ > 0, u(c) − u(c̄) ≤ u′(c̄)(c − c̄). Thus, if c ∈ L1(e−θt) then
∫∞

0
u(c)e−θtdt

is well defined as ∫ ∞
0

u(c)e−θtdt ≤
∫ ∞

0

[u(c̄)− u′(c̄)c̄]e−θtdt+ u′(c̄)

∫ ∞
0

ce−θtdt < +∞.
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Let us define S :
def
= supc∈K

∫∞
0
u(c)e−θtdt. Assume that S > −∞ (otherwise the proof is trivial). Let ci ∈ K be

the maximizing sequence of
∫∞

0
u(c)e−θtdt so limi→∞

∫∞
0
u(ci)e

−θtdt = S.

Since K is relatively weak compact, suppose that ci ⇀ c∗ for some c∗ in L1(e−θt). By Lemma 2, there is a

sequence of convex combinations

vn =

N (n)∑
i=n

ωi(n)ci(n) → c∗, withωi(n) ≥ 0 and

N (n)∑
i=n

ωi(n) = 1.

Because u is concave, we have

lim sup
n→∞

u(vn) = lim sup
n→∞

u

N (n)∑
i=n

ωi(n)ci(n)


≤ lim sup

n→∞

u(c∗) + u′(c∗)

N (n)∑
i=n

ωi(n)ci(n) − c∗
 = u(c∗).

Since this holds for almost all t, integrate w.r.t e−θtdt to get

∫ ∞
0

lim sup
n→∞

u(vn)e−θtdt ≤
∫ ∞

0

u(c∗)e−θtdt.

Using Fatou’s lemma we have

lim sup
n→∞

∫ ∞
0

u(vn)e−θtdt ≤
∫ ∞

0

lim sup
n→∞

u(vn)e−θtdt ≤
∫ ∞

0

u(c∗)e−θtdt. (9)

Moreover, by Jensen’s inequality we get

lim sup
n→∞

∫ ∞
0

u(vn)e−θtdt ≥ lim sup
n→∞

N (n)∑
i=n

ωi(n)

∫ ∞
0

u(ci(n))e
−θtdt. (10)

But since
∫∞

0
u(ci(n))e

−θtdt→ S, (9) and (10) imply
∫∞

0
u(c∗)e−θtdt ≥ S.

So it remains to show that c∗ is feasible (because K is only relatively weak compact, it is not straightforward

that c∗ ∈ K). The task is now to show that there exists some (k∗, l∗, h∗,m∗) in K such that (c∗, k∗, l∗, h∗,m∗)

satisfy (2)-(6).
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Consider a feasible sequence (ki(n), li(n), hi(n),mi(n)) in K associated with ci(n) we have

c∗ = lim
n→∞

vn = lim
n→∞

N (n)∑
i=n

ωi(n)ci(n)

= lim
n→∞

N (n)∑
i=n

ωi(n)[f(ki(n), li(n))−mi(n) − ki(n)(δ + b− d)− k̇i(n)]

=

N (n)∑
i=n

ωi(n)[f( lim
n→∞

ki(n), lim
n→∞

li(n))− (δ + b− d) lim
n→∞

ki(n)]

− lim
n→∞

N (n)∑
i=n

ωi(n)k̇i(n) − lim
n→∞

N (n)∑
i=n

ωi(n)mi(n).

According to Lemma 2, there exists k∗, l∗ such that limn→∞ ki(n) = k∗, limn→∞ li(n) = l∗.

By Lemma 2, k̇i(n) ⇀ k̇∗ and since mi(n) in K, there exists m∗ such that mi(n) ⇀ m∗. Thus it follows from

Lemma 2 that

lim
n→∞

N (n)∑
i=n

ωi(n)k̇i(n) → k̇∗, lim
n→∞

N (n)∑
i=n

ωi(n)mi(n) → m∗.

Therefore,

c∗ = f(k∗, l∗)− k̇∗ −m∗ − δk∗ − k∗(b− d).

Since l̇i ⇀ l̇∗, by Lemma 2, there exists vn =
∑N (n)
i=n ωi(n) l̇i(n) → l̇∗ as n→∞. Thus,

l̇∗ = lim
n→∞

N (n )∑
i=n

ωi(n) l̇i(n) = lim
n→∞

N (n)∑
i=n

ωi(n)[(1− li(n))(b+ γ(hi(n))− α(hi(n))li(n))].

In view of Lemma 2 , h
i(n)
−→ h∗, l

i(n)
−→ l∗ as n→∞ and γ(h

i(n)
), α(h

i(n)
) are continuous, we get

l̇∗ =

N (n)∑
i=n

ωi(n)[(1− l∗)(b+ γ(h∗)− α(h∗)l∗)]

= (1− l∗)(b+ γ(h∗)− α(h∗)l∗).

Applying a similar argument and using Jensen’s inequality yields

ḣ∗ = lim
n→∞

N (n)∑
i=n

ωi(n)ḣi(n) = lim
n→∞

N (n)∑
i=n

ωi(n)[g(mi(n))− δhi(n) − hi(n)(b− d)]

≤ g( lim
n→∞

N (n)∑
i=n

ωi(n)mi(n))− lim
n→∞

N (n)∑
i=n

ωi(n)(δ + b− d)hi(n)

= g(m∗)− δh∗ − h∗(b− d).

Thus

g(m∗) ≥ δh∗ + h∗(b− d) + ḣ∗. (11)
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Because u is increasing, c∗ = f(k∗, l∗)− k̇∗ −m∗ − δk∗ − k∗(b− d) should be the maximal value which implies,

at the optimum, m∗ should be the minimal value. Therefore the constraint (11) should be binding at the optimum

since g(m) is increasing.

The proof is done.

We have shown that the control variables c,m and derivatives of state variables weakly converge in the weak

topology σ(L1(e−θt), L∞), while the state variables converge pointwise (Lemma 2). The problem is that even if we

have a weakly convergent sequence, the limit point may not be feasible. For pointwise convergent sequences, the

continuity is all that is necessary to prove the feasibility. Therefore, concavity is not needed for state variables.

Theorem 1 shows that the limit point is indeed optimal in the original problem. For weakly convergent sequence,

Mazur’s Lemma is used to change into pointwise convergence. Jensen’s inequality is used to eliminate the convex-

combination-coefficients to prove the feasibility. Thus, concavity with respect to control variables is crucial. Our

proof is adapted from work of Chichilnisky (1981), Romer (1986) and d’Albis, et al. (2008) to the SIS dynamic

model with less stringent assumptions and a nonconvex technology. Chichilnisky (1981) used the theory of Sobolev

weighted space and imposed a Caratheodory condition on utility function, Romer (1986) made assumptions that

utility function has an integrable upper bound, satisfies a growth condition and d’Albis et al (2008) assumed feasible

paths are uniformly bounded and the technology is convex with respect to the control variables.

4. Characterization of Steady States

To analyze the solution to the planner’s problem, we look at first order conditions to the planning problem. We

know that an optimal solution exists, and the first order conditions of the associated Hamiltonian are necessary (see

for example, Caputo (2005), Theorem 14.5). As discussed earlier the usual sufficiency conditions based on some

type of concavity may not hold. In this section we study the first order conditions to the associated Hamiltonian

and study the steady state solutions. We show for some parameters there is a unique (steady state) solution to the

first order conditions. For others, there are multiple steady state solutions. In the next section we establish that

the steady state solutions satisfy appropriate sufficiency conditions for optimality.

From the Inada conditions we can rule out k = 0, and the constraint l ≥ 0 is not binding since l̇ = b + γ > 0

whenever l = 0. In fact, l is bounded from 0 since when l is small enough, l̇ > 0. The constraint h ≥ 0 can

be inferred from m ≥ 0, and hence, can be ignored. Now consider the social planner’s maximization problem

with irreversible health expenditure m ≥ 0 and inequality constraint l ≤ 1. The current value Lagrangian for the

optimization problem above is:

L = u(c) + λ1[f(k, l)− c−m− δk − k(b− d)] + λ2[g(m)−

− δh− h(b− d)] + λ3(1− l)(b+ γ(h)− α(h)l) + µ1(1− l) + µ2m

where λ1, λ2, λ3 are costate variables, and µ1, µ2 are Lagrange multipliers. The Kuhn-Tucker conditions and
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transversality conditions are given by

c : u′(c) = λ1, (12)

m : m(λ1 − λ2g
′) = 0, m ≥ 0, λ1 − λ2g

′ ≥ 0, (13)

k : λ̇1 = −λ1(f1 − δ − θ − b+ d), (14)

h : λ̇2 = λ2(δ + θ + b− d)− λ3(1− l)(γ′ − α′l), (15)

l : λ̇3 = −λ1f2 + λ3(θ + b+ γ + α− 2αl) + µ1, (16)

µ1 ≥ 0, 1− l ≥ 0, µ1(1− l) = 0, (17)

lim
t→∞

e−θtλ1k = 0, lim
t→∞

e−θtλ2h = 0, lim
t→∞

e−θtλ3l = 0. (18)

The system dynamics are given by equations (2)-(6) and (12)-(18). If x is a variable, we use x̃ to denote its

steady state value.12 We characterize steady states in terms of exogenous parameters b and θ (See figure 3). Define

l := min{ b+γα , 1}, k such that f1(k, l) = δ + b− d+ θ and k such that f1(k, 1) = δ + b− d+ θ. Clearly k ≥ k.

Proposition 1. Under Assumptions A.1−A.6,

1. There always exists a unique disease-free steady state with l̃ = 1, m̃ = 0, h̃ = 0, and k̃ = k;

2. There exists an endemic steady state (l̃ < 1) if and only if b < α− γ and there is a solution (l̃, k̃, m̃, h̃) to the
following system of equations:

l =
γ(h) + b

α(h)
(19)

f1(k, l) = δ + θ + b− d (20)

g(m) = (δ + b− d)h (21)

m(f1(k, l)− f2(k, l)l′θ(h)g′(m)) = 0 (22)

m ≥ 0 (23)

f1(k, l) ≥ f2(k, l)l′θ(h)g′(m), (24)

where we define l′θ(h) :=
(1− l)(γ′(h)− α′(h)l)

θ + α(h)− b− γ(h)
.

Proof. From l̇ = 0 we have either l̃ = 1 (disease-free case) or l̃ =
γ(h̃) + b

α(h̃)
< 1 (endemic case).

Case 1: l̃ = 1. Since λ̇2 = λ2(δ + b − d + θ) = 0, λ̃2 = 0. As g′ is finite by assumption, λ̃1 − λ̃2g
′ = ũ′ > 0,

which implies m̃ = 0 by equation (13). Since g(0) = 0, h̃ = 0 from equation (3). From λ̇1 = 0, k̃ = k. So the model

degenerates to the neo-classical growth model. Moreover l̃ = 1 exists for all parameter values.

Case 2: l̃ < 1. This steady state exists if and only if there exists h̃ ≥ 0 such that l̃ =
γ(h̃) + b

α(h̃)
< 1 and

(l̃, k̃, m̃, m̃) is a steady state solution to the dynamical system. For the former, by assumption A.2,
γ(h) + b

α(h)
is

increasing in h. So if
b+ γ

α
< 1, that is, b < α − γ, we can find h̃ ≥ 0 such that l̃ < 1. For the latter, since l̃ < 1,

12This is to distinguish steady states from optimal paths which are indexed by superscript ∗.
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µ1 = 0. From λ̇2 = 0 and λ̇3 = 0, we have:

λ̃2 =
u′(c̃)f2(k̃, l̃)

f1(k̃, l̃)

(1− l̃)((γ̃′ − α̃′)l̃)
θ + α(h̃)− b− γ(h̃)

So equation (13) could be written as equations (22)-(24). Moreover by letting ḣ = 0, λ̇1 = 0 and l̇ = 0 we have

equations (19)-(21).

Therefore, the economy has a unique disease-free steady state in which the disease is completely eradicated and

there is no need for any health expenditure. In this case, the model reduces to the standard neo-classical growth

model. Note that the disease-free steady state always exists. Furthermore, when the birth rate is smaller than α−γ,

in addition to the disease-free steady state, there exists an endemic steady state in which the disease is prevalent

and there is non-negative health expenditure. The L.H.S. of equation (24) is the marginal benefit of physical capital

investment while the R.H.S. is marginal benefit of health expenditure. To see this, on the R.H.S. the last term

g′(m) is the marginal productivity of health expenditure, the middle term l′θ(h) can be interpreted as the marginal

contribution of health capital on effective labor supply and the first term f2(k, l) is the marginal productivity of

labor. Essentially we can think there is an intermediate production function which transforms one unit of health

expenditure into labor supply through the effect on endogenous disease dynamics. Equations (22)-(24) say that

if the marginal benefit of physical capital investment is higher than the marginal benefit of health expenditure,

there will be no health expenditure. In summary, either there is a unique disease free steady state (when b is large

enough); or if b is small enough, two steady states, one where the diseases is eradicated or where the disease is

endemic. In the latter steady state there are positive or zero health expenditures depending on the parameters of

the model. All three types of steady states cannot co-exist at the same time in this model.13

Next we characterize endemic steady states further.

Assumption 7. α(α′′(γ + b)− γ′′α) > 2α′(α′(γ + b)− γ′α).

By A.7 we can show

l′′θ (h) =
∂l′θ(h)

∂h

= − (α− γ − b+ θ)(α− γ − b)[α(α′′(γ + b)− γ′′α)− 2α′(α′(γ + b)− γ′α)] + αθ(α′(γ + b)− γ′α)(α′ − γ′)
α3(α− γ − b+ θ)2

< 0

From equations (19)-(21), we could write (l̃, k̃, m̃) as a function of h. We have l̃(h) given by equation (19) with

l′(h) :=
∂l̃(h)

∂h
=
γ′α− (γ + b)α′

α2
> 0. m̃(h) > 0 is given by equation (21) with

∂m̃(h)

∂h
=
δ + b− d
g′(m)

> 0. k̃(h)

is determined by equation (20), that is, at the steady state marginal productivity of physical capital equals to

the marginal cost. Since f1 is strictly decreasing and lies in (0,+∞) for each l̃(h), we can always find a unique

13In an earlier version of the paper under different specifications the two types of disease endemic steady states do co-exist.
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k̃(h) and
∂k̃(h)

∂h
= −f12

∂l̃(h)

∂h
/f11 > 0 . Since

∂f2(k̃(h), l̃(h))

∂h
=

f11f22 − f12f21

f11

∂l̃(h)

∂h
< 0, l′′θ (h) < 0 and

∂g̃′(h))

∂h
= g′′

∂m̃(h)

∂h
< 0, the R.H.S. of equation (24) decreases as h increases. That is, we have diminishing

marginal product of health capital under A.7, which guarantees the uniqueness of the endemic steady state.

From equation (23), there are two cases: m̃ = 0 and m̃ > 0. The first is termed as the endemic steady state

without health expenditure and the second the endemic steady state with health expenditure. For the endemic

steady state without health expenditure, ḣ = 0 implies h̃ = 0, and

f1(k, l) ≥ f2(k, l)l′θ(0)g′(0), (25)

where l′θ(0) :=
(1− l)(γ′(0)− α′(0)l)

θ + α− b− γ . Due to the diminishing marginal product of health capital mentioned above,

a unique endemic steady state without health expenditure exists if and only if inequality (25) is satisfied. Otherwise

an endemic steady state with health expenditure exists.

Proposition 2. Under A.1−A.7, for each fixed b ∈ [d, α− γ) there exists a unique θ̂(b) such that:

1. If θ ≥ θ̂(b), there exists a unique endemic steady state without health expenditure with l̃ = l, m̃ = 0, h̃ = 0 ,
k̃ = k and c̃ = f(k, l)− δk − k(b− d).

2. If θ < θ̂(b), there exists a unique endemic steady state with health expenditure with (l̃, m̃, h̃, k̃, c̃) determined
by:

l =
γ(h) + b

α(h)

f1(k, l) = δ + b− d+ θ

f2(k, l)l′θ(h)g′(m) = δ + b− d+ θ

g(m) = (δ + b− d)h

c = f(k, l)−m− δk − k(b− d).

Proof. An endemic steady state without health expenditure exists if and only if equation (25) is satisfied. Fix

any b ∈ [d, α− γ), L.H.S. of equation (25) is increasing in θ as f1(k, l) = δ + b− d+ θ while the R.H.S. of equation

(25) is decreasing in θ. So for each b there exists a unique θ̂(b) such that f1(k, l) = f2(k, l)l′θ(0)g′(0). Note θ̂(b)

could be non-positive.

Case 1: θ̂(b) is positive. If θ ≥ θ̂(b), equation (25) is satisfied and an endemic steady state without health

expenditure exists. Otherwise an endemic steady state with health expenditure exists.

Case 2: θ̂(b) is non-positive. Then equation (25) is satisfied for all θ > 0 and only an endemic steady state

without health expenditure exists. With abuse of notation, we define θ̂(b) = max{θ̂(b), 0}.

If θ ≥ θ̂(b), m̃ = 0 and from equations(19)-(21) we have h̃ = 0, l̃ = l , k̃ = k and c̃ = f(k, l)− δk − k(b− d).

If θ < θ̂(b), m̃ > 0 and equation (24) holds at equality. It implies marginal product of physical capital investment

equals the marginal product of health expenditure, and equals to the marginal cost. As l̃, k̃, m̃ could be written as
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functions of h, we only need to show there always exists a unique solution h̃ to the following equation:

f2(k̃(h), l̃(h))l′θ(h)g′(m̃(h)) = δ + b− d+ θ

Since R.H.S. of the above equation decreases as h increases, limh→∞ f2l
′
θ(h)g′(m) = 0 and limh→0 f2l

′
θ(h)g′(m) =

f2(k, l)l′θ(0)g′(0) > f1(k, l) = δ + b − d + θ, the above equation always has a unique solution. And c̃ = f(k̃, l̃) −

m̃− δk̃ − k̃(b− d) > 0 due to equation (12) and Inada conditions. That is, under A.1-A.7 there exists an endemic

steady state with health expenditure if θ < θ̂(b).

So far we have characterized the steady state equilibria in terms of exogenous parameters b and θ. Lets summarize

the results here (See Figure 3). Figure 3 resembles Figure 2 but now with more economic meaning built in. First,

we look at the birth rate b. If the birth rate is very high and greater than the critical value α − γ, there is only

one disease-free steady state. This is guaranteed by the pure epidemiology model and diseases are eradicated even

without any intervention. The basic intuition is that healthy individuals enter the economy at a faster rate than

they contract the disease so that eventually it dies out even without any health expenditure. When the birth rate is

low and lies in the range [d, α− γ), there are two steady states: disease-free steady state and endemic steady state.

In an endemic steady state, diseases are prevalent and there is an option of intervention. Depending on the relative

magnitude of marginal product of physical capital investment and health expenditure, investment in health could

be either positive or zero. If we fix the parameter birth rate b, which lies in the range where the disease could be

prevalent, we find if the discount rate θ lies below the curve θ̂(b) there is positive health expenditure in controlling

diseases, otherwise health expenditure is zero. That is, people with a lower discount rate or who are patient are

more likely to invest in health than people with high discount rate or who are impatient. A sufficient condition is

provided below to show the curve θ̂(b) is indeed downward sloping, which is also consistent with the findings in the

numerical analysis.

Hence, an endemic steady state without health expenditure is well justified and exists when marginal product

of physical capital investment is no less than marginal product of health expenditure. In other words, despite the

prevalence of the disease, if marginal product of physical capital investment is greater than marginal product of

health expenditure, there will be no investment in health. Thus, the prevalence of the disease is not sufficient (from

purely an economic point of view) to require health expenditures. It is conceivable that in labor abundant economies

with low physical capital this holds, and thus, we may observe no expenditure on controlling an infectious disease

while in other richer economies there are public health expenditures to control it.

The welfare analysis of the steady state equilibria is relatively straightforward. The disease-free steady state

is no doubt always better than the endemic steady state as there is full employment and no health expenditure is

needed to control the prevalence of infectious diseases. For the two endemic steady states, it does not make too

much sense to compare them as they do not coexist.
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Figure 3: The Steady States, Local Stability and Bifurcation Diagram

4.1. Sufficient Condition for Characterization of Endemic Steady State

This section studies the properties of the function θ̂(b) for b ∈ [d, α− γ).

Assumption 8. Elasticity of marginal contribution of health capital on labor supply with respect to birth rate is

small, that is,
∂l′θ(0)/∂b
l′θ(0)/b < b

[
1
f1
− f21

f11f2
− f22f11−f21f12

αf11f2

]
.14

Lemma 3. θ̂(b) is decreasing in b. As b→ α− γ, θ̂(b) approaches a non-positive number.

Proof. Since k is given by f1(k, l) = δ + b− d+ θ, we have

∂k

∂θ
=

1

f11
and

∂k

∂b
=

1

f11
− f12

αf11
.

Moreover, function θ̂(b) is determined by

H = 1− f2(k, l)

f1(k, l)
l′θ(0)g′(0) = 0.

By the implicit function theorem, θ̂(b) is continuous and

∂H

∂θ̂
= −f21f1 − f11f2

f2
1

∂k

∂θ
l′θ(0)g′(0)− f2

f1

∂l′θ(0)

∂θ
g′(0) > 0,

14For a Cobb-Douglas production function f(k, l) = Akal1−a, the assumption reduces to
∂l′θ(0)/∂b
l′
θ
(0)/b

< b
(1−a)(δ+b−d+θ) . As

∂l′θ(0)
∂b

=

− l′θ(0)
α(1−l) −

(1−l)α′(0)
α(θ+α−b−γ) +

l′θ(0)
θ+α−b−γ , the assumption is then given by − 1

α(1−l) −
α′(0)

α(γ′(0)−α′(0)l) + 1
θ+α−b−γ <

1
(1−a)(δ+b−d+θ) , which

is satisfied for a wide range of parameter values.
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and

∂H

∂b
= −

(
αf21 + f22f11 − f21f12

αf11f1
− f2

f2
1

)
l′θ(0)g′(0)− f2

f1

∂l′θ(0)

∂b
g′(0) > 0

under A.8. Thus, we have ∂θ̂/∂b < 0, that is θ̂(b) is decreasing in b.

Let b → α − γ. For any θ > 0, l → 1, l′θ(0) → 0 and R.H.S. of equation (25) goes to 0. However, the L.H.S. of

equation (25) equals to δ + b − d + θ, which is strictly positive as b approaches α − γ. So as b → α − γ, equation

(25) is satisfied for all θ > 0, which means θ̂(b) goes to some non-positive number as b→ α− γ.

From Figure 3, it is easy to see the graph θ̂(b) intersects the horizontal axis at the point which lies on the left

side of b = α− γ. Let us denote θ̂(d) as the intersection point of both the function θ̂(b) and vertical axis b = d. As

the function θ̂(b) is a one-to-one mapping, we could write its inverse mapping as b̂(θ) for θ ∈ (0, θ̂(d)] and define

b̂(θ) = d for θ > θ̂(d).

Proposition 3. Under Assumption A.1−A.8, for each θ > 0

1. If b̂(θ) ≤ b < α− γ, a unique endemic steady state without health expenditure exists;

2. If d ≤ b < b̂(θ), a unique endemic steady state with health expenditure exists.

Proof. Omitted.

This proposition is easily seen in Figures 5 and 8.

Remark 1. We have shown in Lemma 1 (ii) that state variables k, h, l are continuous. Following Proposition 3 in
Ashkenazy and Le Van (1999), we can show that the control variables c,m are continuous, and following Le Van
et al, (2007), in the interior, co-state variables are also continuous. So the problem of jumps at “junction points”
does not arise at interior steady states.

If jumps do take place, then this can happen only at boundary solutions, specifically when l = 1. The steady
state where the disease is eradicated, l̃ = 1, m̃ = 0, h̃ = 0, and k̃ = k can be shown to be the optimal steady state as
it corresponds to the neoclassical steady state with convex technology.

5. Sufficient conditions

We have shown that a solution to the social planner’s problem exists, and we know that the first order conditions

are necessary. We can have three types steady states. Optimality of the disease free steady state is not in question

as it is the neoclassical steady state. When the disease is endemic there can either be a steady state where there

are no health expenditure or one where are positive health expenditures. Only one of these exists for any set of

parameters (Proposition 2). Optimality of the first kind of steady state is also not an issue as in the neighborhood

of the steady state, m = 0, h = 0. Hence, it is just a neo-classical steady state with a smaller effective labor force,

l̃ < 1, and locally the Arrow conditions hold. The steady sate of most interest, i.e. where l̃ < 1, m̃ > 0, h̃ > 0, is

the problematic one. Thus, we show directly that it satisfies the inequality for the maximality of the Hamiltonian

at the endemic steady state with positive health expenditures, and hence the steady state is optimal. First, we

prove for any interior path which satisfies the first order and transversality condition, it is locally optimal. As we

are considering any interior path we need the following assumption.
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Assumption 9. For all l ∈ (0, 1), f1(k̂, l) > (b− d+ δ), where k̂ is the maximum sustainable capital stock for the

given l, i.e. k̂ solves f(k̂, l) = (b− d+ δ)k̂.

Assumption 3 implies existence of the maximum sustainable capital stock, k̂.

Proposition 4. Consider an interior path with endemic diseases with positive health expenditure: Let denote x∗t =
(k∗t , h

∗
t , l
∗
t ) where x∗0 = (k0, h0, l0) and z∗t = (c∗t ,m

∗
t ). If there exist λt = (λ1,t, λ2,t, λ3,t) : [0,∞) → Rn that are

absolutely continuous and satisfy conditions (2)-(6) and (12)-(18) then (x∗, z∗) is a locally optimal solution of (P).

Proof.

Consider the current value Hamiltonian

H(xt, ut, λt) = u(ct) + λ1,t[f(kt, lt)− ct −mt − δkt − kt(b− d)] + λ2,t[g(mt)−

− δht − ht(b− d)] + λ3,t(1− lt)(b+ γ(ht)− α(ht)lt)

where the first-order and transversality conditions satisfied at (x∗t , z
∗
t , λt)

u′(ct) = λ1,t = λ2,tg
′, (26)

˙λ1,t = −λ1,t(f1 − δ − θ − b+ d), (27)

˙λ2,t = λ2,t(δ + θ + b− d)− λ3,t(1− lt)(γ′ − α′lt), (28)

˙λ3,t = −λ1,tf2 + λ3,t(θ + b+ γ + α− 2αlt), (29)

lim
t→∞

e−θtλ1,tk
∗
t = 0, lim

t→∞
e−θtλ2,th

∗
t = 0, lim

t→∞
e−θtλ3,tl

∗
t = 0.

Consider any feasible path (xt, zt) with the same initial condition x∗0. First, we show that limt→∞ e−θt〈λt, x∗t −

xt〉 = 0.

From (27) we get λ1,t = λ1,0.e
−(f1−δ−θ−b+d)t and

lim
t→∞

λ1,te
−θt = lim

t→∞
λ1,0e

−(f1−δ−θ−b+d)te−θt = lim
t→∞

λ1,0e
−(f1−δ−b+d)t = 0

by Assumption 9. Since kt ≤ max{k0, k̂}, limt→∞ e−θtλ1,t(k
∗
t − kt) = 0.

By Assumption 6, ct ≤ f(kt, lt) + κkt ≤ f(k̂, 1) + κk̂ and hence, mt ≤ f(k̂, 1) + κk̂ = m̂, λ2,t =
λ1,t

g′(mt)
≤ λ1,t

g′(m̂) .

Since ḣt ≤ g(m̂) we have

ht ≤
∫ t

0

g(m̂)ds+ h0 = g(m̂)t+ h0.
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Then, using l’Hôpital’s rule we get

0 ≤ lim
t→∞

e−θtλ2,tht ≤ lim
t→∞

e−θt
λ1,t

g′(m̂)
(g(m̂)t+ h0)

= lim
t→∞

e−θt
λ1,tg(m̂)t

g′(m̂)
= lim
t→∞

g(m̂)t

g′(m̂)λ1,0e(f1−δ−b+d)t

= lim
t→∞

g(m̂)

g′(m̂)λ1,0(f1 − δ − b+ d)e(f1−δ−b+d)t
= 0.

Therefore, limt→∞ e−θtλ2,t(h
∗
t − ht) = 0.

Since lt is bounded away from 0 (from the law of motion), let the lower bound be denoted by l̂. Then

0 ≤ limt→∞ e−θtλ3,t l̂ ≤ limt→∞ e−θtλ3,tl
∗
t = 0, the last inequality is the transversality condition. This implies

limt→∞ e−θtλ3,t = 0. Furthermore, for any feasible lt, 0 ≤ limt→∞ e−θtλ3,tlt ≤ limt→∞ e−θtλ3,t = 0 (since lt ≤ 1).

Thus, limt→∞ e−θtλ3,t(l
∗
t − lt) = 0.

Now, for any (xt, zt) feasible with x0 = x∗0, we have

∫ ∞
0

e−θt[H(x∗t , z
∗
t , λt)−H(xt, zt, λt)] + 〈λ̇t − θλt, x∗t − xt〉]dt =

=

∫ ∞
0

e−θt[H(x∗t , z
∗
t , λt)−H(xt, zt, λt) + 〈λ̇t − θλt, x∗t − xt〉]dt =

=

∫ ∞
0

e−θt[H(x∗t , z
∗
t , λt)−H(x∗t , zt, λt)]dt

+

∫ ∞
0

e−θt[H(x∗t , zt, λt)−H(xt, zt, λt) + 〈λ̇t − θλt, x∗t − xt〉]dt

Using u′(c∗t ) = λ1,t = λ2,tg
′(m∗t ) and concavity of u, g we have

H(x∗t , z
∗
t , λt)−H(x∗t , zt, λt)

= u(c∗t )− u(ct)− λ1,t(c
∗
t − ct)− λ1,t(m

∗
t −mt) + λ2,t(g(m∗t )− g(mt))

≥ u′(c∗t )(c
∗
t − ct)− λ1,t(c

∗
t − ct)− λ1,t(m

∗
t −mt) + λ2,tg

′(m∗t )(m
∗
t −mt)

= 0.

Thus ∫ ∞
0

e−θt[H(x∗t , z
∗
t , λt)−H(x∗t , zt, λt)]dt ≥ 0. (30)

22



Consider the next term:

∫ ∞
0

e−θt[H(x∗t , zt, λt)−H(xt, zt, λt)]dt+

∫ ∞
0

e−θt〈λ̇t − θλt, x∗t − xt〉dt

=

∫ ∞
0

e−θt〈λt, ẋ∗t − ẋt〉+

∫ ∞
0

e−θt〈λ̇t − θλt, x∗t − xt〉dt

=

∫ ∞
0

e−θt[λ1,t(k̇
∗
t − k̇t) + λ2,t(ḣ

∗
t − ḣt) + λ3,t(l̇

∗
t − l̇t)]dt+

+

∫ ∞
0

[e−θt(λ̇1,t − θλ1,t)(k
∗
t − kt) + e−θt(λ̇2,t − θλ2,t)(h

∗
t − ht〉+ e−θt(λ̇3,t − θλ3,t)(l

∗
t − lt)]dt

Since e−θt(λ̇t − θλt) = d(e−θtλt)
dt we have

∫ ∞
0

[e−θtλ1,t(k̇
∗
t − k̇t) + e−θt(λ̇1,t − θλ1,t)(k

∗
t − kt)]dt

=

∫ ∞
0

[
d(e−θtλ1,t)(k

∗
t − kt)

dt
]dt = lim

t→∞
e−θtλ1,t(k

∗
t − kt)− λ1,0(k∗0 − k0)

= lim
t→∞

e−θtλ1,t(k
∗
t − kt).

By same reasoning we have

∫ ∞
0

e−θt[H(x∗t , zt, λt)−H(xt, zt, λt)]dt+

∫ ∞
0

e−θt〈λ̇t − θλt, x∗t − xt〉dt

= lim
t→∞

e−θtλ1,t(k
∗
t − kt) + lim

t→∞
e−θtλ2,t(h

∗
t − ht) + lim

t→∞
e−θtλ3,t(l

∗
t − lt) = 0. (31)

It follows from (30) and (31)

∫ ∞
0

e−θt[H(x∗t , z
∗
t , λt)−H(xt, zt, λt)+ < λ̇t − θλt, x∗t − xt >]dt ≥ 0

which is equivalent to

∫ ∞
0

e−θt(u(c∗t )− u(ct))dt+ lim
t→∞

e−θtλ1,t(k
∗
t − kt) + lim

t→∞
e−θtλ2,t(h

∗
t − ht) + lim

t→∞
e−θtλ3,t(l

∗
t − lt) ≥ 0

or ∫ ∞
0

e−θt(u(c∗t )− u(ct))dt ≥ 0.

Corollary 1. The disease endemic steady state with health expenditures is locally optimal.

Remark 2. At the disease endemic steady state with health expenditures, since f1 > b−d+ δ, Assumption 9 is not
needed.
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As the endemic steady state with positive health expenditure satisfies the necessary conditions, we have shown

that it is indeed optimal. This is true for the other two steady states as well. Thus, we have the following result.

Theorem 2. All the steady states are locally optimal.

Using Assumption 9 we show that limt→∞ e−θt〈λt, x∗t − xt〉 = 0. This assumption is needed to check (local)

optimality of a path that satisfies the necessary conditions. As this condition holds at a steady state, it is not

need for optimality of a steady state. This is crucial as when we check the maximality of the Hamiltonian we can

decompose it into two parts: the first just relies on the control variables and we have concavity in the objective

function in control variables, and thus, using standard results the difference between the candidate solution and

any other solution is non-negative; and a term that depends on the co-state and the state variables as given above.

Recall, the non-concavity in the problem arises from the law of evolution of l only. As indicated, we show this term

converges to zero, and we are able to obtain sufficiency of the first order conditions. Thus, three things turn out to

be important in our problem: the boundedness of the state and control and hence, co-state variables; concavity of

objective in control variables; and the continuity of the control and state/co-state variables.

6. Local Stability and Bifurcation

The dynamical system is given by equations (2)-(6), (12 )-(18) and there are three possible steady states. In

order to examine their stabilities we linearize the system around each of these. To simplify the exposition we make

the following assumption.

Assumption 10. The instantaneous utility function u(c) = log(c).

Substituting λ1 = u′(c) = 1/c into equation (14), we get

ċ = c(f1 − δ − θ − b+ d).

6.1. Disease-Free Case

At the disease-free steady state, λ1 > λ2g
′. Since all the functions in this model are smooth functions, by

continuity there exists a neighborhood of the steady state such that the above inequality still holds. Thus, from

equation(13) we have m = 0 in this neighborhood. Intuitively, around the steady state the net marginal benefit of

health investment is negative: the disease is eradicated and health investment only serves to reduce physical capital

accumulation and hence, lower levels of consumption, and thus no resources are spent on eradicating diseases. As

m = 0 in the neighborhood of the steady state, we have a maximization problem with only one choice variable -
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consumption - and the dynamical system reduces to:

k̇ = f(k, l)− c− δk − k(b− d)

ḣ = −δh− h(b− d)

l̇ = (1− l)(b− α(h)l + γ(h))

ċ = c(f1 − δ − θ − b+ d).

By linearizing the system around the steady state, we have15:

J1 =



θ 0 f∗2 −1

0 −δ − (b− d) 0 0

0 0 α− (γ + b) 0

c∗f∗11 0 c∗f∗12 0


.

The eigenvalues are Λ1 = −δ − (b− d) < 0, Λ2 =
θ−
√
θ2−4c∗f∗11

2 < 0, Λ3 =
θ+
√
θ2−4c∗f∗11

2 > 0, and Λ4 = α− (γ + b).

The sign of Λ4 depends on b. We notice if b = α−γ, J1 has a single zero eigenvalue. Thus, we have a non-hyperbolic

steady state and a bifurcation may arise. In other words, the disease-free steady state possesses a 2-dimensional

local invariant stable manifold, a 1-dimensional local invariant unstable manifold and 1-dimensional local invariant

center manifold. In general, however, the behavior of trajectories in center manifold cannot be inferred from the

behavior of trajectories in the space of eigenvectors corresponding to the zero eigenvalue. Thus, we shall take a

close look at the flow in the center manifold. As the zero eigenvalue comes from dynamics of l, and the dynamics

of l and h are independent from the rest of the system, we could just focus on the dynamics of l and h. By taking

b as bifurcation parameter (see Kribs-Zaleta (2003) and Wiggins (2002)) the dynamics on the center manifold is

given by (See the Appendix for details):

ξ̇ = αξ

(
ξ − 1

α
(b− (α− γ))

)
.

The fixed points of the above equation are given by ξ = 0 and ξ = 1
α (b− (α− γ)), and plotted in figure 4. We can

see the dynamics on the center manifold exhibits a transcritical bifurcation at b = α − γ. Hence, for b < α − γ,

there are two fixed points; ξ = 0 is unstable and ξ = 1
α (b − α − γ) is stable. These two fixed points coalesce at

b = α − γ, and for b > α − γ, ξ = 0 is stable and ξ = 1
α (b = α − γ) is unstable. Thus, an exchange of stability

occurs at b = α− γ.

Therefore, for the original dynamical system if b > α − γ, there is a 3-dimensional stable manifold and a 1-

dimensional unstable manifold, and if b < α−γ, there is a 2-dimensional stable manifold and 2-dimensional unstable

15For brevity for a function φ(x∗) we write φ∗
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Figure 4: The Transcritical Bifurcation Diagram

manifold, that is if b > α − γ, the disease-free steady state is locally saddle stable and has a unique stable path,

and if b < α− γ, the disease-free steady state is locally unstable.

6.2. Disease-Endemic Case

6.2.1. Disease-endemic case without health expenditure

For the endemic steady state without health expenditure, λ1 > λ2g
′ and m∗ = 0. By continuity, this also

holds in a small neighborhood of the steady state. Thus, it is similar to the disease-free case except that l∗ < 1.

Linearizing the system around the steady state:

J2 =



θ 0 f∗2 −1

0 −δ − (b− d) 0 0

0 (1− l∗)(γ′∗ − α′∗l∗) α− (γ + b) 0

c∗f∗11 0 c∗f∗12 0


.

The eigenvalues are Λ1 = −δ−(b−d) < 0, Λ2 =
θ−
√
θ2−4c∗f∗11

2 < 0, Λ3 =
θ+
√
θ2−4c∗f∗11

2 > 0, and Λ4 = (γ+b)−α < 0.

Thus, it has a 3-dimensional stable manifold and 1-dimensional unstable manifold, that is the endemic steady state

without health expenditure is locally saddle stable and has a unique stable path.
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6.2.2. Disease-endemic case with health expenditure

For the endemic case with health expenditure, the dynamical system is given by equations (2)-(6), (12)-(18)

with λ1 = λ2g
′, m∗ > 0 and l∗ < 1. Simplifying, the system reduces to :

k̇ = f(k, l)− c−m− δk − k(b− d) (32)

ḣ = g(m)− δh− h(b− d)

l̇ = (1− l)(b+ γ(h)− α(h)l)

ċ = c(f1 − δ − θ − b+ d)

ṁ = (cλ3g
′(m)(1− l)(γ′ − α′l)− f1)

g′(m)

g′′(m)

λ̇3 = −1

c
f2 + λ3θ − λ3(2α(h)l − b− γ(h)− α(h)).

We now have a higher dimensional system than the earlier two cases as m∗ > 0 and h∗ > 0. Linearizing around the

steady state the Jacobian is given by:

J3 =



θ 0 f∗2 −1 −1 0

0 −δ − (b− d) 0 0 g′∗ 0

0 (1− l∗)(γ′∗ − α′∗l∗) b+ γ∗ − α∗ 0 0 0

c∗f∗11 0 c∗f∗12 0 0 0

−f∗11 g
′∗

g′′∗
f∗1 (γ′′∗−α′′∗l∗)
γ′∗−α′∗l∗

g′∗

g′′∗

(
f∗1 (2α′∗l∗−α′∗−γ′∗)
(1−l∗)(γ′∗−α′∗l∗) − f∗12

)
g′∗

g′′∗
f∗1
c∗

g′∗

g′′∗ f∗1
f∗1
λ∗3

g′∗

g′′∗

− f∗12
c∗ −λ∗3(2α′∗l∗ − γ′∗ − α′∗) − f∗22

c∗ − 2λ∗3α
∗ f∗2

c∗2 0
f∗2
c∗λ∗3

.


.

Let us denote J3 as a matrix (aij)6×6 with the signs of aij given as follows:



a11(+) 0 a13(+) −1 −1 0

0 a22(−) 0 0 a25(+) 0

0 a32(+) a33(−) 0 0 0

a41(−) 0 a43(+) 0 0 0

a51(−) a52(+) a53 a54(−) a55(+) a56(−)

a61(−) a62 a63 a64(+) 0 a66(+)


Note that as l∗ = γ∗+b

α∗ < 1, at the steady state a33 = b+ γ∗ − α∗ < 0. λ̇3 = 0 implies

λ∗3 =
f∗2

c∗(θ − 2α∗l∗ + b+ γ∗ + α∗)
=

f∗2
c∗(θ + α∗ − b− γ∗) > 0.

Thus, only a53, a62 and a63 remain to be signed. The characteristic equation, |ΛI − J3| = 0, can be written as a

polynomial of Λ:

P (Λ) = Λ6 −D1Λ5 +D2Λ4 −D3Λ3 +D4Λ2 −D5Λ +D6 = 0 (33)
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where the Di are the sum of the i-th order minors about the principal diagonal of J3 which are explicitly defined

(See Appendix C). Let Λi (i = 1, . . . , 6) denote the solutions of the characteristic equation. By Vietae’s formula we

have

Λ1 + Λ2 + Λ3 + Λ4 + Λ5 + Λ6 = D1 = 3θ > 0,

which implies there exists at least one positive root.16

We now prove that, under the following assumption, the steady state is locally saddle stable, that is there are

exactly three negative roots and three positive roots of the above characteristic equation.

Assumption 11. 1. (α∗ − b− γ∗)(γ′∗ − α′∗) < (θ + α∗ − b− γ∗)
(
γ′∗ + α′∗ − 2α′∗(b+γ∗)

α∗

)
2. θ <

$1+$2+
√

($1+$2)2+32($2
1+$2

2)

16 , where $1 = δ + b− d,$2 = α∗ − γ∗ − b.

We can see that A.11 (1) holds if α′∗, i.e. the marginal effect of health capital on the contact rate at steady state,

is very small. A.11(2) says that θ is small enough. It should be kept in mind that these are sufficient conditions for

local saddle-point stability and in some problems of interest may not hold giving rise to richer dynamics. It follows

from A.11(1) that

2α′∗l∗ − α′∗ − γ′∗ = −
(
γ′∗ + α′∗ − 2α′∗(b+ γ∗)

α∗

)
< 0.

Hence, a53 > 0, a62 > 0. With this assumption, every sign of aij is defined except for a63.

Lemma 4. Under A.1 - A.11 (1), detJ3 = D6 < 0 and there exists at least one negative root.

Proof. See the Appendix for the proof.

Lemma 5. Under A.1 - A.11, we have D1D2 −D3 < 0, D2 < 0 and D3 < 0.

Proof. See the Appendix for the proof.

Proposition 5. Under A.1-A.11, if D1D4 − D5 ≥ 0 or if D1D4 − D5 < 0 and (D1D2 − D3)D5 < D2
1D6, the

endemic steady state with health expenditure is locally saddle stable.

Proof. The number of negative roots of P (Λ) is exactly the number of positive roots of

P (−Λ) = Λ6 +D1Λ5 +D2Λ4 +D3Λ3 +D4Λ2 +D5Λ +D6 = 0. (34)

We use the Routh’s stability criterion which states that the number of positive roots of equation (34) is equal to

16By positive (negative) root, we mean either real positive (negative) root or imaginary root with positive (negative) real part.
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the number of changes in sign of the coefficients in the first column of the Routh’s table as shown below:



1 D2 D4 D6 0

D1 D3 D5 0 0

a1 a2 D6 0 0

b1 b2 0 0 0

c1 D6 0 0 0

d1 0 0 0 0

D6 0 0 0 0


where

a1 =
D1D2 −D3

D1
, a2 =

D1D4 −D5

D1
, b1 =

a1D3 − a2D1

a1
,

b2 =
a1D5 −D6D1

a1
, c1 =

b1a2 − a1b2
b1

, d1 =
c1b2 − b1D6

c1
.

Recall that we have D1 > 0, D2 < 0, D3 < 0, D6 < 0 and D1D2 −D3 < 0. So a1 < 0 and the sign of the first

column in the Routh’s table is given as:

1 D1 a1 b1 c1 d1 D6

+ + − ± ± ± −

As the signs of b1, c1, d1 are indeterminate, we check all possible 8 cases. Among all the cases, 6 cases have exactly

3 times change of signs, which implies equation (34) has exactly 3 positive roots, or equation (33) has exactly 3

negative roots and the steady state is saddle point stable. However, for the other two cases, the steady state is

either a sink or unstable, which we shall rule out.

Case 1: Suppose b1 > 0, c1 < 0 and d1 > 0, which implies the steady state is a sink. Since

d1 > 0⇒ c1b2 < b1D6 ⇒ b2 > 0

b1 > 0⇒ a1D3 < a2D1 ⇒ a2 > 0

c1 < 0⇒ b1a2 < a1b2 ⇒ a2 < 0,

we reach a contradiction. So we cannot have the case that there are 5 times change of signs, that is, there cannot

be 5 positive roots in equation (34) or 5 negative roots in the equation (33). Thus, the steady state cannot be a

sink.

Case 2: Suppose b1 < 0, c1 < 0 and d1 < 0, which implies the steady state is unstable.
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If D1D4 −D5 ≥ 0, that is a2 > 0, we have

c1 < 0⇒ b1a2 > a1b2 ⇒ b2 > 0

d1 < 0⇒ c1b2 > b1D6 ⇒ b2 < 0.

we reach a contradiction.

If D1D4 −D5 < 0 and (D1D2 −D3)D5 < D2
1D6, a2 < 0 and

b2 =
a1D5 −D6D1

a1
=

(D1D2 −D3)D5 −D2
1D6

D1a1
> 0.

It contradicts to d1 < 0 which implies b2 < 0.

So if D1D4−D5 ≥ 0 or if D1D4−D5 < 0 and (D1D2−D3)D5 < D2
1D6, we cannot have the case that there are

only 1 time change in sign, that is, there can not be only 1 positive root in equation (34) or only 1 negative root in

equation (33). The steady state can not be unstable.

The local stability and bifurcation of the dynamical system are summarized in Figure 3. When the birth rate b is

greater than α−γ, there is only a disease-free steady state which is locally stable. When b decreases to exactly α−γ,

the stable disease-free equilibrium goes through a transcritical bifurcation to two equilibria: one is the unstable

disease-free steady state and the other is the stable endemic steady state with or without health expenditure.

7. Effects of Varying Discount and Birth Rates

With the results on existence and local stability, we are now ready to explore how the steady state properties

of the model change as the parameters vary. The results of comparative statics in this section improve our under-

standing on two important empirical issues. First, we show as parameters vary, there is a nonlinearity in steady

state changes due to the switches among the steady states and the role played by the endogenous changes in health

expenditure. The non-linearities in equilibrium outcomes, which are often assumed away, may be very important

in understanding aggregate behavior. While we are unable to study global dynamics as it is difficult in the system

to derive policy functions and thus, are unable to study the full range of dynamics, the results point out that even

steady states may change in a non-linear way. So the reduced formed estimation on examining the effect of diseases

on the economy (e.g. Acemoglu and Johnson (2007), Ashraf, et al. (2009), Bell, et et al. (2003), Bloom, et al.

(2009), and Young (2005)) by assuming a linear relationship may not be well justified as non-linearity is an impor-

tant characteristic of models associated with the disease transmission, and this nonlinearity in disease transmission

can become a source of non-linearities in economic outcomes. Second, we study the endogenous relationship between

health expenditure (as percentage of output) and output. This can help us understand the changing share of health

expenditures over decades in many countries. There are many factors which are thought to be the cause of positive

relationship between income and health expenditure share in the literature, including technological development,

30



0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Birth Rate b

D
is

co
un

t R
at

e 
θ

θ̂(b)

α− γ

Figure 5: The Steady States in the Parameter Space (θ, b)

institutional change, health as a luxury good, etc. However, our results suggest maybe we should pay close look at

more fundamental factors such as change in longevity and fertility rate. It should be emphasized that while we are

looking at only public health expenditure on infectious diseases, this methodology can be extended to incorporate

non-infectious diseases. Moreover, as we only model one type of infectious diseases here, the comparative statics

results need to be interpreted with caution when comparing them with the empirical facts.

For the numerical analysis, we specify the following functional forms: output y = f(k, l) = Akal1−a, health

production function g(m) = φ3(m + φ1)φ2 − φ3φ
φ2

1 , contact rate function α(h) = α1 + α2e
−α3h, recovery rate

function γ(h) = γ1 − γ2e
−γ3h. By convention we choose A = 1, a = 0.36, δ = 0.05 and d = 0.5%. Since there are no

counterparts for health related functions in the economic literature, we choose φ1 = 2, φ2 = 0.1, φ3 = 1, α1 = α2 =

0.023, α3 = 1, γ1 = 1.01, γ2 = γ3 = 1 such that Assumptions A.1-A.7 are satisfied. Sufficient conditions for stability

(A.11) may not be satisfied as the parameters are varied, but we check that the stability properties continue to

hold in the parameter range of interest.

We have α = 0.046, γ = 0.01, and the function θ̂(b) is shown in Figure 5. As we discuss above, if b > 0.036,

only a stable disease-free steady state exists. As the birth rate decreases across 0.036, the stable disease-free steady

state goes through a transcritical bifurcation to two steady states: one is the unstable disease-free steady state

and the other is the stable endemic steady state. Below the curve θ̂(b), endemic steady state with positive health

expenditure exists, and above the curve, endemic steady state without health expenditure exists. Two experiments

are conducted here. First, we take a vertical slice at birth rate b = 2% and vary discount rate θ. The disease-free

steady state always exists, and from Figure 5 we see if θ < 0.1 an endemic steady state with health expenditure

exists, and if θ ≥ 0.1 an endemic steady state without health expenditure exists. Second, we take a horizontal slice

at discount rate θ = 0.05, and vary birth rate b. From Figure 5, we see if b > 3.6% only a disease-free steady state
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exists, if b ∈ (3.1%, 3.6%) both the disease-free steady state and endemic steady state without health expenditure

exist, and if b ∈ (0.5%, 3.1%) both the disease-free steady state and endemic steady state with health expenditure

exist. Note the analytical results of comparative statics on disease-free steady state are not given below as they

are exactly the same as in the standard neo-classical growth model, but the simulation results are included in the

figures.

7.1. Discount rate θ

This comparative statics can be interpreted as studying the effect of increasing longevity as a decrease in θ is

often interpreted as an increase in longevity (Hall and Jones (2007)). As θ is varied, in the endemic steady state

without health expenditure,

dk∗

dθ
=

1

f11
< 0, and

dc∗

dθ
=

θ

f11
< 0.

The disease prevalence l∗ =
γ+b

α remains unchanged.

In the endemic steady state with health expenditure, we have ∂m
∂h = δ+(b−d)

g′ > 0 and
∂l′θ(h)
∂θ =

−l′θ(h)
α(h)−(γ+b)+θ < 0.

Let Ψ = g′l′l′θ(f11f22 − f12f21) + f11(f2g
′l′′θ + f2g

′′ ∂m
∂h l
′
θ) > 0. By the multi-dimensional implicit function theorem ,

we have:

dk∗

dθ
=

1

Ψ

(
f22g

′l′l′θ + f2g
′l′′θ + f2g

′′ ∂m

∂h
l′θ − f12l

′
(

1− f2g
′ ∂l
′
θ

∂θ

))
< 0,

dh∗

dθ
=

1

Ψ

(
f11

(
1− f2g

′ ∂l
′
θ

∂θ

)
− f21g

′l′θ

)
< 0,

and, thus,
dl∗

dθ
= l′

dh∗

dθ
< 0,

dc∗

dθ
= (f1 − δ − (b− d))

dk∗

dθ
+ (f2l

′ − δ − (b− d))
dh∗

dθ
< 0.

Therefore, from the analytical comparative statics results, we see in the endemic steady state without health

expenditure variations in the discount rate have no effect on the spread of infectious diseases, since without health

expenditures the mechanism of disease spread is independent of society’s behavior. The smaller discount rate only

leads to higher physical capital and consumption in exactly the same way as in the neo-classical model. In the

endemic steady state with health expenditure, as the discount rate decreases, that is as the people become more

patient, they spend more resources in prevention of infections or getting better treatment. The rise in health capital

leads to a larger labor force, and both physical capital and consumption will increase.

This is also seen from the simulation in Figure 6 with solid line denoting the disease-free steady state and dash

line denoting the endemic steady state. For the disease-free steady state, there is full employment (panel (1)) and

both health expenditure (panel (2)) and health capital (panel (3)) are zero. As θ decreases or people become more

patient, physical capital (panel (4)), consumption (panel (5)) and output (panel (6)) increase following the exact

same mechanism of standard neo-classical economy. For the endemic steady state with θ > 0.1, a change in θ
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Figure 7: Change in Health Expenditure Share and Output as Discount Rate θ Decreases
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doesn’t have any effect on the effective labor force, and both health expenditure and health capital remain zero.

But as θ decreases, physical capital, consumption and output increase. When θ < 0.1, both health expenditure

and health capital are positive, and further decreases in θ cause all economic variables increase. Physical capital,

consumption and output increase at a faster rate than in the endemic steady state without health expenditure.

In Figure 7 if we only focus on the endemic steady state with positive health expenditure part, as θ decreases,

both output y and health expenditure m increases, while the share of health expenditure m/y first increases and

then decreases. We can see from panel (4) and (3) in Figure 6 that the rate of investment in physical capital (slope

of the curve) is increasing while that of health capital (slope of the curve) is decreasing as θ decreases. This leads

to an initial increase in the share of health expenditure in output and then an eventual decrease. The intuition

is that as people become more patient, they spend more on health. This has two effects. First, as the incidence

of diseases is controlled the increase in the effective labor force increases the marginal product of capital which

leads to the increasing rate of physical capital investment. Second, as the incidence of diseases decreases, due to

the externality in disease transmission the fraction of infectives decreases. This decreases the rate of investment

in health expenditures. This leads to a non-monotonicity in the share of health expenditure. The initial positive

relationship between income and health expenditure is similar to the finding of Hall and Jones (2007). However,

unlike their model we do not have to introduce a taste for health. They need to assume that the marginal utility of

life extension does not decline as rapidly as that of consumption declines as income increases, i.e. there is a more

rapid satiation of consumption than life extension.

7.2. Birth rate b

In the endemic steady state without health expenditure, we have

dl∗

db
=

1

α
> 0,

dk∗

db
=

1

f11︸︷︷︸
−

+
f12

−αf11︸ ︷︷ ︸
+

, and
dc∗

db
=
θ − kf11

f11︸ ︷︷ ︸
−

+
θf12 − f2f11

−αf11︸ ︷︷ ︸
+

.

A decrease in birth rate causes effective labor force to decrease due to fewer healthy newborns. However, the effect

of the birth rate decrease on other economic variables is ambiguous due to two offsetting aspects. First, it has a

positive effect (the minus sign) as the marginal cost of physical capital decreases which leads to higher physical

capital and consumption. Second, there is a negative effect (the positive sign): The proportion of healthy people

decreases due to fewer healthy newborns, and thus, the smaller labor force leads to lower physical capital and

consumption.
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Figure 8: Change in Economic Variables as Birth Date b Varies(Solid Line - Disease-free Case; Dash Line - Disease-endemic Case)

In the endemic case with health expenditure, by the implicit function theorem we have:

dk∗

db
=

1

Ψ
(f22g

′l′l′θ + f2g
′l′′θ + f2g

′′ ∂m

∂h
l′θ − f12l

′)︸ ︷︷ ︸
−

− 1

Ψ
f2f12g

′ 1

α
l′′θ︸ ︷︷ ︸

+

+
1

Ψ
f2f12g

′l′
∂l′θ
∂b︸ ︷︷ ︸

?

dh∗

db
=

1

Ψ
(f11 − f21g

′l′θ)︸ ︷︷ ︸
−

+
1

Ψ

1

α
g′l′θ(f21f12 − f11f22)︸ ︷︷ ︸

−

+
1

Ψ
(−f11f2g

′ ∂l
′
θ

∂b
)︸ ︷︷ ︸

?

and then
dl∗

db
=

1

α
+ l′(h)

dh∗

db

where
∂l′θ
∂b = − α′

α2 + θ(θα′+α(α′−γ′))
α2(α−(γ+b)+θ)2 .

Therefore, the effect of birth rate decrease is ambiguous. The basic reasoning is similar to the endemic case

without health expenditure above, but here it becomes more complex by involving changes in health capital, and

hence effective labor supply may increase rather than decrease. First, as above there is a positive effect: the

marginal cost of physical capital and health capital will decrease which lead to higher physical capital and health

capital. Second, if effective labor force increases (decreases), there is a positive (negative) effect, as the marginal

productivity of physical capital increases (decreases) physical capital increases (decreases). Third, effect of changing

birth rate on the marginal product of health capital on labor supply, that is ∂l′θ/∂b, is unclear.

To see the effects more clearly we consider the parametrized economy. We vary birth rate b from 0.5% to

5%. As we already know, the disease-free steady state always exists (shown in solid line in Figure 8). There

is full employment, and both health expenditure and health capital are zero. As b decreases, physical capital,

consumption and output increase. The endemic steady state is shown in dash line. For the endemic steady state

with b ∈ (3.1%, 3.6%), a decrease in b causes effective labor force to drop as fewer healthy people are born, and both
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Figure 9: Change in Health Expenditure Share and Output as Birth Rate b Decreases

health expenditure and health capital remain zero. As b decreases further, physical capital, consumption and output

decrease as the negative effect dominates due to decreasing effective labor supply. When b ∈ (0.5%, 3.1%), both

health expenditure and health capital are positive, and a decrease in b causes all economic variables to increase. It

shows that the positive effect dominates. The intuition is that as the birth rate falls the cost of the marginal worker

falling ill becomes higher and this leads to an increase in health expenditure and hence health capital. This leads

to a larger effective labor force, and then higher physical capital, consumption and output. This is consistent with

the empirical finding that low birth rates are associated with higher per capita income (see Brander and Dowrick

(1994)).

In Figure 9, if we only focus on endemic steady state with positive health expenditure, we get the endogenous

positive relationship between output and the share of health expenditures as birth rate falls. The reason is that

decreases in the birth rate increases the marginal cost of an additional worker falling ill. The optimal response is

to raise health expenditure, i.e. a more aggressive strategy to control the incidence of the disease. This interacts

with the rising per capita capital stock and the increasing marginal product of capital which cause the output to

rise as well.

8. The Conclusion

In a recent paper, Goenka and Liu (2012) examine a discrete time formulation of a similar model. In that paper,

however, there is only a one way interaction between the disease and the economy. The disease affects the labor

force as in this model, but the labor supply by healthy individuals is endogenous and the epidemiology parameters

are treated as biological constants. Under the simplifying assumption of a one-way interaction, the dynamics

become two-dimensional and the global dynamics are analyzed. The key result is that as the disease becomes more

infective, cycles and then eventually chaos emerges. Here, we endogenize the epidemiology parameters. Thus, it is
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a framework to study optimal health policy. However, the dynamical system becomes six dimensional and we have

to restrict our analysis to local analysis of the steady state.

This paper develops a framework to study the interaction of infectious diseases and economic growth by es-

tablishing a link between the economic growth model and epidemiology model. There is a problem in modeling

disease dynamics as they are non-concave and thus, the usual methods in the literature are not applicable. One of

the contributions of the paper is to show that in fact the Hamiltonian approach can still be used as despite this,

the problem is sufficiently well-behaved. However, the non-concavity can give rise to more interesting economic

possibilities. We find that there are multiple steady states. Furthermore by examining the local stability we explore

how the equilibrium properties of the model change as the parameters are varied. Although the model we present

here is elementary, it provides a fundamental framework for considering more complicated models. It is important

to understand the basic relationship between disease prevalence and economic growth before we go even further to

consider more general models. The model also points out the link between the health expenditures and income -

both of which are endogenous - may be driven by fundamental factors - drop in the fertility rate or increase in the

longevity. In related work, Goenka and Liu (2013) extend the framework to the case of endogenous growth where

there is an additional choice on how much human capital to accumulate.
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Appendix A. Existence of Optimal Solution

We recall Dunford-Pettis Theorem, Mazur’s Lemma (Renardy and Rogers (2004)) and the reverse Fatou’s

Lemma.

Let F be a family of scalar measurable functions on a finite measure space (Ω,Σ, µ), F is called uniformly

integrable if {
∫
E
|f | dµ, f ∈ F} converges uniformly to zero when µ(E)→ 0.

Dunford-Pettis Theorem: Denote L1(µ) the set of functions f such that
∫

Ω
|f | dµ <∞ and K be a subset

of L1(µ). Then K is relatively weak compact if and only if K is uniformly integrable.

When applying Fatou’s Lemma to the non-negative sequence given by g−fn, we get the following reverse Fatou’s

Lemma .

Fatou’s Lemma: Let fn be a sequence of extended real-valued measurable functions defined on a measure space

(Ω,Σ, µ). If there exists an integrable functiong on Ω such that fn ≤ g for all n, then lim supn→∞
∫

Ω
fndµ ≤∫

Ω
lim supn→∞ fndµ.

Mazur’s lemma shows that any weakly convergent sequence in a normed linear space has a sequence of convex

combinations of its members that converges strongly to the same limit. Because strong convergence is stronger than

pointwise convergence, it is used in our proof for the state variables to converge pointwise to the limit obtained

from weak convergence.

Mazur’s Lemma: Let (M, || ||) be a normed linear space and let (fn)n∈N be a sequence in M that converges

weakly to some f∗ in M. Then there exists a function N : N → N and a sequence of sets of real numbers

{ωi(n) | i = n, . . . ,N (n)} such that ωi(n) ≥ 0 and
∑N (n)
i=n ωi(n) = 1 such that the sequence (vn)n∈N defined by the

convex combination vn =
∑N (n)
i=n ωi(n)fi converges strongly in M to f∗, i.e., ||vn − f∗|| → 0 as n→∞.
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Appendix B. Local Stability Analysis

Appendix B.1. Center manifold calculation for disease-free case

Here, we introduce the procedure of calculating center manifold instead of the calculation part itself. We use

ẋ = G(x, b) to denote the dynamic system, where x = (k, h, l, c)T ∈ <4
+, and G : <+ ×<4

+ → <4
+ is the vector field.

Moreover, we use x∗ to denote its equilibrium point, and so G(x∗, b) = 0. Bifurcation occurs when b∗ = α− γ. We

assume G(x, b) to be at least C5. We follow the procedure given by Kribs-Zaleta (2002) and Wiggins (2003):

1. Defining x̌ = x − x∗ and b̌ = b − b∗, we transform the dynamical system into ˙̌x = G(x̌ + x∗, b̌ + b∗) with

the equilibrium point x̌∗ = 0 and bifurcation point b̌∗ = 0. Then we linearize the system at point 0 to get

˙̌x = DxG(x∗, b∗)x̌+DbG(x∗, b∗)b̌+R(x̌, b̌), where R(x̌, b̌) is the high order term;

2. Let A = DxG(x∗, b∗), B = DbG(x∗, b∗) and calculate matrix A’s eigenvalues, corresponding eigenvectors

matrix TA (placing the eigenvector corresponding to zero eigenvalue first ) and its inverse TA−1. By trans-

forming x̌ = TA · y, we get ẏ = TA−1 ·A · TA · y + TA−1 ·B · b̌+ TA−1 ·R(TA · y, b̌), where TA−1 ·A · TA is

its Jordan canonical form;

3. We separate y into two vectors y1, the first term, and y2, the rest terms, and then we can rewrite the system

as:

ẏ1 = Γ1y1 + Ř1(TA · y, b̌)

ẏ2 = Γ2y2 + Ř2(TA · y, b̌);

Since TA−1 · B 6= 0, we separate it into two vectors ∆1 with only one element, and ∆2 with the rest, and

form a system as:


ẏ1

˙̌b

ẏ2

 =


Γ1 ∆1 01×3

0 0 01×3

03×1 ∆2 Γ2


︸ ︷︷ ︸

C


y1

b̌

y2


︸ ︷︷ ︸

yb

+


Ř1(TA · y, b̌)

0

Ř2(TA · y, b̌)


︸ ︷︷ ︸

Řb(TA·y,b̌)

;

4. In order to put matrix C into Jordan canonical form, we make another linear transformation yb = TC · ξ, and

get ξ̇ = TC−1 ·C · TC · ξ+ TC−1 · Řb(TA · TC · ξ, b̌), where ξ = (ξ1, b̌, ξ2, ξ3, ξ4). Therefore, we can now write
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the system as:

ξ̇1 = Π1ξ1 + Ř1(ξ1, ξ2, ξ3, ξ4, b̌)

ξ̇2 = Π2ξ2 + Ř2(ξ1, ξ2, ξ3, ξ4, b̌)

ξ̇3 = Π3ξ3 + Ř3(ξ1, ξ2, ξ3, ξ4, b̌)

ξ̇4 = Π4ξ4 + Ř4(ξ1, ξ2, ξ3, ξ4, b̌)

˙̌b = 0;

5. Take ξi = Υi(ξ1, b̌) (i = 2, 3, 4) as a polynomial approximation to the center manifold, and differentiate both

sides w.r.t. t :

Πiξi + Ři(ξ1,Υ2,Υ3,Υ4, b̌) = Dξ1Υi(ξ1, b̌)[Π1ξ1 + Ř1(ξ1,Υ2,Υ3,Υ4, b̌)].

And then solve for the center manifold by equating the coefficient of each order;

6. Finally, we write the differential equation for the dynamical system on the center manifold by substituting

Υi(ξ1, b̌) in Ř1(ξ1, ξ2, ξ3, ξ4, b̌), and get the system:

ξ̇1 = Π1ξ1 + Ř1(ξ1,Υ2(ξ1, b̌),Υ3(ξ1, b̌),Υ4(ξ1, b̌), b̌)

˙̌b = 0.

So in our model the dynamics on the center manifold is given by:

ξ̇1 = αξ1

(
ξ1 −

1

α
(b− (α− γ))

)
.

Appendix B.2. Stability analysis for disease-endemic case

For the Jacobian matrix J3, we have:

a11 = θ, a13 = f∗2 , a14 = a15 = −1, a22 = −δ − (b− d), a25 = g′∗, a32 = (1− l∗)(γ′∗ − α′∗l∗)

a33 = b+ γ∗ − α∗, a41 = c∗f∗11, a43 = c∗f∗12, a51 = −f∗11

g′∗

g′′∗
, a52 =

f∗1 (γ′′∗ − α′′∗l∗)
γ′∗ − α′∗l∗

g′∗

g′′∗

a53 =

(
f∗1 (2α′∗l∗ − α′∗ − γ′∗)
(1− l∗)(γ′∗ − α′∗l∗) − f

∗
12

)
g′∗

g′′∗
, a54 =

f∗1
c∗

g′∗

g′′∗
, a55 = f∗1 , a56 =

f∗1
λ∗3

g′∗

g′′∗

a61 = −f
∗
12

c∗
, a62 = −λ∗3(2α′∗l∗ − γ′∗ − α′∗), a63 = −f

∗
22

c∗
− 2λ∗3α

∗, a64 =
f∗2
c∗2

, a66 =
f∗2
c∗λ∗3

.

Let us denote $1 = δ + b − d,$2 = α∗ − γ∗ − b, we have the following equations which will be used in the

calculation.

λ∗3 =
f∗2

c∗(θ − 2α∗l∗ + b+ γ∗ + α∗)
=

f∗2
c∗(θ +$2)
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a22 = −$1, a33 = −$2 (B.1)

a55 = f∗1 = θ + (δ + b− d) = θ +$1 (B.2)

a66 =
f∗2
c∗λ∗3

= θ − b− γ∗ + α∗ = θ +$2 (B.3)

a66a54 = a56a64 =
f∗1 f

∗
2

λ∗3

g′∗

g′′∗
1

c∗2
(B.4)

a41a54 = c∗f∗11

f∗1
c∗

g′∗

g′′∗
= f∗11

g′∗

g′′∗
f∗1 = −a51a55 = −a51($1 + θ) (B.5)

Since

f∗1 = f∗2 g
′∗ (1− l∗)(γ′∗ − α′∗l∗)

θ + α∗ − b− γ∗ =
a13a25a32

a66

we also get

a55a66 = a13a25a32 = (θ +$1)(θ +$2). (B.6)

a41a56a64 = a41a54a66 = −a51($1 + θ)($2 + θ). (B.7)

As λ∗3c
∗ =

f∗2
a66
, we have

a56a61 =
f∗1
λ∗3

g′∗

g′′∗

(
−f
∗
12

c∗

)
=

(−g′∗f∗12

g′′∗

)
($1 + θ)

λ∗3c
∗ =

=

(−g′∗f∗12

g′′∗

)
a55a66

f∗2
=

(−g′∗f∗12

g′′∗

)
a13a25a32

f∗2
=

(−g′∗f∗12

g′′∗

)
a25a32.

Thus,

a25a56a62 + a25a32a53 − a56a61 = a25a56a62 + a25a32a53 +
g′∗f∗12

g′′∗
a25a32

= a25[−f
∗
1

λ∗3

g′∗

g′′∗
λ∗3(2α′∗l∗ − γ′∗ − α′∗) + (1− l∗)(γ′∗ − α′∗l∗)

(
f∗1 (2α′∗l∗ − α′∗ − γ′∗)
(1− l∗)(γ′∗ − α′∗l∗) − f

∗
12

)
g′∗

g′′∗

+
g′∗f∗12

g′′∗
(1− l∗)(γ′∗ − α′∗l∗)] = 0. (B.8)

a54a43a25a32 =
f∗1
c∗

g′∗

g′′∗
c∗f∗12a25a32 = (−f∗1 )(

−g′∗f∗12

g′′∗
)a25a32 = −($1 + θ)a56a61 (B.9)

The characteristic equation, |ΛI − J3| = 0 can be written as a polynomial of Λ:

P (Λ) = Λ6 −D1Λ5 +D2Λ4 −D3Λ3 +D4Λ2 −D5Λ +D6 = 0

where the Di are the sum of the i-th order minors about the principal diagonal of J3.

Thus,

D1 = a11 + a22 + a33 + a55 + a66 = 3θ > 0

43



D2 = a11(a22 + a33 + a55 + a66) + a41 + a51

+a22(a33 + a55 + a66)− a52a25 + a33(a55 + a66) + a55a66

Replace

a22 + a33 + a55 + a66 = 2θ

a33 + a55 + a66 = 2θ +$1

a55 + a66 = 2θ +$1 +$2

we get

D2 = 3θ2 − θ($1 +$2)−$2
1 −$2

2 + a41 + a51 − a25a52.

D3 = a11a22a33 + a22a41 + a11a22a55 + a22a51 − a11a25a52 + a11a22a66

+a33a41 + a11a33a55 + a33a51 + a11a33a66 − a41a54 + a41a55

+a41a66 + a11a55a66 − a56a61 + a51a66

+a22a33a55 + a32a25a53 − a25a52a33 + a22a33a66

+a22a55a66 + a25a56a62 − a25a52a66 + a33a55a66

We keep only a41, a25a52, a25a56a62, a25a32a53, a56a61 in the expression, replace a11, a22, a33, a55, a66 via $1, $2, θ

from (B.1)-(B.3), use (B.5) and (B.8) to obtain

D3 = θ[θ2 − 2θ($1 +$2)− 2($2
1 +$2

2)] + 2θ(a41 + a51 − a25a52)

D6 = a66[a55a22a33a41 − a25a32a43a51 − a25a33a41a52 + a25a32a41a53

−a25a54a11a32a43 + a25a54a13a32a41 − a54a22a33a41] + a56a64a22a33a41

+a56a25[a64a11a32a43 − a64a13a32a41 + a32a43a61 + a33a41a62 − a32a41a63]

Proof of Lemma 4
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Proof. By using (B.4) we rewrite D6 as follows :

D6 = a66(a55a22a33a41 − a25a33a41a52) + a56a25(a32a43a61 + a33a41a62 − a32a41a63) + a66a25a32(a41a53 − a43a51)

a11a32a43a25(a56a64 − a66a54) + a13a32a41a25(a66a54 − a56a64) + a22a33a41(a56a64 − a66a54)

= a66(a55a22a33a41 − a25a33a41a52) + a56a25[a32(a43a61 − a41a63) + a33a41a62] + a66a25a32(a41a53 − a43a51).

The first term a66(a55a22a33a41 − a25a33a41a52) < 0.

Note that a56a25 < 0 , a33 = (b + γ∗ − α∗) = α∗(l∗ − 1) and by concavity of f , f∗212 < f∗11f
∗
22. We show the

second term

a56a25[a32(a43a61 − a41a63) + a33a41a62]

= a56a25[a32(−f∗212 + f∗11f
∗
22 + 2c∗f∗11λ

∗
3α
∗)− a33c

∗f∗11λ
∗
3(2α′∗l∗ − γ′∗ − α′∗)]

< a56a25[c∗f∗11λ
∗
3(2α∗a32 − a33(2α′∗l∗ − γ′∗ − α′∗))]

= a56a25[c∗f∗11λ
∗
3(2α∗(1− l∗)(γ′∗ − α′∗l∗)− α∗(l∗ − 1)(2α′∗l∗ − γ′∗ − α′∗))]

= a56a25c
∗f∗11λ

∗
3α
∗(1− l∗)(γ′∗ − α′∗)

= f∗1
g′∗2

g′′∗
c∗f∗11α

∗(1− l∗)(γ′∗ − α′∗)

and the third term

a66a25a32(a41a53 − a43a51)

= a66a25a32[c∗f∗11

g′∗

g′′∗
(
f∗1 (2α′∗l∗ − α′∗ − γ′∗)
(1− l∗)(γ′∗ − α′∗l∗) − f

∗
12) + c∗f∗12f

∗
11

g′∗

g′′∗
]

= a66a25c
∗f∗11

g′∗

g′′∗
f∗1 (2α′∗l∗ − α′∗ − γ′∗)

=
f∗2
λ∗3
g′∗f∗11

g′∗

g′′∗
f∗1 (2α′∗l∗ − α′∗ − γ′∗).

So we have

a56a25[a32(a43a61 − a41a63) + a33a41a62] + a66a25a32(a41a53 − a43a51)

<
g′∗2

g′′∗
f∗1 c
∗f∗11[α∗(1− l∗)(γ′∗ − α′∗) +

f∗2
c∗λ∗3

(2α′∗l∗ − α′∗ − γ′∗)]

=
g2′∗

g′′∗
f∗1 c
∗f∗11[α∗(1− l∗)(γ′∗ − α′∗) + (θ − b− γ∗ + α∗)(2α′∗l∗ − α′∗ − γ′∗)].

=
g2′∗

g′′∗
f∗1 c
∗f∗11[(α∗ − b− γ∗)(γ′∗ − α′∗) + (θ − b− γ∗ + α∗)(

2α′∗(b+ γ∗)

α∗
− α′∗ − γ′∗)]

< 0 by A.11(1).

Hence we shown detJ3 = D6 < 0.
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Proof of Lemma 5

Proof.

D1D2 −D3 = 3θ[3θ2 − θ($1 +$2)−$2
1 −$2

2]− θ[θ2 − 2θ($1 +$2)− 2($2
1 +$2

2)]

+3θ[a41 + a51 − a52a25]− [2θa41 + 2θa51 − 2θa25a52]

= θ[8θ2 − θ($1 +$2)−$2
1 −$2

2] + θ(a41 + a51 − a25a52),

which is negative since a41 + a51 − a25a52 < 0 and 8θ2 − θ($1 +$2)−$2
1 −$2

2 < 0 from A.11(2). Furthermore

θ2 − 2θ($1 +$2)− 2($2
1 +$2

2) < 3θ2 − θ($1 +$2)−$2
1 −$2

2 < 8θ2 − θ($1 +$2)−$2
1 −$2

2 < 0.

So we get D2 < 0 and D3 < 0.
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