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Abstract

To make a prediction of a response variable from an explanatory
one which takes into account features such as multimodality, a non-
parametric approach based on an estimate of the conditional density
is advocated and considered. In particular, we build point and interval
predictors based on the quantile-copula estimator of the conditional
density by Faugeras [8]. The consistency of these predictors is proved
through a uniform consistency result of the conditional density esti-
mator. Eventually, the practical implementation of these predictors
is discussed. A simulation on a real data set illustrates the proposed
methods.

Key Words: Nonparametric prediction, Modal regression, Level-set, Condi-
tional density estimation, Quantile transform, Copulas.

1 Introduction

Let X,Y be a couple of real-valued random variables. To what extent one
can predict the value of the response variable Y from the explanatory one X?
Classical decision theory à la Wald [20] recommends to consider a distance
or loss function L : R×R 7→ R+ in order to measure the performance of the
prediction, and to minimize the corresponding risk or expected loss

R(X,Y ) = EL(X,Y ). (1)
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It is standard practice among statisticians to use the squared loss, L(x, y) =
(x − y)2, so that the risk is minimized by setting as the Bayes (or proba-
bilistic) point predictor the conditional mean E[Y |X]. From a statistical
standpoint, the problem thus reduces to estimating the regression function
m(x) = E [Y |X = x] by m̂(x), from a training sample (Xi, Yi), i = 1, . . . , n,
and to set as a statistical predictor m̂(x0) as the best prediction of Y given
a newly observed value of X = x0.

Yet, consider the toy model depicted in figure 1, where is plotted the
conditional density f(y|x) at the location x where ones wants to make a
prediction. The conditional density is assumed here to be a mixture with
equal weights of two Normal distribution, each one centered at y = 1 and
y = 2, respectively. In that case, the best prediction corresponding to the
conditional mean would be given by r(x) = 1.5. However, the practitioner
could argue 1.5 is a bad prediction, as he rather observes about half of
the outcomes some values of Y concentrated around 1, and the other half
values around 2. This toy example is to stress upon the subjectivity of a

Figure 1: A toy example of predictive density

decision based solely on the estimation of the regression function, as is the
focus in many statistical studies: the predictive distribution here is not well
summarized by the “average” value to appear, viz. the mean, but better by
the “most likely” values to appear, viz. the modes.

More generally, one can consider the statistician should first estimate the
full conditional distribution to fully quantify the input of X on Y and then,
once the general shape of the conditional density is given, to build some
sensible point predictors and predictive sets. This is especially relevant if
the predictive distribution is multi-modal or skewed, which often arises in
applications with non-Gaussian or non-linear phenomena.

To that purpose, we propose a methodology to design point and interval
predictors based on conditional density estimation, by building upon the
quantile-copula conditional density estimator proposed by the same author

2



in [8]. This estimator was shown to be particularly interesting when one
wants to make a prediction on y for values of x far from the observed data.

The rest of the article is organized as follows: the quantile-copula esti-
mator of the conditional density is briefly presented in section 2, together
with some uniform asymptotic convergence theorems which extend those of
[8]. From this conditional density estimator, point and set predictors cor-
responding to the conditional mode and level sets are defined in sections 3
and 4 respectively, together with a study of their asymptotic consistency
and discussions regarding their implementation. An illustration on a real
data set is conducted in section 5. Some proofs and auxiliary results are
deferred to the appendix 6.

2 The quantile-copula conditional density estima-
tor

2.1 Definition of the Quantile-copula estimator

Nonparametric estimators of the conditional density f(y|x) are either built
upon estimators of joint and marginal densities or are based on nonpara-
metric regression on synthetic data, see [8] for an account and references.
The Quantile-copula estimator of [8] is based on the idea of transforming
the data X and Y by their respective marginal distributions F and G, and
the representation of the joint c.d.f. FXY of (X,Y ) by means of the copula
function C as

FXY (x, y) = C(F (X), G(Y )), (2)

where F and G are the c.d.f. of X, and Y respectively, see e.g. [13, 15] for
some background on copulas. Differentiating formula (2), the conditional
density writes

f(y|x) = g(y)c(F (x), G(y)) (3)

where g is the density of Y and c is the copula density of (X,Y ), viz. the
density of the vector (F (X), G(Y )) with uniform marginals. From (3), a
nonparametric estimator can be built as

f̂(y|x) = ĝ(y)ĉn(Fn(x), Gn(y))

where ĝ is the kernel estimate of g, viz.

ĝ(y) :=
1

nhn

n∑
i=1

K0

(
y − Yi
hn

)
,
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Fn andGn are the empirical distribution function of F andG, and ĉn is a ker-
nel estimator of c based on the approximate data (Fn(X1), Gn(Y1)), . . . , (Fn(Xn), Gn(Yn)),
viz.

ĉn(u, v) :=
1

na2n

n∑
i=1

K

(
u− Fn(Xi)

an

)
K

(
v −Gn(Yi)

an

)
. (4)

We refer to [8] for pointwise consistency results and discussions on ad-
vantages of the product shape of the estimator compared to ratio-shaped
competitors.

2.2 Uniform consistency results of the conditional density
estimator

In order to obtain the consistency of the statistical point and interval pre-
dictors of sections 3 and 4, uniform consistency results of the conditional
density estimator on a compact set are required. Beforehand, we present
the notations and assumptions used throughout the paper.

We note the ith moment of a (multivariate) kernel K as mi(K) :=∫
uiK(u)du and the Lp norm of a function h by ||h||p :=

∫
hp. Let ' stands

for the order of equivalence of the bandwidths, i.e. hn ' un means that
hn = cnun with cn → c > 0. The support of the densities function f and g
are noted by supp(f) = {x ∈ R; f(x) > 0} and supp(g) = {y ∈ R; g(y) > 0},
where A stands for the closure of a set A.

To state our results, we will have to make some regularity assumptions
on the kernels and the densities which, although far from being minimal,
are somehow customary in kernel density estimation (see section 6.1 for
discussions and details). Set x be a fixed point in the interior of supp(f).

Assumption A

(i) the c.d.f. F of X and G of Y are strictly increasing and differentiable;

(ii) the densities g and c are twice continuously differentiable with bounded
second derivatives on their support;

(iii) the density g (respectively c) is uniformly continuous and non-vanishing
almost everywhere on a compact set J := [a, b] (respectively D ⊂
(0, 1)2), included in the interior of supp(g) (respectively supp(c)).

Moreover, we assume that the kernels K0 and K satisfy the following:
Assumption B

(i) K and K0 are of bounded support and of bounded variation;
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(ii) 0 ≤ K ≤ C and 0 ≤ K0 ≤ C for some constant C;

(iii) K and K0 are second order kernels: m0(K) =
∫
K = 1, m1(K) =∫

xK(x)dx = 0 and m2(K) =
∫
x2K(x)dx < +∞, and the same for

K0;

(iv) K it is twice differentiable with bounded second partial derivatives.

We have the following uniform consistency result:

Theorem 2.1. Let the regularity conditions A (i)-(iii) and B (i)-(iv) be
satisfied. If hn ' (lnn/n)1/5 and an ' (lnn/n)1/6, then, for x in the interior
of supp(f) and [a, b] included in the interior of supp(g),

sup
y∈[a,b]

|f̂n(y|x)− f(y|x)| = Op

((
lnn

n

)1/3
)
,

and

sup
y∈[a,b]

∣∣∣f̂n(y|x)− f(y|x)
∣∣∣ = Oa.s.

((
lnn

n

)1/3
)
.

Proof. As in [8], the main ingredient of the proof follows from the decom-
position:

f̂n(y|x)− f(y|x) = ĝn(y)ĉn(Fn(x), Gn(y))− g(y)c(F (x), G(y))

= [ĝn(y)− g(y)] ĉn(Fn(x), Gn(y))

+ g(y) [ĉn(Fn(x), Gn(y))− c(F (x), G(y))]

: = D1 +D2

where cn is in (4), the analogue of ĉn but based on the pseudo-data (F (X1), G(Y1)), . . . , (F (Xn), G(Yn))
instead of the approximate ones. We proceed one step further in the decom-
position of each terms, by centering at fixed locations,

D1 = [ĝn(y)− g(y)] [ĉn(Fn(x), Gn(y))− ĉn(F (x), G(y))]

+ [ĝn(y)− g(y)] [ĉn(F (x), G(y))− cn(F (x), G(y))]

+ [ĝn(y)− g(y)] [cn(F (x), G(y))− c(F (x), G(y))]

+ [ĝn(y)− g(y)] [c(F (x), G(y))]

D2 = g(y) [ĉn(Fn(x), Gn(y))− ĉn(F (x), G(y))]

+ g(y) [ĉn(F (x), G(y))− cn(F (x), G(y))]

+ g(y) [cn(F (x), G(y))− c(F (x), G(y))]
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Taking the supremum norm for y ∈ [a, b] and applying propositions 6.2 and
6.1 of section 6, together with the uniform consistency results of the kernel
density estimators of theorems 6.1 and 6.2 applied to gn and cn, also recalled
in section 6, yields the claimed result.

3 Point prediction by the conditional mode

3.1 Construction of the modal predictor

Depending on the loss function L considered in equation (1) to measure
the performance of the prediction, several Bayes (or probabilistic) point
predictors are obtainable. The focus in this article is on the 0− 1 loss, viz.
L(x, y) = Ix 6=y, which leads the “most likely value” or conditional mode,

θ(x) := arg sup
y
f(y|x).

For additional references regarding the use of the mode for prediction pur-
poses, refer e.g. to Scott [17], which advocates its use to account for situa-
tions as those discussed in the introduction. The interest in the conditional
mode lies also that its estimator can be directly obtained from an estimator
of the conditional density, following the approaches of [16, 14, 6, 7, 9] among
others.

Indeed, define the corresponding statistical point predictor by its empir-
ical counterpart in a plug-in setting as follows: Set S a compact subset of
R. In order to assure the existence of the desired object, we assume that
f(y|x) is such that:

(R) There exists an η > 0, an unique y0 ∈ S such that f(.|x) is strictly
increasing on (y0 − η, y0), and strictly decreasing on (y0, y0 + η).

Under this assumption, the local maximizing problem of f(y|x) on S′ =
(y0 − η, y0 + η) has a unique solution, which is exactly y0. Therefore, the
conditional mode is uniquely defined on this interval:

Definition 3.1. Under assumption (R), the statistical modal predictor is
defined as

θ̂n(x) := arg sup
y∈S′

f̂n(y|x).
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3.2 Asymptotic properties of the conditional mode predictor

From the uniform consistency result of the quantile-copula density estima-
tor (2), we have the following consistency result of the conditional mode
predictor:

Proposition 3.1. if f(.|x) follows assumption (R), and the conditions for
uniform consistency of the conditional density on a compact set of theorem
2.1, then,

θ̂n(x)
a.s.→ θ(x).

Proof. Let k, n be integers. By assumption (R), f(.|x) is continuous and
strictly increasing on (θ(x)−η, θ(x)). therefore, the inverse function f−1(.|x)
exists and is continuous. Thus, by continuity of the latter at the point
f(θ(x)|x), for any ε > 0,

∃δ1(ε) > 0, ∀y ∈ (θ(x)−η, θ(x)), |f(y|x)−f(θ(x)|x)| ≤ δ1(ε)⇒ |y−θ(x)| ≤ ε.

Similarly,

∃δ2(ε) > 0, ∀y ∈ (θ(x), θ(x)+η), |f(y|x)−f(θ(x)|x)| ≤ δ2(ε)⇒ |y−θ(x)| ≤ ε,

so that,

∃δ(ε) > 0,∀y ∈ (θ(x)−η, θ(x)+η), |f(y|x)−f(θ(x)|x)| ≤ δ(ε)⇒ |y−θ(x)| ≤ ε.

By construction, θ̂k(x) ∈ (θ(x)− η, θ(x) + η), so that,

∃δ(ε) > 0, |f(θ̂k(x)|x)− f(θ(x)|x)| ≤ δ(ε)⇒ |θ̂k(x)− θ(x)| ≤ ε

and finally,

∃δ(ε) > 0, P (sup
k≥n
|θ̂k(x)− θ(x)| > ε) ≤ P (sup

k≥n
|f(θ̂k(x)|x)− f(θ(x)|x)| > δ(ε)).

(5)

On the other hand, it comes from the triangle inequality that∣∣∣f(θ(x)|x)− f(θ̂k(x)|x)
∣∣∣ ≤ ∣∣∣f̂k(θ(x)|x)− f(θ(x)|x)

∣∣∣+
∣∣∣f̂k(θ̂k(x)|x)− f(θ̂k(x)|x)

∣∣∣
≤ 2 sup

y∈(θ(x)−η,θ(x)+η)

∣∣∣f̂k(y|x)− f(y|x)
∣∣∣

and uniform almost sure convergence of the conditional mode estimator on
a compact set of theorem 2.1 entails that

∀δ > 0, lim
n→∞

P

(
sup
k≥n

sup
y∈(θ(x)−η,θ(x)+η)

∣∣∣f̂k(y|x)− f(y|x)
∣∣∣ > δ

)
= 0,

thus θ̂n(x)
a.s.→ θ(x) by equation (5).
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3.3 A remark on the practical implementation of the condi-
tional mode predictor

Set SY |X = {y : f(y|x) > 0} the support of the conditional density. In prac-
tice, the search of the conditional mode can be difficult and time-consuming
to implement. Indeed, as the conditional mode estimator is defined as the
maximizer of f̂(y|x), i.e. θ̂(x) = arg supy∈SY |X

f̂(y|x), one has a priori to
compute the estimator of the conditional density on a large number of y
values in SY |X to find the largest value of the estimated conditional density.

Therefore, we would like to mention a method to ease the computation of
the conditional mode predictor, proposed in the papers by Abraham, Biau,
Cadre [1, 2]. An alternative is to maximize the estimator on the Y data
Dn := {y1, . . . , yn}, i.e. to set θ̃(x) = arg maxy∈Dn f̂(y|x). The maximi-
sation is thus performed on a set of finite cardinality, and can be quickly
implemented. According to the asymptotics developed in these papers, one
has that θ̃(x)− θ̂(x)

a.s.→ 0 as n→∞, under suitable regularity conditions.

4 Prediction by intervals

4.1 Predictive intervals and level sets

Similarly to the well-known case in estimation, where point estimates can be
replaced by confidence intervals, one may wish to summarise the predictive
probability distribution by defining a region of the sample space covering a
specified probability, i.e. to define a set Cα(x) such that

P (Y ∈ Cα(x)|X = x) = α.

In the present context, there are numerous ways to construct such predictive
intervals or sets covering a specified conditional probability. Among propos-
als, one may cite the interval symmetric around the mean, the interval sym-
metric around the median, the interval between the 1−α

2 and 1+α
2 quantiles,

the interval of shortest length, the interval that minimizes the probability of
covering a given family of sets. et cetera... Hyndman [12] provides a detailed
discussion of the issues involved in defining such a probability region in the
unconditional case. In the conditional case we are interested in, note the
coverage region depends on a fixed, chosen x.

To make use of the conditional density and its estimator, it is natural to
advocate for an approach based on the level sets of the conditional density,
also called the Highest Density Region (HDR) by Hyndman [12], which
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allows to incorporate the features mentioned in the introductory example
such as multimodality.

Definition 4.1. The level set (probabilistic) predictor is the set Cα consisting
of points y,

Cα := {y : f(y|x) ≥ fα} (6)

where fα is the largest constant such as the prediction set has coverage prob-
ability α,

P (Y ∈ Cα(x)|X = x) ≥ α. (7)

In case of multimodality, Cα(x) takes the form of an union of possi-
bly disjoint intervals, say Cα(x) =

⋃
Iα(x), where each Iα(x) := [yα, y

α],
with yα ≤ yα. Each extremity of these subintervals is such that f(yα|x) =
f(yα|x) = fα. Note, as shown in [11], that this approach also allows to give
an informative and convenient graphical display of the predicted regions by
drawing confidence bands corresponding to, e.g. 50 % and 99% coverage
probability.

A plug-in strategy to define the corresponding statistical predictor is
discussed in the next two subsections.

4.2 Determination of the level by a density quantile ap-
proach

In order to determine the corresponding interval statistical predictor, a first
step is to determine, for a given coverage probability α, the corresponding
cut-off level fα of equation (7). To that purpose, we assume x is fixed and
follow the approach proposed by Hyndman [12]. For Y with conditional
density f(y|x), define the random variable Z = f(Y |x). Then,

Y ∈ Cα ⇔ f(Y |x) ≥ fα ⇔ Z ≥ fα.

Therefore, P (Y ∈ Cα) = α ⇔ P (Z ≥ fα) = α. So fα is the 1 − α quantile
of Z. It thus can be estimated by the sample quantile from a set of i.i.d.
observations Z1, . . . , Zn from the distribution of Z = f(Y |X = x). As f(y|x)
is unknown, it has to be estimated by f̂(y|x). Therefore, the following two
practical approaches to determine the level of the level-set can be proposed:

1. A Bootstrap technique for estimating fα is to generate a i.i.d. pseudo-
sample (Ŷ1, . . . , ŶN ) from the estimated distribution f̂(y|x) of f(y|x).
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Then, (Ẑ1, . . . , ẐN ) := (f̂(Ŷ1|x), . . . , f̂(ŶN |x)) will be a i.i.d. pseudo-
sample from the distribution of Z. The level fα is estimated by the
sample quantile of the Zi as

f̂α := Ẑjα,N ,

with jα = b(1 − α)Nc and where Ẑj,N denotes the jth order statistic

of the sample Ẑ1, . . . , ẐN .

2. Alternatively, a more direct approach, especially if n is large, is to use
the same set of observations (Y1, . . . , Yn), and to calculate the quantile
from the synthetic sample Z̃ = (Z̃1, . . . , Z̃n) := (f̂n(Y1|x), . . . , f̂n(Yn|x)).
The estimated value is defined analogously by

f̂α := Z̃jα,n.

4.3 Calculation of predictive intervals

A natural plug-in estimate of the predictive set Cα(x) defined by equation
(6), would be to set

Cα,n(x) := {y : f̂n(y|x) ≥ f̂α},

where f̂α is the above mentioned estimate of the level fα. Practically, recall
that Cα(x) is made up of the different subintervals Iα(x) = [yα, y

α]. The
corresponding statistical interval estimate Îα(x) = [ŷα, ŷ

α] with ŷα ≤ ŷα is
then obtained by solving for y the equation f̂n(y|x) = f̂α, viz.

ŷα = f̂−1n (f̂α|x) and ŷα = f̂−1n (f̂α|x).

In the following, we assume the existence of these inverses, that is to say we
consider that the level is reasonably chosen.

Convergence of the estimated predictive intervals is then obtained from
the uniform convergence of the conditional density estimator, as shown in
the next proposition.

Proposition 4.1. Assume f̂α
a.s.→ fα. Then ŷα

a.s→ yα and ŷα
a.s→ yα, thus

λ(Cα,n∆Cα)
a.s.→ 0.

Proof. We do the proof only for ŷα, the proof for ŷα being similar. Introduce
the estimate y∗α of yα, had we known the true value fα, i.e.

f̂n(y∗α|x) = fα.
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Then,

P (|ŷα − yα| > ε) ≤ P (|ŷα − y∗α| > ε/2) + P (|y∗α − yα| > ε/2).

Since f̂−1n (.|x) is continuous at yα, for every ε > 0, there exists a δε > 0,
such that |f̂n(y|x)− f̂n(yα|x)| ≤ δε/2 implies |y − yα| ≤ ε. In particular, for
y = y∗α, there exists a δε such that

P (|y∗α − yα| > ε/2) ≤ P (|f̂n(y∗α|x)− f̂n(yα|x)| > δε)

≤ P (|fα − f̂n(yα|x)| > δε)

≤ P (|f(yα|x)− f̂n(yα|x)| > δε)

and almost sure convergence of the conditional density estimator yields al-
most sure convergence of the y∗α to yα. Similarly, by continuity of f̂−1n (.|x)
at y∗α, there exists δ′ε > 0, such that

P (|ŷα − y∗α| > ε/2) ≤ P (|f̂n(ŷα|x)− f̂n(y∗α|x)| > δ′ε)

and almost sure convergence of f̂α
a.s.→ fα means that |f̂n(ŷα|x)−f̂n(y∗α|x)| a.s.→

0, yielding ŷα − yα
a.s.→ 0.

5 An illustration on a real-data set

To complement the asymptotic results obtained, i.e. valid for large samples,
the proposed methodology is illustrated in a small sample setting on the Old
Faifthful Geyser data set. The data consists in 272 records of the eruption
time of the geyser and the waiting time between two successive eruptions.
The aim is to predict the eruption time (Y) conditionally on the waiting
time (X).

5.1 Small sample implementation

As noted in [8], since the copula density is of compact support [0, 1]2, the
kernel method of estimation may suffer from boundary bias. Therefore, to
alleviate this possible bias issue of the copula density part of the estimator,
the quantile-copula density estimator is implemented with the modifications
suggested in [8]. In particular, the Beta kernels mentioned herein were used.
The bandwidth for the copula density was chosen such that it contains at
least a fixed amount (20%) of the data, and for the bandwidth for the Y den-
sity by direct plug-in (see [21]). The conditional density was calculated on
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a regular rectangular grid of 100 values with the edges corresponding to the
maximum and minimum values of the data. We computed the conditional
mode (black line) as well as 50 percents level sets (shaded area) and the
classical Nadaraya-Watson regression estimator (dashed line). The result of
the simulation is displayed on figure 5.1.

Figure 2: Prediction of the Eruption duration from the Waiting time for the
Old Faithful Geyser data

5.2 Results

The shaded area corresponding to the 50 percent predictive intervals clearly
evidences the bimodal and nonlinear nature of the response of the eruption
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duration conditionally on the waiting time. The point prediction of the
eruption duration given by the conditional mode switches between about 2
min., say 1.8 min, and, slightly more than 4 min., say 4.5 min., depending
on the waiting time being lower or upper than a threshold value of about
70 min. As advocated in the introduction, such a phenomenon can not be
inferred from the regression function. Moreover, the regression proposes as a
point prediction a continuum of values between 1.8 min and 4.5 min, whereas
the shaded area shows that observing a value in between this continuum (say
between 2.5 min and 3.5 min) appears to be very unlikely.

6 Appendix

6.1 Uniform consistency of the kernel density estimators

We recall below for convenience some classical results of convergence of the
kernel density estimators uniformly on sets. For additional references, see.g.
[17, 21, 4]. In this section only, f denotes a generic density on Rd.

6.1.1 Bias

If f is supposed to be twice differentiable with second partial derivatives
uniformly bounded on J , the bias is also uniformly bounded on J : indeed,

sup
t∈J
|Efn(t)− f(t)| = h2n/2

∫
K(y)yT {f ′′(y)}ydy + o(h2n)

where

f ′′(t) =

(
∂2f

∂xi∂xj

∣∣∣∣
x=t

)
is a shorthand for the Hessian of f , and where the o(.) is independent of t.
This comes from a so-called uniform Bochner type theorem, see e.g. Bosq
and Lecoutre [4].

6.1.2 Uniform convergence in probability

The following theorem is a direct corollary of Bickel and Rosenblatt’s [3] con-
vergence result of the norm of the deviation of the kernel density estimator
to a double exponential law:
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Theorem 6.1 (Bickel and Rosenblatt). For f bounded and non-vanishing
on a compact subset J included in the interior of supp(f), and a bandwidth
sequence hn → 0, such that nhdn →∞, nhdn/ lnn→∞,

sup
x∈J

∣∣∣f̂n(x)− Ef̂n(x)
∣∣∣ = Op

[(
lnn

nhdn

)1/2
]
.

Therefore, for the choice of the bandwidth hn ' (lnn/n)1/d+4 which realises
the optimal trade-off between the bias and variance, one gets, by combining
this result with the one on the bias in section 6.1.1 above, the following result
in probability:

sup
x∈J

∣∣∣f̂n(x)− f(x)
∣∣∣ = Op

[(
lnn

n

)2/(d+4)
]

which is the optimal speed in the minimax sense in the class of density
functions with bounded second derivatives, according to Hasminskii [10].

6.1.3 Uniform almost sure convergence

We cite Stute’s [18, 19] theorem on the uniform convergence of the kernel
density estimator, see also Deheuvels [5], Bosq and Lecoutre [4] :

Theorem 6.2 (Stute). Let J be a compact subset of Rd, included in the
support of f .

i) If the kernel K is of bounded support, and of finite variation (e.g. if
K has bounded partial derivative of order two),

ii) if the density f is uniformly continuous on J , is bounded away from
zero and infinity on J : 0 ≤ m < f |J < +∞,

iii) if the marginal densities fi of f , i = 1, . . . , d are bounded away from
zero and infinity on J ,

iv) if the bandwidth hn → 0 satisfy nhdn → +∞, ln(1/hdn) = o(nhdn), and
ln(1/hdn)/(ln lnn)→ +∞

then, with probability one,

lim
n→∞

sup
t∈J

√
nhdn

2 lnh−dn

∣∣∣∣∣fn(t)− Efn(t)√
f(t)

∣∣∣∣∣ =

(∫
K2

)1/2

.
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Remark 6.1. if the last condition on the bandwidth is suppressed, the theo-
rem remains valid with lim replaced with lim. With the usual choice of band-
width hn ' (lnn/n)1/(d+4) to deal with the bias, one gets the almost sure uni-
form convergence of the kernel density estimator at the rate (lnn/n)2/(d+4).

6.2 Two uniform approximation propositions

The following two propositions are key to prove theorem 2.1. Proposition
6.1 gives the a.s. and in probability rates of approximation of the quantile
density estimator ĉn based on the approximate data (Fn(Xi), Gn(Yi)) from
the moving w.r.t n location (Fn(x), Gn(y)) to the fixed one (F (x), G(y)),
and proposition 6.2 the a.s. and in probability rates of approximations of
the quantile density estimator ĉn based on the approximate data by the
pseudo estimator cn based on the pseudo data (F (Xi), G(Yi)).

Proposition 6.1. Let the regularity assumptions A and B be satisfied, then,
for a compact set D ⊂ (0, 1)2, an → 0 and na3n/ lnn→∞ entails

sup
(x,y)∈D

|ĉn(Fn(x), Gn(y))− ĉn(F (x), G(y))| = OP

(
1

na4n
+

lnn

n1/2

)
,

sup
(x,y)∈D

|ĉn(Fn(x), Gn(y))− ĉn(F (x), G(y))| = Oa.s

(
ln lnn

na4n
+

lnn(ln lnn)1/2

n1/2

)
.

Proof. For convenience, set the norm of a vector as the max norm, ||(x1, . . . , xd)|| =
max1≤j≤d |xj |. Set D = [u0, u∞]× [v0, v∞] ⊂ (0, 1)2 a compact subset where
0 < u0 ≤ u∞ < 1 and 0 < v0 ≤ v∞ < 1. Note T for the transpose of a
matrix. Set

∆n(x, y) := ĉn(Fn(x), Gn(y))− ĉn(F (x), G(y)) =
1

na2n

n∑
i=1

∆i,n(x, y) (8)

with

∆i,n(x, y) := K

(
Fn(x)− Fn(Xi)

an
,
Gn(y)−Gn(Yi)

an

)
−K

(
F (x)− Fn(Xi)

an
,
G(y)−Gn(Yi)

an

)
.

For notational simplicity, define

Zn(x, y) :=

(
Fn(x)− F (x)
Gn(y)−G(y)

)
, Zi,n :=

(
F (Xi)− Fn(Xi)
G(Yi)−Gn(Yi)

)
.
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We first express ∆i,n at a fixed location by a Taylor expansion, viz.

∆i,n = Zn(x, y)T
∇K
an

(
F (x)− Fn(Xi)

an
,
G(y)−Gn(Yi)

an

)
+
||Zn||2∞
a2n

R3 (9)

where R3 is uniformly bounded almost surely by the boundedness assump-
tions on the second order derivatives of the kernel (assumption K (iv)). We
then proceed from the data (Fn(Xi), Gn(Yi)) to the pseudo ones (F (Xi), G(Yi))
by another Taylor expansion,

∇K
(
F (x)− Fn(Xi)

an
,
G(y)−Gn(Yi)

an

)
= ∇K

(
F (x)− F (Xi)

an
,
G(y)−G(Yi)

an

)
+
ZTi,n
an

R2

(10)

with ||R2|| = Oa.s.(1), again by assumption K (iv). Thus, plugging (9) and
(10) in (8),

∆n(x, y) =
ZTn (x, y)

na3n

n∑
i=1

∇K
(
F (x)− F (Xi)

an
,
G(y)−G(Yi)

an

)

+
ZTn (x, y)

na4n

n∑
i=1

ZTi,nR2 +R3
||Zn||2∞
a4n

. (11)

Notice that |Fn(Xi) − F (Xi)| ≤ ||Fn − F ||∞ and |Gn(Yi) − G(Yi)| ≤
||Gn −G||∞ a.s. for every i = 1, . . . , n. From Chung-Mogulskii’s law of the
iterated logarithm,

‖Fn − F‖∞ = Oa.s.

(√
ln lnn

n

)
, or = OP

(
1√
n

)
. (12)

and similarly for ||Gn−G||, so that the norm of Zi,n is independent of i and
such that

||Zi,n|| = OP (1/
√
n), or = Oa.s.(

√
ln lnn/n). (13)

In the same manner,

||Zn||∞ = OP (1/
√
n), or = Oa.s.(

√
ln lnn/n). (14)

Therefore the last two terms in (11) are of order OP

(
1
na4n

)
, or Oa.s

(
ln lnn
na4n

)
,

uniformly for (x, y) ∈ D.
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For the first term in (11), by Cauchy-Schwarz inequality,

sup
(x,y)∈D

∣∣∣∣∣ZTn (x, y)

na3n

n∑
i=1

∇K
(
F (x)− F (Xi)

an
,
G(y)−G(Yi)

an

)∣∣∣∣∣
≤ ||Zn||∞ sup

(x,y)∈D

∥∥∥∥∥ 1

na3n

n∑
i=1

∇K
(
F (x)− F (Xi)

an
,
G(y)−G(Yi)

an

)∥∥∥∥∥
From the convergence results of the kernel estimator of the gradient of the
density c(u, v) (see Scott [17] and the previous section 6.1), and the assump-
tion A (ii) of boundedness of the gradient of the copula density on D, one
gets with na3n/ lnn→∞ that

sup
(x,y)∈D

∥∥∥∥∥ 1

na3n

n∑
i=1

∇K
(
F (x)− F (Xi)

an
,
G(y)−G(Yi)

an

)∥∥∥∥∥ = OP (lnn), or = Oa.s.(lnn)

In turn, with (14), the first term in (11), is an = OP (lnn/n−1/2) orOa.s.(lnn(ln lnn/n)1/2).
Recollecting all elements yields the claimed result.

Proposition 6.2. Let the regularity assumptions A and B be satisfied, then,

for a compact set D ⊂ (0, 1)2, and a bandwidth such as an '
(
lnn
n

)1/6
, one

has

sup
(u,v)∈D

|ĉn(u, v)− cn(u, v)| = Oa.s.

((
lnn

n

)1/3
)

or OP

((
lnn

n

)1/3
)

Proof. We proceed similarly. Write

∆′(u, v) := ĉn(u, v)− cn(u, v) =
1

na2n

n∑
i=1

∆i,n(u, v),

with

∆′i,n(u, v) := K

(
u− Fn(Xi)

an
,
v −Gn(Yi)

an

)
−K

(
u− F (Xi)

an
,
v −G(Yi)

an

)
,

and define

Wi,n(u, v) := ∇K
(
u− F (Xi)

an
,
v −G(Yi)

an

)
.

For every fixed (u, v) ∈ [0, 1]2, since the kernel K is twice differentiable,
there exists, by Taylor expansion, random variables Ũi,n and Ṽi,n such that,
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almost surely,

∆′(u, v) =
1

na3n

n∑
i=1

ZTi,n∇K
(
u− F (Xi)

an
,
v −G(Yi)

an

)

+
1

2na4n

n∑
i=1

ZTi,n∇2K

(
u− Ũi,n
an

,
v − Ṽi,n
an

)
Zi,n

:= ∆′1 + ∆′2,

where ∇K and ∇2K the gradient and the Hessian respectively of the multi-
variate kernel function K. By centering at expectations, decompose further
the first term ∆′1 as,

∆′1 =
1

na3n

n∑
i=1

ZTi,nWi,n(u, v)

=
1

na3n

n∑
i=1

ZTi,n. (Wi,n(u, v)− EWi,n(u, v))

+
1

na3n

n∑
i=1

ZTi,n.EWi,n(u, v)

:= ∆′11 + ∆′12.

• Negligibility of ∆′2

By bounding uniformly the Hessian of the kernel, we get that

sup
(u,v)∈D

|∆′2(u, v)| ≤ ||Zi,n||
2

a4n
R2,

where R2 = Oa.s.(1) uniformly. With (13), we get eventually that

sup
(u,v)∈D

|∆2(u, v)| = OP (n−1a−4n ), or Oa.s.((ln lnn)/(na4n)). (15)

• Negligibility of ∆′12

Notice that na−3n
∑n

i=1Wi,n(u, v) is the kernel estimator of the gradient
∇c(u, v) and that in the expression of the bias of the kernel estimator,
equation 6.1.1, the O(.) is uniform in (u, v). Therefore one gets that

sup
(u,v)∈D

||EWi,n(u, v)− a3n∇c(u, v)|| = O(a5n).
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Thus,

sup
(u,v)∈D

|∆′12(u, v)| = OP (1/
√
n), or Oa.s.((ln lnn/n)1/2). (16)

• Negligibility of ∆′11

We use a chaining argument: define a covering of D by M2
n compact

hypercubes Dk centered in (uk, vk),

Dk = {(u, v) ∈ D : ||(u, v)− (uk, vk)|| ≤ 1/Mn} , 1 ≤ k ≤M2
n

with
◦
Dk ∩

◦
Dk′= ∅ , 1 ≤ k 6= k′ ≤M2

n.

One can write

sup
(u,v)∈D

|∆′11(u, v)| ≤ max
1≤k≤M2

n

sup
(u,v)∈Dk

|∆′11(u, v)−∆′11(uk, vk)|

+ max
1≤k≤M2

n

|∆′11(uk, vk)|

:= (I) + (II).

• Negligibility of (I)

For (I), by boundedness and Lipshitz assumption on the product ker-
nel K, there exists a constant C such that,

||∇K(u, v)−∇K(uk, vk)|| ≤ C||(u, v)− (uk, vk)||.

Therefore for (u, v) ∈ Dk,∥∥∥∥∇K (u− F (Xi)

an
,
v −G(Yi)

an

)
−∇K

(
uk − F (Xi)

an
,
vk −G(Yi)

an

)∥∥∥∥ ≤ C

Mnan

since K is product-shaped. In turn, the same bound is valid by
Jensen’s inequality for the expectations of the difference, so that

(I) ≤ 2C||Zn||
Mna4n

. (17)

Setting Mn = n1/2a−3n ' n/
√

lnn for an ' (lnn/n)1/6, one has that

(I) = oa.s.

(√
lnn
na2n

)
or oP ((na2n)−1/2).
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• Negligibility of (II)

For the second term, set Ai(u, v) = Wi,n(u, v) − EWi,n(u, v), and
bound, for each k,

|∆′11(uk, vk)| ≤
||Zn||
na3n

n∑
i=1

||Ai(uk, vk)||

≤ ||Zn||
na3n

n∑
i=1

(||Ai(uk, vk)|| − E||Ai(uk, vk)||+ E||Ai(uk, vk)||)

≤ ||Zn||
na3n

n∑
i=1

ηi(uk, vk) +
||Zn||
na3n

n∑
i=1

E||Ai(uk, vk)||

where we have set ηi(uk, vk) = ||Ai(uk, vk)|| − E||Ai(uk, vk)||.
For the expectation term, as the product kernel is of finite variation,
and with the assumption that the gradient of the copula density re-
mains bounded on D, one has that

max
1≤k≤M2

n

E||Ai(uk, vk)|| = O(a3n).

In turn,

max
1≤k≤M2

n

||Zn||
na3n

n∑
i=1

E||Ai(uk, vk)|| = OP (n−1/2) , or Oa.s.

((
ln lnn

n

)1/2
)
.

(18)

It remains to deal with the deviation term

max
1≤k≤M2

n

||Zn||
na3n

n∑
i=1

ηi(uk, vk).

We have

P

(
max

1≤k≤M2
n

|
n∑
i=1

ηi(uk, vk)| > ε

)
≤

M2
n∑

k=1

P

(
|
n∑
i=1

ηi(uk, vk)| > ε

)

and apply Hoeffding’s inequality to the summand, to get that, for
every ε > 0,

P

(
|
n∑
i=1

ηi(uk, vk)| > ε
√
n lnn

)
≤ exp

(
−ε

2 lnn

C

)
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for a constant C independent of k, which exists by the boundedness
assumption on the gradient of the kernel. Thus,

P

(
max

1≤k≤M2
n

|
n∑
i=1

ηi(uk, vk)| > ε
√
n lnn

)
≤M2

n exp

(
−ε

2 lnn

C

)
≤ exp

(√
2 lnMn −

ε2 lnn

C

)
.

For an ' (lnn/n)1/6 and Mn = n1/2a−3n ' n/
√

lnn,

exp

(√
2 lnMn −

ε2 lnn

C

)
≈ exp

(
−ε

2 lnn

C

)
=

1

nε2/C

which is absolutely summable for an ε large enough. Therefore,

max
1≤k≤M2

n

|
n∑
i=1

ηi(uk, vk)| = Oa.co.

(√
n lnn

)
and eventually,

||Zn||
na3n

max
1≤k≤M2

n

|
n∑
i=1

ηi(uk, vk)| = Oa.s.

(√
lnn ln lnn

na3n

)
(19)

for the choice an ' (lnn/n)1/6.

Recollecting elements (15), (16), (17), (18), (19) gives the claimed result for
the given choice of an.
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