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Abstract

This note extends the classical median voter theorem to the case where voters
are exogenously distributed across groups, with preferences satisfying the single-
crossing property separately inside each group. We provide conditions under which
a Condorcet winner exists. The most important condition is the continuity of the
set of most-preferred options in voters� types, and we discuss the importance of
both this assumption and those of unicity and strict monotonicity.
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1 Introduction

Among the various su¢ cient conditions for the existence of a majority voting equilibrium

on unidimensional choice domains, the single-crossing property (SCP) of preferences is

probably the one most often used in the literature: see for instance Gans and Smart

(1996) and the 260 papers referring to it.1 Single-crossing requires, roughly speaking,

that if a voter�s type prefers a larger option to a smaller one, then so do all voters

with a larger type. Moreover, unlike single-peakedness, SCP guarantees that the social

preference relationship obtained under majority voting is transitive, and corresponds to

the median voter�s.
�I thank Michel Le Breton for his comments and suggestions. The usual disclaimer applies.
yToulouse School of Economics (GREMAQ-CNRS and IDEI). MS 102, 21 allée de Brienne, 31000

Toulouse, France. Tel: +33 (0)5 61 12 85 42. Email: philippe.dedonder@tse-fr.eu
1Source: scholar.google.com, accessed on November 30, 2011
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The popularity of this approach is due in part to the large set of environments satis-

fying Gans and Smart (1996)�s premises. In many applications, voters have to vote over

two dimensions linked by some type of budget constraint, such as a proportional tax

rate t and the amount of public good G (or lump sum transfer) �nanced by that tax,

given by G(t). The budget constraint G(t) then restricts the set of feasible options to be

unidimensional. Gans and Smart (1996) show, under rather weak conditions, the equiv-

alence between the SCP over this unidimensional set and the Spence-Mirrlees condition

of monotonicity of the marginal rates of substitution in the (t; G) space. This setting

has been used to study majority voting over unidimensional public policies in domains

such as income taxation, education provision, environmental policies, retirement, social

health insurance, etc.

In this note, we extend the study of the impact of SCP on majority voting equilibrium

to a setting where voters belong (exogenously) to di¤erent groups and where preferences

satisfy SCP inside all those groups taken separately (but not necessarily when voters

from all groups are pooled together). Such a setting arises for instance when voters vote

over (t; G) but belong to exogenous groups which di¤er in the budget constraint linking

the two choices t and G. We give two such examples drawn from recent papers. In

Russo (2011), voters di¤er both in their preference for driving and their location (city

center or suburbs). While the proceeds of a cordon toll are rebated to all individuals,

the proceeds from parking charges are rebated only to the city residents. When voting

over the cordon toll, city residents then take into account the impact of the toll on

the proceeds from the parking charges, while suburban voters do not. In other words,

voters who (exogenously) di¤er in location face a di¤erent budget constraint between

cordon toll and tax transfers, and Russo (2011) shows that this results in preferences

satisfying the SCP inside those two groups, but not necessarily when all agents are

pooled together. In Besfamille et al (2011), voters�preferences for the enforcement of

indirect taxation depend on an intrinsic characteristic but also on whether they own

shares in private �rms and are thus entitled to receive a part of these �rms�pro�ts.

The relationship between enforcement and monetary transfers is thus a¤ected by this

ownership share. If consumers are grouped exogenously according to their extent of
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ownership of private �rms, then the setting studied in this note applies.

We show in this note that, under certain assumptions, a Condorcet winner exists

when all voters vote simultaneously. The main assumption is that the set of voters�

most-preferred options is continuous in type for all types in all groups. Together with

some more minor conditions, this assumption guarantees the existence of �anchors�in

all groups � i.e., of types with a speci�c most-preferred option. The existence of these

anchors in all groups then allows us to generalize the classical median voter theorem by

using a well known separation argument.

2 The Model

There is a continuum of voters distributed among N groups, with �i denoting the

proportion of voters who belong to group i = 1; :::; N . Voters are identi�ed by the

group they belong to and by their type, denoted by �. The distribution of types in

group i is denoted by the distribution function Fi, with density fi over �i = [�i; �i].
2

The policy space is unidimensional and is the same across groups. That is, agents in all

groups have to choose by majority voting one option (for the whole society) x in the set

X � <. The utility function ui(x; �) represents the preferences of voters of type � 2 �i
belonging to group i for any option x 2 X.

We assume that these preferences satisfy the Single Crossing Property inside each

group i.

De�nition 1 (SCP) The utility functions ui(x; �) satisfy the Single-Crossing Property

if

8i = 1; :::; N;8x0; x 2 X with x0 > x;8�0; � 2 �i; with �0 > �;

ui(x
0; �) � ui(x; �)) ui(x

0; �0) � ui(x; �0):

Our objective is to prove the existence of a Condorcet winner when all voters in all

groups vote simultaneously:

2Observe that we do not impose that fi(�i) > 0 for all �i 2 �i, but only that it is meaningful to talk
about any type in �i, even if this type is not represented by actual voters in a particular case.
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De�nition 2 (CW) Option x is a Condorcet winner if and only if there is no option

y 2 X such that a strict majority of voters across groups strictly prefer y to x:

The set of most-preferred outcomes in X of an individual of type � belonging to

group i is denoted by

Mi(�;X) = argmax
x2X

ui(x; �):

We can then apply the following result due to Milgrom and Shannon (1994, Theorem

4):

Lemma 1 Mi(�;X) is weakly increasing in (�;X) if and only if ui(:) satis�es the Single

Crossing Property.

We make the following assumption.3

Assumption 1 Mi(�) is continuous in �, 8i = 1; :::; N and 8� 2 �i:

Observe that we do not assume that Mi(�) is a function, but that it may be a

correspondence: any voter�s type may have multiple most-preferred options. We de�ne

xi = min
�2�i

minMi(�); xi = max
�2�i

maxMi(�);

as, respectively, the lowest and largest most-preferred option in group i, and

x = max
i=1;:::;N

xi; x = min
i=1;:::;N

xi;

as, respectively, the maximin and minimax most-preferred option across groups. We

assume that preferences are such that the most-preferred options of all groups have

some overlap:

Assumption 2 x < x

3From now on, and since the set X is constant throughout the analysis, we simplify the notation to
Mi(�):
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The interval [x; x] is then the largest interval in X which is spanned by some voters�

blisspoints in all groups.

Since Mi(�) is continuous (Assumption 1) with a range encompassing [x; x] (As-

sumption 2), we know from the intermediate value theorem that, for any x 2 [x; x],

there exists at least one type �i in all groups i = 1; :::; N who is such that s/he (weakly)

most-prefers x to any other feasible option. Proposition 1 will lean heavily on this

property. Since Mi(�) may be multi-valued, this type needs not be unique, and we

denote

��i (x) = min
�2�i

such that x 2Mi(�);

�
�
i (x) = max

�2�i
such that x 2Mi(�);

so that ��i (x) (resp., �
�
i (x)) represents the lowest (resp., largest) type in group i who

weakly most-prefers x to any other option in X. We obviously have that �
�
i (x) � ��i (x);

8x 2 [x; x] and 8i = 1; :::; N: Figures 1b and 2b give illustrations when N = 2.

We make use of the following two conditions.

Condition 1 (C1)
X

i=1;:::;N

�iFi(�
�
i (x)) � 1=2:

Condition 2 (C2)
X

i=1;:::;N

�iFi(�
�
i (x)) � 1=2:

In the light of Lemma 1, condition C1 (resp., C2) ensures that a majority of voters

across groups do not most-prefer options lower (resp., larger) than the lowerbound

(resp., upperbound) of the common range of most-preferred options across groups.

We now prove that

Proposition 1 If Assumptions 1 and 2 together with conditions C1 and C2 hold, then

(a) there exists (at least) one option x 2 X, which we denote xCW , such that

X
�iFi(�

�
i (x

CW )) � 1=2 and
X

�iFi(�
�
i (x

CW )) � 1=2; (1)

and (b) xCW is a Condorcet winner in the set X.
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Proof 1 (a) Observe that if C1 holds with equality, then xCW = x while, if C2 holds

with equality, then xCW = x. Assume then that the inequalities in both C1 and C2 hold

strictly. Observe that both ��i (x) and �
�
i (x) are monotonically strictly increasing in x

(although not continuous in x when the set Mi(�) 3 x is not a singleton). Because of

this monotonicity, there exists at least one value of x 2 [x; x], denoted by x�; that is

such that

lim
�!0

X
�iFi(�

�
i (x

� � �)) � 1=2 and lim
�!0

X
�iFi(�

�
i (x

� + �)) � 1=2:

Observe also that, by the de�nition of ��i (x) and �
�
i (x), we have that

��i (x) = lim
�!0

��i (x� �) and �
�
i (x) = lim

�!0
��i (x+ �):

We then obtain that xCW = x�:

(b) We now prove that xCW gathers at least one half of the votes when faced with

any other option y 2 X. Since xCW 2 [x; x], we know that there exists a type �CWi in

all groups i who is such that �CWi = ��i (x
CW )� i.e., that ui(xCW ; �CWi ) � ui(y; �CWi );

8y 2 X.

Assume that y < xCW . This in turns means, using De�nition 1, that, inside each group

i, we have that

8� � �CWi ; ui(x
CW ; �) � ui(y; �):

This guarantees that at least a fraction 1� Fi(�CWi ); in each group i, will support xCW

when faced against y. By de�nition of xCW (and more precisely the �rst inequality in

(1)), this support aggregates to at least one half over all groups, so that xCW can not be

defeated at the majority by y.

Assume now that y > xCW , and take �CWi = �
�
i (x

CW ). Using the contrapositive of

De�nition 1, we obtain that, inside each group i, we have that

8� � �CWi ; ui(x
CW ; �) � ui(y; �):

This guarantees that at least a fraction Fi(�CWi ); in each group i, will support xCW

when faced against y. Thanks to the second inequality in (1), this support aggregates

to at least one half over all groups, so that xCW can not be defeated at the majority by y.
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We now give the intuition for the result. The SCP is satis�ed in all groups of voters

taken separately. We �rst identify the minimax and maximin most-preferred options

across groups, x and x. Given the continuity of Mi(�) postulated in Assumption 1,

they together determine the boundaries of the largest interval in X which is spanned

by the blisspoints of some voters in all groups. That is, for any option x inside this

interval, we know that there exists at least one type of voters in all groups that (weakly)

most-prefers this option x to any other feasible option in X. This type plays a role of

�anchor� in each group, which allows to make use of the SCP. That is, if we want to

assess the result of a pairwise vote between x and another option, say y < x, we know

from the SCP that everyone to the right of this anchor in each and every group also

prefers x to y. In other words, we can apply the separation argument that is at the

heart of the usual, one-group, median voter theorem, provided that we can identify an

anchor in each group who most-prefers this option x. To identify a Condorcet winning

outcome, we thus have to �nd an anchor in each group, with the additional property

that, roughly speaking, one half of the global population of voters is located on the

same side of these groups�anchors. Observe that these anchors need not be the median

� voters inside each group separately.

Several comments are in order. First, observe that it is important to identify the

anchor�s type in all groups, but that it is not necessary for this type to be actually

represented in all groups: that is, we need not impose that fi(�i) > 0 for the anchor

�i in group i. We only need the total population to be divided, roughly, into two equal

halves, each on one side of these anchors. In that sense, we can talk of �phantom

anchors�who are not actually represented in all groups.4 An anchor may actually not

be represented in any group (i.e., fi(�i) = 0 for all i), in which case it is easy to see that

there exist several Condorcet winners.

Second, we need to di¤erentiate between two anchors in certain groups. This is due

to the fact thatMi(�) is weakly increasing in �, so that a subset of voters may share the

same most-preferred option x in certain groups: see for instance Figure 1a, where all

4See the discussion before footnote 5 and Figures 3c and 3d for an example where an anchor does
not exist for certain values of x, as opposed to existing but not being represented in a group.
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types in between �0 and �00 have the same blisspoint x0. We then de�ne the �top anchor�

�
�
i to be the largest-type individual who most prefers option x in group i, and the �lowest

anchor� ��i as the lowest type: see for instance Figure 1b, where �
�
i (x) = ��i (x) for all

x 2 [x; x] except for x0. We then have a discontinuity in ��i (x) and ��i (x) at point x0, and

likewise for
X

�iFi(�
�
i (x)) and

X
�iFi(�

�
i (x)) (see Figure 1c). But this discontinuity

is easy to deal with, since the identity of both anchors monotonically increases wherever

they exist. So, in Figure 1c, we have one of three cases:

(a) if
X

�iFi(�
�
i (x

0)) > 1=2; then xCW < x0,

(b) if
X

�iFi(�
�
i (x

0)) < 1=2; then xCW > x0,

(c) if
X

�iFi(�
�
i (x

0)) < 1=2 and
X

�iFi(�
�
i (x

0)) > 1=2; then xCW = x0.

Observe that we have a unique Condorcet winner whenMi(�i) are functions and fi(�i) >

0 for all �i 2 �i in all groups i (i.e., when all voters�types are represented and most-

prefer a single option). This is not the case anymore with correspondences, as illustrated

in Figure 2a where some voters in group 2 most-prefer a range of options. Figure 2b

depicts the identity of the anchors as a function of x, while Figure 2c shows that we

may have an interval of Condorcet winners. More precisely:

(a) if
X

�iFi(�
�
i (x

0)) � 1=2; then xCW � x0,

(b) if
X

�iFi(�
�
i (x

00)) � 1=2; then xCW � x00,

(c) if
X

�iFi(�
�
i (x

0)) < 1=2 and
X

�iFi(�
�
i (x

00)) > 1=2; then 9x0 < x0 < x1 < x00

such that
X

�iFi(�
�
i (x

1)) = 1=2 and
X

�iFi(�
�
i (x

0)) = 1=2: Any x 2 [x0; x1] is a

Condorcet winner.

Before turning to why Proposition 1 cannot be extended to the case of discontinuous

Mi(�), we �rst stress what the proposition does not say. From Proposition 1, we cannot

infer that the (�phantom�or not) anchors are decisive for all pairwise majority compar-

isons � i.e., even those which entail comparing two options other than the Condorcet

winning one. The reason is that, when comparing two options x and y which both di¤er

from xCW , some types who most-prefer xCW may prefer x to y while others may prefer

y to x. The usual separation argument then shows that, in certain groups, individuals

with a type lower than the anchor�s prefer x to y, while in other groups types larger than

the anchor�s prefer x to y. Since anchors need not be the median � voters of their group,
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there is no way at this level of generality to assess whether x is majority preferred to

y. This line of reasoning seems to open up the possibility of majority voting cycles over

X, since no type need be decisive in all pairwise majority comparisons. We show in a

companion paper (De Donder (2012)) that this is not the case when Mi(�) is a strictly

increasing function whose range is [x; x] for all groups. These assumptions impose suf-

�cient structure on individual preferences to prevent the existence of a majority voting

cycle of any length. We leave the exploration of the transitivity of the majority voting

social preference under the (weaker) assumptions made in this note to future research.

The reason why Proposition 1 can not be extended to the case where Mi(�) is

discontinuous for one � in group i is closely related. Figure 3a illustrates this case,

where type �0 in group 1 most-prefers two distinct options. How such preferences may

be obtained is illustrated with the help of the setting presented in the Introduction,

with the policy space bidimensional with generic element (x; y) and where a government

budget constraint (in group i) restricts the choice to the pairs (x; y) where y = Ti(x).

In Figure 3d, we plot the indi¤erence curve of �0 in the (x; y) space, together with

the government budget constraint Ti(x). Assuming that preferences satisfy the SCP

is equivalent to assuming that marginal rates of substitution are monotone in �. It

is clear from the example that voters with steeper indi¤erence curves than �0 (those

with � < �0) most prefer a value of x lower than x0, while voters to the right of �0,

with �atter indi¤erence curves, most prefer larger value of x than x00. Individual �0

most-prefers, and is indi¤erent between, x0 and x00. Figure 3b shows that anchors do

not exist in group i for options x 2]x0; x00[.5 If only one group were present in society,

this would not prevent the existence of a Condorcet winner. As soon as more than one

group is present, a Condorcet winner may not exist. This may be the case in Figure

3c if
X

�iFi(�
�
i (x

0)) < 1=2 and
X

�iFi(�
�
i (x

00)) > 1=2: In that case, any candidate x

for Condorcet winner must be such that x0 < x < x00, for which there is no anchor in

group 1. Figure 3d shows that any option in the range ]x0; x�] is actually defeated at

unanimity in group 1 when faced against x0, and thus has lower support against x0 than

5This means that no type is such that they most prefer such an option x, and not that such a type
has zero density in the group.
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some option immediately to the left of x0 or to the immediate right of x00.

3 Conclusion

In this note, we have extended the classical median voter theorem in a unidimensional

policy space to the case where voters are exogenously distributed across groups, with

preferences satisfying the single-crossing property separately inside each group. This

setting corresponds, among others, to the case where the bidimensional policy space is

reduced to one dimension because of the existence of a government budget constraint,

but where the budget constraint di¤ers from one group to another, with preferences sat-

isfying the Spence-Mirrlees condition of monotonicity of marginal rates of substitution.

We show that a Condorcet winner exists provided that we can �nd an �anchor�(i.e., a

type with this option among its most-preferred ones) in each and every group. These

results hold under the assumption that the set of most-preferred options is continuous

in types in each and every group.
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Figure 1a: Most-preferred option of type θ in 
group i={1,2}
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Figure 2a: Most-preferred options of type θ in 
group i={1,2}
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Figure 3a: Most-preferred option of type θ in 
group i={1,2} – the discontinuous case
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Figure 3d: Preferences in the (x,y) space for group 1
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