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Abstract

Estimation of support frontiers and boundaries often involves monotone and/or concave
edge data smoothing. This estimation problem arises in various unrelated contexts,
such as optimal cost and production assessments in econometrics and master curve
prediction in the reliability programs of nuclear reactors. Very few constrained esti-
mators of the support boundary of a bivariate distribution have been introduced in
the literature. They are based on simple envelopment techniques which often suffer
from lack of precision and smoothness. Combining the edge estimation idea of Hall,
Park and Stern with the quadratic spline smoothing method of He and Shi, we develop
a novel constrained fit of the boundary curve which benefits from the smoothness of
spline approximation and the computational efficiency of linear programs. Using cubic
splines is also feasible and more attractive under multiple shape constraints; computing
the optimal spline smoother is then formulated into a second-order cone programming
problem. Both constrained quadratic and cubic spline frontiers have a similar level
of computational complexity to the unconstrained fits and inherit their asymptotic
properties. The utility of this method is illustrated through applications to some real
datasets and simulation evidence is also presented to show its superiority over the best
known methods.

AMS 2000 subject classification: 62G05, 62P20, 62P30

Key words : Boundary curve; Concavity; Least majorant; Linear programming; Mono-
tone smoothing; Multiple shape constraints; Polynomial spline; Second-order cone program-
ming.

1 Introduction

Frontier modeling, that is, estimating the topological extremity of the support of a bivariate

density function, is one of the basic tools in statistical applications. This has been well

reflected by the expanding recent literature on data edge and data envelope analysis. A
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number of semi- and non-parametric techniques have been proposed, including extreme val-

ues (de Haan and Resnick (1994), Hall et al. (1997), Gijbels and Peng (2000), and Girard

and Jacob (2003, 2004)), projections (e.g. Jacob and Suquet (1995)), piecewise polynomials

(Härdle et al. (1995), and Korostelev and Tsybakov (1993)), or local polynomials (Hall and

Park (2004), Hall et al. (1998), and Knight (2001)).

In this article we focus on the less-discussed problem of estimating boundary curves that

are believed or required to be monotone. This problem has increasing usage in education,

finance, management, physics, public policy, and other arenas. It is also closely related to

edge estimation in image reconstruction (see, e.g., Korostelev and Tsybakov (1993) and Park

(2001) for the literature therein). Typical examples appear, for instance, in medicine where

the probability of contracting a certain disease depends monotonically on certain factors,

or in environmental pollution where monotonicity applies to the ozone level as a function

of the inversion base temperature (Croux et al. (2012)). In Section 5 we shall discuss

economical applications where monotonicity or monotone concavity are requisite theoretical

axioms. Also, we shall discuss concrete examples in production theory and nuclear reactors’

reliability.

Most of the works on frontier estimation do not rely on the monotonicity constraint and

require large samples to provide good results. There are mainly two known methods for

preserving monotonicity: the free disposal hull (FDH) and the data envelopment analysis

(DEA). The FDH estimator is the lowest “stair-case” monotone curve covering all the data

points (see, e.g., Korostelev et al. (1995)). When the joint support is in addition convex,

the DEA estimator is defined as the least concave majorant of the FDH frontier (see, e.g.,

Gijbels et al. (1999)). Although FDH and DEA estimators are very simple in nature, their

full statistical aspects have been elucidated only during the last decade. See, for instance,

Jeong and Park (2006), Kneip et al. (2008), Daouia et al. (2010) and Park et al. (2010)

for recent contributions. An improved version of the FDH estimator, referred to as the

linearized FDH (LFDH) and obtained by drawing the polygonal line smoothing the staircase

FDH curve, has been considered in Hall and Park (2002) and Jeong and Simar (2006).

Although the FDH, LFDH and DEA estimators are very easy to implement and provide

the fitted values at the observed predictor with monotonicity, they undersmooth the data

and underestimate the true support boundary. These vexing defects are more exacerbated

in case of small samples as those explored in our applications. Typically, the development

of the asymptotic theory of these estimators requires the assumption that the unknown

frontier function, ϕ, is at least continuously differentiable. It is then natural to incorpo-

rate such information into the estimation procedure. The idea of this paper is to combine

spline smoothing with monotonic boundary estimation. It is well known that ϕ and ϕ′ can

2



be uniformly approximated by polynomial splines and their derivatives (see, e.g., Dierckx

(1993) and Schumaker (2007)). We propose to estimate the data edge with a monotone

spline function defined on a suitably chosen set of knots, which envelopes the full data and

minimizes the area under its graph. A similar idea can be found in Hall et al. (1998), where

the boundary curve is rather modeled by a single polynomial of known degree, and without

the inherent monotonicity constraint. The argument of polynomial approximation is very

attractive in terms of both pragmatic and didactic advantages. Spline functions extend the

advantages of polynomials to have greater flexibility as they are piecewise polynomials with

specified continuity constraints. They also afford the possibility of imposing monotonicity

and addressing a wide variety of settings, especially the range of applications which are likely

to have non-polynomial boundary curves.

The first proposed estimator in this work is derived by minimizing the integration of a

polynomial spline, and both monotonicity and data envelopment can be characterized by

linear constraints. In this way, the minimization problem can be efficiently solved by a very

simple linear programming algorithm. A similar estimator was considered in the context

of regression smoothing with monotonicity by He and Shi (1998), who suggested using a

constrained least absolute deviation principle in the space of polynomial splines to impose

monotonicity. Our approach is different from theirs at least in the following two important

aspects: it has the additional data envelopment constraint and its optimization criterion is

the integration of splines rather than the L1-type loss function. However, we share with He

and Shi the elegant idea of using quadratic splines on a selected knot mesh to impose the

monotone constraint efficiently. Higher-order splines are more appealing for smoothness, but

monotonicity can no longer be characterized as linear constraints at the knots.

Yet, using cubic splines to estimate a smooth monotone support boundary is also pos-

sible. The key argument is that the necessary and sufficient condition for a cubic spline

smoother to be nondecreasing can be characterized as second-order cone constraints. The

envelopment constraint remains a linear one, and hence is a second-order cone constraint as

well. Therefore, the estimation of the unknown parameters can be formulated into a standard

second-order conic programming problem. This method inherits the attractive properties of

cubic spline approximations and the computational efficiency of convex optimization. We

refer to Alizadeh and Goldfarb (2003) for an influential paper in the second-order cone

programming (SOCP) literature. Nowadays, SOCP has come into use in various areas of

statistics, especially in high dimensional statistical learning and constrained nonparametric

function estimation. Concerning the latter, which is related to our problem, Wang and Li

(2008) have used SOCP for isotonic smoothing spline regression, and Papp and Alizadeh

(2014) have suggested recently to apply this technique in a more general manner to some
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shape constrained estimation problems including density and regression estimation.

Our estimated frontier curves are sometimes positively biased and sometimes not, de-

pending on the slope and curvature of the sample boundary and on the selected locations

of knots. This marks a substantial difference of our construction from the traditional data

envelopment techniques that provide overall negatively biased estimates even when the data

points concentrate near or on the boundary curve. This also highlights the important fea-

ture of our estimators whose deviation errors have some sign balance leading to better bias

properties as indicated by the Monte-Carlo evidence in Section 4.

The choice of the number and location of knots for regularizing both estimated quadratic

and cubic spline functions is a major issue in practice, but the shape constraint makes this

selection easier than the unconstrained smoothing problem. Indeed, as monotonicity reduces

sharp changes in the slope and curvature of the estimated frontier, typically a very small

number of knots will suffice for the success of our methods. Considering a set of knots equally

spaced in percentile ranks, an adequate number of inter-knot segments can be determined

by analogy to the popular Akaike information criterion (AIC) and Bayesian information

criterion (BIC). Both these selection criteria work remarkably well as demonstrated below

in various simulated scenarios in Section 4.

In some applications, concavity is also an important characteristic of the monotone func-

tion being fitted (see, e.g., Gijbels et al. (1999) and the references therein). Both linear and

second-order cone programming problems can then easily be expanded to include the addi-

tional concavity constraints that are linear. This is much harder to do with other methods

except for the piecewise linear DEA approach.

Section 2 describes in detail the constrained quadratic and cubic spline smoothing meth-

ods, including computation via linear programming and second-order cone programming as

well as knot selection procedures. Section 3 presents some indicative rates of strong uniform

convergence for the unconstrained frontier estimates. We show that the monotone quadratic

spline fit inherits the asymptotic rate of its unrestricted version, and the same holds true

for the cubic spline fit under both separate and simultaneous monotonicity and concav-

ity constraints. Section 4 provides a comparison with the best known frontier estimation

methods through Monte Carlo experiments. Section 5 discusses several applications and

illustrates our methods in measuring the reliability of nuclear reactors and the production

performance of air controllers and electric utility companies. Section 6 concludes and the

Appendix provides necessary mathematical proofs.
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2 Constrained Polynomial Spline Smoothing

Suppose that we have n pairs of observations (xi, yi), i = 1, . . . , n, from a bivariate distri-

bution with a density f(x, y) in R
2. The support Ψ of f is assumed to be of the form

Ψ = {(x, y)|y ≤ ϕ(x)} ⊇ {(x, y)|f(x, y) > 0}, (1)

{(x, y)|y > ϕ(x)} ⊆ {(x, y)|f(x, y) = 0},

where ϕ is a monotone increasing and/or concave function whose graph corresponds to the

locus of the curve above which the density f is zero. Without much loss of generality, we

restrict ourselves to xi ∈ [0, 1] and yi ≥ 0. We are interested in estimating ϕ based on the

sample {(xi, yi), i = 1, . . . , n} by making use of its spline approximation.

As we shall discuss below in Section 2.1, a monotone quadratic spline smoother of ϕ can

easily be defined using either the B-spline basis or the truncated power function basis. In

spite of the computational expedience of the resulting estimator using linear programming,

revealing its asymptotic properties becomes a tedious matter in the case of multiple shape

constraints because of the discontinuity at knots of the second derivatives of the underlying

piecewise quadratic polynomials. Fortunately, making use of cubic splines, we have been

able to come up with a satisfactory solution in Section 2.2. The asymptotics of the ob-

tained fit can fully be elucidated under both separate and simultaneous monotonicity and

concavity constraints, but its implementation requires the more complex second-order cone

programming. It is also possible to incorporate multiple simultaneous shape constraints into

the estimation procedure by using any higher-order polynomial spline referring to the work

of Papp and Alizadeh (2014). However, one can only use the truncated power function basis

for the implementation of the estimators based on cubic or higher-order splines (see the

discussion below in Remark 1 of Section 2).

The present paper is the first work to actually implement the idea of constrained boundary

regression via polynomial spline approximations. A closely related work in quantile regression

theory is He and Shi (1998), where quadratic B-spline monotonization was inaugurated as

pointed out in Section 1. The idea of monotone data smoothing can also be found in a

number of standard mean regression problems including Turlach (2005) and Hazelton and

Turlach (2011), where penalized spline smoothing with shape constraints is utilized. Lu et al.

(2007) estimated the mean function of counting processes with panel count data by making

use of monotone polynomial splines, and Wang and Meyer (2011) tested the monotonicity

or convexity of a function by resorting to regression splines as well. Recently, Pya and Wood

(2014) used splines to fit each component in additive models with monotonicity or concavity

constraints.
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2.1 Quadratic splines and linear programming

Denote a partition of [0, 1] by 0 = t0 < t1 < · · · < tkn = 1. Let N = kn + p and π(x) =

(π0(x), . . . , πN−1(x))
T be any basis of spline functions of order p+1 based on the knot mesh

{tj} (see, e.g., Schumaker (2007)). To characterize monotonicity as linear constraints at the

knots, we choose to use quadratic splines that correspond to p = 2. We then estimate the

frontier function ϕ(x) by ϕ̂n(x) = π(x)T α̂, where α̂ minimizes

∫ 1

0

π(x)Tα dx =
N−1
∑

j=0

αj

∫ 1

0

πj(x) dx (2)

over α ∈ R
N subject to envelopment and monotonicity constraints, or equivalently,

π(xi)
Tα ≥ yi i = 1, . . . , n, and π′(tj)

Tα ≥ 0 j = 0, 1, . . . , kn, (3)

with π′ being the continuous, piecewise linear derivative of π. It is easily seen that α̂ is

identical to the maximum likelihood estimator of the parameter α in the special case where

the true frontier itself is a spline function ϕ(x;α) = π(x)Tα, and data are independent and

have a uniform density on the region Ψ = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ ϕ(x;α)}, with ϕ(x;α)

being nondecreasing in x.

From a computational point of view, minimizing (2) under (3) is an inequality form

linear program as the objective and constraint functions are all affine and the problem has

no equality constraints. Note that the monotonicity adds kn + 1 linear constraints to n of

them already in use. As the number of knots kn is usually small, the added computational

burden is negligible. By introducing slack variables s = (s1, . . . , sn+kn+1)
T for the inequalities

and expressing the variable α as the difference of two nonnegative variables α+ and α−, this

minimization problem can be solved by applying any linear programming algorithm to

minimize

∫ 1

0

π(x)T (α+ − α−)dx

subject to π(xi)
T (α+ − α−) = yi + si i = 1, . . . , n,

π′(tj)
T (α+ − α−) = sn+1+j j = 0, . . . , kn,

α+ ≥ 0, α− ≥ 0, s ≥ 0,

which is a linear program in standard form, with variables α+, α−, and s (see e.g. Boyd and

Vandenberghe (2004)). The inequalities here have to be understood componentwise.

As is typical in nonparametric estimation, the selection of knots is critical to the perfor-

mance of the spline smoother ϕ̂n. It is usual to pick a set of knots equally spaced in percentile

ranks by taking tj = x[jn/kn], the j/knth quantile of the values of xi for j = 1, . . . , kn − 1
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(see, e.g., He and Shi (1998)). However, considering the special connection of our estimator

ϕ̂n with the conventional FDH frontier estimator, one can propose an easier way of choosing

the knot mesh. The monotone envelopment FDH estimator of ϕ, defined explicitly as

ϕn(x) = max{yi, i ∈ Ix}

with Ix = {i : xi ≤ x}, represents the lowest nondecreasing function that covers the data

points (x1, y1), . . . , (xn, yn). Then, a monotone function envelopes all the (xi, yi)’s if and only

if it envelopes the extreme FDH points (xi, yi) such that yi = ϕn(xi). Therefore, the spline

smoother ϕ̂n is identical to the smallest monotone majorant of the FDH function ϕn in the

space of quadratic splines, and hence the envelopment constraint in (3) reduces to

π(Xi)
Tα ≥ Yi i = 1, . . . ,N ,

where (X1,Y1), . . . , (XN ,YN ) are the observations (xi, yi) lying on the FDH boundary. This

might suggest using the set of knots {tj = X[jN/kn], j = 1, . . . , kn − 1} among the FDH

points from the intuition that the X-locations of FDH points are more appropriate as knots

than those of other usual observations. On the other hand, since the number of knots kn

determines the complexity of the spline approximation, we may view the choice of kn as

model selection through the minimization of the following two information criteria:

AIC(k) = log

(

n
∑

i=1

|yi − ϕ̂n(xi)|

)

+ (k + 2)/n, (4)

BIC(k) = log

(

n
∑

i=1

|yi − ϕ̂n(xi)|

)

+ log n · (k + 2)/(2n). (5)

The first one is similar to the famous Akaike information criterion (Akaike, 1973) and the

second one to the Bayesian information criterion (Schwartz, 1978).

These information criteria can be motivated by considering the following deterministic

frontier model:

yi = ϕ(xi;α)− ui,

where xi is uniformly distributed on [0,1], and the error term ui ≥ 0 (referred to as inefficiency

in applied econometrics) is exponential with mean λ. Here, the regression boundary is a

spline function ϕ(x;α) = π(x)Tα, where the basis vector π(x) depends on the number of

inter-knot segments k and the smoothness degree p. If we see each basis function as a

covariate, the choice of the number k can be viewed as a model selection problem. Denote

the maximum likelihood estimators of the model parameters α and λ as α̌ and λ̌, respectively.
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Then, following the typical definition of AIC and BIC, which is expressed as a penalized log

likelihood function and ignoring constants, we have

−2 loglikelihood(α̌, λ̌) + 2(k + p) ∝ log

(

n
∑

i=1

(

π(xi)
T α̌− yi

)

)

+
k + p

n
;

−2 loglikelihood(α̌, λ̌) + log n(k + p) ∝ log

(

n
∑

i=1

(

π(xi)
T α̌− yi

)

)

+ log n
k + p

2n
.

If we take into account the fact that the maximum likelihood estimator α̌ becomes asymptot-

ically the same as the minimizer of
∫ 1

0
π(x)Tα dx, under the unique envelopment constraint,

then we arrive at the formulations (4) and (5) when p = 2. Both these proposed criteria

work reasonably well in our simulations and real data analysis.

The asymptotic theory in the next section shows that the optimal number of knots is

of the order of n1/(3γ+1), where γ > 0 stands for the sharpness degree, or equivalently, the

quantity (γ − 1) describes the rate at which the joint density f of the data tends to zero (in

case γ > 1) or to infinity (in case γ < 1) at the boundary. When the density has sudden

jumps at the boundary (in case γ = 1), the optimal number of knots is of order n1/4. Given

that the selection of smoothing parameters is typically a hard problem in nonparametric

boundary regression [see, e.g., Hall et al. (1998), Hall and Park (2004) and Daouia et al.

(2010)], our method benefits from an important advantage of having a simple and effective

smoothing parameter selector.

Let ϕ̃n(x) = π(x)T α̃ be the unconstrained B-spline estimator, where α̃ ∈ R
N minimizes

(2) only subject to the data envelopment constraints in (3). We shall show that, when

the true frontier function ϕ is strictly increasing, ϕ̃n is monotone and thus equals ϕ̂n for

sufficiently large n. This means that we get the monotonicity “free of charge” and the

asymptotic properties of ϕ̃n hold automatically for ϕ̂n. The basic argument is to use the

following proposition and show ϕ̃′
n converges to ϕ′ uniformly at all knots. The latter uniform

convergence of ϕ̃′
n at all knots implies the uniform convergence on the whole interval [0, 1]

due to the fact that ϕ̃′
n is piecewise linear. The strong uniform convergence of ϕ̃n and its

derivative is proved in the next section. The asymptotic rates of uniform convergence are

also provided there.

Proposition 1. Suppose ϕ has a continuous and strictly positive derivative ϕ′ on [0, 1] and

max1≤j≤kn |ϕ̃
′
n(tj)− ϕ′(tj)| = o(1) almost surely. Then

P[ϕ̃n = ϕ̂n, n → ∞] = 1.

When the monotone boundary curve is also known or required to be concave, the lin-

ear programming problem of (2) and (3) can easily be expanded to include the additional
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concavity constraints

π′′(t∗j)
Tα ≤ 0 j = 1, . . . , kn, (6)

that are linear, where π′′ denotes the second derivative of π and t∗j stands for the midpoint

of (tj−1, tj]. The second derivative of a quadratic spline exists on each inter-knot interval

and is constant. We then estimate ϕ by ϕ̂⋆
n(x) = π(x)T α̂⋆, where α̂⋆ ∈ R

N minimizes (2)

subject to (3) and (6).

Arguably, the best known estimator for preserving both concavity and monotonicity is the

DEA frontier. This piecewise linear estimator being, by construction, the smallest concave

nondecreasing curve covering all the (xi, yi)’s, it is necessarily enveloped by the constrained

smoother ϕ̂⋆
n, and the envelopment constraints in the linear program are equivalent to

π(X ∗
i )

Tα ≥ Y∗
i i = 1, . . . ,M,

where (X ∗
1 ,Y

∗
1 ), . . . , (X

∗
M,Y∗

M) denote the observations (xi, yi) lying on the DEA frontier.

Regarding the choice of knots for computing the optimal concave spline ϕ̂⋆
n, an easy

option for it is just applying the same scheme as for ϕ̂n by replacing the FDH points (Xi,Yi)

with the DEA points (X ∗
i ,Y

∗
i ) in the selection criteria (4) and (5). Typically, the number

of DEA points is very small compared to the sample size. As such, our experience with real

and simulated data indicates that the strategy of just using all the DEA points as knots is

also working quite well for datasets of modest size.

The constrained fit ϕ̂⋆
n is similar to the unconstrained estimate ϕ̃n in terms of compu-

tational complexity and computing expedience using linear program. Asymptotically, both

smoothers coincide with probability one under the conditions of the following proposition.

Proposition 2. Suppose the conditions of Proposition 1 hold. If ϕ has a continuous and

strictly negative second derivative ϕ′′ on [0, 1] and max1≤j≤kn |ϕ̃
′′
n(t

∗
j)−ϕ′′(t∗j)| = o(1) almost

surely, then P[ϕ̃n = ϕ̂⋆
n, n → ∞] = 1.

Unfortunately, posing the question of strong uniform convergence of ϕ̃′′
n on the subin-

tervals (tj−1, tj) involves some mathematical difficulties that we have not yet succeeded in

overcoming. We shall need higher-order splines to obtain the uniform convergence of the

second derivative ϕ̃′′
n as established below in Theorem 1.

All of the methods described above, including computation of ϕ̃n, ϕ̂n and ϕ̂⋆
n via linear

programming and knot selection, have been implemented for the R package npbr (Daouia et

al. (2014)). Next, we propose an entirely satisfactory cubic spline based approach that can

handle separate as well as simultaneous monotonicity and concavity constraints.
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2.2 Cubic splines and second-order conic programming

Denote a partition of [0, 1] by 0 = t0 < t1 < · · · < tkn = 1. Let N = kn + p and

π(x) = (π0(x), π1(x), . . . , πN−1(x))
T = (1, x, . . . , xp, (x− t1)

p
+, . . . , (x− tkn−1)

p
+)

T be a vector

of truncated power basis based on the knot mesh {tj} with a+ = max{0, a}. We choose here

to use cubic splines that correspond to p = 3. We then estimate ϕ(x) by ϕ̃n(x) = π(x)T α̃,

where α̃ minimizes
∫ 1

0

π(x)Tα dx =
N−1
∑

j=0

αj

∫ 1

0

πj(x) dx (7)

over α = (α0, α1, . . . , αN−1)
T ∈ R

N subject to the envelopment constraint

π(xi)
Tα ≥ yi, i = 1, . . . , n.

This defines the unconstrained cubic spline estimator of the frontier function. Given that

the second derivative of cubic splines is a linear spline, the concavity constraint can be

characterized as linear constraints at the knots tj themselves instead of the midpoints t∗j in

the case of quadratic splines, that is,

π′′(tj)
Tα ≤ 0, j = 0, 1, . . . , kn.

In contrast, since the first derivative of cubic splines is a quadratic spline, the mono-

tonicity constraint can no longer be formulated into linear constraints at the knots. Yet,

it is possible to come up with an alternative appealing representation of monotonicity as

standard second-order cone constraints thanks to the following proposition.

Proposition 3 (Karlin and Studden, 1966). Let p(x) = p0 + p1x + p2x
2 be a quadratic

polynomial. Then p(x) ≥ 0 for all x ∈ [0, 1] if and only if there exists y0 ≥ 0 such that

(p0+p2+y0, p0−p2−y0, p1−y0)
⊤ ∈ Q3, where Qk+1 = {(z0, . . . , zk) : z0 ≥ ‖(z1, . . . , zk)

⊤‖2}

is the (k + 1)−dimensional second order cone, with ‖ · ‖2 being the L2 norm.

This well-known characterization of nonnegative quadratic polynomials easily extends to

a characterization of monotone cubic splines. Indeed, suppose that we have a cubic spline

f(x) =
∑3

j=0 αjx
j +
∑kn+2

j=4 αj(x− tj−3)
3
+. Then the monotonicity constraint means that for

all j = 1, . . . , kn,

f ′((tj − tj−1)z + tj−1) ≥ 0 for all z ∈ [0, 1].
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This inequality can be re-expressed as

α1 + 2tj−1α2 + 3t2j−1α3 +

j−1
∑

l=1

3αl+3(tj−1 − tl)
2

+

{

2(tj − tj−1)α2 + 6(tj − tj−1)tj−1α3 +

j−1
∑

l=1

6αl+3(tj − tj−1)(tj−1 − tl)

}

z

+

{

3α3(tj − tj−1)
2 +

j−1
∑

l=1

3αl+3(tj − tj−1)
2

}

z2

= p0j + p1jz + p2jz
2 ≥ 0 for all z ∈ [0, 1], (8)

with obvious definitions for p0j, p1j and p2j. When j = 1, we define all the summations in

(8) to be zero. Let u = (αT , (y0)T )T where y0 = (y01, . . . , y
0
kn
)T and y0j ≥ 0 for j = 1, . . . , kn.

When j = 2, . . . , kn, note that p0j + p2j + y0j = (dTj , e
T
j,kn

)Tu := cTj u, where

dj = (0, 1, 2tj−1, 6t
2
j−1−6tj−1tj+3t2j , 3((tj−1−t1)

2+(tj−tj−1)
2), . . . , 3(tj−tj−1)

2, 0, · · · , 0)T ∈ R
N

and ej,kn is a standard unit vector of Rkn with the jth element being 1. Moreover, p0j −

p2j − y0j = (BT
1j,−eTj,kn)

Tu := AT
1ju, where

B1j = (0, 1, 2tj−1, 6tj−1tj−3t2j , 3((tj−1−t1)
2−(tj−tj−1)

2), . . . ,−3(tj−tj−1)
2, 0, · · · , 0)T ∈ R

N

and p1j − y0j = (BT
2j,−eTj,kn)

Tu := AT
2ju, with

B2j = (0, 0, 2(tj − tj−1), 6(tj − tj−1)tj−1, 6(tj − tj−1)(tj−1 − t1), . . . , 0, 0, · · · , 0)
T ∈ R

N .

Therefore, according to Proposition 3, the monotonicity constraint means that there exist

y0 = (y01, . . . , y
0
kn
)T with y0j ≥ 0 such that ‖(AT

1ju,A
T
2ju)

T‖2 ≤ cTj u for every j = 2, . . . , kn

(called second-order cone constraints), where u = (αT , (y0)T )T . It is not hard to verify

that the second-order cone constraint holds when j = 1. This is the key argument for the

estimation of the unknown parameters α of the constrained nondecreasing cubic spline to be

formulated into a second-order cone programming (SOCP) problem.

In summary, cubic spline smoothing under monotonicity and/or concavity constraints

requires solving the following typical convex programming problem with respect to u =

(αT , (y0)T )T :

minimize

(
∫ 1

0

π0(x) dx, . . . ,

∫ 1

0

πN−1(x) dx, 0kn

)T

u (9)

subject to ‖Aju‖2 ≤ cTj u, j = 1, . . . , kn, (monotonicity constraint)

(π′′(tj)
T , 0kn)u ≤ 0, j = 0, . . . , kn, (concavity constraint)

(π(xi)
T , 0kn)u ≥ yi, i = 1, . . . , n, (envelopment constraint)

[Okn,N , Ikn ] u ≥ 0kn .
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Here, Aj = (A1j, A2j)
T , 0kn is a zero vector of size kn, Okn,N is a kn ×N zero matrix and Ikn

is the identity matrix of dimension kn. Since both concavity and envelopment constraints

are linear ones, and hence are second-order cone constraints, the problem (9) is identical

to a standard SOCP problem (see the review article by Alizadeh and Goldfarb (2003)).

This optimization model is solvable with minimal running time using available off-the-shelf

softwares. We may take any solution to be our estimate. For our numerical simulations and

real data analysis, we used CVX, a MATLAB-based free package for specifying and solving

convex programs because of its user-friendly nature and efficient implementation (for details,

refer to Grant and Boyd (2008, 2013)).

Remark 1. One may wonder whether a similar formulation for our cubic spline smoother

is possible via the more popular B-spline basis. Such a characterization is indeed still valid

under the single concavity constraint, but Proposition 3 can no longer be helpful when

imposing the monotonicity constraint due to the recursive nature of B-spline basis definition.

As a different attempt of using monotone polynomial splines in conjunction with a vector

of B-spline basis functions π(x) = (π0(x), π1(x), . . . , πN−1(x))
T , Lu et al. (2007) and Pya

and Wood (2014) considered the following sufficient but not necessary condition to make the

resulting cubic B-spline
∑N−1

j=0 αjπj(x) monotone:

α0 ≤ α1 ≤ · · · ≤ αN−1. (10)

Despite the computational expedience of the resulting cubic spline smoother using linear

programming, we favor the use of the second-order conic formulation (9) as we cannot

completely characterize monotonicity by relying only on the sufficient constraint (10).

When only the monotonicity constraint is of interest, we estimate the frontier function

ϕ(x) by ϕ̌n(x) = π(x)T α̌, where α̌ ∈ R
N is the solution of the SOCP problem (9) without the

concavity constraint. Under the monotonicity and concavity constraints, we estimate ϕ(x)

by ϕ̌⋆
n(x) = π(x)T α̌⋆, where α̌⋆ is the solution of the full optimization problem (9). Next, we

show that both restricted estimators ϕ̌n and ϕ̌⋆
n inherit the same asymptotic properties as

the unrestricted version ϕ̃n.

Proposition 4. Let ϕ̃n(x) = π(x)T α̃ be the unconstrained cubic spline estimator, where

α̃ ∈ R
N minimizes (7) only subject to data envelopment. If ϕ has a continuous and strictly

positive derivative ϕ′ on [0, 1] with supx∈[0,1] |ϕ̃
′
n(x)− ϕ′(x)| = o(1) almost surely, then

P[ϕ̃n = ϕ̌n, n → ∞] = 1.

If in addition ϕ has a continuous and strictly negative second derivative ϕ′′ on [0, 1] with

supx∈[0,1] |ϕ̃
′′
n(x)− ϕ′′(x)| = o(1) almost surely, then

P[ϕ̃n = ϕ̌⋆
n, n → ∞] = 1.
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The next section provides indicative asymptotic rates of uniform convergence for the

derivatives ϕ̃′
n and ϕ̃′′

n of the unconstrained estimate. In what regards the knot selection

process, the same powerful way of regularizing the quadratic spline estimates ϕ̂n and ϕ̂⋆
n,

described in Section 2.1, can be applied to the cubic spline versions ϕ̌n and ϕ̌⋆
n, respectively.

The asymptotic theory in the following section shows that the optimal number of knots is of

order n1/(4γ+1) for cubic spline smoothing, and hence a smaller number of knots is typically

needed relative to quadratic spline smoothing.

3 Some asymptotic results

Due to the arguments made earlier in Propositions 1 and 4, the asymptotic properties of

the unconstrained spline estimate ϕ̃n carry over automatically to the monotonic quadratic

spline frontier ϕ̂n and to both constrained cubic spline smoothers ϕ̌n and ϕ̌⋆
n. As a matter of

fact, spline smoothing does not appear to have been considered before even in the literature

on unconstrained frontier estimation. In this section we initiate a study of such estimation

procedures.

Let 0 = t0 < t1 < · · · < tkn = 1 be a knot sequence. We consider splines of general

order (p + 1). We first note that any spline function of order (p + 1) based on the B-spline

basis and knot meshes tj can be re-expressed as π(x)Tα, where π(x) = (1, x, . . . , xp, (x −

t1)
p
+, . . . , (x− tkn−1)

p
+)

T , α is a (kn + p)-dimensional vector and a+ = max{0, a}. Thus, the

problem is to minimize
∫ 1

0
π(x)Tα dx subject to yi ≤ π(xi)

Tα for all 1 ≤ i ≤ n.

Let qj(x) = xj − (j + 1)−1 for 1 ≤ j ≤ p and qj(x) = (x− tj−p)
p
+ − (p+ 1)−1(1− tj−p)

p+1

for p + 1 ≤ j ≤ p + kn − 1. The unconstrained spline estimator is then ϕ̃n(x) = π(x)T α̂,

where (α̂j : 1 ≤ j ≤ p+ kn − 1) minimizes max1≤i≤n[yi −
∑p+kn−1

j=1 αjqj(x)] and

α̂0 = max
1≤i≤n

[

yi −

p
∑

j=1

α̂jx
j
i −

kn−1
∑

k=1

α̂p+k(xi − tk)
p
+

]

.

Below, we demonstrate the uniform rates of convergence of ϕ̃n and its derivatives, which is

also of independent interest. We consider the general setting where the density function f

of the data (xi, yi) may have sudden jumps at its support boundary, decay to zero or rise

up to infinity at a speed of power γ − 1 (γ > 0) of the distance from the boundary. More

specifically, we assume

(A1) f(x, y) = 0 for all y > ϕ(x) and f(x, y) = γ[ϕ(x) − y]γ−1µ(x) + o((ϕ(x) − y)γ−1) as

y ↑ ϕ(x) for some γ > 0, where the function µ is bounded away from zero on [0, 1];

(A2) ϕ has a bounded (p+ 1)th order derivative on [0, 1];
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(A3) max1≤j≤kn(tj − tj−1)/min1≤j≤kn(tj − tj−1) is bounded.

Condition (A1) has been considered in Härdle et al. (1995), Hall et al. (1998), Gijbels

and Peng (2000), Hwang et al. (2002) and Daouia et al. (2010), to name a few. Note that the

case γ ≤ 1 corresponds to sharp or fault-type boundaries. When γ > 1, the density decays to

zero smoothly as it approaches the support frontier. The smoothness of the frontier function

ϕ is given in (A2). A similar assumption was used in the usual and more-discussed problems

of nonparametric central and/or quantile regression estimation (see, e.g., He and Shi 1998).

Condition (A3) is standard in spline smoothing, it can also be found in earlier work by He

and Shi (1994). For simplicity, we use an ∼ bn to mean that an/bn and bn/an are bounded.

Theorem 1. Assume that the conditions (A1)–(A3) hold. If kn ∼ (n/ log n)1/[(p+1)γ+1], then

with probability one

sup
x∈[0,1]

|ϕ̃(m)
n (x)− ϕ(m)(x)| = O

(

(n−1 log n)(p−m)/[(p+1)γ+1]
)

, 0 ≤ m ≤ p− 1.

As a direct consequence of Theorem 1, we get indicative asymptotic rates of global

convergence of ϕ̃n and its derivative ϕ̃′
n:

sup
x∈[0,1]

|ϕ̃n(x)− ϕ(x)| = O
(

(n−1 log n)p/[(p+1)γ+1]
)

a.s. ;

sup
x∈[0,1]

|ϕ̃′
n(x)− ϕ′(x)| = O

(

(n−1 log n)(p−1)/[(p+1)γ+1]
)

a.s.

The obtained rates depend on both the sharpness degree γ and the smoothness order p. The

smaller γ, the faster the attainable uniform convergence rates are.

Remark 2. In the standard mean and/or median regression, Stone (1982) and He and Shi

(1998) established that the optimal rates of uniform convergence are (n−1 log n)p/(2p+1) for

the regression curve estimate (m = 0) and (n−1 log n)(p−1)/(2p+1) for its derivative (m = 1)

when the number of knots kn ∼ (n/ log n)1/(2p+1). In this case, the proposed boundary

smoothing method attains better convergence rates than the classical central regression if

and only if γ < 2p/(p+1). This is what happens in the irregular setting γ ≤ 1 for all p ≥ 2.

In regions where the boundary is strictly increasing, we obtain rates of convergence of

the monotone quadratic and cubic spline estimates ϕ̂n and ϕ̌n as well, as can easily be seen

from Propositions 1 and 4, respectively.

Corollary 1. Suppose that the boundary function ϕ has a continuous and strictly positive

derivative ϕ′ on [0, 1]. If (A1)-(A3) hold and kn ∼ (n/ log n)1/[(p+1)γ+1] with p = 2 for ϕ̂n
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and p = 3 for ϕ̌n, then we have with probability one

sup
x∈[0,1]

|ϕ̂n(x)− ϕ(x)| = O
(

(n−1 log n)2/(3γ+1)
)

;

sup
x∈[0,1]

|ϕ̂′
n(x)− ϕ′(x)| = O

(

(n−1 log n)1/(3γ+1)
)

,

sup
x∈[0,1]

|ϕ̌n(x)− ϕ(x)| = O
(

(n−1 log n)3/(4γ+1)
)

;

sup
x∈[0,1]

|ϕ̌′
n(x)− ϕ′(x)| = O

(

(n−1 log n)2/(4γ+1)
)

.

Hence, the higher-order spline ϕ̌n is more appealing than ϕ̂n for both smoothness and

speed of convergence. In small samples, however, the accuracy of the quadratic spline

smoother is quite respectable in comparison with the cubic version as indicated by the

Monte-Carlo evidence in the next section.

The results in Corollary 1 and those in Corollary 2 below are only indicative rates of strong

uniform convergence for our spline estimators. These indicative rates of global convergence

are not superior to the optimal pointwise convergence rates of the traditional FDH and DEA

estimators unless we assume a certain degree of smoothness for the frontier function. For

example, in the “fault-type boundary” case γ = 1, we shall need to assume that p ≥ 2 under

the monotonicity constraint and p ≥ 4 under the monotone concavity constraint. Although

this is an obvious criticism of our asymptotic results at this stage, theory can be improved by

providing better rates of convergence. Doubtless, further work will yield new refinements.

The two selling points of our procedures that we emphasize in this paper are remarkable

smoothness and better bias properties for small, moderate and even large samples. We shall

discuss in Section 5, in detail and in a comprehensive way, the importance of smoothness

and especially differentiability of ϕ in the econometric literature on frontier analysis. Also,

the deviation errors of our spline smoothers have sign balance by construction, leading to

better bias properties as evidenced in Section 4.

We also provide the uniform convergence of ϕ̃′′
n on the unit interval [0, 1], which enables

us to get the concavity of the cubic spline ϕ̌⋆
n free of charge. According to Theorem 1, if the

conditions (A1)-(A3) hold and kn ∼ (n/ log n)1/[(p+1)γ+1] with p = 3, then

sup
x∈[0,1]

|ϕ̃′′
n(x)− ϕ′′(x)| = O

(

(n−1 log n)1/(4γ+1)
)

with probability one. By applying Proposition 4 in conjunction with this result, we obtain

indicative rates of convergence of the constrained smoother ϕ̌⋆
n and its derivatives ϕ̌⋆′

n and

ϕ̌⋆′′

n in regions where the frontier is strictly increasing and concave.

Corollary 2. Suppose that the boundary function ϕ has a strictly positive derivative ϕ′ and

a continuous and strictly negative second derivative ϕ′′ on [0, 1]. If the conditions (A1)-(A3)

15



hold and kn ∼ (n/ log n)1/[(p+1)γ+1] with p = 3, we have with probability one

sup
x∈[0,1]

|ϕ̌⋆
n(x)− ϕ(x)| = O

(

(n−1 log n)3/(4γ+1)
)

,

sup
x∈[0,1]

|ϕ̌⋆′

n (x)− ϕ′(x)| = O
(

(n−1 log n)2/(4γ+1)
)

,

sup
x∈[0,1]

|ϕ̌⋆′′

n (x)− ϕ′′(x)| = O
(

(n−1 log n)1/(4γ+1)
)

.

4 Monte Carlo evidence

Some numerical evidence is given in this section to demonstrate the superiority of the pro-

posed spline smoothers ϕ̂n, ϕ̌n, ϕ̂
⋆
n and ϕ̌⋆

n over the best known constrained and unconstrained

frontier estimators based on data envelopment ideas. Those were the popular linearized

FDH (LFDH) and DEA estimators described in Section 1, and the modern local-polynomial

smoothing estimator of Hall et al. (1998). Specifically, the local linear frontier estimator is

defined by

ϕ̂n,LL(x) = min
{

z : there exists θ1 such that yi ≤ z + θ1(xi − x)

for all i such that xi ∈ (x− h, x+ h)
}

.

Hall and Park (2004) proposed a bootstrap procedure for selecting the bandwidth h in ϕ̂n,LL.

To evaluate finite-sample performance of the constrained spline smoothed estimators in

comparison with the various frontier estimates described above, we have undertaken some

simulation experiments. The experiments all employ the model yi = ϕ(xi) vi, where xi is

uniform on [0, 1] and vi, independent of xi, is Beta(β, β) with values of β = 0.5, 1 and 3

(corresponding, respectively, to a joint density of the (xi, yi)’s tending to infinity, having a

jump or converging to zero as it approaches the frontier points). The frontier function ϕ is

either linear ϕa(x) = x, concave ϕb(x) = x1/2, or ϕc(x) = exp(−5+10x)/(1+exp(−5+10x)).

All the experiments were performed over N = 200 independent samples of size n = 25, 50,

100 and 200. In Tables 1, 2 and 3 we report the simulation results devoted to accuracy of the

seven estimation methods: LFDH, DEA, QS (monotone quadratic spline, ϕ̂n), CS (monotone

cubic spline, ϕ̌n), LL (local linear), QS-C (monotone and concave quadratic spline, ϕ̂⋆
n) and

CS-C (monotone and concave cubic spline, ϕ̌⋆
n). To assess the performance of each method,

we consider the empirical mean integrated squared error (MISE), the empirical integrated
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squared bias (IBIAS2) and the empirical integrated variance (IVAR), which are given by

MISE =
1

N

N
∑

j=1

ISE(ϕ̂(j)) :=
1

N

N
∑

j=1

[

1

I

I
∑

i=0

(

ϕ̂(j)(zi)− ϕ(zi)
)2

]

(11)

=
1

I

I
∑

i=0

(

ϕ(zi)− ¯̂ϕ(zi)
)2

+
1

I

I
∑

i=0

[

1

N

N
∑

j=1

(ϕ̂(j)(zi)− ¯̂ϕ(zi))
2

]

≡ IBIAS2 + IVAR,

where {zi, i = 0, . . . , I} is an equispaced grid with width 1/I over [0, 1] with I = 1000, ϕ̂(j)(·)

is the estimated frontier function from the j-th data sample and ¯̂ϕ(zi) = N−1
∑N

j=1 ϕ̂
(j)(zi).

To guarantee a fair comparison among the different methods, we used the smoothing param-

eter which minimizes the MISE for the spline estimators (QS and CS) and the local linear

estimator (LL). Regarding the monotone and concave spline estimators (QS-C and CS-C),

we just used all the DEA points as knots for simplicity as explained earlier in Section 2.

Additionally, to see how our automatic selection procedures for k perform in practice, we

compared the results when the number of knots is selected by (4) and (5) for the estimators

ϕ̂n and ϕ̌n. We call those versions of ϕ̂n QS-A and QS-B, respectively, and those versions

of ϕ̌n CS-A and CS-B, respectively. Also included was the local linear frontier estimator

with the optimal bandwidth being chosen by the bootstrap procedure proposed in Hall and

Park (2004), called LL-B. For the sake of conciseness, we only present the results for QS-B

and CS-B. The results for QS-A and CS-A were qualitatively similar to those for QS-B and

CS-B, so they are omitted. Actually, to initiate Hall and Park (2004)’s bootstrap procedure,

we need to set a pilot bandwidth, which we have found to be quite critical to the quality

of their procedure. To see how the local linear frontier estimator performs empirically at

the best, we used the bandwidth which minimizes the MISE as the pilot bandwidth. Two

typical realizations of the experiment, with ϕ ∈ {ϕb, ϕc}, β = 0.5 and n = 50, are shown in

Figures 2 and 3.

Overall, the spline-based estimators (QS, CS, QS-B, CS-B, QS-C and CS-C) show better

performance than all the other estimators regardless of the boundary type (which depends

on β) and the sample size. It is clear that the spline-based estimators enjoy the benefit of

smooth approximation in reducing the bias when the true function is smooth as shown in

Figures 2 and 3. Moreover, both selection criteria of the number of knots seem to work

quite well in practice. It is remarkable that our splined-based estimators (QS-B and CS-B)

with empirically chosen knots are performing better than the local linear estimator with the

theoretically MISE-optimal bandwidth.

When the true frontier function is concave and monotone (ϕ = ϕa or ϕb), we observe that

the DEA and the concave spline estimators (QS-C and CS-C) have lower IVARs compared
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to the other estimators. The reason is that they enjoy both monotonicity and concavity

properties, reducing thus the unnecessary sampling variability. Moreover, the concave spline

estimators have the added advantage over the DEA estimator of reducing the bias thanks

to their modeling flexibility and function approximation power as illustrated in Figure 2.

When the frontier function ϕ is simply monotone but not concave, the local linear es-

timator (LL) seems to be a useful alternative to the LFDH estimator if the bandwidth is

judiciously chosen. However, the LL frontier lacks of smoothness and has no guarantee of

being monotone even if the true frontier is so. Accordingly, following the curvature of the

monotone frontier ϕ, its LL estimator is likely to exhibit substantial bias when the number

of data points is not large enough, especially at the sample boundaries, as shown in the left

panel of Figure 4. A simple way to remedy to this drawback is to impose the extra condition

θ1 ≥ 0 in the definition of ϕ̂n,LL(x) to get

ϕ̂n,LL2(x) = min
{

z : there exists θ1 ≥ 0 such that yi ≤ z + θ1(xi − x)

for all i such that xi ∈ (x− h, x+ h)
}

.

This version reduces the vexing border defect of the LL estimator as illustrated in the

right panel of Figure 4. We actually utilized the improved version ϕ̂n,LL2(x) in all our

simulations instead of ϕ̂n,LL(x). Yet, it may be seen from Figure 3 and Table 3 that our

spline-based estimators are clearly superior to both the ϕ̂n,LL2(x) estimator (computed with

the theoretically MISE-optimal bandwidth) and the LFDH estimator.

5 Data examples

In this section, we first discuss the importance of the monotonicity and concavity shape

constraints in frontier analysis, and then illustrate the utility of the proposed spline-based

estimators through three concrete data examples.

A popular field of application where the problem of constrained frontier estimation nat-

urally occurs is concerned with the analysis of economic efficiency of firms in a variety of

industries. The data typically consist of an input factor xi ∈ R+ used to produce an out-

put yi ∈ R+ in a certain firm i. The conventional microeconomic theory is based on the

assumption of optimizing behaviour. Thus it is assumed that producers optimize their pro-

duction choices from a technical or engineering perspective by avoiding wasting resources.

This means that, theoretically, producers operate somewhere on the boundary, rather than

on the interior, of their production possibility set Ψ =
{

(x, y) ∈ R
2
+| x can produce y

}

. This

optimal boundary, referred to as production, profit or cost frontier, is interpreted as the set

of the most efficient firms. The economic performance of a firm is then defined in terms of its
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ability to operate close to or on the efficient frontier. From a statistical viewpoint, the effi-

cient frontier may be viewed as the upper extremity of the joint support Ψ of the population

of firms density in the input and output space. This support boundary is often described

by the graph of a frontier function ϕ(x), which gives the maximal level of output attainable

by a firm operating with input-usage x. The efficiency of a production unit located at (x, y)

may then be estimated via the distance between the attained output y and the optimal level

ϕ(x).

Econometric considerations lead to the general production axiom of free disposability

of inputs and outputs, that is, if (x, y) ∈ Ψ then (x′, y′) ∈ Ψ for any x′ ≥ x and y′ ≤ y.

The monotonicity of ϕ(x), referred to as non-negative marginal productivity, is justified by

this free disposability assumption. The set Ψ of physically attainable points (x, y) is also

often assumed to be convex, that is, every convex combination of feasible production units

is also feasible. This justifies the concavity property of the frontier function ϕ(x), known

in economics as diminishing marginal returns. Thus, the differentiability of ϕ(x) across the

support of the covariate is a desirable microeconomic feature if one is interested in measuring

the responsiveness of output to changes in the input [see, e.g., Parmeter and Racine (2013)].

This is particularly important if one is interested in returns to scale, which is defined as the

sum of input elasticities, which in turn rely on the second derivative ϕ′′(x). Although the

concavity of ϕ(x) is widely used in economics, it is not always valid. The production set

Ψ might admit increasing returns to scale, i.e., the outputs increase faster than the inputs.

Hence, the monotonicity of ϕ(x) is a minimal requirement in production theory [see, e.g.,

Färe, Grosskopf and Lovell (1985)].

It should also be clear that the monotonicity of the support boundary is an immediate

consequence of the frequently encountered property of stochastic monotonicity of the distri-

bution F (·|x) of yi conditional on xi = x. This stronger hypothesis is of genuine interest

in many applications beyond frontier and efficiency analysis in economics. It describes the

increasingness effect in the data, or more specifically,

for each y ∈ Y , F (y|x) ≤ F (y|x′) whenever x ≥ x′ for x, x′ ∈ X ,

with Y and X being, respectively, the supports of the variables yi and xi. This property

is equivalent to the monotonicity of all regression quantile curves, and hence implies the

boundary curve’s monotonicity. It is quite natural in production theory as the chance of

producing less than a value y decreases if a firm uses more inputs. A description of many

other applied settings where this regression dependency of yi on xi naturally appears can be

found in Lee, Linton and Whang (2009).

The first motivating application that we consider in this section is concerned with the

19



reliability of nuclear reactors. An accurate knowledge of the change in fracture toughness of

the reactor pressure vessel materials as a function of the temperature is of prime importance

in a nuclear power plant lifetime program. Physical considerations lead to the natural hy-

pothesis of stochastic monotonicity and particularly to the assumption that the master curve

prediction, that is, the set of materials having optimal fracture toughness, is monotonely in-

creasing. The scatterplot of 254 non-irradiated representative steels obtained from the US

Electric Power Research Institute (EPRI), along with the three monotone regression quartile

curves, are given in Figure 1 (left panel). Here, it is important to know both lower and upper

limits of fracture toughness of each material as a function of temperature. This translates

into estimating both optimal support boundaries. Although our focus in the sections above

was only on the estimation of the upper support extremity, similar considerations evidently

apply to the estimation of the lower boundary. It may be seen from Figure 5, which shows

various estimates of the upper and lower frontier functions, that the spline-based estimates

(QS-B and CS-B) suggest better capability of fitting edge data. It may also be noted that

the lower frontier estimator via CS-B exhibits, as is to be expected, more smoothness and

indicates a convex and monotonely increasing shape for the master curve prediction.

Our second example is concerned with the increase of the production activity of 123

American electric utility companies. The measurements for each company of the produced

output and the total cost involved in the production, along with the three monotone quartile

curves, are represented in Figure 1 (middle panel). Naturally, the true full econometric

frontier, that is, the locus of the most efficient firms, is nondecreasing as well.

Another related application is concerned with the assessment of the performance of 37 Eu-

ropean Air Controllers. The inefficiency of each controller can be measured by its “distance”

from the efficient econometric boundary. The scatterplot of the controllers in the year 2000,

along with the three regression quartile curves, are given in Figure 1 (right panel). Here, the

activity of the controllers is described by one input (an aggregate factor of different kind of

labor) and one output (an aggregate factor of the activity produced, based on the number

of air movements controlled, the number flight hours controlled, etc.).

Figure 6 shows the efficient econometric frontier estimates which correspond to the pro-

duction activity of the 123 American electric utility companies and the 37 European Air

Controllers in the left and right panels, respectively. For each dataset, we plot the DEA, the

QS-B, the CS-B and the QS-C estimates. Here, imposing concavity appears to improve on

imposing monotonicity only since the obtained QS-C fits provide more appealing results in

terms of stability and smoothness [the CS-C fits were very similar to the QS-C estimates,

and hence they are not reported here]. This is consistent with the (non)parametric findings

in the econometric literature where the production set (i.e. the joint support of data) is
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mostly assumed to be convex [see, e.g., Gijbels et al. (1999) for the electric utility com-

panies and Daouia et al. (2008) for the Air Controllers]. Also, the inefficiency measures

{QS-C(xi) − yi} (imposing both monotonicity and concavity) tend to reveal that a large

number of air controllers and electricity plants are highly inefficient. Finally it should be

clear that, although the DEA curve tends to produce similar estimates to the concave spline

smoothers, it suffers from the vexing lack of differentiability especially if one is interested in

marginal effects and elasticities.

6 Discussion

We proposed a novel approach of using polynomial spline fitting for the problem of con-

strained nonparametric boundary regression. The method allows to handle both single and

multiple shape constrained estimation. We mainly considered monotone and/or concave

frontier smoothing. Using cubic splines requires solving a convex programming problem

with second-order conic constraints to characterize monotonicity, and only linear constraints

to represent both envelopment and concavity constraints. The proposed constrained fits

are similar to the unconstrained estimates in terms of computational complexity without

sacrificing modeling flexibility and function approximation power. They also have the same

asymptotic rate of strong uniform convergence.

Quadratic spline smoothing results in a simpler linearly constrained model, and the

restricted fit is shown to inherit the asymptotic rate of uniform convergence of its unrestricted

version only under the monotonicity constraint. The key advantage of the quadratic spline

fit over the cubic spline estimate is its computational expedience using linear programming.

Additionally, the latter can be implemented only with truncated power function basis rather

than the more popular B-spline basis, whereas the former can be implemented using both

bases. By contrast, the cubic spline smoother is the winner in terms of both smoothness and

speed of global convergence. Although both approaches work quite well and either might

be used in practice, we have a particular preference for the cubic spline fit as it exhibited

slightly better performance than the quadratic spline estimate in our simulation studies. The

quadratic spline smoothing method has been implemented for the R package npbr (Daouia et

al. 2014) and all the MATLAB codes for the cubic spline smoothing procedure are available

upon request.

Although we focus on the single input case in this paper, extending our methodology

to the more general setting of multiple inputs is of genuine interest since many encountered

applications, especially in efficiency and productivity analysis, involve multiple cost variables.

One way to extend our results is to consider a tensor product of B-spline space and its
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corresponding basis and develop a multivariate spline-based frontier estimator which satisfies

shape and envelopment constraints. Based on the properties of derivatives of B-spline basis

[see Section 5.2 in Schumaker (2007)], one may impose some desirable restrictions on the

estimator of the frontier surface such as componentwise increasingness and concavity, and the

resulting constrained estimator can be implemented via linear programming. This idea is not

new. It was applied in classical mean regression in conjunction with multivariate Bernstein

polynomials [see Chapter 3 in Wang (2011)]. However, two major obstacles remain to be

solved. First, this type of multivariate extension is probably only of a theoretical value in

the case of very high-dimensional problems, because the number of basis for the estimator

inevitably becomes enormous. Second, the full concavity with respect to all coordinates can

no longer reduce conveniently to negativity, but translates into the negative semidefiniteness

of the Hessian. As such, more efforts are needed to bring such shape constraints under the

umbrella of available computing techniques.

The question of whether similar work can also be done via alternative known mono-

tonization regression methods is another concern of interest. One may adapt, for instance,

the monotone polynomials’ prescription of Hawkins (1994) and Murray et al. (2013) to our

specific setup of frontier analysis. The argument of a single polynomial approximation is very

attractive as demonstrated earlier by Hall et al. (1998) in the unconstrained setting. Yet, the

constrained polynomial splines we advocate have greater modeling flexibility and function

approximation power. Moreover, as opposed to purely polynomial methods, spline fitting al-

lows for easy handling of the additional concavity constraint. Another feasible option under

multiple shape constraints is to adapt the elegant kernel regression device of Hall and Huang

(2001) and Du et al. (2013). This idea has been recently implemented by Parmeter and

Racine (2013) and improved in Noh (2014) by developing kernel-type boundary smoothers

computed via quadratic programming, with suitably selected bandwidths. A drawback of

this method so far is, however, that it does not ensure perfectly the desired monotonicity

or monotone concavity constraints. Also, the asymptotic integrity of the proposed kernel

estimators is not justified and does appear to be very challenging and even harder to derive

compared to our procedure.

It should be also pointed out that the bias of our spline-based construction can be pro-

nounced in the setting γ > 1 of “non-sharp boundary”. It is therefore of high interest, both

from a theoretical and a practical perspective, to correct our final spline estimates for their

inherent bias in this case. Applying some promising methods for bias reduction at bound-

aries including extreme-value techniques, bootstrap and excess-mass ideas from Daouia et

al. (2010), Peng (2004), Hall and Park (2002) and Polonik (1995) may lead to significantly

improved estimation results, but we do not pursue this further in this paper. A thorough
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bias reduction requires a precise second-order asymptotic expansion of limit distributions

involving estimates of the sharpness γ, which is beyond the scope of this paper.

Finally, for knot selection we used the information criteria derived under the assumption

that the inefficiency follows exponential distributions, but one may use other information

criteria coming from other distributional assumptions. To the best of our knowledge, it is

not known which criterion is better than others, neither how the distributional assumption

affects theoretical properties of the resulting information criteria. This is an interesting open

problem which deserves further investigation.
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Appendix

A.1 Proof of Proposition 1

The key idea goes as in He and Shi (1998, p. 646). Let ε = inf{ϕ′(x), x ∈ [0, 1]}. We

have ϕ′(tj) ≥ ε > 0 for each j = 1, . . . , kn. Then, by the strong uniform convergence of ϕ̃′
n

to ϕ′ at knots, there exists an nε such that for all n > nε and all j = 1, . . . , kn, we have

ϕ̃′
n(tj) > ϕ′(tj) − ε/2 ≥ ε/2. Hence, with probability one, we get ϕ̃′

n(tj) > 0 at all knots

for all n > nε. The derivative ϕ̃′
n being piecewise linear, it follows that ϕ̃′

n(x) > 0 at all

x ∈ [0, 1]. Therefore P[ϕ̃n = ϕ̂n, ∀n > nε] = 1.

A.2 Proof of Proposition 2

Let η = sup{ϕ′′(x), x ∈ [0, 1]} < 0. By the uniform convergence of ϕ̃′′
n to ϕ′′ at midpoints,

there exists an nη such that for all n > nη and all j = 1, . . . , kn, we have ϕ̃′′
n(t

∗
j) < −η/2 +

ϕ′′(t∗j) ≤ η/2 < 0. Because ϕ̃′′
n is piecewise constant, this implies that ϕ̃′′

n(x) < 0 at all
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x ∈ (tj−1, tj), for each j = 1, . . . , kn, and all n > nη. Since ϕ̃n is also monotone on [0, 1] for

all n > nε, we get P[ϕ̃n = ϕ̂⋆
n, ∀n > nη ∨ nε] = 1.

A.3 Proof of Proposition 4

Let ε = inf{ϕ′(x), x ∈ [0, 1]} > 0. By the uniform convergence of ϕ̃′
n to ϕ′ over [0, 1], with

probability one, there exists an nε such that for all n > nε, we have ϕ̃
′
n(x) > ϕ′(x)−ε/2 ≥ ε/2

for all x ∈ [0, 1]. Hence, with probability one, we get ϕ̃′
n(x) > 0 at all x ∈ [0, 1] and for all n

large enough. Whence P[ϕ̃n = ϕ̌n, n → ∞] = 1.

Let η = sup{ϕ′′(x), x ∈ [0, 1]} < 0. By the strong uniform convergence of ϕ̃′′
n to ϕ′′, there

exists an nη such that for all n > nη and all x ∈ [0, 1], we have ϕ̃′′
n(x) < −η/2 + ϕ′′(x) ≤

η/2 < 0. Then ϕ̃′′
n(x) < 0 at all x ∈ [0, 1] whenever n > nη, which implies the concavity of

ϕ̃n on [0, 1], with probability one. Therefore P[ϕ̃n = ϕ̌⋆
n, ∀n > nη ∨ nε] = 1.

A.4 Proof of Theorem 1

Let zi = νn(yi − ϕ(xi)) and δn = max1≤j≤kn(tj − tj−1), where νn = n1/γ(kn log n)
−1/γ . From

(A3) we have knδn ∼ 1. Here and below, an ∼ bn means that an/bn and bn/an are bounded.

Let ω(f, δ : [a, b]) = sup0≤h≤δ supa≤x≤b−h |f(x+h)−f(x)| be a modulus of continuity of f on

the interval [a, b]. According to an approximation theorem for spline functions (see Theorem

6.20 in Schumaker, 2007, for example), there exists a (kn + p)-dimensional vector α∗ such

that, for all m : 0 ≤ m ≤ p,

sup
tj−1≤x≤tj

|ϕ(m)(x)− α∗⊤π(m)(x)| ≤ C0δ
p−m
n ω(ϕ(p), δn : [tj−p−1, tj+p]), 1 ≤ j ≤ kn, (A.1)

where C0 is a positive constant that depends only on p and we set t−p = · · · t−1 = 0,

tkn+1 = · · · = tkn+p = 1. We note that πp+j, the (p + j)th component of π, is not p times

differentiable at x = tj−1. In (A.1), π
(p)
p+j(tj−1) is understood as the pth right derivative of π

at x = tj−1. From (A.1) and the condition (A2), we get

sup
x∈[0,1]

|ϕ(m)(x)− α∗⊤π(m)(x)| ≤ C ′
0δ

p+1−m
n , 0 ≤ m ≤ p (A.2)

for some constant C ′
0 > 0.

Define rn(x) = νn[ϕ(x) − π(x)Tα∗] and ∆j = νn(α̂j − α∗
j ) for 0 ≤ j ≤ kn + p − 1. For a

vector d = (d1, . . . , dkn+p−1), let

T (d) = max
1≤i≤n

[

zi −

p+kn−1
∑

j=1

djqj(xi) + rn(xi)

]
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where qj are defined in Section 3. Thus, by definition ∆ = (∆1, . . . ,∆kn+p−1) minimizes

T (d). We note that

νn sup
x∈[0,1]

|ϕ̃n(x)− ϕ(x)| = sup
x∈[0,1]

|π(x)T∆− rn(x)|

≤

p
∑

j=0

|∆j|+
kn−1
∑

j=1

(1− tj)
p|∆p+j|+ sup

x∈[0,1]

|rn(x)|

≤ |∆0|+Wn + sup
x∈[0,1]

|rn(x)|,

(A.3)

where Wn =
∑p

j=1 |∆j| + c
∑p+kn−1

j=p+1

(

1− j−p
kn

)p

|∆j| and c denotes the generic positive

constant that depends only on p. We also note that there exist constants Cm > 0 for

1 ≤ m ≤ p− 1 such that

νn sup
x∈[0,1]

|ϕ̃(m)
n (x)− ϕ(m)(x)| ≤ Cmk

m
n Wn + sup

x∈[0,1]

|r(m)
n (x)|.

We take δn ∼ (n−1 log n)1/((p+1)γ+1), so that supx∈[0,1] |rn(x)| = O(νnδ
p+1
n ) = O(1) and

supx∈[0,1] |r
(m)
n (x)| = O(νnδ

p+1−m
n ) = O((n−1 log n)−m/((p+1)γ+1)) by (A.2). The main part of

the proof is to verify that |∆0| and Wn in (A.3) are of order O(kn) with probability one,

which gives the theorem. To show Wn = O(kn) with probability one, we use the fact that

there exists a random integer 1 ≤ J ≤ p + kn such that ∆j < 0 for all j < J and ∆j ≥ 0

for all j ≥ J . This can be proved along the lines in the proof of Theorem 2.1 of Hall et al.

(1998). We also claim that there exists an absolute constant c0 > 0 such that, on the event

J = j,

sup
x∈Ij

p+kn−1
∑

l=1

∆lql(x) ≤ −c0Wn/kn, (A.4)

where Ij are the intervals defined below. The inequality (A.4) implies that, for a sufficiently

large C > 0,

P (Wn > Ckn) ≤

p+kn
∑

j=1

P
[

−
1

c0
sup
x∈Ij

p+kn−1
∑

l=1

∆lql(x) > C, J = j
]

≤

p+kn
∑

j=1

P
[

T (∆) ≥ max
i:xi∈Ij

zi +
2

3
c0C, J = j

]

≤

p+kn
∑

j=1

P
[

T (0) ≥ max
i:xi∈Ij

zi +
2

3
c0C, J = j

]

≤

p+kn
∑

j=1

P
(

max
i:xi∈Ij

zi ≤ −
1

3
c0C

)

.

(A.5)
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The second inequality of (A.5) follows from the facts that supx∈[0,1] |rn(x)| = O(1) and

T (∆) ≥ maxi:xi∈Ij [zi −
∑p+kn−1

l=1 ∆lql(xi) + rn(xi)]. The fourth inequality holds since T (0) ≤

supx∈[0,1] |rn(x)|.

The event maxi:xi∈Ij zi ≤ −c0C/3 occurs if and only if there is no (xi, yi) in the set

An ≡ {(x, y) : x ∈ Ij, y ∈ [ϕ(x) − ν−1
n c0C/3, ϕ(x)]}. From (A.8) and (A.9) below it follows

that

P [(xi, yi) ∈ An] =

∫

An

f(x, y) dy dx ≥ c · cγ0 · C
γ log n

n
(1 + o(1)) (A.6)

for some constant c > 0. This implies

p+kn
∑

j=1

P
(

max
i:xi∈Ij

zi ≤ −
1

3
c0C

)

≤ (p+ kn)n
−c·Cγ

(A.7)

for some constant c > 0, so that
∑∞

n=1 P (Wn > Ckn) < ∞ for sufficiently large C > 0. This

proves Wn = O(kn) with probability one.

To prove |∆0| = O(kn) with probability one, we note that

|∆0| ≤
∣

∣

∣
max
1≤i≤n

(

zi −

p+kn−1
∑

j=1

∆jπj(xi)
)∣

∣

∣
+ sup

x∈[0,1]

|rn(x)|

≤ − max
1≤i≤n

zi +max{1, c}Wn +O(1)

for the constant c at (A.3). Since it holds that −maxi≤i≤n zi = O(k
−1/γ
n ) with probability

one, we get that |∆0| = O(kn) with probability one.

It remains to prove the claim (A.4). Let ξj = (j + 1)−1/j for 1 ≤ j ≤ p and ξp+k = tk +

(p+1)−1/p(1− tk)
1+(1/p) for 1 ≤ k ≤ kn − 1. Then, 0 = ξ0 < ξ1 < · · · < ξp+kn−1 < ξp+kn = 1.

Write ξj,1 = ξj−1 + (ξj − ξj−1)/3 and ξj,2 = ξj−1 + 2(ξj − ξj−1)/3. Let Ij denote the interval

[ξj,1, ξj,2]. Then, there exists a constant c > 0 such that

(length of Ij) ≥ c, 1 ≤ j ≤ p. (A.8)

Let g(t) = t+ (p+ 1)−1/p(1− t)1+(1/p). Then, g′ is strictly increasing so that g′(t) ≥ g′(0) =

1− p−1(p+ 1)1−(1/p) for all t ∈ [0, 1] and g′(0) > 0 for all p > 1. This means

ξp+j+1 − ξp+j = g(tj+1)− g(tj) ≥ g′(0)(tj+1 − tj),

so that there exists a constant c > 0 such that

(length of Ij) ≥ cδn, p+ 1 ≤ j ≤ p+ kn. (A.9)

Here, we have used the condition (A3).
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Since ql(x) < 0 if x < ξl and ql(x) ≥ 0 if x ≥ ξl, there exists a constant c > 0 such that,

for all x ∈ IJ = [ξJ,1, ξJ,2],

ql(x) ≥ c(ξJ,1 − ξl) if 1 ≤ l ≤ J − 1,

ql(x) ≤ −c(ξl − ξJ,2) ≤ if l ≥ max{J, p+ 1} and ξJ,2 ≥ tl−p,

ql(x) = −(1− tl−p)
p+1/(p+ 1) if l ≥ max{J, p+ 1} and ξJ,2 < tl−p,

ql(x) ≤ −c(ξl − ξJ,2) if J ≤ l < max{J, p+ 1}.

We note that, in case p+ 1 ≤ l ≤ p+ kn − 1,

−
(1− tl−p)

p+1

p+ 1
≤ −c

(

1−
l − p

kn

)p+1

for some constant c > 0. Define l(J) = max{J, p+ 1} and for l(J) ≤ l ≤ p+ kn − 1

a(J, l) = (ξl − ξJ,2)I(ξJ,2 ≥ tl−p) +

(

1−
l − p

kn

)p+1

I(ξJ,2 < tl−p).

Since ∆l < 0 for all l < J and ∆l ≥ 0 for all j ≥ J , there exists a constant c > 0 such that,

for all x ∈ IJ ,

p+kn−1
∑

l=1

∆lql(x) ≤ −c





J−1
∑

l=1

(ξJ,1 − ξl)|∆l|+

l(J)−1
∑

l=J

(ξl − ξJ,2)|∆l|+

p+kn−1
∑

l=l(J)

a(J, l)|∆l|



 .

The second sum on the right hand side of the above inequality is set to be zero in case

l(J) = J , i.e., J ≥ p + 1. Now, we note that ξJ,1 − ξl ≥ (ξJ − ξJ−1)/3 ≥ ck−1
n for all

1 ≤ l ≤ J − 1 and ξl − ξJ,2 ≥ (ξJ − ξJ−1)/3 ≥ ck−1
n for all J ≤ l ≤ p + kn, where c > 0 is a

constant. Furthermore, there exists a constant c > 0 such that

a(J, l) ≥ ck−1
n

[

I(ξJ,2 ≥ tl−p) +

(

1−
l − p

kn

)p

I(ξJ,2 < tl−p)

]

≥ ck−1
n

(

1−
l − p

kn

)p

.

These entail that, for some constant c0 > 0,

p+kn−1
∑

l=1

∆lql(x) ≤ −c0k
−1
n





l(J)−1
∑

l=1

|∆l|+

p+kn−1
∑

l=l(J)

(

1−
l − p

kn

)p

|∆l|



 ≤ −c0k
−1
n Wn

for all x ∈ IJ .
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Figure 1: Scatterplots of the nuclear reactors’ data (left), the American electric utility
companies’ data (middle) and the European Air Controllers’ data (right), along with the
quartile curves in each plot. The three regression quantiles are estimated by the method of
He and Shi (1998).
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Figure 2: When n = 50 and β = 0.5, the true frontier function (ϕb, black) and its three
estimates: DEA(solid red), QS-C (solid blue, left panel) and CS-C (dotted blue, right panel)
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Table 1: Comparison when the true frontier is linear (ϕ(x) = ϕa(x)). All the results are
multiplied by 100.

DEA QS CS LL QS-C CS-C QS-B CS-B LL-B
β = 0.5 n = 25 IBIAS2 0.225 0.106 0.094 0.146 0.248 0.122 0.140 0.097 0.255

IVAR 0.207 0.256 0.146 0.188 0.233 0.173 0.263 0.147 0.256
IMSE 0.431 0.362 0.241 0.334 0.481 0.294 0.403 0.245 0.512

n = 50 IBIAS2 0.077 0.026 0.022 0.049 0.078 0.037 0.032 0.024 0.078
IVAR 0.082 0.062 0.049 0.066 0.081 0.064 0.089 0.052 0.081
IMSE 0.158 0.087 0.071 0.114 0.159 0.101 0.122 0.077 0.159

n = 100 IBIAS2 0.014 0.001 0.001 0.007 0.014 0.004 0.001 0.001 0.014
IVAR 0.014 0.008 0.004 0.009 0.014 0.008 0.008 0.003 0.014
IMSE 0.028 0.009 0.005 0.016 0.028 0.011 0.009 0.004 0.028

n = 200 IBIAS2 0.004 0.000 0.000 0.002 0.004 0.001 0.000 0.000 0.004
IVAR 0.006 0.001 0.001 0.004 0.006 0.003 0.001 0.000 0.006
IMSE 0.009 0.001 0.001 0.005 0.009 0.004 0.001 0.001 0.009

β = 1 n = 25 IBIAS2 0.589 0.432 0.363 0.446 0.615 0.391 0.548 0.371 0.638
IVAR 0.254 0.350 0.238 0.252 0.252 0.261 0.385 0.240 0.285
IMSE 0.843 0.782 0.601 0.699 0.867 0.652 0.933 0.612 0.922

n = 50 IBIAS2 0.217 0.131 0.108 0.149 0.222 0.130 0.184 0.110 0.223
IVAR 0.099 0.113 0.078 0.080 0.099 0.089 0.163 0.078 0.099
IMSE 0.317 0.244 0.186 0.230 0.321 0.220 0.347 0.188 0.322

n = 100 IBIAS2 0.120 0.053 0.048 0.082 0.122 0.060 0.078 0.053 0.122
IVAR 0.055 0.051 0.039 0.042 0.054 0.043 0.070 0.039 0.054
IMSE 0.175 0.105 0.086 0.124 0.177 0.103 0.149 0.092 0.176

n = 200 IBIAS2 0.031 0.012 0.010 0.022 0.032 0.016 0.016 0.011 0.032
IVAR 0.015 0.012 0.009 0.012 0.015 0.010 0.019 0.009 0.015
IMSE 0.047 0.023 0.019 0.035 0.047 0.026 0.035 0.020 0.047

β = 3 n = 25 IBIAS2 2.015 1.834 1.592 1.697 2.083 1.648 2.167 1.608 2.132
IVAR 0.267 0.387 0.263 0.264 0.260 0.280 0.392 0.263 0.264
IMSE 2.282 2.221 1.855 1.960 2.343 1.929 2.559 1.872 2.396

n = 50 IBIAS2 1.298 1.162 1.042 1.123 1.353 1.073 1.409 1.053 1.352
IVAR 0.164 0.200 0.159 0.158 0.160 0.167 0.236 0.159 0.161
IMSE 1.461 1.362 1.202 1.281 1.513 1.240 1.645 1.213 1.513

n = 100 IBIAS2 0.760 0.661 0.579 0.652 0.789 0.604 0.924 0.595 0.784
IVAR 0.100 0.130 0.098 0.097 0.095 0.100 0.155 0.099 0.096
IMSE 0.860 0.791 0.676 0.749 0.884 0.704 1.080 0.694 0.880

n = 200 IBIAS2 0.490 0.418 0.367 0.415 0.504 0.383 0.635 0.379 0.503
IVAR 0.063 0.086 0.061 0.058 0.062 0.063 0.113 0.062 0.062
IMSE 0.553 0.504 0.428 0.473 0.566 0.446 0.748 0.442 0.564
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Table 2: Comparison when the true frontier is monotone and concave (ϕ(x) = ϕb(x)). All
the results are multiplied by 100.

DEA QS CS LL QS-C CS-C QS-B CS-B LL-B
β = 0.5 n = 25 IBIAS2 0.283 0.112 0.119 0.287 0.190 0.163 0.124 0.121 0.292

IVAR 0.185 0.257 0.187 0.189 0.197 0.194 0.265 0.189 0.199
IMSE 0.468 0.368 0.306 0.475 0.387 0.357 0.390 0.311 0.491

n = 50 IBIAS2 0.085 0.016 0.021 0.086 0.052 0.041 0.019 0.021 0.086
IVAR 0.065 0.077 0.056 0.065 0.067 0.064 0.076 0.057 0.065
IMSE 0.150 0.094 0.077 0.151 0.119 0.105 0.095 0.078 0.151

n = 100 IBIAS2 0.022 0.003 0.004 0.022 0.012 0.009 0.005 0.003 0.022
IVAR 0.018 0.018 0.013 0.018 0.017 0.016 0.017 0.013 0.018
IMSE 0.040 0.021 0.017 0.040 0.029 0.026 0.022 0.017 0.040

n = 200 IBIAS2 0.007 0.001 0.001 0.007 0.004 0.003 0.005 0.001 0.007
IVAR 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.003 0.005
IMSE 0.012 0.005 0.004 0.012 0.009 0.007 0.010 0.005 0.012

β = 1 n = 25 IBIAS2 0.849 0.505 0.498 0.866 0.641 0.573 0.584 0.508 0.889
IVAR 0.277 0.475 0.302 0.281 0.330 0.328 0.487 0.299 0.302
IMSE 1.126 0.981 0.800 1.148 0.971 0.901 1.071 0.807 1.191

n = 50 IBIAS2 0.297 0.144 0.143 0.302 0.210 0.186 0.167 0.147 0.301
IVAR 0.109 0.146 0.117 0.110 0.121 0.112 0.158 0.115 0.109
IMSE 0.406 0.290 0.260 0.412 0.331 0.298 0.325 0.263 0.410

n = 100 IBIAS2 0.143 0.054 0.063 0.143 0.098 0.088 0.064 0.064 0.143
IVAR 0.051 0.064 0.053 0.052 0.056 0.055 0.068 0.054 0.052
IMSE 0.195 0.118 0.117 0.195 0.154 0.143 0.133 0.118 0.195

n = 200 IBIAS2 0.054 0.017 0.020 0.054 0.036 0.030 0.019 0.019 0.054
IVAR 0.019 0.024 0.017 0.020 0.022 0.020 0.022 0.018 0.019
IMSE 0.072 0.040 0.038 0.072 0.055 0.050 0.041 0.037 0.072

β = 3 n = 25 IBIAS2 3.096 2.526 2.481 3.140 2.753 2.657 2.838 2.505 3.160
IVAR 0.288 0.438 0.332 0.289 0.341 0.346 0.408 0.323 0.292
IMSE 3.384 2.964 2.813 3.429 3.094 3.003 3.246 2.828 3.452

n = 50 IBIAS2 1.987 1.511 1.521 1.999 1.706 1.644 1.715 1.547 2.000
IVAR 0.198 0.303 0.234 0.198 0.239 0.236 0.310 0.232 0.198
IMSE 2.184 1.813 1.755 2.197 1.946 1.880 2.026 1.779 2.198

n = 100 IBIAS2 1.287 0.939 0.952 1.295 1.091 1.047 1.117 0.968 1.295
IVAR 0.104 0.169 0.138 0.104 0.131 0.126 0.172 0.129 0.104
IMSE 1.391 1.108 1.089 1.400 1.222 1.173 1.289 1.097 1.399

n = 200 IBIAS2 0.813 0.548 0.567 0.815 0.681 0.645 0.710 0.504 0.815
IVAR 0.075 0.110 0.095 0.075 0.093 0.092 0.132 0.088 0.075
IMSE 0.888 0.658 0.661 0.890 0.774 0.737 0.843 0.672 0.890
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Table 3: Comparison when the true frontier is monotone but not concave (ϕ(x) = ϕc(x)).
All the results are multiplied by 100.

LFDH QS CS LL QS-B CS-B LL-B
β = 0.5 n = 25 IBIAS2 0.715 0.153 0.207 0.549 0.143 0.197 0.990

IVAR 0.591 0.637 0.637 0.539 0.540 0.568 0.467
IMSE 1.306 0.790 0.844 1.087 0.684 0.766 1.457

n = 50 IBIAS2 0.258 0.029 0.035 0.192 0.031 0.034 0.610
IVAR 0.216 0.154 0.148 0.170 0.184 0.150 0.132
IMSE 0.474 0.183 0.184 0.362 0.214 0.185 0.743

n = 100 IBIAS2 0.090 0.006 0.005 0.057 0.012 0.004 0.179
IVAR 0.079 0.042 0.022 0.062 0.055 0.025 0.041
IMSE 0.169 0.048 0.027 0.119 0.067 0.029 0.220

n = 200 IBIAS2 0.037 0.001 0.001 0.019 0.004 0.000 0.055
IVAR 0.034 0.011 0.006 0.012 0.019 0.004 0.011
IMSE 0.071 0.012 0.006 0.031 0.023 0.004 0.065

β = 1 n = 25 IBIAS2 1.477 0.405 0.594 1.064 0.533 0.678 1.324
IVAR 0.571 0.642 0.732 0.484 0.650 0.642 0.504
IMSE 2.048 1.047 1.326 1.548 1.184 1.320 1.829

n = 50 IBIAS2 0.788 0.125 0.221 0.545 0.186 0.252 0.726
IVAR 0.329 0.321 0.305 0.265 0.351 0.346 0.243
IMSE 1.117 0.446 0.526 0.810 0.538 0.599 0.969

n = 100 IBIAS2 0.392 0.063 0.071 0.233 0.063 0.090 0.309
IVAR 0.163 0.110 0.115 0.089 0.138 0.102 0.087
IMSE 0.555 0.173 0.186 0.322 0.202 0.192 0.396

n = 200 IBIAS2 0.169 0.019 0.023 0.087 0.016 0.027 0.111
IVAR 0.075 0.052 0.032 0.040 0.062 0.034 0.036
IMSE 0.244 0.070 0.055 0.127 0.078 0.061 0.147

β = 3 n = 25 IBIAS2 3.919 2.023 2.051 3.019 2.533 2.598 3.088
IVAR 0.438 0.582 0.713 0.375 0.520 0.574 0.437
IMSE 4.357 2.605 2.765 3.394 3.053 3.172 3.525

n = 50 IBIAS2 2.587 1.054 1.036 2.321 1.405 1.591 2.318
IVAR 0.270 0.325 0.474 0.214 0.337 0.311 0.215
IMSE 2.857 1.379 1.510 2.535 1.742 1.903 2.532

n = 100 IBIAS2 1.801 0.594 0.713 1.315 0.914 1.018 1.345
IVAR 0.200 0.182 0.316 0.138 0.231 0.201 0.145
IMSE 2.001 0.776 1.029 1.453 1.146 1.219 1.489

n = 200 IBIAS2 1.245 0.319 0.509 0.886 0.605 0.679 0.890
IVAR 0.134 0.127 0.186 0.089 0.156 0.129 0.092
IMSE 1.378 0.446 0.695 0.975 0.761 0.808 0.982
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Figure 3: When n = 50 and β = 0.5, the true frontier function (ϕc, black) and its three
estimates: LFDH (dotted red), QS-B (solid blue) and CS-B (dotted blue)
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Figure 4: The problem of the local linear frontier estimator (left panel) and illustration of
its improved version (right panel): LL (red curve), QS-B (blue curve) and the true frontier
(black curve)
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Figure 5: Scatterplot of the 254 nuclear reactors data, with three frontier estimates: LFDH
(dotted black), QS-B (solid red) and CS-B (solid blue). From left to right, the estimates for
the lower and the upper support boundaries.
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Figure 6: Scatterplots of the 123 American electric utility companies’ data (left) and the 37
European Air Controllers’ data (right) with three estimates of the efficient extremity in each
plot: DEA (dotted black), QS-B (solid red), CS-B (dotted red) and QS-C (solid blue)
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