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Abstract

This paper is devoted to the analysis of non-negative solutions for a generalisation of the
classical parabolic-elliptic Patlak-Keller-Segel system with d > 3 and porous medium-like
non-linear diffusion. Here, the non-linear diffusion is chosen in such a way that its scaling and
the one of the Poisson term coincide. We exhibit that the qualitative behaviour of solutions
is decided by the initial mass of the system. Actually, there is a sharp critical mass M, such
that if M € (0, M| solutions exist globally in time, whereas there are blowing-up solutions
otherwise. We also show the existence of self-similar solutions for M € (0,M.). While
characterising the possible infinite time blowing-up profile for M = M., we observe that the
long time asymptotics are much more complicated than in the classical Patlak-Keller-Segel
system in dimension two.

1 Introduction

In this work, we analyse qualitative properties of non-negative solutions for the Patlak-Keller-
Segel system in dimension d > 3 with homogeneous non-linear diffusion given by

Wit) = div[Vum(ta) —u(t.e)Vo(tw)] >0, xR,
—A¢(t,x) =u(t,x), t>0, xR, (1.1)
uw(0,2) = up(z) r € R?,

This system has been proposed as a model for chemotaxis-driven cell movement and in the study
of a large ensemble of self-gravitating interacting particles, see [20, 15] and the literature therein.
The purpose of non-linear diffusion with m > 1 in chemotaxis is to model the local repulsion
of cells, see for instance [37, 38]. This can be interpreted as taking into account anti-crowding
effects [8, 38].

Initial data will be assumed throughout this paper to verify

ug € LYRY (1 + |z?) dz) n LO(RY), Vul € L2RY) and ug >0. (1.2)
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A fundamental property of the solutions to (1.1) is the formal conservation of the total mass of
the system

M = uo(z) dzx :/ u(t,z) de fort>0.
R R

As the solution to the Poisson equation —A¢ = w is given up to an harmonic function, we choose
the one given by ¢ = K * u with

) = e ~ @2

where o4 := 27%?/T'(d/2) is the surface area of the sphere S¥~! in R%. The system can thus be
rewritten as:

0

Tt z) = div[Va™(t, ) — u(t, 2) V(K * u)(t, )] t>0, zeR?,

ot (1.3)

u(0,z) =wup(x) >0 reRe.
In any dimension d > 3 we will concentrate on a particular choice of the non-linear diffusion
exponent
2(d-1
m=mg =: (T) €(1,2).

This exponent produces an exact balance in the mass-invariant scaling of diffusion and potential
drift in (1.3): Indeed, let uy(x) := Au(t, \x) with A > 0 of same mass as u, the diffusion term
AMFZA(uT) (¢, A x) has the same scaling as the interaction term A24div (uxV (K * uy)) (¢, Az) if
and only if dm + 2 = 2d or equivalently m = my. This balance will appear clearly in the self-
similar change of variables, see (5.1) below. It can also be understood by the natural Liapunov
functional of (1.3), see Lemma 3.1. As we are only interested here in this critical exponent case
we will omit, for notational convenience, the index in my and simply write m.

Note that the case d = 2 and mgy = 1 corresponds to the Patlak-Keller-Segel (PKS) system
or to the classical Smoluchowski-Poisson system in two dimensions with linear diffusion [32, 22].
In this case, a simple dichotomy result has been shown in [17, 7], namely, the behaviour of the
solutions is just determined by the initial mass of the system. More precisely, there exists a
critical value of the mass M, := 87 such that if 0 < M < M, (sub-critical case) the solutions
exist globally and if M > M, (super-critical case) the solutions blow up in finite time. Moreover,
in the sub-critical case solutions behave self-similarly as ¢ — oo [4, 7]. Finally, the critical case
M = M, was studied in [6] showing that solutions exist globally and blow up as a Dirac mass at
the centre of mass as t — oco. Solutions have to be understood as free energy solutions, concept
that we will specify below.

In this work, we will show that a similar situation to the classical PKS system in d = 2,
although with some important differences, happens for the critical variant of the PKS model in
any dimension d > 3. The main tool for the analysis of this equation is the following free energy
functional:

t — Flu(t)] : :/Rd% —%//RdXRdlC(x—y)u(t,x)u(t,y) dz dy

u™(t, )  cq 1
= /]Rd m—1 - 5//Rd><]Rd |£C—y|d72 u(t’x)u(t,y) dx dy

which is related to its time derivative, the Fisher information, in the following way: given a
smooth positive fast-decaying solution to (1.3), then

2

d dz . (1.4)

)=~ [ o)

v (m”z " (b ) ¢(t,m)>




We will give a precise sense to this entropy/entropy-dissipation relation below.

The system (1.3) can formally be considered a particular instance of the general family of
partial differential equations studied in [11, 1, 12]. The free energy functional F structurally
belongs to the general class of free energies for interacting particles introduced in [28, 11, 12].
The functionals treated in those references are of the general form:

Eln] = /R Uln(x)] de + /R n(@) V() do+ 3 //RR W(z — y)n(z) n(y) dz dy

under the basic assumptions U : RT — R is a density of internal energy, V : R? — R is a
convex smooth confinement potential and W : R — R is a symmetric convex smooth interaction
potential. The internal energy U should satisfy the following dilation condition, introduced in
McCann [28]

A — MU\ is convex non-increasing on R

In fact, the free energy functional plays a central role for this equation since (1.3) can be formally
considered as a gradient flow of the free energy functional with respect to the euclidean transport
distance like for the porous medium equation [31]. In our case, the interaction potential is
singular and the key tool of displacement convexity of the functional fails, making the theory in
the previous references not useful for our purposes, as in [5]. Before proceeding further, let us
state the notion of solutions, in this paper we will deal with :

Definition 1.1 (Weak and free energy solution) Let ug be an initial condition satisfying (1.2)
and T € (0, 00].

(i) A weak solution to (1.3) on [0,T) with initial condition ug is a non-negative function

u € C([0,T);LYRY)) such that v € L>®((0,t) x RY)), u™ € L2(0,t; H'(R?)) for each
te€[0,7) and

T
/R o) (0,) dr = /O /R V(1) — e, )Vt 2)] - Vot @) da dr
T
—// u(t,z) Opp(t,x) de dt  (1.5)
0 Rd

for any test function ¢ € D([0,T) x R?) with ¢ = K * u.

(7i) A free energy solution to (1.3) on [0,T") with initial condition ug is a weak solution u to (1.3)
on [0, T) with initial condition ug satisfying additionally: w*™=Y/2 € L2(0,t; H'(R%)) and

Flu(t)] —i—/ot/Rd

for allt € (0,T) with ¢ = K * u.

2 dz ds < Fluo] (1.6)

2m —1

< 2m Vu(zm1)/2(3,36)—u1/2(s,x)V¢(s,x)>

In (1.6), we cannot write the Fisher information factorised by u as in (1.4) because of the lack of
regularity of u. We note that both (1.5) and (1.6) are meaningful. Indeed, the regularity required
for u implies that the solution ¢ = K % u to the Poisson equation satisfies ¢ € L>°(0,¢; H'(R?))
for all t € (0,7). In addition, it follows from (1.5) by classical approximation arguments that

lu(®) 1 = /Rdu(t,x) dz = /Rd wo(@) dz = |[ugls = M for € [0,T). (1.7)
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Indeed, take a sequence of functions (1g) in D([0,T) x R?) such that 1 — 14 a.e. and
0 <vpr < 1. Writing (1.5) with ¢ = g, the integrability properties of u, Vu™ and V¢ allow us
to pass to the limit as R — oo and deduce (1.7).

Let us point out that the existence of free energy solutions for a related problem was essentially
obtained in [34, 35, 30] where the Poisson equation is replaced by —A¢ = u — ¢. There, the
authors also show that the mass is the suitable quantity for (1.3) allowing for a dichotomy.
Precisely, the author shows that there exist two masses 0 < M; < Ms such that if 0 < M < M,
the solutions exist globally in time, while for M > My there are solutions blowing up in finite
time. The values of these masses, are related to the sharp constants of the Sobolev inequality.

Here, we will make a fundamental use of a variant to the Hardy-Littlewood-Sobolev (VHLS)
inequality, see Lemma 3.2: for all h € L'(R?) NL™(RY), there exists an optimal constant C, such

that —
r Y m 2/d
7d$dy‘§0*hmh ,

'//RdX]Rd |x — y|d*2 || H H ||1

This inequality will play the same role as the logarithmic HLS inequality proved in [9] for the
classical PKS system in d = 2 [17, 7, 6]. The VHLS inequality and the identification of the
equality cases allow us to give the first main result of this work, namely, the following sharp

critical mass
9 d/2
M, :=|——m—
‘ {(m -1)C. Cd}

for equation (1.3). More precisely, we will show that free energy solutions exist globally for
M € (0, M.] while there are finite time blowing-up solutions otherwise. However, the long time
asymptotics of the solutions is much more complicated compared to the classical PKS system
in two dimensions. The main results of this work and the open problems related to large times
asymptotics can be summarised as follows:

e Sub-critical case: 0 < M < M., solutions exist globally in time and there exists a radially
symmetric compactly supported self-similar solution, although we are not able to show that
it attracts all global solutions. See Proposition 4.4, Theorem 5.2 and Corollary 5.7.

e Critical case: M = M., solutions exist globally in time, see Proposition 4.7. There are
infinitely many compactly supported stationary solutions. The second moment of solutions
is non-decreasing in time, with two possibilities we cannot exclude: either is uniformly
bounded in time or diverges. Moreover, the L™-norm of the solution could be divergent as
t — oo or a diverging sequence of times could exist with bounded L™-norm. However, we
show a striking difference with respect to the classical PKS system in two dimensions [6],
namely, the existence of global in time solutions not blowing-up in infinite time. We will
comment further on these issues in Section 4.2.3.

e Super-critical case: M > M., we prove that there exist solutions, corresponding to initial
data with negative free energy, blowing up in finite time, see Proposition 4.3. However,
we cannot exclude the possibility that solutions with positive free energy may be global in
time.

This model shares with the non-linear Schrodinger equation (NLS) [14, 36] and the unstable
thin-film equation (UTF) [2, 3] a very rich behaviour with two “levels of criticality”. The first
level is given by the homogeneity of the “attractive” and “repulsive” terms in each problem. In
our particular case, this refers to the aggregation versus diffusion mechanisms. As seen above, the
balance happens precisely for our chosen exponent m = my. In the NLS equation this happens for
the so-called pseudo-conformal nonlinearity [14, Chapter 6]. In the UTF equation this happens
in the so-called marginal case [2, 3]. Our paper is concerned with the second level of criticality



which only occurs when the homogeneity of the “attractive” and “repulsive” terms matches. In
that particular case and for the three models there exists a critical value M, of the mass which is
the maximum value of the mass below which the solutions exist globally in time, see [14, 39, 29]
for the pseudo-conformal NLS equation and [3, 33| for the marginal UTF equation. Note that
mass refers to the L2-mnorm of the solution for the NLS equation and the L'-norm for (1.3) and
the UTF equation.

Let us also point out that in all these three problems, the virial method is an elegant way to
prove that there are solutions which blow-up above the critical mass, see Remark 4.2. A common
technique with the NLS equation is the use of the concentration compactness method for clarifying
the blow-up scenario for critical mass, see Proposition 4.5. For the NLS equation, the result in
[29] goes further and clarifies the blow-up for super-critical masses close to critical. Moreover, all
these models have in common the existence of suitable free energies with two competing terms.
As a main difference the free energy of the NLS equation is conservative whereas it is dissipated
for (1.3) and the UTF equation.

The results are organised as follows. Section 2 shows a key maximal time of existence criterion
for free energy solutions of equation (1.3). This criterion improves over the results in [34, 35] since
it is only based on the boundedness or unboundedness in time of the L"*-norm of the solutions
and it has to be compared to a similar criterion based on the logarithmic entropy in the classical
PKS system in two dimensions obtained in [6]. Section 3 is devoted to the variational study
of the minimisation of the free energy functional over the set of densities with a fixed mass.
With that aim the proof of the VHLS inequality and the identification of the equality cases are
performed. Section 4 uses this variational information to show the above main results concerning
the dichotomy, the global existence for M < M, and the characterisation by concentration-
compactness techniques of the nature of the possible blow-up in the critical case leading to the
global existence for this critical value. Finally, the last section is devoted to the study of the free
energy functional in self-similar variables and the proof of the existence of self-similar solutions
in the sub-critical case.

2 Existence criterion

As in [34, 35], we consider the regularised problem

Ou,

5 (7)) = div[V (feou) (t, ) — ue(t, 2) Ve (t, )] t>0, zeR?,
o.(t,z) =K*us(t,z), t>0, z€eR?, (2.1)
ue(0,2) =u§ >0 reRe,
where f. : [0,00) — R is given by fe(u) := (u + €)™ — ™. Here, uf is the convolution of ug
with a sequence of mollifiers and ||u§|[1 = ||uo|l1 = M in particular. This regularised problem has

global in time smooth solutions. This approximation has been proved to be convergent. More
precisely, the result in [35, Section 4] asserts that if we assume that

sup [u(6)]ls0 < & (2.2)
o<t<T

where k is independent of € > 0, then there exists a sub-sequence ¢, — 0, such that

Ug, — U strongly in C([O,T],L{’OC(Rd)) and a.e. in (0,7) x R, (2.3)

Vul' — Vu" weakly-* in L>(0, T; L2 (R%)), (2.4)
¢e, (t) — o(t) strongly in LT .(R%) a.e. in (0,7, (2.5)
Ve, (t) — Vo(t) strongly in LT .(R%) a.e. in (0,7, (2.6)



for any p € (1,00) and r € (1,00], and u is a weak solution to (1.3) on [0,7") with ¢ = K * u.
Moreover, the free energy [34, Proposition 6.1] satisfies Flu(t)] < Flug] for a.e. ¢ > 0. However,
a detailed analysis of the proof in [34, Proposition 6.1] shows that the weak solution is in fact a
free energy solution.

Proposition 2.1 (Existence of free energy solutions) Under assumption (1.2) on the ini-
tial data and (2.2) on the approximation sequence, there exists a free energy solution to (1.3) in
[0,7).

Proof. The only remaining points not covered by the results in [34, 35] are the lower semi-
continuity of the free energy dissipation and the fact that «(>”~1/2 belongs to L?(0,t; H'(R?))
for t € [0,7). The latter will actually be shown in the proof of Lemma 2.3, see (2.9) below.
Concerning the former, a careful reading of the proof of [34, Proposition 6.1] gives that

2
Yy (x) de dt < F. j[uo)

m—1

Falue®+7 [ [ fuets.a) e

V(i) + 7 = n(s.0)

for a.e. t € (0,T) where vy is a standard cut-off function in R? for any / € N and

Fatuett) = [ Dy ar 1 ] K= ) v ey

In this regularised setting, we can write that

2
V(ue +&)®m=D/2 _ (y, 4+ ¢)V/?2V ¢,

2m
2m —1

(ue +¢)

2 ‘

v [mﬂz (e +e)™ 7 = %]

As proved in [34], we have F. ;luc,(t)] — Flu(t)] as &, — 0 and | — oo. In addition, it is
straightforward from the convergence properties (2.3)-(2.6) above to pass to the limit as &, — 0
in the free energy dissipation functional with the help of a lower semi-continuity argument. We
leave the details to the reader, see e.g. [31] or [10, Lemma 10]. Hence, passing to the limit as
[ — o0, then u is a free energy solution as it satisfies the free energy inequality (1.6). U

Remark 2.2 The free energy inequality (1.6) can be obtained with constant 3/4 multiplying the
entropy dissipation directly from [34, Proposition 6.1] and the procedure above. This is a technical
issue that can be improved to constant 1 by redoing the proof in [34, Proposition 6.1] treating more
carefully the free energy dissipation term. In fact, the proof in [34, Proposition 6.1] shows that
one can choose the constant as close to 1 as wanted.

According to Proposition 2.1, the existence of a free energy solution to (1.3) on [0,7") depends
on the availability of the L*°-bound (2.2) and we shall focus on establishing the latter. As we
shall see in the next lemma, such a bound actually follows from a similar bound in L™(R?)
which additionally provides a characterisation of the maximal existence time. More precisely,
we characterise the maximal time of existence by showing the local in time boundedness of the
L™-norm independently of the approximation parameter € > 0 and how this estimate implies the
local in time L*-estimate (2.2).

Lemma 2.3 (From uniform integrability to L°°-bounds) For any n > 0 there exists 1, >
0 depending only on d, M, and n such that, if

sup [ (%) on < 1
€€(0,1)

for some t* € [0,00), then



(i) the family (uc)e is bounded in L®°(t*,t* + 7,,; L™ (RY)).
(i) Moreover, if (u.(t*))e is also bounded in LP(RY) for some p € (m, 0], then (u.). is bounded
in Lo (t*, t* + 7,,; LP(RY)).

Proof. To prove this result we need to refine the argument already used in the two-dimensional
situation d = 2 with linear diffusion m = 1 in [7, 6]. We follow a procedure analogous to the ones
in [23, 8, 34, 16].

Step 1 - L"-estimates: By (2.1) we have

d _ —
EHUEHZ = —m(m—1) /Rd u™? Vu, - (m(us +¢) 'Wue — u. Vo:) dz

N 42”2;(7_1 mem 1) /2H 1) /Rd U™ Ag, dz
_ _%Hv 02| (= 1)

As
om  2m+1) 2

dm—1 " 2m—1 ~d—2’
we have the following Gagliardo-Nirenberg-Sobolev inequality: there exists a positive constant C
such that

1<

‘[(Qm 1)d]/[(m~+1)(2m+d—2)] ” ”2m2/[(m+1)(2m+d 2)]

[wll2(m+1)/@2m-1) < C[|[Vwl 2m/(2m—1)

which we apply with w = ume D/2 5 obtain
HuamTl 1)/2 <C Hvu (2m— 1)/2H [(2m—1)d]/[(m~+1)(2m+d—2)] Hus\\%2(Qm_l)/[(m+1)(2m+d—2)} .
It leads to

Hu H2m2/(2m+d72)

||u€|erl <C Hv (2m—1) /2H2d/(2m+d 2)

m—+1
2m
< (2m— 1/2” m?/(m—1)
(2m—1 Hv“ + Clluellm
We thus end up with
4 cmim =) m <(m-1 m*/(m—1) 2.
gl + o |V < Gm = D el (2.7)

In particular, for any to > ¢; >0

~(m-1)
e (t2) 57 < [ e (@) 177D = € (1 = 11)] (2.8)
Taking t; = t* we deduce from (2.8) that
—(m—1)
ue ()| < (n—m/<m—1> —C(t— t*)> ( for ¢ € [t*,¢* + 27,,)

with 7, = 1/ (2Cy™/(m=Y). Consequently, |[u-(t)||™ < (Cr,)~("V for t € [t*,#* + 7,)] and the
proof of the first assertion of Lemma 2.3 is complete. In addition, coming back to (2.7), we
further deduce that
t*+1y
/.

2
vugm*l)/?HQ <Ot n) . (2.9)




Step 2 - LP-estimates, p € (m,00): For t € [t*,t" + 7], K > 1, and p > m, we infer from (2.1)
that

) =Kl < =mpr=1) [ () = K972 et 2 Ve do

+p(p—1) /R ) [(ug(t) — K7 K (ue(t) — K){’;Q] Vu. - V. dzx

< —mplp-1) [ (uelt) = K)77 Vel da
R

= [ =) = K 4 0K () = K] A da

g 7 oo - ]

with
(D) = p K | (ue(t) = K) 4 |57 + (2p — 1) K [[(ue(t) = K) 4|5+ (0 — 1) [[(ue(t) = K) 4|7 -

We now use the following interpolation inequality

||w||£ﬁ <C(p Hv( (m+p— 1)/2)H ||w||2/d

which is a consequence of the Gagliardo-Nirenberg-Sobolev and Hélder inequalities (see, e.g., [35,
Lemma 3.2]) to obtain

) < (DKt = K)o+ K2 o ueto) = K} + 2p— 1) K [[(us(t) - K)o I
+ W) |V ey = 20| fwetr) - K3
Noting that
0~ 1)1 < ol (L)

and recalling that ||uc(t)||y = M we conclude that

W < 00y B o [y e |

+ K2p—1+4(p—1)K][|(u:(t) = K)¢ |l + KM .

By Step 1, we may choose K = K, large enough such that

luc@®)n? _ 4mpp—1)
K2m=D/md = (m +p— 1)

for all t € [t*,t* + 7] and € € (0,1), hence
I < 4mp(p—1) K (m+p—1)/2 C * 1 p
W) < e |7 (e — ¢ Ot ) [+ ) — K 18)
Therefore q
3 (e(®) = K[l < Clp,t*,m) [1+ [1(ue () = Ka)+[15]
so that
lelt) = Ko)4 2 < Clp,tm) for t€[t,¢ 47, and =€ (0,1)

8



As
[ue()]I} < C(p) <Kffm [Jue (@)l + [[(ue(t) — K*)+||§) ;

the previous inequality and Step 1 warrant that

lu-(ll, < Cp,t",m) for te ", +7] and € (0,1).

Step 3 - L*-estimates: As a direct consequence of Step 2 with p = d + 1 and Morrey’s
embedding theorem (V). is bounded in L®((t*,¢* + 7,,) x R%R?). This property in turn
implies that (uc)e is bounded in L((t*,t* + 7,,) x R?) and we refer to [8, Lemma 3.2] and [23]
for a proof (see also [35, Section 5] and [34, Theorem 1.2] for alternative arguments). O

As a consequence of the previous lemma, we are able to construct a free energy solution
defined on a maximal existence time.

Theorem 2.4 (Maximal free energy solution) Under assumption (1.2) on the initial con-
dition there are T,, € (0,00] and a free energy solution u to (1.3) on [0,T,) with the following
alternative: Either T, = oo or T,, < oo and ||u(t)||m, — oo ast /' T,. Furthermore there exists
a positive constant Cy depending only on d such that u satisfies

a2l < () 70D = Cotz 1)) (210)

forty € [0,T,) and ts € (t1,T,).
Proof. We put §,(t) = sup.¢(o,1) [[ue(t)|lp € (0,00] for t > 0 and p € [m, oo] and
Ty =sup{T >0 : &, € L=(0,7)} .

Clearly the definition of the sequence (uj). and (1.2) ensure that &,(0) is finite for all p € [m, c0].
By Lemma 2.3 there exists t; > 0 such that &, is bounded on [0, ¢;] for all p € [m, oc]. Then (2.2)
is fulfilled for T = ¢; and there is a free energy solution to (1.3) on [0,¢1) by Proposition 2.1
and (2.9). This ensures in particular that 77 > ¢; > 0.
We next claim that
€0 € L°(0,T) for any T € [0,T1) . (2.11)

Indeed, consider T7° = sup{T" € (0,71) : &x € L*°(0,7)} and assume for contradiction that
T7° < Th. Then &, belongs to L°°(0,77°) and we put n = [|§m [|ec 0,700y and ¢* =T — (75/2),
7, being defined in Lemma 2.3. As &, (t*) < n and £ (t¥) is finite we may apply Lemma 2.3
to deduce that both &, and {, belong to L*°(t*,t* + 7)), the latter property contradicting the
definition of T7° as t* + 1, = T7° + (7,,/2).

Now, thanks to (2.11), (2.2) is fulfilled for any T' € [0,7}) and the existence of a free energy
solution u to (1.3) on [0,77) follows from Proposition 2.1 and (2.9). Moreover, either 77 = oo or
Ty < oo and ||u(t)||m — oo as t  T1, and the proof of Theorem 2.4 is complete with T,, = T}.
Or T} < oo and

lim inf ||w(t)||m < oo .
t—T,

In that case, there are n > 0 and an increasing sequence of positive real numbers (s;);>1 such
that s; — 11 as j — oo and ||u(s;)||lm < 1. Fix jo > 1 such that s;, > 171 — (7,/2) with 7,
defined in Lemma 2.3 and put @y = u(s;,); According to Definition 1.1 and (2.4) ag fulfils (1.2)
and we may proceed as above to obtain a free energy solution @ to (1.3) on [0,7%) for some
Ty > 71,. Setting u(t) = u(t) for t € [0,s,] and a(t) = a(t — s;,) for t € [sjy,5j, + To) we
first note that « is a free energy solution to (1.3) on [0,s;, + 75) and a true extension of u as



sjo + 1o > Ty — (1/2) + 7, > T1 + (7,/2). We then iterate this construction as long as the
alternative stated in Theorem 2.4 is not fulfilled to complete the proof.

Thanks to the regularity of weak solutions we may next proceed as in the proof of (2.8) to
deduce (2.10). O

Corollary 2.5 (Lower bound on the blow-up rate) Letu be the free energy solution to (1.3)
on [0,T,,) constructed in Theorem 2.4 with an initial condition ug satisfying (1.2). If T,, is finite,
then

@)l > [Co (T, = 1))~

where Cy is defined in Theorem 2.4.
Proof. Let t € (0,T,,) and t2 € (¢,T,,). By (2.10), we have
o) 5™ "D = fu(t) 0D = Co (2 — 1) -
Letting to going to T, gives
0> [lu(t) [/ = Co (T, — 1),
hence the expected result. O

Remark 2.6 No uniqueness result for (1.3) seems to be available in the literature. We thus
stress that, from now on, all the results refer to the solutions constructed in Theorem 2.4.

3 The free energy functional F

As we have just seen in the existence proof, the existence time of a free energy solution to (1.3)
heavily depends on the behaviour of its L™-norm. As the free energy F involves the L™-norm,
the information given F will be of paramount importance. Let us then proceed to a deeper study
of this functional.

Lemma 3.1 (Scaling properties of the free energy) Given h € LY (R%) N L™(R%), let us
define hy(z) :== A\h(A\z), then

Flhy) = X72F[h]  for all X € (0,00) .
Proof. We have

1 h( h(A
f[hA]:_/ N2\ )™ // N BTV MAY) g,

m—1 RexRd |~"3 — |
)\d72 cq )\d 2 )

= h(x)™ dz — ————==dxd
m—1 /Rd ()" da 2 //Rded |z — y|d2 o

=\ F

giving the announced scaling property. O

We next establish a variant to the Hardy-Littlewood-Sobolev (VHLS) inequality:
Lemma 3.2 (VHLS inequality) For h € L'(R%) NL™(R?) we put

. h@)h(y)
= o

C, = sup {% h € LY(RY) mLm(Rd)} < o0 . (3.1)
h hl|m

Then
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First recall the Hardy-Littlewood-Sobolev (HLS) inequality, see [25, Theorem 4.3|, hich states

that if 1 1
~+-+==2 and 0<\<d,
p q d

then for all f € LP(R?), g € LI(R?), there exists a sharp positive constant Cprg > 0, given
by [24], which only depends on p, ¢ and A such that

‘//Rded % da dy‘ < Cus [ f[lp [lgllq - (3.2)

Proof of Lemma 3.2. Consider h € L*(R?) N L™(R%). Applying the HLS inequality (3.2) with
p=q=2d/(d+2) and A = d — 2, and then the Holder inequality with 1 < p = 2d/(d + 2) < m,
we obtain

h(z) h(y) 2 2/d
h)| = 7 dzdy| < C hlz < C h h||m .
’W( )’ ‘MRdXRd ’1’ — y’d_g L dy| =~ UHLS H Hp = “HLS H Hl H Hm
Consequently, C is finite and bounded from above by Cirs. O

We next turn to the existence of maximisers for the VHLS inequality which can be proved
by similar arguments as for the classical HLS inequality in [24, Theorem 2.5].

Lemma 3.3 (Extremals of the VHLS inequality) There exists a non-negative, radially sym-
metric and non-increasing function P, € LY(R?) NL™(RY) such that W(P,) = C, with || Py||; =
[Pl = 1.

Proof. Define

W(h)

A(h) = ——2——
RI % (||

for h € LY(R?) N L™(RY) ,

and consider a maximising sequence (p;); in L!(R%) N L™(R?), that is
lim A(pj) = C. . (3.3)

J—00

Step 1 - We first prove that we may assume that p; is a non-negative, radially symmetric,
non-increasing function such that ||p;|j1 = ||pj|lm = 1 for any j > 0. Indeed, A(p;) < A(|p;|) so
that (|p;|), is also a maximising sequence. Next, let us introduce p;(x) := Aj|p;(p;x)| with i :=
(Hijl/Hpj||m)m/[d(m_1)] and \; := ,u?/Hijl. A direct computation shows that A (p;) = A(|pj])
and [|p;|li = [|pj]lm = 1. Finally, denoting by p; the symmetric decreasing rearrangement of p;,
we infer from the Riesz rearrangement properties [24, Lemma 2.1] that

A(pj) = W(pj) = W(p;) = AB;) = Alpsl) -
Consequently, <pj) _is also a maximising sequence and the first step is proved.
J

Step 2 - Let us now prove that the supremum is achieved. For k € {1, m}, the monotonicity
and the non-negativity of p; imply that

00 R
1= p; It = dB(0,1)| /O P () dr > d|B(0,1)] p(R) /0 P dr > [B(0, 1) R p(R)

So that
0 < p;(R) <b(R) := Cy nf{R"¥™, R4} for R>0. (3.4)

11



Now, we use once more the monotonicity of the p;’s and their boundedness in (R, co) for any
R > 0 to deduce from Helly’s theorem that there are a sub-sequence of (p;); (not relabelled) and
a non-negative and non-increasing function P, such that (p;); converges to P, point-wisely. In
addition, as 1 < 2d/(d + 2) < m, x +— b(|z|) belongs to L>¥/(@+2)(R9) while the HLS inequality
(3.2) warrants that

(z,y) = b(lz]) b(ly|) |« — y| "7 € L' (R x RY) .
Together with (3.4) and the point-wise convergence of (p;);, this implies that

lim W(p;) = W(P)

J—00

by the Lebesgue dominated convergence theorem. Consequently, W(P,) = C, and thus P, # 0. In
addition, the point-wise convergence of (p;); and Fatou’s lemma ensure || P|[; < 1 and || Py, < 1.
Therefore A(P,) > C, and using (3.3) we conclude that A(P,) = C,. This in turn implies that
[Pully = [ Pillm = 1. O

We are now in a position to begin the study of the free energy functional F. To this end, let
us define the critical mass M, by

Next, for M > 0, we put

piar = hig}f F[h) where Yy :={h € LYRY) NL™RY) : ||n]j; = M},
cVm

and first identify the values of s as a function of M > 0.

Proposition 3.4 (Infimum of the free energy) We have

0 if M € (0, M.],
fing = (3.6)
—00 if M > M..
Moreover,
C;Cd <Mc2/d _ M2/d> |h|m < Fh] < % <M3/d +M2/d> 1Al (3.7)

for h € Yyr. Furthermore, the infimum ppr is not achieved if M < M, while there exists one
minimiser of F in V..

Proof. Consider h € L(R?) nL™(R%). By the VHLS inequality (3.1),

1
A > (g = S ) Il > S (M2 = 32

m—1

and ) c. o
A < (g + S ) Il < S (M2 32

m—1 2
hence (3.7).
Case M < M. - By (3.7), F is non-negative, so that py; > 0. Choosing

M 2
— 7 Py
h*(t7 1’) (27Tt)d/2 € 9

12



then
Il =M and || ()]l = O (£1m2)

Therefore h.(t) belongs to Yy for each ¢ > 0 and it follows from (3.7) that F[h.(t)] — 0 as
t — oo. The infimum pys of F on Yy is thus non-positive, hence ppr = 0.

Finally, in the case M < M., pp = 0 and (3.7) imply that the infimum of F in Y is not
achieved. If M = M, and p € L'(R%) N L™(RY) satisfies W(p) = C. ||p||™ Hpr/d (such a function
exists by Lemma 3.3), then

pla) = Mz (wag;m/ @)

belongs to Vs, with |||, = 1 and W(p) = C. MY Therefore, F[p] = 0 and we have thus
proved that suitably rescaled extremals of the VHLS inequality (3.1) are minimisers for F in

Y.

Case M > M. - This part of the proof is based on arguments in [39]. Fix 6 € ((M./M)¥4,1).
By the VHLS inequality (3.1), there exists a non-zero function h* € L*(R%) N L™(R%), such that

(W(hY)]

0C, < —————
2/d —
1= 1= 13/

< (3.8)
Since [W(h*)| < W(|h*|) we may assume without loss of generality that h* is non-negative. Let
A > 0 and consider the function hy(z) := Ah* <)\||h*||}/d M_l/dx). Then, hy € Yy and it
follows from the definition of M, and (3.8) that

M . Mo\ (@+2)/d
_yd—2 *m _ Y *
il =2 [(m—nuh*ul -5 () ove)
M . Mo\ (@+2)/d »
< \I-2 —h*m——d< > 0C, ||h*||™ ||n* ¥
[(m_l)Hh*Hl H H 2 Hh*Hl H H H Hl

_gae (M NS e [N
- IRE m—1 [\ M |

Owing to the choice of § we may let A go to infinity to obtain that py; = —oo, thus completing
the proof. 0

Let us now describe the set of minimisers of F in V..

Proposition 3.5 (Identification of the minimisers) Let  be the unique positive radial clas-
sical solution to

—1
AC+ =2 Mm=1) — 4n B(0,1) with (=0 on 0B(0,1).
m
If V is a minimiser of F in Y, there are R > 0 and z € R? such that

_ d/(d—2)
R e

0 if v € R4\ B(z, R).

Vix) =
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Proof. We have already shown in Proposition 3.4 that the function F has at least a minimiser in
V.. Let V be a minimiser of F in Yy, and define V (z) := \|V||;Lm/(m 2 <x IV 1m m/(d(m= 1)))

for z € R%. We have |[V|; = M,, ||[V|lm = 1 and F[V] = 0, so that V is also a minimiser
of F in YVp,. We next denote by W the symmetric rearrangement of V. Then |W|, = M.,
Wl = |V ]l = 1 and W(W) > [W(V)]| by the Riesz rearrangement properties [24, Lemma 2.1].
Therefore, F[W] < F[V] = 0 and thus F[W] = 0 since W € Yyz,. This in turn implies that
W(W) = [W(V)|. Again by [24, Lemma 2.1] there is y € R? such that V(z) = W(z — y) for
y € RY

We next derive the Euler-Lagrange equation solved by W and first point out that a difficulty
arises from the non-differentiability of the L'-norm. Nevertheless, we introduce ¥ := {z € R? .
W(z) =0}, Yy :={z € R : W(z) > 0} and consider ¢ € C{°(R%) and & > 0. The perturbation
M, |W + || H(W + € ¢) belongs to Yy, and is such that

M.
F [|’W+5(PH1(W+€()O):| > F[W]>0

After a few computations that we omit here we may let € — 0, and conclude that

2// Mi(i) dy dz
RixRd [T — Yl

2
<C,M¥hm | W) () dz + p C, M2=4/d (/2 o(x) dz —|—/Z lo(z)] dx> .
+ 0

Rd
Using the definition of M, and K, the above formula also reads

m m 1 2—m 1
— Wl KW —— de > — - d 3.9
= Wl m e T nn [ oo @)

for all ¢ € C3°(R?). On the one hand, the right-hand side of (3.9) vanishes for any non-negative
¢ € C°(RY), so that
2—m

m 1
— WM™l KxW4+Z—— — >0 ae in R
m—1 * +m—1Mc_ e

Therefore, for almost every x € ¥, we have 0 > I« W (x) — (2 — m)/[(m — 1)M,] so that

m m—1 o _ 2—m L
p—T W Hz)=0= (IC x W (x) p— Mc> for almost every x € 3. (3.10)

On the other hand, if ¥ € C§° (RY), a standard approximation argument allows us to take ¢ =
1y, ¢ in (3.9) and deduce that

2—-m 1

— Wl s W 4 —— — dx>0.
/E+<m— W —1M>wx_

This inequality being also valid for —1, we conclude that the left-hand side of the above inequality
vanishes for all ¢ € C5°(R?), whence

_ 2—m 1 .
me 1 K*W—mﬁc a.c. 11 E+. (311)
Combining (3.10) and (3.11) gives
2 — 1
LWm_lz K*W——m— a.e. in R?,
m —1 m—1 Mc +



Now, since W is radially symmetric and non-increasing there exists p € (0, oo] such that
Y, C B(0,p) and %o c R4\ B(0,p) ,

and we infer from (3.11) that

m—1 -
S = ———— for ae. B . 12
m—lW K«W v or a.e. x € B(0,p) (3.12)
Since W € L"(R%) for each r € (1,m] it follows from the HLS inequality (3.2) that K+W € L"(R)
for each r € (d/(d —2),m/(m — 1)?], see [25, Theorem 10.2]. In particular, K * W and W™
both belong to L™/ (m=1(R%). This property and (3.12) then exclude that p = co as M, > 0.
Therefore p < oo and

KexW(z)— —— if
m Wmil(x): * (x) m_lMc 1 ‘x’<p7

m—1
0 if |[x] > p.

Since K+ W € L™/ (m=1*(R%) the above inequality allows us to conclude that W € L™/ (m=1)(R4),
We now improve the regularity of W by classical elliptic estimates. Introduce 6 := W™ ! and

note that
m m—11

m_1 O(x) = e Kz —y) W(y) dy + m— 2,

for € B(0, p) and W € L™/ (m=1)(R%). By [19, Theorem 9.9], we have § € W2™/(m=1(B(0, p)).
A bootstrap argument then ensures that § and W both belong to W27 (B(0, p)) for every r €
(1,00). It then follows from [19, Lemma 4.2] that 6 € C2(B(0, p)) with —Af = (m—1)0™/ (=1 /m
in B(0, p) while [19, Lemma 4.1] warrants that § € C'(R?). Then 0(z) = 0 if |z| = p and 0 is
thus a classical solution to —Af = (m —1)0"/=1 /m in B(0, p) with = 0 on dB(0, p). By [18,
Lemma 2.3], there is a unique positive solution to this problem. In fact, a simple scaling argument
shows that

(z) = p2(m—1)/(m—2)g (%) for z in B(0, p)

1 2\ 14/(d-2) '
W(z) = e [C (;)] for x in B(0,p) .

and then

Coming back to V', we have

AW Az —y) =0 ifmeRd\B(%g),
V(z)= d d/(d—2)
A AVIASE . Yy p
(;) H(x—x) (%) >] reen(55)
which is the desired result with R = p/\ and z = y/\. O

Remark 3.6 As a consequence of the identification of the minimisers given in Proposition 3.5,
C. < Curs. Otherwise any minimiser V. of F is Yy, would also be an extremum for the HLS
inequality (3.2) and thus be equal to

a

V(x) = (1 + |x|2)(d+2)/2 )

for some a > 0, see [24, Theorem 3.1]. This contradicts Proposition 3.5.
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Lemma 3.7 (Unboundedness of F) For each M > 0 we have

sup Flh] = +o0. (3.13)
heYum

If M € (0,M,) the claim (3.13) is actually a straightforward consequence of (3.7).
Proof. Let M > 0 and assume for contradiction that

A:= sup F[h] < .
heYm

Consider h € LY(RY) NL™(R?) and define hy(x) := MAh(Az)/||h||; for z € R and A > 0. Then
”h)\Hl = M so that hy € Yy with

M \™ M \?
[hallm =22 [ —— ] [[h|7 and W(hy) =A"2 [ —— ] W(h).
R 171

Since hy € Yy we have Flhy] < A, hence
c
Il < (m = 1) (A+ S W)

from which we deduce

mo, 2/d
Al < (m—1) (f“” <%> v (u%l) WW)

o (IR™ 1 M\
< —1A)\2d<||—> + < > W(h).
=tm=b M o, M4\ Rl (h)

This inequality being valid for all A > 0 we let A — oo and use the HLS inequality (3.2) to obtain

TRV MY Cags 12001
b < w( > W(h)§<_> far2)

~ o, Rl M. Co ||n)2e
Consequently,
m i n2/d MN\Y? Cyrs 2
1Allm IPIE™ <\ 37 . 17l13a/(a+2) (3.14)

for all h € LY(RY) N L™(RY).

Now, as 2d/(d + 2) < m, we may choose v € ((d + 2)/d,d/m) and put bs(z) = (§ +
|z[) =7 1p(0,1)(z) for = € R? and 6 € [0,1]. Clearly bs belongs to L'(R?) N L™(R?) with ||bs|j; >
[01]l1 > 0 and |[bsll2q/(a+2) < l|boll2a/(a4+2) < oo for each ¢ € (0,1]. These properties and (3.14)
readily imply that (bs)se(o,1] is bounded in L™(RY) which is clearly not true according to the
choice of . Therefore A cannot be finite and Lemma 3.7 is proved. O

4 Critical threshold

It turns out that the critical mass M, arising in the study of the free energy functional and
defined in (3.5) plays also an important role in the dynamics of (1.3). In the next sections we
will distinguish the three cases M > M, (super-critical case), M < M, (sub-critical case), and
M = M, (critical case), M denoting the L'(R%)-norm of the initial condition uy.
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4.1 Finite time blow-up in the super-critical case

We start with the case M > M, in which we use the standard argument relying on the evolution
of the second moment of solutions as originally done in [21] for the PKS system corresponding
tod=2and m = 1.

Lemma 4.1 (Virial identity) Under assumption (1.2), let u be a free energy solution to (1.3)
on [0, T) with initial condition ugy for some T € (0,00]. Then

— |z u(t,z) doz = 2(d — 2) Flu(t)], te€]0,T).

dt Jpa
Proof. Here, we show the formal computation leading to this property, the passing to the limit
from the approximated problem (2.1) can be done by adapting the arguments in [34, Lemma 6.2]
and [7, Lemma 2.1] without any further complication. By integration by parts in (1.3) and
symmetrising the second term, we obtain

4 22 u(t, ) dz = 2d / u™(t,x) de 4 2 // [z VE(x —y)]u(t,z)u(t,y) dy dz
dt Jpa Rd R x R4
=2d / u™(t,z) dz + // [(z —y)  VK(z —y)]u(t,z) u(t,y) dy dz
R4 RY xR4
=2(d=2) Flu@®)]
giving the desired identity. O

Remark 4.2 Let us mention that a similar argument can be found in [34, Lemma 6.2] and [35]
in the present situation where the Poisson equation is substituted by —A¢ = u — ¢. The previous
evolution for the second moment is simpler in our case than the one in [35] and resembles that
arising in the study of critical non-linear Schrédinger equations [41, 14]. Actually, for the NLS
equation the wvirial identity involves the second time derivative of the second moment which is
shown to be bounded from above by a concave function vabishing at some finite time. Let us
stress that, in our case, the second moment is always concave in time since its second time
derivative is given by the dissipation of the free-energy functional, see (1.4).

Let us also emphasise that this second moment evolution is more complicated than in the
classical PKS system corresponding to d = 2 and m = 1 where the time derivative of the second
moment is a constant.

An easy consequence of the previous lemma is the following blow-up result.

Proposition 4.3 (Blowing-up solutions) If M > M., then there are initial data ug satisfy-
ing (1.2) with ||ugli = M and negative free energy Flug]. Moreover, if ug is such an initial
condition and u denotes a free energy solution to (1.3) on [0,T,,) with initial condition ug, then
T, < oo and the L™-norm of u blows up in finite time.

Proof. The proof is based on the idea of Weinstein [39]. By the identification of the minimisers
for the critical mass given in Proposition 3.5, @ := ¢%(4=2) satisfies (1.2) as well as ||@||; = M. and
Fla] = 0. For M > M., the initial condition ug = (M /M.)u also satisfies (1.2) with ||ug|; = M

and
1 MAN\™, M\?ecq. .
Fwl = = (5) 1l - (57) $w@

]
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is negative as M > M, and m < 2.

Consider next an initial condition wug satisfying (1.2) as well as |[uglls > M. and Flug] < 0.
Denoting by u a corresponding free energy solution to (1.3) on [0,7"), we infer from the time
monotonicity of F and Lemma 4.1 that

d

pr |22 u(t, z) dz = 2(d — 2) Flu(t)] < 2(d —2) Flug] < 0.
t JRrd

This implies that the second moment of u(t) will become negative after some time and contradicts
the non-negativity of u. Therefore, T, is finite and ||u(t)||,, blows up in finite time. O

4.2 Global existence

Proposition 4.4 (Global existence in the subcritical case) Under assumption (1.2), there
exists a free energy solution to (1.3) in [0,00) with initial condition ug.

Proof. By Theorem 2.4 there are T, and a free energy solution to (1.3) in [0,7,) with initial
condition ug. We then infer from (1.6), (1.7), and (3.7) that u(t) belongs to Vs for all ¢ € [0,T,)
and

C,c

=5 (M2 — ) () < Flu(t)] < Fluo] -
As M < M,, we deduce from the previous inequality that u lies in L°(0, min {T’, T,,}; L™ (R%))
for every T' > 0 which implies that 7T, = oo by Theorem 2.4. O

Let us now discuss the critical case.

4.2.1 How would it blow-up?

Proposition 4.5 (Nature of the blow-up) Let ug be an initial condition satisfying (1.2) with
lluolli = M. and consider a free energy solution u to (1.3) on [0,T,,) with initial condition
and T,, € (0,00] and such that ||u(t)|m — oo ast /" T,. If (tx)r is a sequence of positive real
numbers such that ty — T, as k — oo, there are a sub-sequence (t,); of (tx)r and a sequence
(z); in RY such that

lim
j—oo JRrd

de =0,

1 T
J

where A\, == ||u(tk)\|fnm/(d72) and V is the unique radially symmetric minimiser of F in Y, such
that ||V ||m = 1, see Proposition 3.5. Assume further that

My = sup / 22 u(t,x) dz < oo,
tel0,7) /R

then 1
lim z; =z where Z:=— zug(z) do . (4.1)
J—0o0 c JRA
Since par+n, = i + par, for My < M. and My < M., the concentration compactness result
as stated by P.-L. Lions [27] does not seem to apply directly. However, we follow the approach

of M. Weinstein [40] to prove that the conclusion still holds true.

Proof. We set vy,(z) := A u(ty, Ay ) and aim at proving that (vg)), converges strongly in L!(R?).
For this purpose we employ in Step 1 the concentration-compactness principle [27, Theorem I1.1]
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to show that (vg)x is tight up to translations. We argue in Step 2 as in [40, Theorem 1] to
establish that (vg)g has a limit in L'(R?) and identify the limit. In the last step we use the
additional bound on the second moment to show that the dynamics does not escape at infinity.

Step 1 - Tightness. Obviously,
lvgllh = M. and |jog||, =1 for k>1. (4.2)

The concentration-compactness principle [27] implies that there exists a sub-sequence (not rela-
belled) satisfying one of the three following properties:

(Compactness) There exists a sequence (ay)y in R? such that (vg(- + ag))r € R? is tight, that
is, for each € > 0 there is R. > 0 such that

/ vp(z) de > M, — € . (4.3)
B(ak,RE)
(Vanishing) For all R >0
lim sup / vp(x) de =0. (4.4)
k=00 yerd JB(y,R)

(Dichotomy) There exists pu € (0, M,) such that for all ¢ > 0, there exist kg > 1 and three
sequences of non-negative, integrable and compactly supported functions (y; )i, (2)k, and
(wi)k satisfying v, = wj, + y§ + 2L,

lyilh = pf < e fllzill = (Me = )] < e Jwglh <«

klim dist (supp yg,supp zj,) = 00,
— 00

for any k > k.

As usual we shall rule out the possible occurrence of vanishing and dichotomy. To this end
we argue as in [27, Theorem II.1]. Let us first notice that by the scaling and non-negativity
properties of the free energy, (2.10) and (3.6), Flu(tx)] € [0, Flup]] and

Jim Flog] = lm [lu(ty)ll;™ Flu(te)] = 0. (4.6)

Consequently, since |[vg||m = 1 by the definition of A, we have

2 1 2
lim W(oy) = lim = ( o™ — f[vk]> -—— = 0. (4.7)

k—oo cg \'m — 1 cq(m—1)

e Let us first show that vanishing does not take place and argue by contradiction. We split
the non-local term W(vy) in three parts. If |x — y| is small, we control the corresponding term
by the bound in L' N L™ of v. If |z — y| is large the corresponding term is controlled by the
L'-bound of v;. And the remaining term converges to zero if we assume that vanishing occurs
which contradicts (4.7). Indeed, if ¢ € ((d —1)/(d — 2),d/(d — 2)) and R > 0, it follows from the
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Hoélder and Young inequalities that

we(@) e ly) // () vk (1)
W(v x — dy dz + 7]1 T — dy dz
k //Rded |$—y|d 2 Ol/R (| y|) Y RixRd |x—y|d 2 (1/R,R)(| y|) Y
vk(x) vk (y)
1 —y|)dy d
//]Rded |33—y|d 2 liroo) (|7 = l) dy da
1/q s
< toulyary ([l P moamad as) 412 [ o) [t avas
1 2
+ a3 </Rdvk($) d$>

1/R 1/q
< |wg |/ latm=1) HvkH[1(2q—1)/q]—[d/(q(d—2))] (dad// Fd—1-a(d—2) dr)
0

2

M,
+ R¥2M, sup / vp(y) dy do + —=%
zeRd J B(z,R) R
L -2 M
< C(q) Rd—a@ s T R M. :;1]151 /B(x . vk(y) dy da + a2

We let k — oo in the above inequality and use the vanishing assumption (4.4) to obtain that

limsup W(vi,) < C(q) <R2*d + R*(d*q(dﬂ))/q) ‘

k—o0

We next let R to infinity to conclude that W(vy) converges to zero as k — oo which contra-
dicts (4.7).

e Let us next assume for contradiction that dichotomy takes place. We have
W(vk) = W(yp) = W(z) = -W(wp) + 1 + Iz,

where
I = 2// ye(x) zi(y) o —y[* ¢ de dy and Iy := 2// vp(z) wi(y) |z — y|>~ ¢ dz dy .
RIxR4 R4 xR

On the one hand, setting dj, := dist(supp yz,supp z;), we have

Ll < FW) Lo.az) (|2 = yl) [o =y da dy
Rdx]Rd k
+f / V() 2 0) B oy (2 — o) e — o~ oy
Ré xR
Thanks to the definition of dj, the first integral vanishes and we arrive at
L] < MZ (dp)*?

On the other hand it follows from (4.2), (4.5), the HLS inequality (3.2) applied to f = v, g = wy§,
A=d—2and p=q=2d/(d+2), and the Holder inequality with 1 < 2d/(d + 2) < m that

1/d 1/d
1w /

o] < Chrs llvellod/@r2) 1willad/@r2) < Chrs okl vkl |wglly

< Cprs MY |Jwi||m/2 /e
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and 0 < wf < vy, and (4.2) imply that |Jw ||, < 1. Similarly by the variant of the HLS inequality
(3.1), we obtaln

IW(wR)| < Cullwillm e?/? < C.e?/d

Combining these estimates, we have thus shown that, given ¢ € (0, 1), there exists k. > ¢~! such
that

W) = W(gi,) = Wiz, )| < eV (4.8)
Since wj_ is non-negative and the supports of y;_and zj_ are disjoint we have
k. + 2k, + willm = vk, + 2kl = vkl + 2kl

and we deduce from (4.8) that

1 Cd
Flok.] = m”yis + 2k, + Wil — 5 W (k)

1 Cd
> - m o
e (HykEH + |1z lIm) — 5

> ﬂykg] + Flep] - 5 et

IR - FWER) - 5 e

The above inequality, (4.5), (4.6), and the non-negativity of F for functions with L!-norm lower
or equal to M. then entail that

lim Fly; | = lim Flz; | =0. (4.9)
e—0 N e—0 N
Now, (3.7) and (4.5) imply
: Cyca 2/d Cicq .
0 = lim Flyf,) > lim =S5 (29 — i 177) Wy s > =57 (M2 = 1) tim |1
e—0 2 2 e—0
and a similar inequality for 2f_ (with M. — u instead of p1), hence
lim [y [I7 = lim [z [I7; = 0. (4.10)
e—0 N e—0 N
Combining (4.9) and (4.10) gives
Im W(y; ) = im W(z; ) =0,
e—0 N e—0 <

which, together with (4.8), implies that (W(vy_)). goes to 0 as € goes to infinity and contra-
dicts (4.7).

Having excluded the vanishing and dichotomy phenomena we thus conclude that there exists
a sequence (ay)x in R? such that (vg(- + ag))s is tight, that is, satisfies (4.3).

Step 2 - Compactness in L™. We now aim at showing that a sub-sequence of (vi(- + ax))
converges in L'(R?) N L™(R?) towards a minimiser of F in Vyz,. We set Vi(z) := vg(x + ay) for
r € RY and k > 1. By virtue of (4.2) we may assume (after possibly extracting a sub-sequence)
that there is a non-negative V. € L™(R?) such that

Vi = Voo weakly in L™(R?) . (4.11)
By (4.2), (4.3), and (4.11) we have V4 is non-negative with ||Vao|[1 = M. and ||V |lm < 1.
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To prove the convergence of W(V}) to W(Va), we proceed as in Step 1 and split R? x R? in
three parts. If g € ((d —1)/(d — 2),d/(d — 2)) we have

2 M?
IW(Vi) = W(Veo)l < 135

+ C(q) RlaG=d+dl/a

L /g,r)(l7 —yl)
|z —y|*?

dy dx‘ .

Since x +— 11/g ) (|z))|z|>~¢ € LY(RY) N L>®(R?), the weak convergence (4.11) ensures that
(z,y) — Vi(z) Vi(y) converges weakly toward (z,y) — Vo () Vo (y) in L™(R? x RY) so that the
last term of the right-hand side converges to zero as k — oco. Therefore

lim sup [W(Vi) = W(Vao)| < Clq) ( R2d R—[d—q(d—zn/q) _

k—oo

We then let R — oo to obtain
lim W(Vi) = W(Vy) -

k—o0

Owing to the lower semi-continuity of the L™-norm and (4.6) we have

FlVao] < lim in ||V - %d Jlim W(V;) < lim F[i] =0,

m—1
while Proposition 3.4 warrants that F[Vy] > 0 as Vo € Var.. Consequently, F[Vao] = 0 and the
strong convergence of (V) to Va in L™(R?) readily follows: indeed,

1 Cq . cd 1 .
Vil = FVao) + SW(Vao) = Tim (FIVi] + ZW(VR)) = —— lim |[Vii
Vel = FVac] + SW(Vic) = T (FIV]+ Ew(v)) = L Tim [Vl
We have thus shown that V., is a minimiser of F in Yy, with the additional property ||Voo|lm =
1. Furthermore, according to the characterisation of the minimisers given in Proposition 3.5,
there exists g € R? such that Voo(- + y9) =: V is the unique radially symmetric minimiser
of F in Yy, with |V, = 1. Coming back to the original variables we have proved that
(z = M u(te, A (x+ ag, + Y0))), converges to V in LY(RY) and L™(R?). Setting z = A, (ar+yo)
gives

lim
k—oo JRd

1
u(ty, x + xp) — Vi 14 <)\£k>‘ dz =0, (4.12)
k

and thus the first assertion of Proposition 4.5.

Step 3 - Convergence of (zj);. We first note that

/Rdxu(t,x) dx:/Rdxuo(x) da

for t € [0,T,,) so that we have also



for t € [0,7,,) by (1.7). Next, for € € (0,1), we have

< +

(T — xg) / u(ty, z) dz / (Zz — z) u(ty,x) do / (x — zg) u(ty, x) do
B($k7€) B(l‘k,é) B(l‘k76)

g/ |z — x| u(ty, x) doz+ e M.
{lz—zk|>¢}

< / |z — x| u(ty, ) dx
{lz—ak|>e, [2—2|<1/e}

+/ |z — x| u(ty, z) dz + & M.
{le—zr|>e, lz—2[>1/e}

IN

MOl o= o=

/ u(ty,z) de +e (Mg + M,)
{le—zx|>e}

J.

/ V(y) dy +e (Mg + M) .
{lz|>e/x}

1
< u(tk,erxk)——V(i)‘ dy

IYARY

_l’_

Since A\ — 0 as k — oo we infer from (4.12) and the integrability of V' that

limsup |(Z — xp) / u(ty,x) do| <e(Ma+ M,.) .
k—o00 B(xg,e)
Using once more (4.12) we readily deduce that
lim u(ty,z) do = / V(z) do = M, .
k—o0 B(zg,e) Rd

Combining the previous two limits gives

M, limsup | — 2| < & (M + M,)

k—o0
whence the last assertion of Proposition 4.5 by letting £ — 0. U

For radially symmetric solutions we can remove the additional assumption on the second

moment.

Corollary 4.6 (Radially symmetric blow-up) Let uy be a radially symmetric initial condi-
tion satisfying (1.2) with ||uglly = M. and consider a radially symmetric free energy solution u
to (1.3) on [0,T,,) with initial condition ug and T, € (0,00] and such that ||u(t)|, — oo as
t /T, If (tp)r is a sequence of positive real numbers such that ty, — T, as k — oo, there is a
sub-sequence (tx;); of (tx)r such that

1 x
lim u(ty,,x) ———V |[— )| de =0,
j—00 R4 ( kj ) )\gj ()\k])
where \, == Hu(tk)H,}m/(d_Q) and V' is the unique radially symmetric minimiser of F in Y, such

that ||V || = 1.

Proof. The only modification of the proof of Proposition 4.5 is to show that we can choose a; = 0
for all k at the end of Step 1. Indeed, we claim that if € € (0, M./4) we have |a;| < R., where
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ar, and R, are defined in (4.3). Otherwise B(ag, R.) and B(—ay, R.) are disjoint and the radial
symmetry of vg and (4.3) imply that

3 M.,
MCZ/ vg () dx:2/ vg(z) de > 2 (M, —€) >
B(ar, =) UB(~ay, :) B(ax, Bz) 2

and a contradiction. Therefore B(ay, R.) C B(0,2 R.) and thus

/ vp(z) de > M, — ¢
B(0,2R.)

by (4.3). O

4.2.2 When would it blow-up?

Proposition 4.7 (Global existence in the critical case) Let uy be an initial condition sat-
isfying (1.2) with ||uglly = M. and consider a free energy solution u to (1.3) on [0,T,,) with initial
condition ug and T, € (0,00]. Then T, = oco.

The proof of this proposition relies on Proposition 4.5 and the following control of the behaviour
of free energy solutions for large x:

Lemma 4.8 (Control of the tail) Consider a free energy solution u to (1.3) on [0,T,,) with
initial condition uy satisfying (1.2) and T,, € (0,00]. If t — Flu(t)] is bounded from below in
[0,T) for some T < T, then

lim  sup / lz|? u(t,z) dz = 0.
R=00 1efo,1) J{|x|>R}

Proof. Consider a non-decreasing function £ € C*°(R) such that £(r) =0 for [r| <1 and {(r) =1
for |r| > 2 and define

@R(T)=T§4<%> for reR and R>0.

The support of ®p is included in R?\ B(0, R) and, introducing

Fall) = /{x>R}

2
dz ,

2
<2m7i - vy 2m-1/2 _ 172 Vqﬁ) (t,z)

we have

d
_ d 2
” /]Rd R (\x! ) u(t,z) do

2
= - /d 2x d (|x|2) <2mri T Vum—/2 g 1/2 V¢> (t,x) de

R
) 1/2
§2< |z | @ (|=[%)] u(t,x)dx) Tr(t)'/? .
R4

By the definition of ® g, we have
o <[ (7) +1 56 (5) € ()] <2 () +2 (5) € (5)
<&t (%) <2 + 32 sup |z£' (z)‘2> ,
z€R

¢ (5)
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so that r |®,(r)|?> < C ®g(r) for r € R. Therefore, for any t € [0,T),

d

1/2
& Lo dpr (|x|2) u(t,z) de < C </Rd Qpr (|g;|2) u(t, ) dx> Ir(t)/?,

hence

</Rd ®p (Jz) ult, ) dx> 1/2 < </Rd or (|2?) uo(z) dx>1/2 . % /OtI}zﬂ(S) ds .

Now, since Flu(t)] is bounded from below in [0,7"), we have

I

so that

2
dz ds < sup {Flug] — Flu(t)]} < oo,
t€[0,T)

2m—1

< 2m vy 2m—1/2 _,1/2 ng) (s, )

T
lim 12/2(8) ds=0
R—o0 0

by the Lebesgue dominated convergence theorem. Therefore,

limsup sup / Qp (|x|2) u(t,z) de =0,
R—oo t€[0,T) JR?

from which the lemma follows. O

Proof of Proposition 4.7. Assume for contradiction that 7;, is finite and let (¢;)x be a sequence
of positive real numbers such that ¢, — T, as k — oco. Observe that Theorem 2.4 entails that
|lu(t)||y — oo as t — T,. On the one hand we infer from the nature of the blow-up given in
Proposition 4.5 that there are a sub-sequence of (tx)r (not relabelled) and a sequence (xy)x in
R? such that

1
klggo Tp =T = M o zup(z) dz, (4.13)
i [ |ulte e +an) — =V ()] de =0 (4.14)
[y ks k )\g )\k; - .
with A = ||u(tk)\|fnm/(d72). On the other hand it follows from Proposition 3.4 and Lemma 4.1
that Flu(t)] > 0 for t € [0,7,,) so that
t
lz -z u(t,z) do = |z — 2|2 up(x) dz 4 2(d — 2) / Flu(s)] ds
R R4 0
> |z — Z|? ug(z) dz >0, (4.15)
Rd
and Lemma 4.8 may be applied to obtain
lim  sup / |z[? u(t,z) dz = 0. (4.16)
R=00 tefo,1,) J{|z|>R}
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Now, for £ > 1 and R > |z| we have

/ |z — Z> u(ty, z) dz <2 / (|3:|2 + |:E|2) u(ty, ) dx
Rd

{le—z|>2R}

B 1 Tr — Tg
—|—/ x—xZ[ut,x——V< ﬂ dx
{lz—7|<2R} | | (t,2) A Ak
|z — z|? <x — xk>
+/ V dx
(o—a|<2r} AL Ak

1 _
§4/ |z|? u(ty, z) do + R / u(t,x)——V(x xk)‘ dz
{l=[>R} R?

A A
—i—/ Ak +a — 2 V(z) do
R4

<4 sup / 2| u(t, z) dx+R2/
te[0,T,) J{|z|> R} R4

+2 |z, — 7 MC+2Ai/ 22V (x) dz .
R4

1 _
u(t,z) — v Vv <x )\;k>' dz
k

Owing to (4.13), (4.14), and the convergence of (A;)x to zero we may let k — oo in the previous
inequality to obtain

limsup/ |z — Z|?u(ty,z) de <4 sup / 22 u(t,z) dz .
k—oo JR4 t€[0,T.) J{|z|>R}

We next pass to the limit as R — oo with the help of (4.16) to conclude that

lim lz — 22 u(ty,z) de =0,
k—oo JRrd

which contradicts (4.15). O

4.2.3 Does it blow-up?

Let us first note that Proposition 4.5 allows us to describe the nature of the blow-up when it
occurs. We define the two following statements:

There exists (t;)x oo such that (||w(tg)||m)x is bounded (S1)
M = tlim / lz[2u(t, z) do < oo (S2)
—00 Jpd

e If [not (S1)] and (S2): By Proposition 4.5, the solution blows up as a Dirac mass at the
centre of mass as ¢t goes to infinity. Moreover, the blow-up profile is described by the
minimisers of F for the critical mass.

e If (S1) and (S2): By the virial identity Lemma 4.1, Flu(t;)] — 0 so that (u(tg))r is a
minimising sequence for F in YVj;,. We expect that it converges to the minimiser of F in
Y. with centre of mass z defined in (4.1) and second moment M3°.

e If [not (S1)] and [not (S2)]: By Proposition 4.5, the solution blows up as a Dirac mass.
The blow-up profile is described by the minimisers of F for the critical mass. However, we
cannot prevent the escape at infinity of the Dirac mass.
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e If (S1) and [not (S2)]: No precise information can be deduced in this case. We cannot even
rule out the possibility of the existence of another sequence of times for which the L™-norm
diverges.

In the radially symmetric case, if the initial condition is less concentrated than one of the
stationary solutions, then we strongly believe that such a property remains true for all times,
thus excluding the formation of a Dirac mass. According to the above discussion this prevents
the blow-up of the L™-norm in infinite time and give an example where (S1) and (S2) hold true.
This is in sharp contrast with the two-dimensional PKS case where infinite time blow-up always
occurs, see [4, 6].

5 Sub-critical self-similar solutions

For the classical PKS system in space dimension d = 2 (and m = 1), the large time behaviour
of solutions with subcritical mass is described by self-similar solutions [4, 7]. This fact and the
already mentioned scale invariance of (1.3) motivate us to look for self-similar solutions to (1.3)
with subcritical mass. To this end, we first recall the by-now classical self-similar scaling leading
to a non-linear Fokker-Planck equation as in [13] for the porous medium equation: Let us define
p by p(s,y) == eu (B(s),e%y) and c(s,y) = (K * p)(s,y) with 3 strictly increasing to be chosen.
Then, it is straightforward to check that

o _ VI -
a—g(s,y) =div [yp(s,y) + B'(t) {eMVp™"(s,y) —e ¥p(s,y)Ve(s,y)}] . s>0, yeRe,
—AC(S,y) :P(Say)7 S>O7 yGRd,
p(0,y) =wuo(y) >0, y € RY,

with A = d(m — 1) + 2 = d. Let us remark that our choice of the exponent m is the only one
for which the scaling of the aggregation and the diffusion terms matches as mentioned in the
introduction. In this case, 3'(s) = % determines the change of variables and the final scaled
equation reads:

) , .
8—5(8,21) =div[yp(s,y) + Vp"(s,y) — p(s,y)Ve(s,y)] , s>0, yeR?,
—Ac(s,y) = p(s,9), s>0,yeR?, (5.1)
p(0,y) =uo(y) >0, y eR?.

Self-similar solutions to (1.3) now correspond to stationary solutions to (5.1) and we will
establish the existence of the latter by a variational technique. More precisely, we will show the
existence of minimisers for the free energy G associated to the rescaled problem (5.1) given by

1
Glh) = Flh] + GM[H] with Mfh] = / (22 [h(z)] dz
R4
for h € LY(R%; (1 + 2?) da) N L™(R?). For M > 0, we define
vy o= mf{g[h] che ZM} with 2, := {h € Vu : Mg[h] < OO} .
We first establish the following analogue of Proposition 3.4.
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Proposition 5.1 (Infimum of the rescaled free energy) For M >0 and h € Z); we have

Cica m 1
Gl = =5 (M2 = M) |nlfzs + S Malh] (5.2)
In addition,
vy >0 if M < M, ,
vy, =0,

Uy = —00 if M > M, .

Proof. The inequality (5.2) readily follows from (3.7) and the definition of G. Consider next
M > M. and put

M 1 x
—¢d/(d=2) if z € B(O,R) ,
Dd d

ha(z) = M. R <R )

0 if 2 € RY\ B(0,R) ,

where the function ¢ is defined in Proposition 3.5 and R > 0. We compute G[hg] and use the

property F[¢%(4=2)] = 0 to obtain
M. d/(d—2) MAZ™ ¢ d=2)|m
2MRM2[C ]_ T m—-1 |

Now, either M > M, and the right-hand side of the above inequality diverges to —oo as R — 0
since d > 2 and m < 2. Consequently v, = —oco in that case. Or M = M, and we may let R — 0
in the above inequality to obtain that vy;, < 0. Since G is non-negative by Proposition 3.4, we
conclude that vy, = 0.

Finally, assume for contradiction that vy, = 0 for some M < M, and let (hy ), be a minimising
sequence for G in Zys. Since Glhg] > G[|hk|], (Jhk|)x is also a minimising sequence for G in Zjs
and we infer from (5.2) that

2
vy < Glhg] = (%) R*4

. 1
khi& <Hthm + §M2[hk]> =0.

By Vitali’s theorem (|hs|), converges towards zero in L!'(RY) which contradicts the fact that
|hill;r = M for all k& > 1. Therefore vy # 0 and the non-negativity of G in Z); entails that
vy > 0. U

We next identify the minimisers of G in Zj; for M € (0, M..).

Theorem 5.2 (Identification of minimisers) If M € (0,M,) there is a unique minimiser
W of G in Zyr. In addition, Wy is non-negative radially symmetric and non-increasing and
there is a unique opr > 0 such that Wy (z) = 0 for |z| > op and Epr = Wﬂ_l solves

AfM—i—— (51/(m b —i—d>:0 in B(0,0pr) with &y =0 on 9B(0,0n) -

Several steps are required to perform the proof of Theorem 5.2 which borrows several arguments
from [24, 26]. We first establish the existence of minimisers of G in Zy; for M € (0, M.).

Lemma 5.3 (Existence of minimisers) Consider M € (0,M.). The functional G has at least
a mainimiser in Zyr. In addition, every minimiser of G in Zys is non-negative radially symmetric
and non-increasing.
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Proof. We first recall that, if h € L'(R%; (1 + |=|?) dz) and h* denotes its symmetric decreasing
rearrangement, then Ms[h*] < Ms[h]. Thanks to this property, we may next argue as in the
proof of Lemma 3.3 to conclude that there is at least a minimiser of G in Z;.

Next, let W be a minimiser of G in Zj; and denote by W* its symmetric decreasing rear-
rangement. As

IWE =W, (Wl = Wi, and - Ma[W'] < Ma[W],

W* belongs to Zjs. In addition, by Riesz’s rearrangement inequality [24, Lemma 2.1], W(W) <
W(W™*). Consequently, vy = G[W] > G[W*| and W* is also a minimiser of G in Zj;. This last
property entails that

Using once more [24, Lemma 2.1 (ii)] we deduce from W(W*) = W(W) that there is y € R? such
that W (z) = W*(z+y) for € R% Then Mo[W*] = My[W] implies that y = 0, which completes
the proof. O

We are thus left with the uniqueness issue to complete the proof of Theorem 5.2. To this end
we adapt the proof in [26, Section IV.B] and first proceed as in the proof of Proposition 3.5 to
identify the Euler-Lagrange equation satisfied by the minimisers of G in Zj;.

Lemma 5.4 Consider M € (0,M.) and let W be a minimiser of G in Zyr. Then there is
0 > 0 such that W(z) = 0 if |z| > 0 and & := W™ is a non-negative radially symmetric and
non-increasing classical solution to

1
Ag+m7 (51/<m—1>+d):0 in B(0,0) with €=0 on 0B(0,0).

In addition,

M ppmet B R L A R
m—lW —<IC>|<W 5 +2+m—1M MW(W) a.e. imnR*. (5.3)

Additional properties of minimisers of G in Zj; can be deduced from Lemma 5.4.

Lemma 5.5 Consider M € (0,M,.) and let W be a minimiser of G in Zyr. Then

—mQTl W™+ Ma[W] = —mQTl M™+ M . (5.5)

Proof. We proceed as in [26, Lemma 6]. By Lemma 5.4 we have

__d <7"d1 ﬁ(r)> _ m-1 (rd*1 W(r) + drdfl) for re€(0,0),

dr dr m

where o denotes the radius of the support of W and ¢ := W™, Introducing
Q(r) ::/ W(z) de = oy / W(z)2471 dz for re€(0,0),
B(0,r) 0

we integrate the previous differential equation to obtain

e AW QW)

dr(): o +7r? for re(0,0) .

—mrdt W(r)
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Multiplying the above identity by ogr W (r) and integrating over (0,00) then lead us to the
formula

awim = /O T rQUYW () dr + My W],

204 /000 rQ(r)W(r) dr = W(W)

by Newton’s theorem [25, Theorem 9.7], we end up with the identity (d — 2) F[W]| = My[W]
and (5.4) follows by the definition of vy; and G. We next multiply (5.3) by 2W and integrate
over R to obtain (5.5). O

We next prove the following comparison result.

Lemma 5.6 Consider My € (0, M.) and Ms € (0, M.). Fori=1,2 let W; be a minimiser of G
in Zy, and denote by o; the radius of its support (which is finite according to Lemma 5.4). If
W1(0) > Wo(0) then Q1(r) > Qa(r) for r € (0,max {01, 02}) where

Qi(r) ::/ Wi(x) dx for r € (0,max{p1,02}) and i=1,2.
B(0,r)

Owing to Lemma 5.3 and Lemma 5.4, the proof of Lemma 5.6 is similar to that of [26,
Lemma 10] to which we refer.

Proof of Theorem 5.2. Consider M € (0,M,.) and assume for contradiction that G has two
minimisers Wi and Wy in 2y, with W;(0) > W5(0). Denoting by g; the radius of the support of
W; and introducing

Qi(r) == /B(o,r) Wi(z) dx

for r € [0,max{p1,02}] and i = 1,2, we infer from Lemma 5.6 that Q1(r) > Q2(r) for all
r € (0,max {01, 02}). Then g1 < g2 and (5.4) warrants that

2(m =i =ou [ (@ M)0) dr= T2 (- Qu)

for ¢ = 1,2. Consequently,
02
/ 2r (Q1—Q2)(r) dr=0,

0

which implies that o1 = 02 and Q1 = )2, hence a contradiction. O

Corollary 5.7 If M € (0, M,.) there exists a self-similar solution Uy to (1.3) given by

X
t ) = —
Un(t, ) 1+dtWM<(1+dt)1/d> ’

where Wiy is the unique minimiser of G in Zp; given in Theorem 5.2.
Remark 5.8 Given M € (0, M.), we expect that this self-similar solution attracts the dynamics

of (1.3) for large times. Although we can prove that the w-limit set of the rescaled equation (5.1)
consists of stationary solutions, we are yet lacking a uniqueness result to identify them as Wyy.
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