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Abstract. These notes are dedicated to recent global existence and regularity
results on the parabolic-elliptic Keller-Segel model in dimension 2, and its general-
isation with nonlinear diffusion in higher dimensions, obtained throught a gradient
flow approach in the Wassertein metric. These models have a critical mass Mc such
that the solutions exist globally in time if the mass is less than Mc and above which
there are solutions which blowup in finite time. The main tools, in particular the
free energy, and the idea of the methods are set out.

1. Introduction

The Keller-Segel system can be seen as a first step toward the understanding of
how, during the evolution of species, the passage from uni-cellular organisms to more
complex structure was achieved. It is also a paradigm model for pattern formation of
cells for meiose (e.g. [14]), embryo-genesis or angio-genesis, Balo disease (e.g. [25]),
bio-convection (e.g. [18]) etc. In physics, this system models the motion of the mean
field of many self-gravitating Brownian particles, see [17, 16].

Chemo-taxis is the phenomenon whereby organisms direct their movements accord-
ing to certain chemicals in their environment. If the movement is toward a higher
concentration of the chemical we speak about positive chemo-taxis and the attractant
is called the chemo-attractant.

Some cells can produce this chemo-attractant themselves, creating thus a long-
range non-local interaction between them. We are interested in a very simplified
model of aggregation at the scale of cells by chemo-taxis: some myxamoebaes expe-
rience a random walk to spread in the space and find food. But in starvation con-
ditions, they emit a chemical signal: the cyclic adenosine monophosphate (cAMP).
They move towards a higher concentration of cAMP. Their behaviour is thus the
result of a competition between a random walk-based diffusion process and a chemo-
taxis-based attraction.

In nature the dictyostelium discoideum spread on the soil and then come together
by chemo-taxis to form a motile pseudoplasmodium. This slug creeps to a few cen-
timetres below the soil surface where it forms a fruiting body with spores and a stalk.
The spores are then blown away by the wind to colonise a new place. See Figure 1.
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Figure 1. Dictyostelium discoideum cycle (source: Wikipedia).

The general form of the model is a competition between diffusion and aggregation:

(1)
∂ρ

∂t
= ∆(ρm)
︸ ︷︷ ︸

diffusion

− div (ρ∇K ∗ ρ)
︸ ︷︷ ︸

aggregation

in (0,+∞)× R
d ,

where K is a given attractive interaction potential.
The model of this aggregation phenomenon is due E. F. Keller and L. A. Segel

in [24] and C. S. Patlak in [29]. The parabolic-parabolic Keller-Segel (thereafter KS)
system is a drift-diffusion equation given by

(2)







∂ρ

∂t
= ∆(ρm)− div [ρ∇φ] ,

τ∂tφ = ∆φ− α φ+ ρ ,

ρ0 ≥ 0 φ0 ≥ 0

(t, x) ∈ (0,∞)× R
d ,

where m ∈ [1, 2), τ and α are given non-negative parameters and d ≥ 1. Here ρ
represents the cell density and c the concentration of chemo-attractant. This system
corresponds to (1) with K being the kernel of the operator τ∂t − ∆ + α. For more
references see [30, 22, 17].

It is immediate to notice that solution to such kind of problem have formally a
mass which is preserved along time:

∫

Rd

ρ(x, t) dx =

∫

Rd

ρ0(x) dx =:M

so that birth and death of the organisms are ignored.
It was noticed experimentally that if there are enough bacteria they aggregate

whereas if not they go on spreading, e.g. [12]. We thus expect the mass to play a
crucial role. Let us then consider the following mass-preserving scaling: ρλ(x) :=
λdρ(t, λ x) with λ > 0. The diffusion term becomes λdm+2∆(ρm)(t, λ x) while the
interaction term gives λ2 ddiv (ρ∇(K ∗ ρ)) (t, λ x). As a consequence if dm+ 2 > 2 d
then, whatever is the value of the mass M , we can always choose λ large enough,
without changing the mass, so that the diffusion part dominates the aggregation part.



A GRADIENT FLOW APPROACH TO THE KELLER-SEGEL SYSTEMS 3

And reciprocally, if dm+2 < 2 d then for any mass M we can always choose λ large
enough such that the solution blowup in finite time. Results in this direction were
proved rigorously by Sugiyama:

Theorem 1 (First criticality, [32, 33]). let md be such that dmd + 2 = 2 d i.e.

md =: 2

(

1− 1

d

)

∈ (1, 2) .

• if m > md then the solutions to (2) exist globally in time,
• if m < md then solutions to (2) with sufficiently large initial data blowup in
finite time.

In these notes, we will consider only the case m = md (corresponding to 1 in
dimension 2) and the indice d will be omitted. We are interested in the proof of
the existence of global-in-time solutions using the gradient flow interpretation in the
Wassertein metric. We will construct solutions using the minimising (or Jordan-
Kinderlehrer-Otto) scheme. We will give formal arguments and try to make, as often
as possible, the analogy with the usual gradient flow theory in the Euclidean setting.
Sections 2 and 3 are dedicated to the parabolic-elliptic 2-dimensional KS system.
Section 2 presents the minimising scheme and describe the discrete Euler-Lagrange
equation satisfied by the minimisers. In this first application, passing to the limit
in the Euler-Lagrange equation is straightforward. We however obtain very weak
solutions. In Section 3, still consecrated to the parabolic-elliptic 2-dimensional KS
system, we need to improve on this regularity to use the entropy/entropy production
method in order to study the large-time asymptotics. Such a gain of regularity can
be proved using the Matthes-McCann-Savaré technique [27] which we will describe in
this section. Section 4 is dedicated to the non-linear parabolic-parabolic KS system
in R

d, d ≥ 3. In this case also we need to prove more regularity at the discrete level
but cannot rely on a non-increasing displacement convex functional as required by
the Matthes-McCann-Savaré method. We thus have to generalise this technique.

2. The sub-critical mass parabolic-elliptic 2-dimensional KS system

2.1. The model. We consider the following classical simplified version of the KS
system given by [23]:

(3)







∂ρ

∂t
= ∆ρ−∇ · (ρ∇φ) x ∈ R

2, t > 0 ,

−∆φ = ρ x ∈ R
2, t > 0 ,

ρ(·, t = 0) = ρ0 ≥ 0 x ∈ R
2 .

Such a model can be seen as a limit case when the chemo-attractant diffuses much
faster than the cells which emit it.

As the solution to the Poisson equation −∆φ = ρ is given up to a harmonic
function, we choose the one given by φ = G ∗ ρ where G is the Poisson kernel defined
by

G(|x|) := − 1

2π
log |x| .
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The KS system (3) can thus be written as a non-local parabolic equation:

∂ρ

∂t
= ∆ρ− div(ρ∇G ∗ ρ) in (0,+∞)× R

2 .

Such a model has attracted a lot of attention these past years. The behaviour
of the solutions is now better understood at least in the sub-critical regime. There
actually exists a critical mass 8π such that all the solutions are global-in-time if the
mass is below this critical mass, and all the solutions blowup in finite time if they
start from an initial data of mass above 8π. The convergence toward a self-similar
profile was initiated in [9, 2] and it was proved recently that such a convergence holds
with rate for any mass below the critical mass [15]. The blowup profile was recently
rigourously described in [31]. Above the critical mass the situation is less clear, for
a more detailed display see [21].

2.2. The free energy. The main tool to study this system is the following natural
free energy:

FPKS[ρ] :=

∫

R2

ρ log ρ dx− 1

2

∫

R2

ρφ dx .

A simple formal calculation shows that for all u ∈ C∞
c (R2) with zero mean,

lim
ǫ→0

FPKS[ρ+ ǫu]− FPKS[ρ]

ǫ
=

∫

R2

δFPKS[ρ]

δρ
(x) u(x) dx

where
δFPKS[ρ]

δρ
(x) := log ρ(x)−G ∗ ρ(x) .

It is then easy to see that the KS system (3) can be rewritten as

(4)
∂ρ

∂t
(t, x) = div

(

ρ(t, x)∇
[
δFPKS[ρ(t)]

δρ
(x)

])

.

It follows that at least along well-behaved solutions to the KS system (3),

d

dt
FPKS[ρ(t)] = −

∫

R2

ρ(t, x)

∣
∣
∣
∣
∇
[
δFPKS[ρ(t)]

δρ
(x)

]∣
∣
∣
∣

2

dx .

Or equivalently

d

dt
FPKS[ρ(t)] = −

∫

R2

ρ(t, x) |∇ (log ρ(t, x)− c(t, x))|2 dx .

In particular, along such solutions, t 7→ FPKS[ρ(t)] is monotone non-increasing. The
main issue here is to study its boundedness.

The connection with the logarithmic Hardy-Littlewood-Sobolev inequality (LogHLS
thereafter) was first made by [20]: Let f be a non-negative function in L1(R2) such
that f log f and f log(1 + |x|2) belong to L1(R2). If

∫

R2 f dx =M , then

(5)

∫

R2

f log f dx+
2

M

∫∫

R2×R2

f(x)f(y) log |x− y| dx dy ≥ − C(M) ,
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with C(M) := M(1 + log π − logM). Moreover the minimisers of the LogHLS
inequality (5) are the translations of

¯̺λ(x) :=
M

π

λ

(λ+ |x|2)2
.

Using the monotony of FPKS[ρ] and the LogHLS inequality (5) it is easy to see
that, for smooth solutions to the KS system (3):

FPKS[ρ] =
M

8π

(∫

R2

ρ(x) log ρ(x) dx+
2

M

∫∫

R2×R2

ρ(x) log |x− y|ρ(y) dx dy

)

+

(

1− M

8π

)∫

R2

ρ(x) log ρ(x) dx

≥ −M
8π

C(M) +

(

1− M

8π

)∫

R2

ρ(x) log ρ(x) dx .(6)

It follows that

(7)

∫

R2

ρ(t, x) log ρ(t, x) dx ≤ 8πFPKS[ρ0]−M C(M)

8π −M
.

Therefore, for M < 8π, the entropy stays bounded uniformly in time. This formally
precludes the collapse of mass into a point mass for such initial data and will be the
crucial argument in the proof.

It is worth noticing that for a given ρ, if we set ρλ(x) = λ−2ρ(λ−1x) then

(8) FPKS[ρλ] = FPKS[ρ]− 2M

(

1− M

8π

)

log λ .

So that as a function of λ, FPKS[ρλ] is bounded from below if M < 8π, and not
bounded from below if M > 8π in the set

(9) K := {ρ :

∫

R2

ρ =M,

∫

R2

ρ(x) log ρ(x) dx <∞ and

∫

R2

|x|2ρ(x) dx <∞} .

2.3. A gradient flow approach. The above arguments can be made rigorous by a
regularisation/passing to the limit procedure. We are interested in the the gradient
flow interpretation of the KS system in the Wasserstein metric, formally described
as:

(10)
∂ρ

∂t
= −”∇W”FPKS[ρ(t)] .

A rigorous meaning to ”∇W” can be done using the approach developped by [28].
There is actually a riemannian structure on the probability space equipped with
the Monge-Kantorovich (or 2-Wasserstein) distance. We do not aim to explain this
structure in full details as we do not really need it but the interested reader could
consult [34, 1].

We will indeed construct a solution using the minimising scheme, often known as
the minimising or Jordan-Kinderlehrer-Otto (JKO) scheme: given a time step τ , we
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define the solution by

(11) ρk+1
τ ∈ argminρ∈K

[W2
2 (ρ, ρ

k
τ )

2τ
+ FPKS[ρ]

]

,

where K is defined in (9).
Let us develop here the analogy with the gradient flow structure in the Euclidean

setting. In this situation the Euler-Lagrange equation associated to

(12) Xk+1
τ ∈ argmin

[ |X −Xk
τ |2

2τ
+ F [X ]

]

,

would be
Xk+1

τ −Xk
τ

τ
+∇F [Xk+1

τ ] = 0 ,

which is nothing but the implicit Euler scheme associated to

Ẋ = −∇F [X(t)] .

We aim to contruct here a sequence {ρkτ}k using the scheme (11) and will obtain at
the limit an gradient flow wich will can formally write as (10).

In the Euclidean setting, the next classical step is to built an interpolation be-
tween the constructed points. Here we interpolate between the terms of the sequence
{ρkτ}k∈N to produce a function from [0,∞) to L1(R2): For each positive integer k,
let ∇ϕk be the optimal transportation plan with ∇ϕk#ρk+1

τ = ρkτ , see the Appendix.
Then for kτ ≤ t ≤ (k + 1)τ we define

ρτ (t) =

(
t− kτ

τ
id +

(k + 1)τ − t

τ
∇ϕk

)

#ρk+1
τ .

Note that ρτ (kτ) = ρkτ , ρτ ((k+1)τ) = ρk+1
τ and W2(ρ

k
τ , ρτ (t)) = (t−kτ)W2(ρ

k
τ , ρ

k+1
τ ).

Theorem 2 (Convergence of the scheme as τ → 0, [5]). If M < 8π then the family
(ρτ )τ>0 admits a sub-sequence converging weakly in L1(R2) to a weak solution to the
KS system (3): for all (t1, t2) ∈ [0,+∞), for all smooth ζ

d

dt

∫

R2

ζ(x)ρ(t, x) dx =

∫

R2

∆ζ(x) ρ(s, x) dx ds

− 1

4π

∫∫

R2×R2

ρ(s, x) ρ(s, y)
(x− y) · (∇ζ(x)−∇ζ(y))

|x− y|2 dy dx .

2.4. Ideas of the proof. The proof follows the main lines of the proof of the con-
vergence of the scheme for euclidean gradient flow. It was done in full details in [5]
and we present here a formal proof with the main ideas.

(i) Existence of minimisers: Let us emphasise that the functional FPKS is not convex,
so even the existence of a minimiser is not clear. When the functional is convex, or
even displacement convex, general results from [34, 1] can be applied. However, we
can construct a sequence of minimisers when M < 8π by using Estimate (7).

(ii) The discrete Euler-Lagrange equation: The perturbation of the minimiser has to
be done in the optimal transport way: Let ζ be a smooth vector field with compact
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support, we introduce ψε := |x|2/2+ εζ . We define ρε the push-forward perturbation
of ρn+1

τ by ∇ψε:

ρε = ∇ψε#ρ
n+1
τ .

Standard computations, see Appendix A.3 and A.4, give
∫

R2

∇ζ(x)x−∇ϕn(x)

τ
ρn+1
τ (x) dx

=

∫

R2

[

∆ζ(x)− 1

4 π

∫

R2

[∇ζ(x)−∇ζ(y)] · (x− y)

|x− y|2 ρn+1
τ (y) dy

]

ρn+1
τ (x) dx ,

which is the weak form of the Euler-Lagrange equation:

(13)
id−∇ϕn

τ
ρn+1
τ = −∇ρn+1

τ + ρn+1
τ ∇cn+1

τ .

Using the Taylor’s expansion

ζ(x)− ζ [∇ϕn(x)] = [x−∇ϕn(x)] · ∇ζ(x) +O
[
|x−∇ϕn(x)|2

]

we obtain, for all t2 > t1 ≥ 0,

(14)

∫

R2

ζ(x) [ρτ (t2, x)− ρτ (t1, x)] dx =

∫ t2

t1

∫

R2

∆ζ(x) ρτ (s, x) dx ds+O(τ 1/2)

− 1

4π

∫ t2

t1

∫∫

R2×R2

ρτ (s, x) ρτ (s, y)
(x− y) · (∇ζ(x)−∇ζ(y))

|x− y|2 dy dx .

(iii) A priori estimates: To pass to the limit, the scheme provides some a priori
bounds: Taking ρnτ as a test function in (11) we have:

(15) FPKS[ρ
n+1
τ ] +

1

2 τ
W2

2 (ρ
n
τ , ρ

n+1
τ ) ≤ FPKS[ρ

n
τ ] .

As a consequence we obtain an energy estimate

(16) sup
n∈N

FPKS[ρ
n
τ ] ≤ FPKS[ρ

0
τ ]

and a total square estimate

(17)
1

2 τ

∑

n∈N

W2
2 (ρ

n
τ , ρ

n+1
τ ) ≤ FPKS[ρ

0
τ ]− inf

n∈N
FPKS[ρ

n
τ ] .

(iv) Passing to the limit: The energy estimate (16) together with (6) gives a bound
on
∫
ρ log ρ at least as long as M < 8π. The bound on ρτ log ρτ prevents the solution

from blowing up: indeed, using
∫

ρ>K

ρ ≤ 1

logK

∫

ρ>K

ρ| log ρ| ≤ C

| log(K)
,

we obtain that (ρτ )τ converges to a certain ρ in w-L1(R2). It time, we can rely
on the 1/2-Hölder continuity (17) and Ascoli’s theorem to obtain a convergence in
C0([0, T ];P(R2)).
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We can thus pass to the limit in τ → 0 in (14) and prove that ρ is a weak solution.
Note that the last term of (14) converges because the convergence of (ρτ )τ in w-
L1(R2) ensures the convergence of (ρτ⊗ρτ )τ in w-L1(R2). The notion of constructed
solutions is however weak.

3. The critical mass parabolic-elliptic 2-dimensional KS system

3.1. Preliminary remarks. We still consider the parabolic-elliptic 2-dimensional
KS system (3). We focus is this section to the the case M = 8π. In this case,
the remainder entropy which was controlled in (6) is thus entirely “eaten” by the
logarithmic Hardy-Littlewood-Sobolev inequality (5). We however prove

Theorem 3 (Infinite Time Aggregation, [8]). If the 2-moment is bounded, there is
a global in time non-negative free-energy solution of the KS system (3) with initial
data ρ0.

Moreover if {tp}p∈N → ∞ as p→ ∞, then tp 7→ ρ(tp, x) converges to a Dirac peak
of mass 8 π concentrated at the centre of mass of the initial data weakly-* in the sense
of measure as p→ ∞.

We will not describe the proof of this result here but we are interested in the
analysis of the existence of solutions in the critical case M = 8π when the 2-moment
is not assumed to be bounded. In this situation, nothing prevents the solutions from
converging to the other minimisers of the LogHLS inequality (5) which are of the
form:

¯̺λ(x) :=
1

π

8λ

(λ+ |x|2)2
.

We can indeed prove the following theorem:

Theorem 4 (Existence of global solutions, [6]). Let ρ0 be any density in R
2 with mass

8π, such that FPKS[ρ0] <∞. If there is a minimiser ¯̺λ of the LogHLS inequality (5)
such that W2(ρ0, ¯̺λ) <∞, then there exists a global free energy solution of the Keller-
Segel equation (3) with initial data ρ0. Moreover,

lim
t→∞

FPKS[ρ(t)] = FPKS[ ¯̺λ] and lim
t→∞

‖ρ(t)− ¯̺λ‖1 = 0 .

Remember that the minimisers ¯̺λ of the logarithmic Hardy-Littlewood-Sobolev
inequality (5) are of infinite 2-moment so that the condition W2(ρ0, ¯̺λ) <∞ implies
that ρ0 is of infinite 2-moment. If we keep in mind that the 2-moment can be seen
as the Monge-Kantorovich distance between the solution and the Dirac mass, we see
that Theorem 4 completes the picture which emerged from Theorem 3.

As soon as we start at a finite distance from one of the minimisers ¯̺λ we can
construct a solution which converges towards it. Note that this result is true for
the solutions that we construct as we do not have uniqueness of the solution to the
KS system, even if we strongly believe that this is the case. Also observe that the
equilibrium solutions ¯̺λ are infinitely far apart: Indeed, let ϕ(x) =

√

λ/µ|x|2/2,
one has ∇ϕ#̺µ = ¯̺λ. Since the equilibrium densities ¯̺λ all have infinite second
moments,

W2
2 (̺µ, ¯̺λ) =

1

2

∫

R2

∣
∣
∣
∣
∣

√

λ

µ
x− x

∣
∣
∣
∣
∣

2

̺µ(x) dx = +∞ .
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We will now give the ain ingredients of this proof.

3.2. Another Lyapunov functional. Consider first the fast diffusion Fokker-Planck
equation:

(18)







∂u

∂t
(t, x) = ∆

√

u(t, x) + 2

√
π

λM
div(xu(t, x)) t > 0 , x ∈ R

2 ,

u(0, x) = u0(x) ≥ 0 x ∈ R
2 .

This equation can also be written in a form analogous to (4): for λ > 0, define the
relative entropy of the fast diffusion equation with respect to the stationary solution
¯̺λ by

Hλ[u] :=

∫

R2

∣
∣
∣

√

u(x)−
√

¯̺λ(x)
∣
∣
∣

2

√

¯̺λ(x)
dx .

Equation (18) can be rewritten as

∂u

∂t
(t, x) = div

(

u(t, x)∇δHλ[u(t)]

δu
(x)

)

,

with
δHλ[u]

δu
=

1√
¯̺λ

− 1√
u
.

The connection with the KS system (3) can be seen through the minimisers of
Hλ which are the same as those of the LogHLS inequality (5). The functional Hλ

is actually a weighted distance between the solution and its unique minimiser ¯̺λ. It
is thus tempting to compute the dissipation of Hλ along the flow of solutions to the
KS system (3): Let ρ be a sufficiently smooth solution of the KS system (3). Then
we compute

(19)
d

dt
Hλ[ρ(t)] = −1

2

∫

R2

|∇ρ(t)|2
ρ(t)3/2

dx+

∫

R2

ρ(t)3/2 dx+ 4

√

M π

λ

(

1− M

8π

)

.

In the critical case M = 8π the dissipation of the Hλ free energy along the flow of
the KS system (3) is

D[ρ] :=
1

2

∫

R2

|∇ρ|2
ρ3/2

dx−
∫

R2

ρ3/2 dx .

We use the following Gagliardo-Nirenberg-Sobolev inequality in the form of [19]: For
all functions f in R

2 with a square integrable distributional gradient ∇f ,

π

∫

R2

|f |6 dx ≤
∫

R2

|∇f |2 dx
∫

R2

|f |4 dx ,

and there is equality if and only if f is a multiple of a translate of ¯̺
1/4
λ for some

λ > 0.
As a consequence, taking f = ρ1/4 so that

∫

R2 f
4(x) dx = 8π, we obtain D[ρ] ≥ 0,

and moreover, D[ρ] = 0 if and only ρ is a translate of ¯̺λ for some λ > 0.



10 A. BLANCHET

Remark 5. This free energy Hλ[ρ] gives another proof of non existence of global-
in-time solutions in the super-critical case M > 8π. Indeed, by (19) and as D[ρ] is
non-negative,

0 ≤ Hλ[ρ(t)] ≤ 4

√

M π

λ

(

1− M

8π

)

t .

So that in the caseM > 8π, there cannot be global-in-time solutions even with infinite
2-moment as long as there is λ such that Hλ[ρ0] is bounded.

We expect the propagation of the bounds on FPKS[ρ] and D[ρ] to give compactness.
Unfortunately, D[ρ] is a difference of two functionals of ρ that can each be arbitrarily
large even when D[ρ] is very close to zero. Indeed, for M = 8π and each λ > 0,
D[ ¯̺λ] = 0 while

lim
λ→0

‖ ¯̺λ‖3/2 = ∞ , lim
λ→0

‖∇ ¯̺
1/4
λ ‖2 = ∞ and lim

λ→0
¯̺λ = 8πδ0 .

Likewise, an upper bound on FPKS[ρ] provides no upper bound on the entropy
∫

R2 ρ log ρ. Indeed, FPKS[ρ] takes its minimum value for ρ = ¯̺λ for each λ > 0,
while

lim
λ→0

∫

¯̺λ log ¯̺λ = ∞ .

Fortunately, an upper bound on bothHλ[ρ] and FPKS[ρ] does provide an upper bound
on
∫
ρ log ρ:

Theorem 6 (Concentration control for FPKS, [6]). Let ρ be any density with mass
M = 8π such that Hλ[ρ] < ∞ for some λ > 0. Then there exist γ1 > 0 and an
explicit C > 0 depending only on λ and Hλ[ρ] such that

γ1

∫

R2

ρ log ρ dx ≤ FPKS[ρ] + C .

Here we also prove that since Hλ controls concentration, a uniform bound on both
Hλ and D does indeed provide compactness:

Theorem 7 (Concentration control for D, [6]). Let ρ be any density in L3/2(R2) with
mass 8π such that FPKS[ρ] is finite, and Hλ[ρ] is finite for some λ > 0. Then there
exist constants γ1 > 0 and an explicit C > 0 depending only on λ, Hλ[ρ] and FPKS[ρ]
such that

γ2

∫

R2

|∇
(
ρ1/4

)
|2 dx ≤ πD[ρ] + C .

Idea of the proof of Theorems 6 and 7: The trivial inequality

(20)

∫

R2

√

λ+ |x|2 ρ(x) dx ≤ 2
√
λM + 2M3/4(λ/π)1/4

√

Hλ[ρ] .

gives a vertical cut to prove Theorem 6. Indeed, we split the function ρ in two parts:
given β > 0, define ρβ(x) = min{ρ(x) , β}. By (20), for β large enough, ρ − ρβ is
such that:

∫

R2

(ρ− ρβ) ≤
C1

β
+ C2

√

Hλ[ρ] ≤
C1

β
+

8π − ε0
2

< 8 π − ε0 .
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We then apply the logarithmic Hardy-Littlewood-Sobolev inequality method as in (7)
to the function ρ− ρβ whose mass is less than 8π.

The same idea works for the Gagliardo-Nirenberg-Sobolev inequality to prove The-
orem 7: Let f := ρ1/4, we split f in two parts by defining fβ := min{f, β1/4} and
hβ := f − fβ. We use (20) and apply the Gagliardo-Nirenberg-Sobolev inequality to
control hβ.

3.3. Ideas of the proof of Theorem (4). The proof of Theorem 4 follows the line
of the convergence of the JKO minimising scheme (11) exposed in the previous section
to obtain the Euler-Lagrange equation (13). As in the previous section, we can rely
on the same compactness to prove the existence of weak solutions. But as we want to
study the large-time behaviour of the solution we need more regularity. We actually
need to prove the existence of “free energy” solution satisfying the entropy/entropy
production inequality:

FPKS[ρ] +

∫ T

0

∫

R2

ρ(t, x) |∇ (log ρ(t, x)− c(t, x))|2 dx ≤ FPKS[ρ0] .

For this purpose more regularity has to be obtained on the solutions at the discrete
level.

Even if it was not clear at the time we wrote [6], we use a powerful method
systematically described by Matthes-McCann-Savaré in [27]: Following their words,
let us first consider the two ordinary differential equations describing gradient flow:

ẋ(t) = −∇Φ[x(t)] and ẏ(t) = −∇Ψ[y(t)]

Then of course Φ[x(t)] and Ψ[y(t)] are monotone decreasing. Differentiate each func-
tion along the other’s flow gives:

(21)

d

dt
Φ[y(t)] = −〈∇Φ[y(t)],∇Ψ[y(t)]〉

d

dt
Ψ[x(t)] = −〈∇Ψ[x(t)],∇Φ[x(t)]〉

Thus, Φ is decreasing along the gradient flow of Ψ for any initial data if and only if
Ψ is decreasing along the gradient flow of Φ for any initial data.

Let us now describe the consequences of this remark in the context of gradient
flows in the Monge-Kantorovich metric. Consider the following variational problem:

(22) Find uh,n which minimises u 7→ 1

2h
W2

2 (u, uh,n−1) + F [u] .

Imagine now that we can find a displacement convex functional H such that the
dissipation of F along the flow SH:

DHF [µ] := lim sup
t→0

F [µ]− F [SH
t µ]

t
.

is non-negative.
Definition (22) of the minimising scheme, means that for any u

1

2τ
W2

2 (uτ,n, uτ,n−1) + F [uτ,n] ≤
1

2τ
W2

2 (u, uτ,n−1) + F [u] .
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Choosing u = SH
t (uτ,n), we obtain

F [uτ,n]− F [SH
t uτ,n] ≤

1

2τ

[
W2

2 (S
H
t uτ,n, uτ,n−1)−W2

2 (uτ,n, uτ,n−1)
]
.

Dividing by t and letting t→ 0, we obtain

DHF [uτ,n] ≤
1

2

d+

dt
W2

2 (S
H
t u, v) .

But as H is displacement convex and SH is the associated semi-group we have

(23)
1

2

d+

dt
W2

2 (S
H
t u, v) ≤ H[v]−H[SH

t u] .

See the Appendix for more details. Taking u = uτ,n and v = uτ,n−1 yields:

(24) DHF [uτ,n] ≤
H[uτ,n−1]−H[uτ,n]

τ
.

So that the differential estimate of F is converted into a discrete estimate for the
approximation scheme.

Here, as already discussed the functional FPKS is not displacement convex but the
flow constructed from this functional is also non-increasing along the flow of Hλ.
Remark that the displacement convexity of Hλ is formally obvious from the fact that

Hλ[u] =

∫

R2

(

−2
√

u(x) +

√

1

2λ

|x|2
2
u(x)

)

dx+ C .

where −
√

u(x) and |x|2u(x) are displacement convex. So that at each step, we can
use the convexity estimate (24), which gives

(25) τ D[ρnτ ] ≤ Hλ[ρ
n−1
τ ]−Hλ[ρ

n
τ ] .

This inequality together with Theorem 7 gives a bound on ‖∇(ρnτ )‖2. This is the cru-
cial estimate which allows to apply the standard entropy/entropy dissipation method
to study the asymptotics. There are main technical difficulties and the methods to
turn around them are interesting by themselves but we do not present them in details
here. For more details see [6].

4. The non-linear parabolic-parabolic KS system in R
d, d ≥ 3

4.1. Main results. We consider now the following parabolic-parabolic generalisation
of the Keller-Segel system:

(26)

{ ∂ρ
∂t

= div [∇ρm − ρ∇φ] ,

τ ∂φ
∂t

= ∆φ− α φ+ ρ ,
(t, x) ∈ (0,∞)× R

d ,

where m ∈ [1, 2) and d ≥ 2. This system is known in theoretical physics as the
generalised Smulochowski-Poisson system, see [17, 16].

For the case d = 2, global-in-time existence for a mass less that 8π was proved
in [13]. But there are also global-in-time self-similar solutions for larger masses,
see [4]. The question of the eventuality of blowing up solutions to this system remains
opened.
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For the parabolic-elliptic case, τ = 0, the inequality which plays the role of the
LogHLS inequality is a variant to the Hardy-Littlewood-Sobolev (HLS) inequality: for
all h ∈ L1(Rd) ∩ Lm(Rd), there exists an optimal constant C∗ such that

(27)

∣
∣
∣
∣

Γ(d/2)

(d− 2)2 πd/2

∫∫

Rd×Rd

h(x) h(y)

|x− y|d−2
dx dy

∣
∣
∣
∣
≤ C∗ ‖h‖mm ‖h‖2/d1 .

The critical mass can be expressed in terms of this inequality. Let us define

Mc :=

[
2

(m− 1)C∗

]d/2

.

The available results of [7] can be summarised as follows:

• Sub-critical case: 0 < M < Mc, solutions exist globally in time and there ex-
ists a radially symmetric compactly supported self-similar solution, although
we are not able to show that it attracts all global solutions.

• Critical case: M = Mc, solutions exist globally in time. There are infinitely
many compactly supported stationary solutions. We thus show a striking
difference with respect to the classical KS system in two dimensions, namely,
the existence of global in time solutions not blowing-up in infinite time. Re-
cently [36] proved that radially symmetric solutions do not blowup in infinite
time but this question remains opened for general solutions.

• Super-critical case: M > Mc, we prove that there exist solutions, corre-
sponding to initial data with negative free energy, blowing up in finite time.
However, we cannot exclude the possibility that solutions with positive free
energy may be global in time. There are also solutions starting from positive
free energy which blowup in finite time for any mass, see [3] but it is not clear
if their free energy is still positive at the blowup time.

We will not describe the proof of these results but will focus on the extension of
the global-in-time existence results to higher dimensions:

Theorem 8 (Global existence, [10]). Let τ > 0, α ≥ 0, ρ0 be a non-negative function
in L1(Rd, (1+ |x|2) dx)∩Lm(Rd) satisfying ‖u0‖1 =M and φ0 ∈ H1(Rd). If M < Mc

then there exists a weak solution (ρ, φ) to the parabolic-parabolic KS system (26):
almost-everywhere in (0, t)× R

d and for all smooth function ξ






∫

Rd

ξ (ρ(t)− ρ0) dx+

∫ t

0

∫

Rd

(∇(ρm)− ρ ∇φ) · ∇ξ dx ds = 0 ,

τ ∂tφ−∆φ+ αφ = ρ .

4.2. Preliminary remarks. The main difficulty stems from the fact that the system
cannot easily be reduced to a single non-local parabolic equation. Actually the
corresponding free energy has the two quantities ρ and φ:

(28) Eα[ρ, φ] :=
∫

Rd

{ |ρ(x)|m
(m− 1)

− ρ(x)φ(x) +
1

2
|∇φ(x)|2 + α

2
φ(x)2

}

dx .

The minimising scheme has thus to be replaced by a gradient flow of this energy in
K := P2(R

d)× L2(Rd) the probability measure with finite 2-moments endowed with
the Monge-Kantorovich metric for the first component and the usual L2-norm for the



14 A. BLANCHET

second component. Such a strategy has already been developed to prove existence
of the thin film approximation of the Muskat problem in [26].

The minimising scheme is as follows: given an initial condition (ρ0, φ0) ∈ K and a
time step h > 0, we define a sequence (ρh,n, φh,n)n≥0 in K by

(29)

{
(ρh,0, φh,0) = (ρ0, φ0) ,

(ρh,n+1, φh,n+1) ∈ Argmin(ρ,φ)∈KFh,n[ρ, φ] , n ≥ 0 ,

where

Fh,n[ρ, φ] :=
1

2h

[
W2

2 (ρ, ρh,n) + τ ‖φ− φh,n‖22
]
+ Eα[ρ, φ] .

The kernel which appears in the parabolic-parabolic KS system is the Bessel kernel,
Yα, defined for α ≥ 0 by:

Yα(x) :=

∫ ∞

0

1

(4πs)d/2
exp

(

−|x|2
4s

− αs

)

ds , x ∈ R
d ,

the case α = 0 corresponding to the already defined Poisson kernel. For u ∈ L1(Rd),
Sα(u) := Yα ∗ u solves

(30) −∆Sα(u) + αSα(u) = u in R
d

in the sense of distributions. The Bessel kernel is also referred to as the screened
Poisson or Yukawa potential in the literature. The crucial inequality is thus a mod-
ified Hardy-Littlewood-Sobolev inequality valid for the Bessel kernel Yα for α > 0:
For α > 0,

(31) sup







∫

Rd

h(x) (Yα ∗ h)(x) dx

‖h‖mm ‖h‖2/d1

: h ∈ (L1 ∩ Lm)(Rd), h 6= 0







= CHLS ,

where CHLS is defined in (27). Note that the constant is the exact same as for the case
α = 0 so that the critical mass below which all the solutions exist globally-in-time is
the same as for the parabolic-elliptic version.

Several difficulties arise in the proof of the well-posedness and convergence of the
previous minimising scheme. First, as the energy Eα is not displacement convex,
standard results from [34, 1] do not apply and even the existence of a minimiser
is not clear. Nevertheless, the modified Hardy-Littlewood-Sobolev inequality (27)
trivially implies:

(32) Eα[ρ, φ] ≥
CHLS

2

(
M2/d

c −M2/d
)
‖ρ‖mm .

which permits in particular to pass to the limit in the term in Eα[ρ, φ] involving the
product ρφ, and proves the existence of a minimiser.

To obtain the Euler-Lagrange equation satisfied by a minimiser (ρ̄, φ̄) of Fh,n in K,
the parameters h and n being fixed, we consider, as before, an “optimal transport”
perturbation for ρ̄ and a L2-perturbation for φ̄ defined for δ ∈ (0, 1) by

ρδ = (id + δ ζ)#ρ̄ , φδ := φ̄+ δ w ,
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where ζ ∈ C∞
0 (Rd;Rd) and w ∈ C∞

0 (Rd). Identifying the Euler-Lagrange equation
requires to pass to the limit as δ → 0 in

W2
2 (ρδ, ρh,n)−W2

2 (ρ̄, ρh,n)

2δ
and

‖ρδ‖mm − ‖ρ̄‖mm
δ

,

which can be performed by standard arguments, see the Appendix, but also in

1

δ

∫

Rd

(ρ̄ φ̄− ρδ φδ)(x) dx =

∫

Rd

ρ̄(x)

[
φ̄(x)− φ̄(x+ δζ(x))

δ
− w(x+ δζ(x))

]

dx .

This is where the main difficulty lies: indeed, since φ̄ ∈ H1(Rd), we only have

φ̄◦(id + δζ)− φ̄

δ
⇀ ζ · ∇φ̄ in L2(Rd),

while ρ̄ is only in (L1 ∩ Lm)(Rd) with m < 2. So even the product ρ̄ζ · ∇φ̄ which is
the candidate for the limit is not well defined and the regularity of (ρ̄, φ̄) has to be
improved. We develop in the next section a generalisation to the Matthes-McCann-
Savaré technique.

4.3. A generalisation of Matthes-McCann-Savaré’s approach. Actually, the
cornerstone of Matthes-McCann-Savaré’s method is the availability of another func-
tional G and the simplest situation is the case where the flow has a displacement
convex Lyapunov functional which is different from the energy, which was the case
in the previous section. Unfortunately, there does not seem to be a natural choice of
such a functional G here. A first try is to choose G as the displacement convex part
of Eα, that is,

G[u, v] :=
∫

Rd

( |u(x)|m
(m− 1)

+
1

2
|∇v(x)|2 + α

2
|v(x)|2

)

dx .

The associated gradient flow is the solution (u, v) to

∂su−∆um = 0 in (0,∞)× R
d, u(0) = ρ̄ ,

and

∂sv −∆v + αv = 0 in (0,∞)× R
d, v(0) = φ̄ .

Computing dEα[u(s), v(s)]/ ds leads to the sum of a negative term and a remainder
but the remainder terms cannot be controlled. Despite this failed attempt, it turns
out that, somehow unexpectedly, the following functional

G[u, v] :=
∫

Rd

(

u(x) log (u(x)) +
1

2
|∇v(x)|2 + α

2
|v(x)|2

)

dx

provide the right information. Indeed, its associated gradient flow is the solutions U
and V to the initial value problems

∂su−∆u = 0 in (0,∞)× R
d, u(0) = ρ̄ ,

and

∂sv −∆v + αv = 0 in (0,∞)× R
d, v(0) = φ̄ ,
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and, as we shall see below, dEα[u(s), v(s)]/ ds is in that case the sum of a negative
term and a remainder which we are able to control. For sake on simplicity in the
presentation let us take α = 0. We compute

d

dt
E0[u, v] = − 4

m
‖∇
(
um/2(t)

)
‖22 − ‖(∆v + u)(t)‖22

︸ ︷︷ ︸

:=D[u,v]

+‖u(t)‖22 , t > 0 .

So that the discrete estimate (24) gives:

(33) D[ρh,n, φh,n]− ‖ρh,n‖22 ≤
G[ρh,n−1, φh,n−1]− G[ρh,n, φh,n]

h
.

Remains to prove that we can control ‖ρh,n‖22 by D[ρh,n, φh,n]. This can be done using
the Hölder and Sobolev inequalities:

(34) ‖w‖22 ≤ ‖w‖m ‖w‖m/(m−1) ≤ C ‖w‖m
∥
∥∇(|w|m/2)

∥
∥
2/m

2
.

Combining the above estimate with Young’s inequality gives

‖ρh,n‖22 ≤
2

m

∥
∥
∥∇(ρ

m/2
h,n )

∥
∥
∥

2

2
+ C ‖ρh,n‖m/(m−1)

m ,

and thus

(35) ‖ρh,n‖22 ≤
1

2
D[ρh,n, φh,n] + C ‖ρh,n‖m/(m−1)

m .

By (32) we obtain, for any M < Mc

‖ρh,n‖22 ≤
1

2
D[ρh,n, φh,n] + C E0[ρh,n, φh,n]

1/(m−1) .

And finally (33) implies

1

2
D[ρh,n, φh,n] ≤

G[ρh,n−1, φh,n−1]− G[ρh,n, φh,n]

h
+ C E0[ρh,n, φh,n]

1/(m−1) .

Which gives a bound in H1(R2) for (ρh,n)
m/2. By the Gagliardo-Nirenberg-Sobolev

inequality {ρh,n}n is thus bounded in Lp(R2), for any p ∈ [1,∞). Such a regularity
is now enough to pass to the limit in the Euler-Lagrange equation and obtain the
stated result.
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Appendix A. An optimal transport toolbox

We just give some basic results from optimal transport theory that we use in the
proof, for a detailed exposition of this rich and rapidly developing subject, we refer
the interested reader to the very accessible textbook [34] or [1, 35].
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A.1. Kantorovich and Monge’s problems. Let X and Y be two spaces equipped
respectively with the Borel probability measures with finite 2-moment µ ∈ P(X) and
ν ∈ P2(Y ). For µ ∈ P2(X) and T , Borel: X → Y , T#µ denotes the push forward (or
image measure) of µ through T which is defined by T#µ(B) = µ(T−1(B)) for every
Borel subset B of Y or equivalently by the change of variables formula

(36)

∫

Y

ϕ dT#µ =

∫

X

ϕ(T (x)) dµ(x), ∀ϕ ∈ C0
b(X).

A transport map between µ and ν is a Borel map such that T#µ = ν. Now, let
c ∈ C(X×Y ) be some transport cost function, the Monge optimal transport problem
for the cost c consists in finding a transport T between µ and ν that minimises
the total transport cost

∫

X
c(x, T (x)) dµ(x). A minimiser is then called an optimal

transport. Monge problem is in general difficult to solve (it may even be the case
that there is no transport map, for instance it is impossible to transport one Dirac
mass to a sum of distinct Dirac masses), this is why Kantorovich relaxed Monge’s
formulation as

(37) Wc(µ, ν) := inf
γ∈Π(µ,ν)

∫∫

X×Y

c(x, y) dγ(x, y)

where Π(µ, ν) is the set of transport plans between µ and ν i.e. Borel probability
measures on X × Y having µ and ν as marginals. Since Π(µ, ν) is weakly ∗ compact
and c is continuous, it is easy to see that the infimum of the linear program defining
Wc(µ, ν) is attained at some γ, such optimal γ’s are called optimal transport plans
(for the cost c) between µ and ν. If there is an optimal γ which is induced by a
transport map i.e. is of the form γ = (id, T )#µ for some transport map T then T is
obviously an optimal solution to Monge’s problem.

A.2. The quadratic case and Monge-Ampère equation. We now restrict our-
selves to the quadratic case:

Theorem 9 (Brenier’s theorem, [11]). Let µ ∈ P(Rd) be absolutely continuous with
respect to the Lebesgue measure and compactly supported and ν ∈ P(Rd) be compactly
supported, then the quadratic optimal transport problem

W2
2 (µ, ν) := inf

γ∈Π(µ,ν)

∫∫

Rd×Rd

|x− y|2 dγ(x, y)

possesses a unique solution γ which is in fact a Monge solution γ = (id, T )#µ.
Moreover T = ∇u µ-a.e. for some convex function u and ∇u is the unique (up to
µ-a.e. equivalence) gradient of a convex function transporting µ to ν; T = ∇u is
called the Brenier map between µ and ν.

When we have additional regularity, i.e. when µ and ν have regular densities (still
denoted f and g) and ∇u is a diffeomorphism which transports f(x) dx onto g(y) dy
we have ∫

Rd

ζ(y)g(y) dy =

∫

Rd

ζ [∇u(x)]f(x) dx ∀ζ : C0
b → C0

b .

By performing the change of variable y = ∇u(x) on the left hand side we obtain
∫

Rd

ζ(∇u(x))g(∇u(x))| detD2u(x)| dx =

∫

Rd

ζ [∇u(x)]f(x) dx ∀ζ : C0
b → C0

b .
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By equalling the two integrands we obtain the Monge-Ampère equation:

(38) f(x) = g(∇u(x)) det(D2u(x)) or equivalently g(y) =
f(∇u−1(y))

det(D2u(∇u−1(y))
.

A.3. Differentiating the internal and the interaction energies. Introduce
∇ψε := id + εζ and define ρε the push-forward perturbation of ρn+1

τ by ∇ψε:

ρε = ∇ψε#ρ
n+1
τ .

By (38) and the change of variable x = ∇ψ−1
ε (y), the differential of the

∫
F (u) dx

where F (x) = x log x or F (x) = xm formally gives

d

dε |ε=0

∫

Rd

F (ρε) dy =
d

dε |ε=0

∫

Rd

F

(
ρ(∇ψ−1

ε (y))

det(D2ψε(∇ψ−1
ε (y)))

)

dy

=
d

dε |ε=0

∫

Rd

F

(
ρ(y)

det(D2ψε(y))

)

det(D2ψε(y)) dy

= −
∫

Rd

ρ [∆ψ − d]F ′(ρ) dy +

∫

Rd

F (ρ) [∆ψ − d] dy

=

∫

Rd

[F (ρ)− ρF ′(ρ)] [∆ψ − d] dy .(39)

Where, as det(I +H) = 1 + tr(H) + o(‖H‖), we have used

d

dε |ε=0
det(D2ψε(y)) =

d

dε |ε=0
det(I + ε(D2ψ − I)) = ∆ψ − d .

By integrating by parts (39) we obtain

d

dε |ε=0

∫

Rd

F (ρε) dy = −
∫

Rd

∇ [F (ρ)− ρF ′(ρ)] [∇ψ − id] dy .

By convexity of F , x 7→ F (x)− xF ′(x) is non-increasing from F (0) = 0. So that the
boundary term is non-positive and

d

dε |ε=0

∫

Rd

F (ρε) dy ≤ −
∫

Rd

∇ [F (ρ)− ρF ′(ρ)] [∇ψ − id] dy .

As ∇ [F (ρ)− ρF ′(ρ)] = −ρ∇ [F ′(ρ)] = ρ∇ [f(ρ)], we have

d

dε |ε=0

∫

Rd

F (ρε) dy ≤ −
∫

Rd

ρ∇ [f(ρ)] [∇ψ − id] dy .

• By symmetry of φ and definition of the push-forward, the interaction term formally
gives

d

dε |ε=0

∫∫

R2d

φ(y, z) dρε(y) dρε(z) =
d

dε |ε=0

∫∫

R2d

φ(∇ψε(y),∇ψε(z)) dρ⊗ ρ

= 2

∫∫

R2d

∇φ(y, z)(∇ψ(y)− y) dρ⊗ ρ



A GRADIENT FLOW APPROACH TO THE KELLER-SEGEL SYSTEMS 19

A.4. Differentiability of the Wasserstein distances. We need first to recall the
following classical characteristics method, see [34, Theorem 5.34] [1, Theorem 8.3.1]:

Proposition 10 (Characteristics method for linear transport equation). Let ρ be in
P(Y ) and (Tt)t∈[0,T∗] be a family of diffeomorphism locally Lipschitz with T0 = id and

let v be the associated velocity field i.e. Ṫt(x) = v(t, Tt(x)). Then ρt = Tt#ρ is a
solution to the following linear transport equation in C(0, T∗;P(Y )):







∂ρt
∂t

+∇ · (v ρt) = 0 , ∀t ∈ [0, T∗]

ρ0 = ρ .

The idea of the proof is formally as follows: Let φ be any test function. By the
definition of the push-forward and using Ṫt(x) = v(t, Tt(x)) we obtain

d

dt

∫

Rd

φ(y) dρt(y) =
d

dt

∫

Y

φ(Tt(x)) dρ(y)

=

∫

Rd

∇φ(Tt(x)) Ṫt(x) dρ(y)

=

∫

Rd

∇φ(Tt(x)) v(Tt(x)) dρ(y)

=

∫

Rd

∇φ(y) v(y) dρt(y) .

Which gives the desire result. Actually it can be proven that ρt is the only solution
to the linear transport equation.

Proposition 11 (Differentiability of the Monge-Kantorovich distance). Let µ ∈
P2(R

d) and ν ∈ P2(R
d) be given. Let (Tt)t∈[0,T∗] be a family of C1(Y ) function with

T0 = id and let v be the associated velocity field i.e. Ṫt(x) = v(t, Tt(x)). Consider
ν ∈ P(Y ) and νt = Tt#ν. Then we have

1

2

d

dt
W2

2 (µ, νt) =

∫

〈y −∇ϕ∗, v(y)〉 dν(y) .

where ∇ϕ∗ is the Legendre transform of ∇ϕ the optimal map between µ and ν.

Once again we do not aim to give a rigorous proof of this proposition and will refer
the interested reader to [34, Theorem 8.13] and [1, Corollary 10.2.7]. We however
give a formal idea of the proof:

The map Tt◦∇ϕ pushes forward µ onto νt. We do not know if it the optimal map
but by definition of the Monge-Kantorovich distance we have

1

2
W2

2 (µ, νt) ≤
∫

Rd

|x− Tt[∇ϕ(x)]|2 dµ(x) .

As a consequence, for any t ≥ 0, using A2 − B2 = (A+B)(A− B) we have

W2
2 (µ, νt)−W2

2 (µ, ν)

t
≤

∫

Rd

|x− Tt[∇ϕ(x)]|2 dµ(x)−
∫

Rd

|x−∇ϕ(x)|2 dµ(x)

≤
∫

Rd

(2x− Tt[∇ϕ]−∇ϕ) (∇ϕ− Tt[∇ϕ]) dµ .
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As, by (10)

Tt[∇ϕ(x)]−∇ϕ(x) = Tt[∇ϕ(x)]− T0[∇ϕ(x)] = tṪt[∇ϕ(x)] + o(t)

= tv [Tt(∇ϕ(x))] + o(t)

taking the limit when t→ 0, we obtain

lim
t→0

W2
2 (µ, νt)−W2

2 (µ, ν)

t
≤
∫

Rd

〈2x− 2∇ϕ(x),−v [∇ϕ(x)]〉 dµ(x) .

As ∇ϕ pushes-forward µ onto ν and using Theorem 9, we obtain

1

2

d

dt
W2

2 (µ, νt) =

∫

Rd

〈∇ϕ(x)− x, v [∇ϕ(x)]〉 dµ(x)

=

∫

Rd

〈∇ϕ(x)−∇ϕ∗[∇ϕ(x)], v [∇ϕ(x)]〉 dµ(x)

=

∫

Rd

〈y −∇ϕ∗(y), v(y)〉 dν(y) .

A.5. Displacement convexity. In concrete terms, a functional G is said to be
displacement convex when the following is true: for any two densities ρ0 and ρ1 of
the same mass M , let ϕ be such that ∇ϕ#ρ0 = ρ1. For 0 < t < 1, define

ϕt(x) = (1− t)
|x|2
2

+ tϕ(x) and ρt = ∇ϕt#ρ0 .

The displacement interpolation between ρ0 and ρ1 is the path of densities t 7→ ρt,
0 ≤ t ≤ 1. Let γ be any real number. To say that G is γ-displacement convex means
that for all such mass densities ρ0 and ρ1, and all 0 ≤ t ≤ 1,

(1− t)G(ρ0) + tG(ρ1)− G(ρt) ≥ γt(1− t)W2
2 (ρ0, ρ1) .

G is simply displacement convex if this is true for γ = 0, and G is uniformly displace-
ment convex if this is true for some γ > 0.
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Allée de Brienne, F–31000 Toulouse, France

E-mail address : Adrien.Blanchet@univ-tlse1.fr


