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Abstract

By analytical methods we study the large time properties of the solution of a simple
one-dimensional model of stochastic Stokes’ drift. Semi-explicit formulae allow us
to characterize the behaviour of the solutions and compute global quantities such
as the asymptotic speed of the center of mass or the effective diffusion coefficient.
Using an equivalent tilted ratchet model, we observe that the speed of the center
of mass converges exponentially to its limiting value. A diffuse, oscillating front
attached to the center of mass appears. The description of the front is given us-
ing an asymptotic expansion. The asymptotic solution attracts all solutions at an
algebraic rate which is determined by the effective diffusion coefficient. The proof
relies on an entropy estimate based on homogenized logarithmic Sobolev inequali-
ties. In the traveling frame, the macroscopic profile obeys to an isotropic diffusion.
Compared with the original diffusion, diffusion is enhanced or reduced, depending
on the regime. At least in the limit cases, the rate of convergence to the effective
profile is always decreased. All these considerations allow us to define a notion of
efficiency for coherent transport, characterized by a dimensionless number, which is
illustrated on two simple examples of traveling potentials with a sinusoidal shape
in the first case, and a sawtooth shape in the second case.
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1 Introduction

The stochastic Stokes’ drift, see [1], is a simple model describing the diffusion of
particles in the presence of a periodic, wave-like potential. Particles suspended in a
liquid and subject to diffusion experience a net drift due to the wave traveling through
the liquid. It can also be seen as a simple model of Brownian ratchet. When there
is no diffusion, the net drift of particles is proportional to ω when ω is small, but
decays to 0 when ω is large. In the presence of a diffusion the situation is different
since, due to the Brownian motion, some particles will move in the direction opposite
to the wave train. Our goal is to study the net drift, or to be precise, the speed of
the center of mass, the formation of the front and its diffusion, when there are no
spatial limitation for the solution, and to measure the efficiency in terms of coherent

transport.

From the mathematical point of view, we shall primarily refer to [2] and references
therein. In [2] we studied the stochastic Stokes’ drift from a theoretical point of
view. This paper is intended to give a more descriptive approach of the diffusive
front by methods of partial differential equations. Questions related to the stochastic
Stokes’ drift have been studied before in the context of diffusive turbulent flows, see
[3,4]. Also see [5] for drift velocity related issues. The effective diffusion coefficient
is determined by the traveling potential. Similar effects are known in the context of
homogenization theory, see, e.g., [5,6]. The stochastic Stokes’ drift has the additional
difficulty that it is an evolution problem in which the small parameter and the time are
not independent. We will provide some asymptotic expansions which are also inspired
by the homogenization theory, and put some emphasis on rates of convergence, which
are a major pending question from a numerical point of view.

The literature on the stochastic Stokes’ drift and Brownian ratchets is huge. We
first refer to [7]: the drift velocity is computed in the case of a sinusoidal traveling
potential (also see [8,9]) and the diffuse traveling front is exhibited on the basis
of numerical results. Brownian ratchets generically refer to drift-diffusion models
in which a time periodic forcing coupled to some asymmetry induces a transport
at large scale. The notion of traveling potential is explored in [10,11]. We refer to
[12] and references therein for the notion of tilted Smoluchowski-Feynman ratchet,

which makes an explicit connection between the stochastic Stokes’ drift and ratchet
mechanisms. As we shall see later, a change of variables indeed reduces the model to a
simple tilted Brownian ratchet, with no more explicit time-dependence. An historical
perspective of the physics of ratchets and useful definitions are given in [11,13]. Many
important issues, like effects due to the asymmetry of the potential, the geometry
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of the domain in higher dimensional models, see for instance [14], or applications of
molecular motors in biology, see for instance [15–17], will not be addressed here.

In [18,19], the effective diffusion constant is computed by a method which differs from
ours, based on statistical fluctuations. Also see [20] for some earlier considerations,
and [21] for the computation of a generalized Einstein relation. The relation between
the diffusion coefficient and the mobility of a Brownian particle in a tilted periodic
potential is studied in [22]. The ratio kB Θ of the diffusion constant κω to the dif-
ferential mobility µω is in general not equal to the temperature of the environment
(multiplied by Boltzmann’s constant kB). The physical meaning of Θ far from equi-
librium is analyzed in [23] and interpreted as an effective temperature in the large
scale description of the system so that the relation κω = µω kB Θ can be interpreted
as an extension of Einstein’s relation. An interesting experiment for measuring the
violation of Einstein’s relation can be found in [24]. See Section 5.1 for more details.

Experimental measurements of the drift velocity corresponding to the diffusion of
colloidal particles in presence of optical traps and a detailed explanation of the method
can be found in [25], with abundant theoretical justifications. Some of the qualitative
features were at least partially known before, see, e.g., [26]. In [27–29], the analysis of
[25] is refined and emphasis is put not only on the computation of the drift velocity,
but also on the effective diffusion constant. Interestingly, the authors of [30] favorably
evaluate the possibility of using tilted ratchet mechanisms to implement separation
of two types of filaments of DNA.

The simplest version of the stochastic Stokes’ drift model describes a density f(t, x)
of particles obeying to the equation

ft = fxx + (ψ′(x− ω t) f)x (1)

where ft and fx denote derivatives with respect to the time t ≥ 0 and the position x
respectively, and ψ′(x − ω t) is a traveling potential moving at constant speed ω.
We assume that the function ψ is 1−periodic: ψ(x + 1) = ψ(x), and consider the
unbounded problem, x ∈ R. At t = 0, f(0, ·) = f0 is a given smooth probability
distribution, so that, by conservation of mass,

∫

R
f(t, x) dx = 1 for any t ≥ 0. The

question we investigate in this paper is the behavior of f for large values of t. Our
main results can be summarized as follows.

(1) Denote by x̄(t) :=
∫

R
x f(t, x) dx the position of the center of mass. There exists

a drift velocity cω which is characterized in Section 2 such that, for some γ > 0,
| d
dt
x̄(t) − cω| = O(e−t/γ) as t→ ∞.

(2) A diffusive traveling front appears. In the reference frame attached to the center
of mass, the solution converges, in self-similar variables, to a Gaussian, modified by a
highly oscillating perturbation. If we introduce the scale R(t) :=

√
1 + 2t and consider
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the change of variables

f(t, x) =
1

R(t)
u

(

logR(t),
x− cω t

R(t)

)

, (2)

then, in the new variables, with R = et and z = Rx − 1
2

(R2 − 1) (ω − cω), u is a
solution of

ut = uxx + (xu)x +R ((ψ′(z) + cω) u)x (3)

and we shall prove by an asymptotic expansion, see Section 3, that

u(t, x) = gω(z) h− 1

R
g(1)
ω (z) hx +O

(

R−2
)

.

Here gω is a periodic solution of a tilted ratchet problem, see Section 2, which depends
on the fast oscillating variable z. The profile h = h(t, x) is the solution of an effective
Fokker-Planck equation

ht = κω hxx + (xh)x , (4)

where the diffusion coefficient κω is determined in terms of g(1)
ω , which is again given

by an ordinary differential equation. Let h∞ be the unique stationary solution of (4)
such that

∫

R
h∞ dx = 1 and define u∞(t, x) := gω(z) h∞(x). For any δ > 0 arbitrarily

small, there is a positive constant Cδ, depending on ψ and f0, such that

∫

R

|u(t, x) − u∞(t, x)| dx ≤ Cδ e
−t/τ (5)

for any t ≥ 0, where τ ≥ 2κω/κ0 + δ. Moreover, we have good reasons to conjecture
that the optimal possible value of τ is 2κω/κ0, and κω/κ0 > 1 for any ω > 0. At least
we can prove this last property in the limiting regimes ω → 0 and ω → ∞.

We observe that in the original time scale the rate of convergence in (5) is like t− 1/τ ,
where in general we expect that τ > 2. This means that in the dynamics of the
stochastic Stokes’ drift two time scales have to be distinguished. First, periodic mod-
ulations over an initial profile appear without any appreciable drift – this process is
very fast since the modulations settle exponentially fast. Second, developed, mod-
ulated profiles evolve on a much slower, algebraic time scale, approaching (from a
macroscopic point of view) a gaussian traveling front.

(3) We establish various properties of cω and κω in Sections 3 and 5. For instance, we
prove that the front travels asymptotically at speed cω and give a formula for cω/ω, for
small values of ω. We also obtain that cω converges to 0 as ω → ∞, hence showing that
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there is always a maximal value of cω for some finite value of ω. Even more interesting
is the characterization of the dynamics of the front, which has been observed only
in Monte-Carlo simulations. Computations are usually noisy while we provide exact
identities, which turn out to be easy to study qualitatively and numerically. The
diffusion at large scale is governed by the effective diffusion coefficient κω. For small
values of ω, κω is always less than 1, thus showing a narrowing of the front, but in
our examples we numerically observe that κω > κ0, hence inducing a slower rate of
convergence in self-similar variables. We strongly suspect that the smallest value of κω
is always achieved for ω = 0. In the large ω regime, κω is anyway larger than 1, which
results in a front expanding faster (or fatter in self-similar variables), but also gives a
lower rate of convergence of the relative entropy corresponding to 2/τ ≤ κ0/κω < 1.

(4) The efficiency of the transport has already been studied numerically in various
contributions. We define a new dimensionless number, the efficiency,

E :=
c2ω
ω κω

,

which is well adapted to our model and measures accurately the coherent transport

at least in the two examples of this paper. Details are given in Section 4.

2 From stochastic Stokes’ drift to a tilted ratchet model

We first observe that the stochastic Stokes’ drift is analogous to a simple Brownian
ratchet mechanism. Actually, if f is a solution of (1), we observe that f̃(t, x) =
f(t, x− ω t) is a solution of

f̃t = f̃xx +
(

(ω + ψ′) f̃
)

x
,

a problem which is known as the tilted Smoluchowski-Feynman ratchet, see for in-
stance [12]. Tilted Brownian ratchets are actually much more general, since in the
equation for f̃ , ψ may still depend on t. An important effect in such models is the
notion of flow reversals, see for instance [31–34,13,35]. In our case we conjecture that
such a flow reversal is impossible, a property that we shall observe on examples and
which is reflected by the fact that ω and cω have the same signs.

On large time scales, the constant drift term, ω f̃x, is responsible for a displacement of
the center of mass, but the solution is also spreading on a large number of periods of
ψ. It is therefore natural to expect that the speed of the center of mass is determined
by the flux of mass through one cell of period ℓ = 1, supplemented with periodic
conditions. This can be made rigorous by the following folding transformation as
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follows. Consider the doubly periodic problem























gt = gxx + ((ω + ψ′) g)x ,

g(t = 0, x) = g0(x) =
∑

k∈Z

f0(x+ k) ,
(6)

for which we assume that g(t, x + 1) = g(t, x) for any x ∈ R and any t ≥ 0. By
linearity of the equations (see [12] for more details), we get

g(t, x) =
∑

k∈Z

f(t, x− ω t+ k) ∀ (t, x) ∈ R
+ × (0, 1) .

Using either the Poincaré or the logarithmic Sobolev inequality, it is easy to prove
that g converges exponentially fast (in L2 and L1 norms, respectively) to a stationary
periodic solution gω of (6), which is unique by a contraction property, and solves

(gω)xx + ((ω + ψ′) gω)x = 0 , (7)

with periodic boundary conditions. If we take a primitive of (7), we get that x 7→
(gω)x + (ω + ψ′) gω =: A(ω) is constant. By taking one more integral, using the
normalization condition

∫ 1
0 gω(x) dx = 1 and the definition of cω, we get that

ω − cω = ω

1
∫

0

gω dx+

1
∫

0

ψ′ gω dx = A(ω) .

Equation (7) can be semi-explicitly solved as

gω(x) = e−ωx−ψ(x)



B(ω) + A(ω)

x
∫

0

eωy+ψ(y) dy





where B(ω) is determined by the conditions
∫ 1
0 gω dx = 1 and gω(0) = gω(1). More

precisely, with

α(ω) := eω − 1 β(ω) :=
∫ 1
0 e

ωx+ψ(x) dx

γ(ω) :=
∫ 1
0 e

−ωx−ψ(x) dx δ(ω) :=
∫ 1
0

∫ x
0 e

ωy+ψ(y)−ωx−ψ(x) dy dx

we obtain

A(ω) =
α(ω)

α(ω) δ(ω) + β(ω) γ(ω)
and B(ω) =

β(ω)

α(ω) δ(ω) + β(ω) γ(ω)
.
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These results are classical, see for instance [36–38] for more details. As a consequence,
we obtain a semi-explicit formula for cω, namely

cω = ω − A(ω) .

We will now illustrate our results in the case of ψ(x) = sin(2πx) (sinusoidal case)
and of an asymmetric smooth sawtooth potential, see Fig. 1. Notice that in the tilted
ratchet point of view, the current is A(ω). It is actually very interesting to compare cω

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

Fig. 1. Plots of the potential ψ in the sinusoidal case (left) and in the asymmetric smooth
sawtooth potential (right), which is computed here as a truncated Fourier series of x 7→ x/x0

if x < x0 and x 7→ (1 − x)/(1 − x0) if x > x0, with x0 = 0.2.

with the asymptotic drift velocity c0ω when there is no diffusion. See [38] for similar
considerations. The solutions of ft = (ψ′(x− ω t) f)x are easily solved by considering
the equations of the characteristics, dx

dt
= −ψ′(x(t) − ω t). Let y(t) := x(t) − ω t and

consider the corresponding equation dy
dt

= −ψ′(y)−ω. For ω > 0, there are two main
regimes:

(i) Case 0 < ω < max[0,1] ψ
′: any solution t 7→ y(t) converges to a local minimum of

the function y 7→ ω y − ψ(y), and so

c0ω := lim
t→∞

x(t)

t
= ω .

(ii) Case ω > max[0,1] ψ
′: we observe that τ(ω) :=

∫ y(t)+1
y(t)

dx
ω+ψ′(x)

does not depend on t,

and so y(t) ∼ −t/τ(ω) as t→ ∞. It follows that

τ(ω) =

1
∫

0

dx

ω + ψ′(x)
and c0ω := lim

t→∞

x(t)

t
= ω − 1

τ(ω)
.

A characteristic property of the curve ω 7→ c0ω is the critical tilt: the discontinuity of
the derivative separates the two regimes. The curve ω 7→ cω is a smoothed version of
ω 7→ c0ω. When ψ is not symmetric, asymmetry effects are present when ω is replaced
by −ω, as shown in the case of the asymmetric smooth sawtooth potential. See Fig. 2.
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Fig. 2. Plots of cω and c0ω as functions of ω in the sinusoidal case (left) and in the case of the
asymmetric smooth sawtooth potential (right, in logarithmic coordinates: ω 7→ log(1 + cω)
for ω > 0). In the sinusoidal case, the symmetry is reflected by the fact that c−ω = −cω
(values corresponding to ω < 0 are not represented). This is not true in the sawtooth case.

3 The diffusive traveling front

Consider now a solution f of (1), with the normalization condition
∫

R
f0 dx = 1 and

let x̄(t) :=
∫

R
x f(t, x) dx be the position of the center of mass. An integration by

parts and a change of variables show that

dx̄

dt
=
∫

R

x ft dx=−
∫

R

ψ′(x− ω t) f(t, x) dx = −
∑

k∈Z

1
∫

0

ψ′(x− ω t) f(t, x+ k) dx

=−
1
∫

0

ψ′(x) g(t, x) dx ∼
t→∞

−
1
∫

0

ψ′(x) gω(t, x) dx =: cω

and a more careful analysis of (6) even proves that dx̄
dt
−cω converges at an exponential

rate. Hence

x̄(t) ∼ cω t as t→ ∞ . (8)

Because of (8), it makes sense to introduce the change of coordinates (2), in order to
understand the large time behaviour of f . In the new variables, the equation for u
is (3). Let us introduce a two-scale function U such that

u(t, x) = U(t, x; z)

with R = et and z = Rx − 1
2

(R2 − 1) (ω − cω), in order to investigate the large
limit. Using the chain rule, we can write an equation for U which is equivalent to (3),
namely

R2
L0 U +R L1 U + L2 U = 0 (9)

with
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L0 U := Uzz + ((ω + ψ′(z)) U )z

L1 U :=
(

2 Uz + (ψ′(z) + cω) U

)

x

L2 U := Uxx + (xU)x − Ut

and make a formal asymptotic expansion in which we solve the equation order by order
in powers of R for a solution, for which we make the ansatz U = U0 +R−1

U1 +R−2
U2.

At order R2, we find L0 U0 = 0 that is solved by U0(t, x; z) = gω(z) h(t, x), where gω
is the stationary solution of the tilted ratchet equation (7). At order R we get

L0 U1 + L1 U0 = 0 .

This gives U
(1)(t, x; z) = g(1)

ω (z) hx(t, x), where g(1)
ω is a solution of

(g(1)
ω )zz +

(

(ω + ψ′) g(1)
ω

)

z
= −2 (gω)z − (ψ′ + cω) gω . (10)

Recall that we look for solutions that are periodic in the z variable. A necessary and
sufficient condition for the existence of a solution to the above equation is the fact
that the average on (0, 1) of the right hand side of (10) is 0. Since all functions are
periodic and

∫ 1
0 gω(z) dz = 1, we recover the definition of cω. Notice that g(1)

ω is unique
up to the addition of a multiple of gω, so we may further assume that

∫ 1
0 g

(1)
ω dz = 0.

If we stop the expansion at order R0 = 1, we obtain

L0 U2 + L1 U1 + L2 U0 +
1

R
(L1 U2 + L2 U1) +

1

R2
L2 U2 = 0 .

However, if we look at the terms of order R0 = 1, a solvability condition results from
the integration of (9) with respect to z. We obtain that

∫ 1
0 (L1 U1 + L2 U0) dz = 0,

which shows that the function h solves the modified Fokker-Planck equation (4) for
the effective profile h, where the effective diffusion coefficient is given by

κω := 1 +

1
∫

0

ψ′(z) g(1)
ω (z) dz . (11)

Any solution of (4) with
∫

R
h(0, x) dx = 1 converges to a Gaussian, h∞, exponentially

in L2 and L1 norms. Therefore, at first order, u(t, x) behaves for large values of t like

u∞(t, x) = gω(z) h∞(x) , h∞(x) :=
e−

|x|2

2κω√
2πκω

,

where z = et x − 1
2

(e2t − 1) (ω − cω). Using relative entropies and homogenized log-
arithmic Sobolev inequalities, one can then prove (5). The function u∞ therefore

9



describes the asymptotic regime of u, in self-similar, traveling variables. In the orig-
inal variables, f∞(t, x) = 1

R
u∞

(

logR, x−cω t
R

)

with R(t) :=
√

1 + 2t describes the

intermediate asymptotics of the solution of (1). It is highly oscillatory, with an effec-

tive profile given by F∞(t, x) := 1
R(t)

h∞
(

x−cω t
R(t)

)

, which is the diffuse, traveling front.

More details on this asymptotic expansion and rigorous proofs can be found in [2].
See Fig. 3.
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Fig. 3. In the sinusoidal case, the limiting function u∞ is shown on the left, in self-simi-
lar-variables, while on the right, the diffuse, traveling front F∞ is plotted in the original
variables for t = 0, 1, . . . 20. Here we take ω = 5 and (left) u∞(t, x) is shown as a function
of x for t = 2.

The effective diffusion coefficient κω is a global, macroscopic quantity, which should
not be confused with the local effective diffusion constant which appears in some
papers, see [37,39]. It plays two roles:

(1) The effective diffusion coefficient κω determines the variance of the Gaussian
function h∞ and therefore controls the size of the traveling font. A pure diffusion
ft = fxx would give rise to a self-similar Gaussian function (4πt)−1/2 e−|x|2/(4t), and
so κω has to be compared with 1. When κω < 1, the front is more peaked than what
we would get from a pure diffusion, while on the opposite, κω > 1 corresponds to a
front which is diffusing faster. See Section 5 for some partial, rigorous results.

(2) In (5), the functional inequality:

∫

R

v log
(

v

u∞

)

dx ≤ C(t)
∫

R

∣

∣

∣

∣

∣

vx
v

− (u∞)x
u∞

∣

∣

∣

∣

∣

2

v dx ,

holds for any function v, for some C(t) > 0 such that limt→∞C(t) = τ/2. It is known,
see [2], that τ ≥ 2κω/κ0. The above homogenized logarithmic Sobolev inequality is
a limit case of a family of generalized Poincaré inequalities for which the optimal
constant converges as t→ ∞ to 2κω/κ0. It is therefore natural to conjecture that the
optimal possible value of τ is also τ = 2κω/κ0, at least for a large class of potentials ψ,
but the question is still mathematically open. Now, if κω/κ0 ≥ 1, then τ = 2κω/κ0

governs the rate of convergence in (5). If κω/κ0 < 1, other terms of order e−t, which
means O(1/

√
t) in the original variables, would eventually dominate the convergence

process. This last case is never observed numerically.
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Fig. 4. Plot of the diffusion coefficient κω as a function of ω in the sinusoidal case (left) and
in the smooth sawtooth potential case (right).

4 Measuring the efficiency of coherent transport

Measuring the efficiency of Brownian motors is a tricky issue. It requires specific
tools. We may refer for instance to [35] for a recent reference in this direction, with
some numerical simulations. Also see [7, Fig. 2] for an early result in the context
of the stochastic Stokes’ drift, [40] for recent simulations corresponding to a simple
model, and [41] for detailed considerations on transport coherence and values of the
Péclet number. In the very simple model considered in this paper, there are only
few available parameters. As explained in [41,40], the Péclet number Pe describes the
competition between the directional drift and the stochastic diffusion of the particle.
It is defined, with our notations, by

Pe :=
cω ℓ

κω

where ℓ is a typical length scale. One can easily check that this is a dimensionless
number. Larger Pe number means that the drift predominates over diffusion and there
is high transport coherence. In other words, the effective distribution is transported
far away from the original data and stays peaked around its maximum value, at least
when the variance is measured in the same units as the displacement of the center of
mass.
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Fig. 5. Plot of the Péclet number Pe as a function of ω in the sinusoidal case (left) and in
the smooth sawtooth potential case (right).

11



In [41,40], the typical length scale is the period of the potential ψ, that is ℓ = 1 in
our notations, and it is suggested that a criterion for efficient transport, preserving
simultaneously the coherence of the distribution and optimizing its displacement,
is Pe > 2. This criterion does not make much sense for a study of the large time
behavior, as the variance of the distribution, which is of diffusive nature and grows
like

√
κω t, is always dominated by the displacement, which is linear and of the order

of cω t, when t is large. To remedy this, we can suggest the following analysis. We
may first use the Péclet number to define a characteristic length scale

L :=
ℓ

Pe
.

Recall that with our notations, ℓ = 1. The value of L corresponds to the dis-
placement of the center of mass for which this displacement is equal to the vari-
ance of the effective distribution. If the effective distribution is originally centered
at zero and evolves according to (4) up to a translation at constant velocity cω,
this occurs for t = T such that

√
κω T = cω T = L, and at that time, the per-

centage of the initial distribution which is still in the x < 0 region is given by
∫ 0
−∞ exp [ − |x− L|2/(2κωT)] dx = 1

2
Erf(1/

√
2) ≈ 16%. See Fig. 6.

Fig. 6. Definition of L and T can be understood as follow. If one starts with a Gaussian
distribution centered at x = 0 and evolve it according to (4), T is the time for which the
solution (centered at L in the above plot) has a variance equal to L. The grey area represents
16% of the area below the solution at time t = T.

Now we may observe that in the above discussion, we have also introduced a charac-

teristic time scale T = κω/c
2
ω which is related with the Péclet number by the formula

T =
ℓ

cω Pe
.

It turns out that the stochastic Stokes’ drift has a natural time scale, which is the
time period of the potential T0 := ℓ/ω. Hence it is meaningful to consider

N :=
T

T0

=
ω κω
ℓ c2ω

=
ω

cω Pe
,
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which measures the time in takes to achieve the equality
√
κω T = cω T in natural

units, and to define the efficiency of the transport by

E :=
1

N
=

ℓ c2ω
ω κω

= Pe
cω
ω
.
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Fig. 7. Plot of the efficiency E as a function of ω in the sinusoidal case (left) and in the
smooth sawtooth potential case (right). We observe that in both cases, the maximum is ex-
tremely well defined. Dots (left) correspond (ω,E(ω)) taking the values (1, 0.210), (3, 0.385),
(25, 0.021) and will be reused in Fig. 8.
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Fig. 8. The effective profile F∞ is represented for ω taking the values 1, 3 and 25, which
correspond to the dots in Fig. 7 (left). Curves are plotted for ω = 1 (left), 3 (center), 25
(right) for t = 0, 5, 10, etc, as long as cω t ≤ 70. The curve corresponding to ω = 3 (center)
is the most efficient, in the sense that cω t ≈ 70 is reached for a smaller value of t than for
the other curves and the solution is kept more peaked. Computations are done in the case
of the sinusoidal potential.

The strength of our approach is that by our asymptotic expansion, we have been able
to identify κω and we have a formula which allows us to plot it precisely, see Fig. 5.
The shapes of the curves ω 7→ cω and ω 7→ κω combine well to define an optimum of
the efficiency, characterized by the dimensionless number E, which reflects the idea
of coherent transport.

5 Drift velocity and homogenized diffusion coefficient: further results

In this last section, we list some qualitative properties that can be established analyt-
ically and are of general interest. We also formulate a few conjectures which should
be true for any type of potential ψ.
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5.1 Mobility and Einstein’s relation

In the tilted ratchet picture, ω is proportional to the applied force F:

ω =
1

η
F

where η is the viscous friction coefficient, has the dimension of the inverse of a time,
and takes value 1 in our units. The mobility is defined by

µω :=
cω
F

=
cω
η ω

so we can write

E = Pe
cω
ω

= η µω Pe .

It has been argued that Einstein’s relation

κω
µω

= kB Θ

defines a notion of effective temperature Θ. Here kB is Boltzmann’s constant. As can
be seen on Fig. 9, Θ is not constant in terms of ω.

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30
0

10

20

30

40

50

Fig. 9. Plot of the mobility µω (left) and the effective temperature Θ (measured in units
of 1/kB) of the tilted Brownian ratchet for values of ω ranging between 0 and 30 in the
sinusoidal case.

5.2 The stationary solution of the tilted ratchet problem

The 1−periodic function gω which solves (7) and is normalized by the condition
∫ 1
0 gω dz = 1, has the following properties:

(1) gω is bounded from below by a positive constant, uniformly with respect to ω.
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(2) In the limit case ω = 0, we have: g0 = e−ψ/
∫ 1
0 e

−ψ dz.
(3) As ω → ∞, gω uniformly converges to 1.
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Fig. 10. Plot of the stationary solution gω of the tilted Brownian ratchet for increasing
values of ω ranging between 1 and 100 (logarithmic scale) in the sinusoidal case (left) and
in the smooth sawtooth potential case (right).

5.3 Drift velocity

When there is no diffusion, for large values of ω, an asymptotic expansion of c0ω as
defined in Section 2 gives

c0ω =
1

ω

1
∫

0

|ψ′|2 dx+O
(

1

ω2

)

.

In presence of diffusion, for any ω > 0, we have cω < ω,

lim
ωց0

cω
ω

= 1 − 1
∫ 1
0 e

ψ dz
∫ 1
0 e

−ψ dz
and lim

ωր∞
cω = 0 .

We numerically observe that cω is always positive for positive values of ω.

5.4 Effective diffusion coefficient

(1) We numerically observe that the smallest value of the effective diffusion coeffi-

cient is achieved at ω = 0: κω > limω→0 κω = κ0 =
(

∫ 1
0 e

ψ dz
∫ 1
0 e

−ψ dz
)−1

.

(2) As ω → ∞, κω converges to 1 from above, and as a consequence, ω 7→ κω has a
maximum, which is therefore always strictly bigger than 1.

These properties are clearly observed in our two examples and we suspect that the
first one is always true.
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5.5 Rates of convergence

Rates of convergence is a difficult issue. Using functional inequalities, we have proved
in [2] that they can be estimated, but we suspect that much more could be done. Let
us make the following conjectures:

(1) The rate of convergence is governed by the best constant in the logarithmic
Sobolev inequality and not by the other terms in the expansion, which could anyway
be controlled by a higher order computation.

(2) The best constant in the logarithmic Sobolev inequality is the same as for the other
generalized Poincaré inequalities which interpolate between the logarithmic Sobolev
inequality and the Poincaré inequality as already discussed in Section 2.

With these hypotheses, the sharp rate of convergence measured in L1 norm is 1/τ (or
t−1/τ in the original variables), with τ = 2 for ω = 0 and τ = 2κω/κ0 if ω > 0. As
soon as we know that κω > κ0, we already know from [2] (also see the discussion at
the end of Section 3 and Section 5.4) that the above rate is an upper bound.

Numerically, understanding the rate of convergence is an extremely difficult question,
corresponding to a stiff problem, with no well adapted basis, as the oscillating (small
scale) variable depends on t.

6 Conclusion

Our results are based on a very simple model, but show how to compute analytically
and numerically various quantities which are not easy to obtain by direct Monte-
Carlo simulations. The main difficulty comes from the oscillatory behavior of the
potential, which is very clear in self-similar variables, and results in highly non-trivial
attractors. Mathematically, this can be handled with the tools of homogenization
theory, which provide an equation for the macroscopic profile and formulae for the
two main parameters, the speed cω of the center of mass (or drift velocity) and
the effective diffusion coefficient κω. This should not hide a major mathematical
difficulty: the time t is not independent of the small parameter in the homogenization
approach, namely 1/

√
t, in the original variables. Moreover, several length scales

have to be taken into account. The position of the center of mass is of the order
of t, while the typical size of the front grows like

√
t. Typical relaxation rates are

exponential at small scale, but of the order of t−1/τ or 1/
√
t when measured globally.

Hence asymptotic expansions are not at all easy to handle even at a formal level and
quite hard to justify. The way out for such difficulties is the homogenized logarithmic
Sobolev inequality, with its own difficulties. The inequality anyway has the very nice
feature of connecting the rates of convergence with κω, something which definitely
should be further investigated from a numerical point of view.
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However, knowing cω and κω accurately is a major step in the understanding of the
asymptotic behavior of the solutions of the stochastic Stokes’ drift. It gives solid
grounds to a notion of effective diffusion. A striking consequence is that it gives a
new criterion for measuring the efficiency of coherent transport using the number E.

We hope that our contribution will contribute to more realistic models from a the-
oretical point of view and will be used for benchmarking the numerous simulations
that are being performed mostly with Monte-Carlo approaches.
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