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Summary.We extend classical extreme value theory to non-identically distributed observations.
When the tails of the distribution are proportional much of extreme value statistics remains valid.
The proportionality function for the tails can be estimated non-parametrically along with the
(common) extreme value index. For a positive extreme value index, joint asymptotic normality
of both estimators is shown; they are asymptotically independent. We also establish asymptotic
normality of a forecasted high quantile and develop tests for the proportionality function and for
the validity of the model.We show through simulations the good performance of the procedures
and also present an application to stock market returns. A main tool is the weak convergence
of a weighted sequential tail empirical process.
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1. Introduction

Classical extreme value analysis makes statistical inference on the tail region of a probability
distribution, based on independent and identically distributed (IID) observations. Nevertheless,
the observed data may violate the assumption of IID observations. Two potential deviations
may occur: the observations may exhibit serial dependence or they may be drawn from different
distributions. In this paper we consider the latter situation and develop extreme value statistics
to handle the case when observations are drawn from different distributions. It will turn out
that extreme value statistics go through under mild variation of the underlying distributions and
that we can quantify this variation which reflects the frequency of extreme events.

We consider the following model. At ‘time’ points i=1, : : : , n we have independent observa-
tions X

.n/
1 , : : : , X.n/

n following various continuous distribution functions Fn,1, : : : , Fn,n that share
a common right end point xÅ= sup{x :Fn,i.x/<1}∈ .−∞,∞], and there is a continuous distri-
bution function F with the same right end point and a continuous positive function c defined
on [0, 1] such that
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lim
x→xÅ

1−Fn,i.x/

1−F.x/
= c

(
i

n

)
, .1:1/

uniformly for all n∈N and all 1� i�n (see de Haan et al. (2014)). We impose the condition∫ 1

0
c.s/ds=1: .1:2/

This not only makes the functon c uniquely defined but also, similarly to a density, c can now
be interpreted as the frequency of extremes. We call this situation heteroscedastic extremes anal-
ogously to the concept of heteroscedasticity and we call c the ‘scedasis function’. For example,
c≡ 1 resembles the uniform or homogeneous density, i.e. we have ‘homoscedastic extremes’.
Note that the limit relation (1.1) compares only the distribution tails and does not impose any
assumption on the central parts of the distributions. It describes a flexible non-parametric model
that allows for different scales in the tails, as explained below.

In addition, we assume, as in classical extreme value analysis, that F belongs to the domain
of attraction of a generalized extreme value distribution. That means, there is a real number γ
and a positive scale function a such that, for all x> 0,

lim
t→∞

U.tx/−U.t/

a.t/
= xγ−1

γ
, .1:3/

where

U :=
(

1
1−F

)←

and ‘←’ denotes the left continuous inverse function. The index γ is the extreme value index.
Write also

Un,i :=
(

1
1−Fn,i

)←
:

Combining the domain of attraction condition with equation (1.1), it can be shown that

lim
t→∞

Un,i.tx/−Un,i.t/

a.t/{c.i=n/}γ
= xγ−1

γ
: .1:4/

Hence, all Fn,i belong to the domain of attraction of the same extreme value distribution. They
have the same extreme value index γ but (for γ �=0) different scale functions a, as in limit (1.3),
i.e. the effect of the variation in the function c is on the scale of extremes instead of on the
extreme value index. If γ=0 the effect is on the location only.

In what follows we shall restrict ourselves to the heavy-tailed case, i.e. γ > 0. This is done
in view of applications in finance. Then, xÅ=∞ and the domain of attraction condition (1.3)
simplifies to

lim
t→∞

U.tx/

U.t/
=xγ : .1:5/

Then the analogue of condition (1.4) is

lim
t→∞

Un,i.tx/

U.t/{c.i=n/}γ
=xγ :
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In this paper we make the following contributions. First, we propose a non-parametric es-
timator on the integrated scedasis function C.s/ := ∫ s

0 c.u/du, for s∈ [0, 1], and establish its
asymptotic behaviour. Moreover, we show that the Hill estimator can still be successfully applied
to estimate the extreme value index γ, even though the observations are drawn from different
distributions. The joint asymptotic distribution of both estimators is established. The estima-
tors of γ and C are asymptotically independent. Second, we test hypotheses on (the presence of)
heteroscedastic extremes. The null hypothesis is c= c0 for some given scedasis function c0. In
particular, rejecting c≡1, the null hypothesis of homoscedasticity, confirms that heteroscedas-
ticity of extremes is present. Third, for application purposes, we provide estimators of c and
of high quantiles corresponding to Fn,i. In particular, we obtain the asymptotic normality of
the forecasted (i.e. for i=n+1) high quantile. In applications, the evolution in time of the high
quantile estimates quantifies the effect of heteroscedasticity on the magnitude of extreme events.
All of this is presented in Section 2. In Section 3, we validate our model by testing whether the
extreme value index is constant over time. In Section 4 we present a simulation study and apply
our results to financial data.

We sketch how we handle heteroscedastic extremes statistically. Consider X
.n/
i for i=1, : : : , n.

We impose a high threshold. Then the (local) frequency of the exceedances over the threshold
reflects the (local) value of the scedasis function whereas the magnitude of the exceedances
reflects the value of the extreme value index.

A crucial tool for developing the asymptotic theory is the sequential tail empirical process
(STEP), based on non-identically distributed observations. Similarly to the sequential empirical
process (see, for example, section 3.5 in Shorack and Wellner (1986)), the STEP is a bivariate
process with one co-ordinate denoting time and the other magnitude. We prove, in Section 5,
the weighted convergence of the STEP to a bivariate Wiener process. Since all our estimators
and test statistics can be written as functionals of the STEP, their statistical properties follow
from this result. The asymptotic theory for the STEP is of independent interest and can be used
for analysing other statistical procedures for heteroscedastic extremes. In particular, it can be
used for proving asymptotic theory for other extreme value index estimators (even when γ is not
positive). Also, other tests for testing heteroscedastic extremes or the constant extreme value
index can be analysed by using the STEP. Our test statistics for the constant extreme value index
are only the more straightforward candidates.

Our study is comparable with other deviations from the IID assumption in extreme value anal-
ysis. In the direction of allowing serial dependence, Leadbetter et al. (1983) developed probability
theory on extremes of stationary weakly dependent time series. Hsing (1991), Drees (2000) and
more recently Drees and Rootzén (2010) further developed statistical tools to handle extreme
events for weakly dependent observations. In all these studies, the observations were assumed to
be identically distributed. In the direction of allowing heteroscedastic extremes, the early con-
tribution Mejzler (1956) provides a probabilistic theory based on independent, non-identically
distributed random variables. With regard to statistical analysis of heteroscedastic extremes, a
few studies have explored a trend in the parameters of some limit distributions in extreme value
theory. Davison and Smith (1990) considered, a linear trend in both shape and scale parameters
of generalized Pareto distributions, whereas Coles (2001) dealt with a log-linear trend in the
scale parameter of generalized Pareto distributions. No asymptotic analysis of the estimators
was provided in these studies. Two other studies have provided estimators on trends in extremes
with asymptotic properties. Hall and Tajvidi (2000) estimated non-parametric trends in param-
eters of generalized Pareto distributions and generalized extreme value distributions by locally
parameterizing the trend. They established the asymptotic behaviour of the estimators under
locally constant or locally linear trends. Differently, de Haan et al. (2014) considered a similar



34 J. H. J. Einmahl, L. de Haan and C. Zhou

model to that in our study but concentrated on specific parametric trends and required a large
number of observations at any time point. Compared with all existing studies on heteroscedastic
extremes, our approach differs in one or more of the following three aspects: we deal with an
extreme value analysis based on the domain of attraction rather than the limit situation; we
do not impose any (local) parametric model on the scedasis function; we provide asymptotic
properties of the estimators.

This paper also contributes to the literature on testing whether the extreme value index is con-
stant over time. For example, Quintos et al. (2001) investigated whether the extreme value index
of financial data is time invariant. The test statistics therein focused only on the tail behaviour
of observations. The asymptotic theory of the tests statistics assumes that the observations are
IID, which is much more strict than the targeted null hypothesis that the extreme value index
is invariant over time. Consequently, the testing procedure there would reject in the case of
heteroscedastic extremes where in fact the extreme value index is constant. In contrast, our test
considers the much larger heteroscedastic extremes model as the null hypothesis.

2. Estimation and testing within the heteroscedastic extremes model

In this section, we consider statistical inference on the scedasis function c and also estimation
of the common extreme value index γ. We begin with estimating the integrated function c,
which is defined by C.s/ :=∫ s

0 c.u/du, for s∈ [0, 1]. Intuitively, by focusing on the observations
above a high threshold, the function C should be proportional to the number of exceedances
of the threshold in the first [ns] observations. This leads to the following estimator. Order the
observations X

.n/
1 , : : : , X.n/

n as Xn,1 �: : :� Xn,n. For a suitable intermediate sequence k= k.n/,
i.e.

lim
n→∞ k=∞,

lim
n→∞

k

n
=0,

.2:1/

we define the estimator

Ĉ.s/ := 1
k

[ns]∑
i=1

1{X
.n/
i >Xn,n−k}: .2:2/

When the observations are all different, the estimator can be written in terms of the ranks Rn,i=
Σn

j=1 1{X
.n/
i �X

.n/
j }, 1� i�n, as Ĉ.s/= .1=k/Σ[ns]

i=11{Rn, i>n−k}: Next we define the Hill estimator as
usual,

γ̂H := 1
k

k∑
j=1

log.Xn,n−j+1/− log.Xn,n−k/, .2:3/

but note that it is not yet clear that this is a proper estimator of γ in the case of heteroscedastic
extremes.

To prove the asymptotic normality of these estimators, we need second-order conditions
quantifying the speed of convergence in limits (1.1) and (1.5). Firstly, suppose that there is a
positive, eventually decreasing function A1, with limt→∞ A1.t/=0, such that, as x→∞,

sup
n∈N

max
1�i�n

∣∣∣∣1−Fn,i.x/

1−F.x/
− c

(
i

n

)∣∣∣∣=O

[
A1

{
1

1−F.x/

}]
: .2:4/
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Secondly, suppose that there is a function A2 and a ρ< 0 such that, as t→∞, A2.t/ has either
positive or negative sign, A2.t/→0, and, for any x> 0,

lim
t→∞

U.tx/=U.t/−xγ

A2.t/
=xγ xρ−1

ρ
; .2:5/

see de Haan and Stadtmüller (1996). We require, as n→∞,
√

kA1{n=.2k/}→0,√
kA2.n=k/→0:

.2:6/

(Note that
√

kA1.n=k/→ 0 can be used for all the results, except the asymptotic normality of
the estimator of c.1/ and its consequences.) We further assume that

lim
n→∞

√
k sup
|u−v|�1=n

|c.u/− c.v/|=0: .2:7/

Assumption (2.7) is quite weak: if c is Lipschitz continuous of order at least 1
2 , it is a direct

consequence of the fact that k=n→0, as n→∞.
The following theorem on the joint asymptotic normality of Ĉ and γ̂H is our main result.

Theorem 1. Suppose that conditions (1.2), (2.1), (2.4), (2.5), (2.6) and (2.7) hold. Then, under
a Skorokhod construction, we have that, as n→∞,

sup
0�s�1

|√k{Ĉ.s/−C.s/}−B{C.s/}|→0 almost surely

and
√

k.γ̂H−γ/→γN0 almost surely,

with B a standard Brownian bridge and N0 a standard normal random variable. In addition,
B and N0 are independent.

Remark 1. Observe that the asymptotic variance of the Hill estimator γ̂H does not depend
on c; hence it is the same as in the IID data case (c≡ 1). Recall that γ̂H is based on the order
statistics and Ĉ on the ranks. In the IID data case the vector of order statistics and the vector of
ranks are independent, yielding the independence of γ̂H and Ĉ. In the case of heteroscedastic
extremes we do not have the independence of ranks and order statistics; nevertheless we have
asymptotic independence of γ̂H and Ĉ. From the proofs (Section 5 and Appendix A) it follows
that the asymptotic independence of γ̂ and Ĉ also holds for the other estimators in use for γ
(even for the broader case γ∈R), i.e. the estimator of the cumulative frequency of extremes and
that of the extreme value index are asymptotically independent. In fact, the asymptotic theory
for Ĉ does not require the extreme value condition (1.3).

Next, we present an estimator of the function c by using a kernel estimation method. Let G

be a continuous, symmetric kernel function on [−1, 1] such that
∫ 1
−1 G.s/ds= 1; set G.s/= 0

for |s|> 1. Let h :=hn > 0 be a bandwidth such that h→ 0 and kh→∞, as n→∞. Then, the
function c can be estimated non-parametrically by

ĉ.s/= 1
kh

n∑
i=1

1{X
.n/
i >Xn,n−k}G

(
s− i=n

h

)
:

This estimator is similar to the usual kernel density estimator.
Instead of estimating c, we can also test the null hypothesis that c=c0 for some given function

c0. This is equivalent to testing C=C0 with C0.s/ :=∫ s
0 c0.u/du. An important example is testing
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the null hypothesis c≡1, which corresponds to testing that C is the identity function on [0, 1].
By rejecting this null hypothesis, we can conclude that heteroscedasticity of extremes is present.
We consider a Kolmogorov–Smirnov-type test statistic

T1 := sup
0�s�1

|Ĉ.s/−C0.s/|

and a Cramér–von-Mises-type test statistic

T2 :=
∫ 1

0
{Ĉ.s/−C0.s/}2 dC0.s/:

The following direct corollary to theorem 1 gives the asymptotic distributions of these two test
statistics under hypothesis H0.

Corollary 1. Assume that the conditions of theorem 1 hold with c= c0. Then, as n→∞,

√
kT1

d→ sup
0�s�1

|B.s/|,

kT2
d→
∫ 1

0
B2.s/ds,

with B a standard Brownian bridge.

Observe that the limiting random variables have well-known probability distributions that do
not depend on c0. Also, the domain of attraction condition on F does not play a role and thus
these tests can be applied to a broader class of probability distributions.

Finally, we present how to estimate high quantiles at a time point i when having heteroscedastic
extremes. High quantiles are the quantiles Un,i.1=p/ with very small tail probability p. According
to limit (1.1), we have

p=1−Fn,i

{
Un,i

(
1
p

)}
≈ c

(
i

n

)[
1−F

{
Un,i

(
1
p

)}]
:

Hence we obtain Un,i.1=p/≈U{c.i=n/=p}: Therefore, to estimate Un,i.1=p/ we combine the
estimator of the scedasis function c with the quantile estimator corresponding to the distribution
function F (see Weissman (1978)) and obtain

̂

Un,i

(
1
p

)
=Xn,n−k

{
k ĉ.i=n/

np

}γ̂H

:

The high quantile estimator can be extended to forecasting tail risks, i.e. we intend to estimate
the high quantile of an unobserved random variable in the next period, X

.n/
n+1. Extending the func-

tion c continuously in a right neighbourhood of 1 and incorporating time point i=n+1 in limit
(1.1) lead to the following estimator of the high quantile Un,n+1.1=p/ of the unobserved X

.n/
n+1:

̂

Un,n+1

(
1
p

)
=Xn,n−k

{
k ĉ.1/

np

}γ̂H

:

Since the estimator involves ĉ at the boundary point 1, we use a boundary kernel as follows:

ĉ.1/= 1
kh

n∑
i=1

1{X
.n/
i >Xn,n−k}Gb

(
1− i=n

h

)
,
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with

Gb.x/=

∫ 1

0
u2 G.u/du−x

∫ 1

0
uG.u/du

1
2

∫ 1

0
u2 G.u/du−

{∫ 1

0
uG.u/du

}2 G.x/;

see, for example, Jones (1993).
The following theorem yields a subtle asymptotic normality result for the forecasted high

quantile. The proof is deferred to Appendix A.

Theorem 2. Let the function c be defined on [0, 1+ "] for some "> 0. Suppose that condition
(2.4) holds with i= n+ 1 included, and that conditions (1.2), (2.1), (2.5), (2.6) and (2.7)
hold. Assume that |c′′.1/|<∞ and

∫ 1
−1 |G′′.x/|dx <∞, and that p=pn satisfies np=k→ 0,

as n→∞. Then, as n→∞, with a bandwidth h such that kh→∞, hk1=5→λ∈ [0,∞/, and√
h log{k=.np/}→β ∈ [0,∞/, we have that

√
.kh/

{
̂Un,n+1.1=p/

Un,n+1.1=p/
−1

}
d→N

[
λ5=2 γ c′′.1/

2c.1/

∫ 1

0
x2 Gb.x/dx, γ2

{∫ 1

0
G2

b.x/dx

c.1/
+β2

}]
:

3. Testing whether the extreme value index is constant

Here we consider the validity of our model. In particular we test whether the extreme value
index γ is constant over time. The idea is to estimate γ from subsamples and to compare the
estimates. Concretely, we write γ̂.s1,s2] for the Hill estimator based on X

.n/
[ns1]+1, : : : , X

.n/
[ns2], for

any 0� s1 <s2 �1. Recall that, when estimating γ from the full sample, we use the highest k+1
observations. Correspondingly, the number of high observations that are used in γ̂.s1,s2] must
reflect the heteroscedasticity in extremes. We would like to choose kÅ

.s1,s2] := k{C.s2/−C.s1/},
which is proportional to the frequency of having exceedances in this subsample. In practice, we
estimate it with k.s1,s2] := k{Ĉ.s2/− Ĉ.s1/}. The following theorem shows the joint asymptotic
behaviour of these partial Hill estimators. The proof is deferred to Appendix A.

Theorem 3. Assume that the conditions of theorem 1 hold. Then, under a Skorokhod con-
struction, we have that for any δ > 0, as n→∞,

sup
0�s1<s2�1,s2−s1�δ

∣∣∣∣√k.γ̂.s1,s2]−γ/−γ
W{C.s2/}−W{C.s1/}

C.s2/−C.s1/

∣∣∣∣→0 almost surely,

where W is a standard Wiener process on [0, 1]. In addition, the process W and the Brownian
bridge B from theorem 1 are independent and W.1/= N0 there.

The first test compares all partial Hill estimators such that Ĉ.s2/− Ĉ.s1/� δ, for some given
δ > 0, with the estimator using the full sample, γ̂.0,1]= γ̂H. The test statistic is

T3 := sup
0�s1<s2�1, Ĉ.s2/−Ĉ.s1/�δ

∣∣∣∣ γ̂.s1,s2]

γ̂H
−1

∣∣∣∣ :
Alternatively, we consider a test statistic with a limited number of partial Hill estimators.

Divide the sample into m blocks, with m> 1 fixed. The cut-off points of the blocks are l1 � l2 �
: : : � lm−1 with lj := sup{s : Ĉ.s/ � j=m}; set l0= 0 and lm= 1. We use the partial Hill estima-
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tor γ̂.lj−1,lj ] as above but use the highest [k=m]+ 1 observations in each subsample, since, by
construction, Ĉ.lj/− Ĉ.lj−1/ is approximately 1=m for each j. Now define the test statistic as

T4 := 1
m

m∑
j=1

(
γ̂.lj−1,lj ]

γ̂H
−1

)2

:

Corollary 2. Assume that the conditions of theorem 1 hold. Then, we have that, as n→∞,

√
kT3

d→ sup
0�s1<s2�1, s2−s1�δ

∣∣∣∣W.s2/−W.s1/

s2− s1
−W.1/

∣∣∣∣ ,
kT4

d→χ2
m−1,

with W a standard Wiener process.

The proof is deferred to Appendix A. Observe that the limits do not depend on c or γ.

4. Simulations and application

In this section we shall first examine, through simulations, the finite sample behaviour of the
two tests on the scedasis function and also of the forecasted high quantile (Section 4.1). Next,
in Section 4.2, we shall apply all the tests to check whether the extreme value index (T3, T4) and
the scedasis function (T1, T2) of a stock market return series are invariant over time and we shall
also estimate this function.

4.1. Simulations
We consider four data-generating processes (DGPs) as follows.

(a) DGP 1: observations are IID and follow the standard Fréchet distribution, i.e. F
.1/
n,i .x/=

exp.−1=x/, for x> 0. Here c≡1.
(b) DGP 2: observations are independent, with observation i following a rescaled Fréchet

distribution, F
.2/
n,i .x/= exp{−.0:5+ i=n/=x}, for x> 0. Here c.s/=0:5+ s, for s∈ [0, 1].

(c) DGP 3: observations are independent, with observation i following a rescaled Fréchet
distribution, F

.3/
n,i .x/= exp{−c.i=n/=x}, for x > 0, with c.s/=2s+0:5, for s∈ [0, 0:5], and

c.s/=−2s+2:5 for s∈ .0:5, 1],
(d) DGP 4: observations are independent, with observation i following a rescaled Fréchet

distribution, F
.4/
n,i .x/= exp{−c.i=n/=x}, for x > 0, with c.s/=0:8, for s∈ [0, 0:4]∪ [0:6, 1],

c.s/=20s−7:2 for s∈ .0:4, 0:5] and c.s/=−20s+12:8 for s∈ .0:5, 0:6/.

For each DGP, we simulate 1000 samples of size n=5000 and take k=400.
We apply the two tests of Section 2 to test whether there are heteroscedastic extremes (H0 :

c≡1). For each level of significance α .1%, 5% and 10%/, we show in Table 1 the total number
(out of 1000) of rejections for each DGP. We see that both tests perform well, both under the
null hypothesis (DGP 1) and under the alternative (DGPs 2–4). In particular the power is high
in most cases. Test 2 performs somewhat better for global deviations from the null hypothesis,
whereas test 1 detects the spike alternative a little better.

Next we consider the forecasted high quantile ̂Un,n+1.1=p/, for p= 0:02 and h= 0:1. We
take for G the often used biweight kernel G.x/=15.1−x2/2=16, x∈ [−1, 1]. For each DGP we
compute ̂Un,n+1.1=p/=Un,n+1.1=p/−1 and, using the 1000 samples, find approximations for the
bias (the mean) and the variance of this expression; see Table 2. We also report the corresponding
asymptotic variance, taking β=0 in theorem 2, since

√
h log.k/→0. We see that the bias is very
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Table 1. Number of rejections out of 1000 simulated
data sets

DGP Numbers of rejections for the
following values of α and tests:

α= 1% α= 5% α= 10%

T1 T2 T1 T2 T1 T2

1 8 12 44 47 95 98
2 990 998 998 999 1000 1000
3 455 570 838 921 941 987
4 663 521 930 903 979 978

Table 2. Bias, variance and asymptotic
variance for the forecasted high quantile for
pD0.02

DGP Bias Variance Asymptotic
variance

1 −0:028 0.137 0.128
2 −0:041 0.094 0.085
3 0.023 0.278 0.256
4 0.004 0.167 0.160

small, which agrees with theorem 2 since for all DGPs c′′.1/=0 and hence the asymptotic bias
is 0. Given the subtle nature of theorem 2, the asymptotic variance approximates the observed
variance well. With the statistical difficulty of forecasting high quantiles in mind, we also see
that, according to the observed bias and variance, our estimator of Un,n+1.1=p/ performs well.

4.2. Application
We apply the estimators proposed and testing procedures to address the question ‘Are financial
crises nowadays more frequent than before?’. For that purpose, we collect daily loss returns of
the Standard and Poor’s 500 index from 1988 to 2012 as an indicator for the status of the US
financial market over this period. It has been documented in the empirical finance literature
that the downside of equity returns follows heavy-tailed distributions; see for example Jansen
and de Vries (1991) and Kearns and Pagan (1997). Assuming that the loss returns on each day
follow, possibly different, heavy-tailed distributions as in limits (1.1) and (1.5), we test whether
the extreme value index of the loss returns is invariant over time. If not rejected, we further test
whether the scedasis function is invariant over time.

We start with analysing the full sample from 1988 to 2012, consisting of 6302 observations
(2926 days with losses) and use k= 160. Tests 3 (with δ= 1

4 ) and 4 (with m= 4) both yield
p-values that are virtually 0. Hence, we strongly reject the null hypothesis that the extreme value
index is invariant over time. We do not need to investigate the scedasis function further as our
model is not valid for this data set. (Here and below we choose k heuristically as the midpoint
of the first stable part in the plot of the Hill estimator against k.)
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The observed structural change in the extreme value index might be attributed to the recent
financial crisis. Therefore we continue with a 20-years subsample from 1988 to 2007, consisting
of 5043 observations (2348 days with losses). This excludes the recent financial crisis (and the
so-called ‘black Monday’ in 1987) but nevertheless includes other crisis events such as the burst
of the Internet bubble at the beginning of the 21st century. We test again the null hypothesis
that the extreme value index is invariant during this period by using k=130. Tests 3 and 4 yield
p-values 0.98 and 0.76 respectively. Hence, we do not reject the null hypothesis of constant
extreme value index. In other words, the magnitude of the crisis, measured by the extreme value
index, is not varying during this period.

We further test whether the scedasis function is constant in the subsample from 1988 to 2007.
Both test 1 and test 2 report strong evidence rejecting the null (the p-values are virtually 0).
Hence, although the magnitude remains at a constant level, the frequency of extremes changes
over time. We apply our kernel estimator ĉ of Section 2, with again the biweight kernel and
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Fig. 1. Estimated scedasis function c based on (a) daily and (b) weekly loss returns of the Standard and
Poor’s index from 1988 till 2007
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h= 0:1, to estimate the function c. The estimate ĉ is plotted in Fig. 1(a). We observe the peak
of the scedasis function in the period from 2001 to 2002, which reflects the burst of the Internet
bubble. We conclude that the tail risk during these 2 years is higher than that during other
periods. Note that, at the end of the period, the scedasis function c increases steeply again, even
though we use only data up to the end of 2007, before the financial crisis erupts.

We check the robustness of our results by using weekly equity returns. The daily equity
return series may suffer from serial dependence such as volatility clustering, which violates our
assumption on independence. Such serial dependence is at least much weaker in weekly returns.
We repeat our analysis for the weekly loss returns in the subsample from 1988 to 2007, consisting
of 1043 observations (454 weeks with losses). Using k=60, tests 3 and 4 yield p-values 0.21 and
0.18 respectively. Hence, we do not reject the null hypothesis of constant extreme value index.
In addition, tests 1 and 2 yield p-values 0.01 and 0.03 respectively, which provide evidence
that the frequency of extremes is time varying during this period. Lastly, with the same kernel
estimator ĉ, we estimate the scedasis function c during this period (Fig. 1(b)). We see from
both the quantitative and the qualitative analysis that our results are robust when changing the
frequency of the data.

5. The sequential tail empirical process

The proofs of the theorems in Sections 2 and 3 are based on a specific tool: the STEP. In this
section, we define the STEP and study its asymptotic properties. Recall that the function c is
positive and continuous on [0, 1]. Thus, there are positive numbers b and d such that 0 < b <

c.s/<d, for all s∈ [0, 1].
Define the sequential empirical distribution function as

Fn.x, s/ := 1
n

[ns]∑
i=1

1{X
.n/
i �x}, x<xÅ:

Since we are interested in the right-hand tail of the distribution, we further define the sequential
empirical survival function as

F̄ n.x, s/ := 1
n

[ns]∑
i=1

1{X
.n/
i >x}=

[ns]
n
−Fn.x, s/, x<xÅ:

Next, we deal with the tail region corresponding to x=U.n=kt/, for 0 � t � 1, where k satisfies
condition (2.1). We approximate the mean and variance of F̄ n{U.n=kt/, s} as follows. From the
limit relation (1.1),

E

[
F̄ n

{
U

(
n

kt

)
, s

}]
= 1

n

[ns]∑
i=1

[
1−Fn,i

{
U

(
n

kt

)}]

≈ 1
n

[ns]∑
i=1

c

(
i

n

)[
1−F

{
U

(
n

kt

)}]
≈ kt

n
C.s/:

Similarly, as n→∞, we obtain the approximation of the variance as

var
[
F̄ n

{
U

(
n

kt

)
, s

}]
= 1

n2

[ns]∑
i=1

[
1−Fn,i

{
U

(
n

kt

)}]
Fn,i

{
U

(
n

kt

)}
≈ kt

n2 C.s/=O

(
k

n2

)
:

Normalizing F̄ n {U.n=kt/, s} with the approximations of its expectation and variance, we define
the STEP as
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Fn.t, s/ :=
√(

n2

k

)[
F̄ n

{
U

(
n

kt

)
, s

}
− kt

n
C.s/

]
=√k

{
1
k

[ns]∑
i=1

1{X
.n/
i >U.n=kt/}− t C.s/

}
:

We shall prove that, under proper conditions, the STEP converges to a Wiener process in a
proper function space.

We start with considering the ‘simple’ case where F is a standard uniform distribution function
and the limit relation (1.1) is exact, i.e., for all 1 � i � n, 1−Fn,i.x/= c.i=n/.1− x/, for x ∈
[1− 1=c.i=n/, 1]. In that case, each X

.n/
i follows a uniform distribution on [1− 1=c.i=n/, 1].

Hence, we can write X
.n/
i =1−Ui=c.i=n/, where the Ui are IID uniform[0,1] random variables.

The STEP in this special case is then written as

Sn.t, s/=√k

{
1
k

[ns]∑
i=1

1{Ui<c.i=n/kt=n}− t C.s/

}
:

We call it the simple STEP.
We first establish the asymptotic behaviour of the simple STEP. Firstly, we extend the defini-

tion of the simple STEP to .t, s/∈D := .0, 2]× [0, 1] with the same formula. Secondly, we define
a weight function q.t/= tη for any 0�η < 1

2 . Then, we have the following proposition.

Proposition 1. Suppose that k satisfies conditions (2.1) and (2.7). Under a Skorokhod con-
struction, there is a standard bivariate Wiener process W̃ on D, i.e. W̃ is a mean 0 Gaussian
process with cov{W̃.t1, s1/, W̃.t2, s2/}= .t1 ∧ t2/.s1 ∧ s2/, for .t1, s1/, .t2, s2/ ∈D, such that, as
n→∞,

sup
.t, s/∈D

1
q.t/
|Sn.t, s/− W̃{t, C.s/}|→0 almost surely.

The proof of this proposition requires the following two lemmas.

Lemma 1. For independent, uniform[0,1] random variables V1, : : : , Vn, define

Kn.t, s/= 1√
n

[ns]∑
i=1

.1{Vi<t}− t/, 0� t, s�1:

Let K denote a Kiefer process on [0, 1]2, i.e. K is a mean 0 Gaussian process with

cov{K.t1, s1/, K.t2, s2/}= .t1∧ t2− t1t2/.s1∧ s2/, for .t1, s1/, .t2, s2/∈ [0, 1]2:

Then, we have, under a Skorokhod construction, as n→∞,

sup
0<t�1, 0�s�1

1
q.t/
|Kn.t, s/−K.t, s/|→0 almost surely:

Lemma 2. Suppose that Z1, : : : , Zn are independent random variables with Bernoulli distri-
butions: P.Zi=1/=2c.i=n/k=n, with k satisfying conditions (2.1) and (2.7). Define the partial
sum process as

Nn.s/=
[ns]∑
i=1

Zi:

Then, under a Skorokhod construction, there is a standard Wiener process W0 on [0, 2], such
that, as n→∞,

sup
0�s�1

∣∣∣∣√k

{
Nn.s/

k
−2C.s/

}
−W0{2C.s/}

∣∣∣∣→0 almost surely.
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Lemma 1 follows from theorem 2.12.1 in van der Vaart and Wellner (1996) in combina-
tion with the Chibisov–O’Reilly theorem (see page 462 in Shorack and Wellner (1986)). In
fact, lemma 2 holds with any non-decreasing continuous function q : [0, 2]→ .0,∞/ such that∫ 2

0 u−1 exp{−λq2.u/=u}du<∞, for all λ> 0.

5.1. Proof of lemma 2
We apply theorem 2.12.6 in van der Vaart and Wellner (1996) with Yni= .1=

√
k/{Zi−E.Zi/},

Qni being equal to the Dirac measure at i=n and Q being equal to a measure on [0, 1] such that
Q.[0, s]/= 2C.s/. We have that, under a Skorokhod construction, there is a standard Wiener
process W0 on [0, 2], such that, as n→∞,

sup
0�s�1

∣∣∣∣√k

{
Nn.s/

k
−2

1
n

[ns]∑
i=1

c

(
i

n

)}
−W0{2C.s/}

∣∣∣∣→0 almost surely:

Lemma 2 is proved provided that

sup
0�s�1

√
k

∣∣∣∣1n
[ns]∑
i=1

c

(
i

n

)
−C.s/

∣∣∣∣→0 as n→∞,

which follows from assumption (2.7).

5.2. Proof of proposition 1
First, we construct n independent uniform[0,1] random variables U1, U2, : : : , Un in a special way.
Recall that d is the upper bound of the function c. For n such that n=k > 2d, let Zi, 1� i�n, be
independent random variables following Bernoulli distributions with P.Zi= 1/= 2c.i=n/k=n.
Let Vj, 1 � j � n, be independent uniform[0,1] random variables, independent of the Zi. We
combine these 2n random variables to construct the Ui. Each Zi is matched with a Vj, where
the random index j is defined as follows (recall the notation of lemma 2):

j=
{

Nn.i=n/ if Zi=1,
i+Nn.1/−Nn.i=n/ if Zi=0,

i.e. we assign the first Nn.1/ random variables Vj to the Zi with Zi=1, and then assign the rest
of the Vj to the Zi with Zi=0. Then we construct

Ui=2Zi c

(
i

n

)
k

n
Vj+ .1−Zi/

[
2c

(
i

n

)
k

n
+
{

1−2c

(
i

n

)
k

n

}
Vj

]
, i=1, : : : , n:

It is straightforward to verify that U1, : : : , Un are independent uniform[0,1] random variables.
We base our simple STEP on these Ui. We then obtain (recalling the notation of lemma 1)

Sn.t, s/=√k

{
1
k

[ns]∑
i=1

1{Ui<c.i=n/kt=n}− t C.s/

}

=√k

{
1
k

Nn.s/∑
i=1

1{Vi<t=2}− t C.s/

}

=
{

Nn.1/

k

}1=2 1√
Nn.1/

Nn.s/∑
i=1

(
1{Vi<t=2}−

t

2

)
+ t

2
√

k

{
Nn.s/

k
−2C.s/

}
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=
{

Nn.1/

k

}1=2

KNn.1/

{
t

2
,

Nn.s/

Nn.1/

}
+ t

2
√

k

{
Nn.s/

k
−2C.s/

}
=: I1.t, s/+ I2.t, s/: .5:1/

Observe that the two sequences of processes {Km} and {Nn} are independent, and hence their
limits K and W0 are independent. We have

1
q.t/

∣∣∣∣I1.t, s/−√2K

{
t

2
, C.s/

}∣∣∣∣�
{

Nn.1/

k

}1=2 1
q.t/

∣∣∣∣KNn.1/

{
t

2
,

Nn.s/

Nn.1/

}
−K

{
t

2
, C.s/

}∣∣∣∣
+ |K {t=2, C.s/} |

q.t/

∣∣∣∣
{

Nn.1/

k

}1=2

−√2

∣∣∣∣:
Now it readily follows from lemmas 1 and 2 that

sup
.t, s/∈D

1
q.t/

∣∣∣∣I1.t, s/−√2K

{
t

2
, C.s/

}∣∣∣∣→0 almost surely. .5:2/

It is immediate from lemma 2 that, as n→∞,

sup
.t,s/∈D

1
q.t/

∣∣∣∣I2.t, s/− t

2
W0 {2C.s/}

∣∣∣∣→0 almost surely. .5:3/

Combining results (5.2) and (5.3), yields, as n→∞,

sup
.t,s/∈D

1
q.t/

∣∣∣∣Sn.t, s/−
[√

2K

{
t

2
, C.s/

}
+ t

2
W0 {2C.s/}

]∣∣∣∣→0 almost surely.

Finally write

W̃.t, s/=√2K

(
t

2
, s

)
+ t

2
W0.2s/,

and note that W̃ is a standard bivariate Wiener process on D. �
The following theorem gives the asymptotic behaviour of the STEP in the general case, i.e. in

the set-up of Sections 1 and 2.

Theorem 4. Suppose that conditions (1.2), (2.1), (2.4), the first part of condition (2.6) and
condition (2.7) hold. Then, under a Skorokhod construction, there is a standard bivariate
Wiener process W̃ on [0, 1]2 such that, as n→∞,

sup
0<t�1,0�s�1

1
q.t/
|Fn.t, s/− W̃{t, C.s/}|→0 almost surely. .5:4/

Proof. Denote Ui= 1−Fn,i.X
.n/
i /. Then U1, : : : , Un are independent, uniform[0,1] random

variables. We have, almost surely,

Fn.t, s/=√k

{
1
k

[ns]∑
i=1

1[Ui<1−Fn, i{U.n=kt/}]− t C.s/

}
:

Condition (2.4) implies that there are real numbers x0 < xÅ and τ > 0 such that, for all x > x0,
n∈N and 1� i�n,

c

(
i

n

)[
1− τ

b
A1

{
1

1−F.x/

}]
<

1−Fn,i.x/

1−F.x/
<c

(
i

n

)[
1+ τ

b
A1

{
1

1−F.x/

}]
:
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Hence,

F−n .t, s/�Fn.t, s/�F+n .t, s/, .5:5/

where

F±n .t, s/ :=√k

{
1
k

[ns]∑
i=1

1{Ui<c.i=n/.kt=n/.1±δn/}− t C.s/

}
,

and

δn= sup
0<t�1

τ

b
A1

(
n

kt

)
= τ

b
A1

(
n

k

)
:

Next, we study the asymptotic properties of F+n and F−n . With the standard bivariate Wiener
process W̃ of proposition 1, we have

sup
0<t�1, 0�s�1

1
q.t/
|F+n .t, s/− W̃{t, C.s/}|

� sup
0<t�1,0�s�1

1
q.t/
|S+n {t.1+ δn/, s}− W̃{t.1+ δn/, C.s/}|

+ sup
0<t�1, 0�s�1

∣∣∣∣∣W̃ {t.1+ δn/, C.s/}
q.t/

− W̃ {t, C.s/}
q.t/

∣∣∣∣∣
+√kδn sup

0<t�1, 0�s�1

t

q.t/
C.s/

=: I1+ I2+ I3:

From proposition 1 it follows that I1→0 almost surely, as n→∞. From the (uniform) continuity
of the process W̃{t, C.s/}=q.t/, extended to [0, 2]× [0, 1], we obtain I2→ 0, as n→∞. Using√

kA1.n=k/→0 as n→∞, we obtain I3→0.
Similarly we can show that

sup
0<t�1,0�s�1

1
q.t/
|F−n .t, s/− W̃{t, C.s/}|→0 almost surely.

Now inequality (5.5) yields result (5.4). �
For theorem 4, we did not use the assumption that F belongs to the domain of attraction.

With that assumption, we obtain the following corollary.

Corollary 3. Assume that the conditions in theorem 1 hold. Then, for any 0 � η < 1
2 and

x0 > 0, under a Skorokhod construction, there is a standard bivariate Wiener process W̃ on
[0, x

−1=γ
0 ]× [0, 1], such that, as n→∞,

sup
0�s�1, x�x0

xη=γ

∣∣∣∣√k

{
1
k

[ns]∑
i=1

1{X
.n/
i >xU.n=k/}−x−1=γ C.s/

}
− W̃{x−1=γ , C.s/}

∣∣∣∣→0

almost surely. .5:6/

Proof. Set

xn := n

k

[
1−F

{
xU

(
n

k

)}]
:

By the domain of attraction condition (1.5), we have xn→ x−1=γ , as n→∞, uniformly for all
x�x0. It easily follows from the proof that theorem 4 remains true if we extend the domain of
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the STEP to .t, s/∈ .0, 2x
−1=γ
0 ]× [0, 1]. Therefore, we may replace t in expression (5.4) with xn

to obtain that

sup
0�s�1, x�x0

x−n
n

∣∣∣∣√k

{
1
k

[ns]∑
i=1

1{X
.n/
i >xU.n=k/}−xn C.s/

}
−W̃ {xn, C.s/}

∣∣∣∣→0 almost surely:

.5:7/

The proof will be finished once we show that xn can be replaced by its limit x−1=γ at the three
places in this expression.

By limit (2.5) we obtain that (see de Haan and Ferreira (2006), page 161) for any δ > 0 and
sufficiently large n ∣∣∣∣xn−x−1=γ

A2.n=k/
−x−1=γ xρ=γ−1

ργ

∣∣∣∣� δx.−1+ρ/=γ max.xδ, x−δ/,

uniformly for all x�x0. It follows that

sup
x�x0

∣∣∣∣ xn−x−1=γ

A2.n=k/x−1=γ

∣∣∣∣=O.1/, n→∞:

Since A2.n=k/→ 0, as n→∞, we may replace x
−η
n with xη=γ in expression (5.7), and since√

kA2.n=k/→ 0, as n→∞, we may replace xn C.s/ with x−1=γC.s/ in expression (5.7). The
(uniform) continuity of the weighted bivariate Wiener process implies that, as n→∞,

sup
0�s�1, x�x0

xη=γ |W̃{xn, C.s/}− W̃{x−1=γ , C.s/}|→0:
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Appendix A: Proofs

A.1. Proof of theorem 1
Taking s=1 and η=0 in expression (5.4) (with domain of t extended to [0, 2]) yields, as n→∞,

sup
0�t�2

∣∣∣∣√k

(
1
k

n∑
i=1

1{X
.n/
i >U.n=kt/}− t

)
− W̃.t, 1/

∣∣∣∣→0 almost surely:

Applying Vervaat’s lemma we obtain

sup
0�t�1

∣∣∣∣√k

[
n

k
{1−F.Xn,n−[kt]/}− t

]
+ W̃.t, 1/

∣∣∣∣→0 almost surely:

Taking t=1 and denoting tn := .n=k/{1−F.Xn,n−k/}, we obtain that, as n→∞,

|√k.tn−1/+ W̃.1, 1/|→0 almost surely: .A:1/

We can thus replace t with tn in expression (5.4) (with domain of t extended to [0, 2]) and obtain that

sup
0�s�1

|√k{Ĉ.s/− tn C.s/}− W̃{tn, C.s/}|→0 almost surely: .A:2/

By applying results (A.1) and (A.2), together with the continuous sample path property of the Wiener
process, we obtain that, as n→∞,
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sup
0�s�1

|√k{Ĉ.s/−C.s/}− [W̃{1, C.s/}−C.s/W̃.1, 1/]|→0 almost surely: .A:3/

Defining the standard Brownian bridge B.u/= W̃.1, u/−uW̃.1, 1/ completes the proof of the first state-
ment in theorem 1.

Next, we prove the second statement: the asymptotic normality of the Hill estimator. Taking s=1 and
x0= 1

2 in expression (5.6) yields, as n→∞,

sup
x�1=2

xη=γ

∣∣∣∣√k

(
1
k

n∑
i=1

1{X
.n/
i >xU.n=k/}−x−1=γ

)
− W̃.x−1=γ , 1/

∣∣∣∣→0 almost surely: .A:4/

The limit relationship (A.4) is the same as that for the tail empirical process based on IID observations;
see de Haan and Ferreira (2006), theorem 5.1.4. Therefore, the asymptotic normality of the Hill estimator,
which can be proved via the tail empirical process, follows; see de Haan and Ferreira (2006), example 5.1.5.
More precisely, we obtain, as n→∞, that

√
k.γ̂H−γ/→γ

{∫ 1

0
W̃.t, 1/

dt

t
− W̃.1, 1/

}
almost surely:

It readily follows that N0 :=∫ 1
0 W̃.t, 1/dt=t− W̃.1, 1/ is standard normal. Finally, it is easy to check that B

and W̃.·, 1/, and hence B and N0, are independent. �
Remark 2. It is easy to see that the limit processes in expressions (A.3) and (A.4) are independent.

Hence the independence statement of theorem 1 also holds for other estimators of γ based on upper order
statistics. In fact similar results can be derived for any real γ.

We proceed with the proof of theorem 3. The proof of theorem 2 will be given at the end of the section.

A.2. Proof of theorem 3
From expression (5.6) we obtain, as n→∞,

sup
0�s1<s2�1,s2−s1�δ

sup
x�x0

xη=γ

∣∣∣∣√k

[
1
k

[ns2]∑
i=[ns1]+1

1{X
.n/
i >xU.n=k/}−x−1=γ{C.s2/−C.s1/}

]

− [W̃{x−1=γ , C.s2/}− W̃{x−1=γ , C.s1/}]

∣∣∣∣→0 almost surely: .A:5/

From result (A.3), we obtain that, eventually for all s1 and s2 such that s2− s1 � δ,

Ĉ.s2/− Ĉ.s1/> 1
2 {C.s2/−C.s1/}> 1

2 bδ > 0 almost surely:

Hence, dividing expression (A.5) by Ĉ.s2/− Ĉ.s1/, yields, as n→∞,

sup
0�s1<s2�1, s2−s1�δ

sup
x�x0

xη=γ

∣∣∣∣√k

{
1

k.s1,s2]

[ns2]∑
i=[ns1]+1

1{X
.n/
i >xU.n=k/}−x−1=γ C.s2/−C.s1/

Ĉ.s2/− Ĉ.s1/

}

− W̃{x−1=γ , C.s2/}− W̃{x−1=γ , C.s1/}
Ĉ.s2/− Ĉ.s1/

∣∣∣∣→0 almost surely: .A:6/

Similarly we obtain from result (A.3) that almost surely, as n→∞,

sup
0�s1<s2�1, s2−s1�δ

∣∣∣∣√k

{
Ĉ.s2/− Ĉ.s1/

C.s2/−C.s1/
−1

}
−

[
W̃{1, C.s2/}− W̃{1, C.s1/}

C.s2/−C.s1/
− W̃.1, 1/

]∣∣∣∣→0:

Hence, we can replace Ĉ.s2/− Ĉ.s1/ by C.s2/−C.s1/ in expression (A.6) and obtain that

sup
0�s1<s2�1, s2−s1�δ

sup
x�x0

xη=γ

∣∣∣∣√k

(
1

k.s1,s2]

[ns2]∑
i=[ns1]+1

1{X
.n/
i >xU.n=k/}−x−1=γ

)
−L.x−1=γ , s1, s2/

∣∣∣∣→0

almost surely, .A:7/

where

L.v, s1, s2/ := W̃ {v, C.s2/}− W̃ {v, C.s1/}
C.s2/−C.s1/

−v

[
W̃{1, C.s2/}− W̃{1, C.s1/}

C.s2/−C.s1/
− W̃.1, 1/

]
:
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Observe that the limit relation (A.7) gives uniformly asymptotic properties of pseudotail empirical processes
based on observations from subsamples satisfying s2 − s1 � δ. It is comparable with the limit relation
(5.1.18) in de Haan and Ferreira (2006), which is the basis for proving the asymptotic normality of the
Hill estimator.

Next, we establish a uniform analogue of the relation (5.1.19) in de Haan and Ferreira (2006). For
notational convenience, set k̃ := k.s1,s2] and ñ := [ns2]− [ns1]. Order the observations X[ns1]+1, : : : , X[ns2]
as Xs1,s2,1 �: : :� Xs1,s2, ñ. We now take η= 0 in result (A.7) and replace x with t−γ . Then the general-
ized Vervaat lemma, as in Einmahl et al. (2010), lemma 5, is applied on the collection of functions
.1=k.s1,s2]/Σ

[ns2]
i=[ns1]+1 1{X

.n/
i >t−γU.n=k/}: (Observe that the uniform equicontinuity of the L.·, s1, s2/ follows from

the uniform continuity of W̃ .) In conjunction with the delta method, we obtain

sup
0�s1<s2�1,s2−s1�δ

sup
1=2�t�2

∣∣∣∣√k

{
Xs1, s2, ñ−[k̃t]

U.n=k/
− t−γ

}
−γt−γ−1 L .t, s1, s2/

∣∣∣∣→0 almost surely,

as n→∞. Consider t=1: as n→∞,

sup
0�s1<s2�1, s2−s1�δ

∣∣∣∣√k

{
Xs1, s2, ñ−k̃

U.n=k/
−1

}
−γ L .1, s1, s2/

∣∣∣∣→0 almost surely, .A:8/

which is a uniform analogue of relation (5.1.19) in de Haan and Ferreira (2006). Using results (A.7) and
(A.8) in a similar way to example 5.1.5 in de Haan and Ferreira (2006) yields, as n→∞,

sup
0�s1<s2�1,s2−s1>δ

∣∣∣∣√k.γ̂.s1,s2]−γ/−γ

{∫ 1

0
L .u, s1, s2/

du

u
−L.1, s1, s2/

}∣∣∣∣→0 almost surely:

We have∫ 1

0
L.u, s1, s2/

du

u
−L.1, s1, s2/

=

∫ 1

0
W̃{u, C.s2/}− W̃{u, C.s1/}du=u

C.s2/−C.s1/
− W̃{1, C.s2/}− W̃{1, C.s1/}

C.s2/−C.s1/

=

∫ 1

0
W̃{u, C.s2/}du=u− W̃{1, C.s2/}−

[∫ 1

0
W̃{u, C.s1/}du=u− W̃{1, C.s1/}

]
C.s2/−C.s1/

:

The proof is completed by noting that the process W defined by

W.s/ :=
∫ 1

0
W̃.u, s/

du

u
− W̃.1, s/

is a standard Wiener process.

A.3. Proof of corollary 2
Combining theorem 1 with theorem 3, we obtain

sup
0�s1<s2�1, Ĉ.s2/−Ĉ.s1/�δ

∣∣∣∣√k

(
γ̂.s1,s2]

γ̂H
−1

)
−

[
W{C.s2/}−W{C.s1/}

C.s2/−C.s1/
−W.1/

]∣∣∣∣→0 almost surely:

The asymptotic result for T3 follows from this in conjunction with again theorem 1 and the continuity of
the sample paths of W .

Finally we consider T4. From theorem 3, theorem 1 and the continuity of the sample paths of W , we
obtain

sup
1�j�m

∣∣∣∣√k.γ̂.lj−1, lj ]−γ/−mγ

{
W

(
j

m

)
−W

(
j−1

m

)}∣∣∣∣→0 almost surely,
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which implies that

sup
1�j�m

∣∣∣∣√k

(
γ̂.lj−1, lj ]

γ̂H
−1

)
−

[
m

{
W

(
j

m

)
−W

(
j−1

m

)}
−W.1/

] ∣∣∣∣→0 almost surely:

The asymptotic result for T4 thus follows. �
For the proof of theorem 2, we need the asymptotic normality of ĉ.1/.

Proposition 2. Under the assumptions of theorem 2 we have, as n→∞,

√
.kh/{ĉ.1/− c.1/} d→N

{
λ5=2 c′′.1/

2

∫ 1

0
x2 Gb.x/dx, c.1/

∫ 1

0
G2

b.x/dx

}
: .A:9/

Remark 3. A similar result for ĉ.s/, s∈ .0, 1/, can also be established along the same lines.

A.4. Proof of proposition 2
Recall the notation tn= .n=k/{1−F.Xn,n−k/}. The limit relation (A.1) yields, as n→∞,

P.k1=2h1=4|tn−1|�1/→1: .A:10/

Write, for either choice of sign, t± := 1± 1=.k1=2h1=4/ and, with G+b and G−b denoting the positive and
negative parts of Gb respectively,

c̃±.u/ := 1
kh

n∑
i=1

1{X
.n/
i >U.n=ku/} G±b

(
1− i=n

h

)
: .A:11/

Then, almost surely, ĉ.1/= c̃+.tn/− c̃−.tn/. We have, on the event in result (A.10),

c̃+.t−/− c̃−.t+/� c̃+.tn/− c̃−.tn/� c̃+.t+/− c̃−.t−/: .A:12/

We shall prove that, as n→∞,

√
.kh/

{
c̃+.t+/− c̃−.t−/− c.1/

} d→N

{
λ5=2 c′′.1/

2

∫ 1

0
x2 Gb.x/dx, c.1/

∫ 1

0
G2

b.x/dx

}
,

√
.kh/

{
c̃+.t−/− c̃−.t+/− c.1/

} d→N

{
λ5=2 c′′.1/

2

∫ 1

0
x2 Gb.x/dx, c.1/

∫ 1

0
G2

b.x/dx

}
:

.A:13/

The proof of result (A.13) requires two results, which follow from routine calculus arguments, using∫ 1
0 Gb.x/dx=1 and

∫ 1
0 xGb.x/dx=0. As n→∞,

1
nh

n∑
i=1

c

(
i

n

)
G2

b

(
1− i=n

h

)
→ c.1/

∫ 1

0
G2

b.x/dx: .A:14/

and
1

nh

n∑
i=1

c

(
i

n

)
Gb

(
1− i=n

h

)
− c.1/−h2 c′′.1/

2

∫ 1

0
x2 Gb.x/dx=O

(
1

nh

)
+o.h2/: .A:15/

Now we turn to the proof of the first line of result (A.13). Consider the sum of independent random
variables

I :=k h{c̃+.t+/− c̃−.t−/}

=
n∑

i=1

{
1{X

.n/
i >U{n=.kt+/}} G+b

(
1− i=n

h

)
−1{X

.n/
i >U{n=.kt−/}} G−b

(
1− i=n

h

)}
:

Note that, as n→∞,

var.I/∼kh
1

nh

n∑
i=1

c

(
i

n

)
G2

b

(
1− i=n

h

)
∼khc.1/

∫ 1

0
G2

b.x/dx:
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Here the last step follows from result (A.14). Applying the Lindeberg–Feller central limit theorem, we
obtain

√
.kh/

{
c̃+.t+/− c̃−.t−/− E.I/

kh

}
d→N

{
0, c.1/

∫ 1

0
G2

b.x/dx

}
: .A:16/

Next, a straightforward calculation shows that

E.I/

kh
= t+

1
nh

n∑
i=1

c

(
i

n

)
G+b

(
1− i=n

h

)[
1+O

{
A1

(
n

kt+

)}]

− t−
1

nh

n∑
i=1

c

(
i

n

)
G−b

(
1− i=n

h

)[
1+O

{
A1

(
n

kt−

)}]
:

We have |t±−1|=1=.k1=2h1=4/=o{1=
√

.kh/} and expression (2.6) yields

√
.kh/A1

(
n

kt±

)
�√k A1

(
n

2k

)
→0:

Combining this with equation (A.15) and using O .1=nh/+o.h2/=o{1=
√

.kh/} yields

E.I/

kh
− c.1/−h2 c′′.1/

2

∫ 1

0
x2 Gb.x/dx=o

{
1√
.kh/

}
:

Hence, since hk1=5→λ, as n→∞, we have that

lim
n→∞
√

.kh/

{
E.I/

kh
− c.1/

}
=λ5=2 c′′.1/

2

∫ 1

0
x2 Gb.x/dx:

This, in conjunction with result (A.16), yields the first line of expression (A.13). The second line follows
similarly.

Combining expression (A.13) with (A.10) and (A.12), yields result (A.9).

A.5. Proof of theorem 2
Write dn :=k=np and recall that dn→∞, as n→∞. We have

̂Un,n+1 .1=p/

Un,n+1 .1=p/
=

{
ĉ.1/

c.1/

}γ

d γ̂H−γ
n

Xn,n−k

U.n=k/
ĉ.1/γ̂H−γ U.n=k/dγ

n

U.1=p/

U .1=p/ c.1/γ

Un,n+1 .1=p/

=: I1I2I3I4I5I6:

It can be shown that, as n→∞,

Ij=1+op {1=
√

.kh/}, for j=3, 4,

and

Ij=1+o{1=
√

.kh/} for j=5, 6:

The statement for j=3 follows from theorem 1 and that for j=4 follows from result (A.8). The statements
for j= 5 and j= 6 follow from conditions (2.4)–(2.7) and the properties of regular variation. We omit
further details.

Therefore it suffices to show that
√

.kh/.I1I2− 1/ converges in distribution to the normal distribution
specified in theorem 2. From proposition 2 and the delta method, we obtain, as n→∞,

√
.kh/.I1−1/

d→N

⎧⎪⎪⎨
⎪⎪⎩λ5=2 γ c′′.1/

2c.1/

∫ 1

0
x2 Gb.x/dx,

γ2

∫ 1

0
G2

b.x/dx

c.1/

⎫⎪⎪⎬
⎪⎪⎭: .A:17/
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Also, theorem 1 implies that, as n→∞,
√

.kh/.I2−1/
d→N.0, β2γ2/: .A:18/

Finally we show that I1 and I2 are asymptotically independent. Denote with γ̂Å
.0,1−h] the Hill estimator based

on the first [n.1−h/] observations and with sample fraction [kC.1−h/]. Obviously γ̂Å
.0,1−h] is independent

of c̃+.t−/− c̃−.t+/ and of c̃+.t+/− c̃−.t−/; see result (A.11). Mimicking the proof of theorem 3, we obtain
γ̂H− γ̂Å

.0,1−h]=op.1=
√

k/ and hence

I2−d
γ̂Å

.0,1−h]−γ

n =op {1=
√

.kh/} :

Using results (A.12) and (A.13), this yields that
√

.kh/.I1I2−1/ converges in distribution to the convolution
of the limits in results (A.17) and (A.18).
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