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Abstract

We consider the problem of portfolio optimisation with general càdlàg price processes
in the presence of proportional transaction costs. In this context, we develop a general
duality theory. In particular, we prove the existence of a dual optimiser as well as a
shadow price process in an appropriate generalised sense. This shadow price is defined
by means of a “sandwiched” process consisting of a predictable and an optional strong
supermartingale, and pertains to all strategies that remain solvent under transaction
costs. We provide examples showing that, in the general setting we study, the shadow
price processes have to be of such a generalised form.
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1 Introduction

Utility maximisation in the presence of proportional transaction costs is a classical problem
in mathematical finance that is almost as old as its frictionless (i.e., without transaction
costs) counterpart. A natural question that arises is whether or not there is a one-to-one
correspondence between utility maximisation problems with transaction costs and utility
maximisation problems in frictionless markets: given a utility maximisation problem with
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transaction costs, is there a shadow price process, namely, a price process such that frictionless
trading for that price process yields the same optimal trading strategy and utility as in the
original problem? In this paper, we develop a general duality theory for utility maximisation
with transaction costs that allows us to fully investigate this question. Furthermore, we
provide examples that illustrate the new phenomena arising from the presence of transaction
costs that cannot be observed in frictionless financial markets.

Literature. The literature on portfolio optimisation under transaction costs being rather
extensive, we focus on some of the main references and work that is more closely related to
our contributions here.

In continuous time, the analysis of portfolio optimisation with transaction cost goes back
to Magill and Constantinides [39] and Constantinides [9], who considered the Merton prob-
lem of optimal consumption in the Black-Scholes model and argued that the presence of
transaction costs leads to the existence of a no-trade region. Considering this problem as a
singular stochastic control problem, Davis and Norman [17] gave a rigorous mathematical
proof for the heuristic derivation of Magill and Constantinides. Furthermore, they deter-
mined the location of the no-trade region’s boundaries and the local time behaviour of the
optimal strategy. Using the theory of viscosity solutions, Shreve and Soner [45] removed
technical conditions needed in [17] and derived a complete solution under the assumption
that the value function is finite. The more tractable problem of maximising the asymptotic
growth rate for logarithmic or power utility in the Black-Scholes model under transaction
costs have been studied by Taksar, Klass and Assaf [46], and Dumas and Luciano [20]. In
these papers, the optimal strategy is shown to exhibit a similar behaviour as in the Merton
problem with transaction costs.

While all of the papers above use dynamic programming, Cvitanić and Karatzas [10] are
the first to apply convex duality, also called “the martingale method”, to the problem of
optimal investment and consumption under transaction costs. This approach allowed them
to consider more general Itô process models.

As dual variables Cvitanić and Karatzas use so-called consistent price systems. These
are two dimensional processes Z = (Z0

t , Z
1
t )0≤t≤T that consist of the density process Z =

(Z0
t )0≤t≤T of an equivalent local martingale measure Q for a price process S̃ = (S̃t)0≤t≤T

evolving in the bid-ask spread [(1− λ)S, S] and the product Z1 = Z0S̃. Requiring that S̃ is

a local martingale under Q is tantamount to the product Z1 = Z0S̃ being a local martingale
under the historical measure P . Consistent price systems have been introduced by Jouini
and Kallal [30] and play a similar role under transaction costs as equivalent local martingale
measures in the frictionless theory.

In their Itô process models, Cvitanić and Karatzas showed that, if the solution to the
dual problem is attained as a local martingale Ẑ = (Ẑ0

t , Ẑ
1
t )0≤t≤T , then the duality theory

applies. Moreover, the optimal trading strategy under transaction costs only buys stocks

when Ŝ := Ẑ1

Ẑ0
is equal to the ask price S, and only sells stocks when Ŝ is equal to the bid

price (1− λ)S.

It is “folklore” that, in this case, Ŝ is a shadow price in the strict sense of Definition 2.1
below. That is, that the optimal strategy for the portfolio optimisation problem without
transaction costs for the price process Ŝ coincides with the optimal strategy under transaction
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costs for the prices process S. However, latter results of Cvitanić and Wang [11] only provide

the existence of the dual optimiser as a supermartingale Ŷ = (Ŷ 0
t , Ŷ

1
t )0≤t≤T . Although these

supermartingales Ŷ = (Ŷ 0
t , Ŷ

1
t )0≤t≤T still allow to realise the optimal trading strategy under

transaction costs by frictionless trading for Ŝ = Ŷ 1

Ŷ 0
, the discrete-time counter-examples in

[2, 12] show that they do not yield a shadow price in the strict sense of Definition 2.1.

The frictionless optimal strategy for Ŝ = Ŷ 1

Ŷ 0
does strictly better than any strategy under

transaction costs and the two optimal strategies are different. For finite probability spaces,

Kallsen and Muhle-Karbe [33] show that the ratio Ŝ = Ŷ 1

Ŷ 0
is always a shadow price, if an

optimal portfolio/consumption pair exists.
Kabanov [31] extends the duality results of Cvitanić and Karatzas [10] to a semimartin-

gale multi-currency model. He shows that, under the assumption that the solution to the
dual problem exists as a martingale, duality applies. However, the existence of a dual opti-
miser was left as an open question.

For more general multivariate utility functions, Deelstra, Pham and Touzi [16], Bouchard
and Mazliak [4], and Campi and Owen [5] established duality results for portfolio optimisa-
tion with transaction cost in different versions of Kabanov’s multi-currency model. These
results are only static in the sense that they derive duality relations only for terminal random
variables. However, in order to analyse the existence of a shadow price, we need to have
stochastic processes within a reasonable class of processes that attain the solution to the
dual problem as well as dynamic duality results between the dual optimiser and the optimal
trading strategy on the level of stochastic processes. See also Bouchard [3] and Bayraktar
and Yu [1] for static duality results for univariate utility functions.

In discrete time, Kallsen and Muhle-Karbe [33] provide duality results on the level
of stochastic processes for a finite probability space and Czichowsky, Muhle-Karbe and
Schachermayer [12] for a general probability space.

Starting with the paper [32] of Kallsen and Muhle-Karbe, there have been explicit con-
structions of shadow prices for various concrete optimisation problems in the Black-Scholes
model (see [22, 23, 21, 27, 7, 29]).

Under no-shortselling constraints, Loewenstein [38] shows that shadow prices always exist
for continuous price processes by constructing them directly from the derivatives from the
primal value function. Benedetti, Campi, Kallsen and Muhle-Karbe [2] generalise this result
to Kabanov’s general cone model. The reason why shadow prices always exist in this setup is
that it is sufficient to have supermartingales as dual optimiser, if positions are non-negative.

Using a direct primal optimisation argument, Guasoni [24, 25] shows the existence of
optimal trading strategies under proportional transaction costs for quasi-left-continuous price
processes S. He points out that this only needs the existence of consistent price systems and
therefore, unlike in the fricitionless case, the price process S does not need to be necessarily a
semimartingale for this. For the prime example of a non-semimartingale, fractional Brownian
motion, the existence of consistent price systems is established in Guasoni [26].

Our contribution. In this paper, we develop a duality theory for the problem of max-
imising utility from terminal wealth in the presence of proportional transaction costs. We
consider utility functions U : (0,∞) → R and general strictly positive càdlàg (i.e., right-
continuous with left limits) price processes S = (St)0≤t≤T . Without imposing unnecessary
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regularity assumptions, we establish the existence of a dual optimiser within a suitable class
of stochastic processes. Such a dual optimiser Ŷ = (Ŷ 0

t , Ŷ
1
t )0≤t≤T is related with a primal

optimiser ϕ̂ = (ϕ̂0
t , ϕ̂

1
t )0≤t≤T via the usual first order conditions. This result allows us to

clarify in which sense the ratio Ŝ = Ŷ 1

Ŷ 0
can be understood as a shadow price.

It is worth noting that we do not need to assume the price process S = (St)0≤t≤T to be a
semimartingale. Therefore, our results allow us to establish in [15] the existence of a shadow

price Ŝ = (Ŝt)0≤t≤T in the strict sense of Definition 2.1 for utility functions U : R→ R on the
whole real line and for non-semimartingale price process such as the fractional Black-Scholes
model S = exp(BH), where BH = (BH

t )0≤t≤T is a fractional Brownian motion.
Furthermore, for continuous price processes S = (St)0≤t≤T , we obtain sharper results in

[14] that allow us to provide sufficient conditions for Ŝ = Ŷ 1

Ŷ 0
to be a shadow price in the

strict sense of Definition 2.1.
In our general setting here, where the price process S = (St)0≤t≤T is not necessarily

continuous but only càdlàg, it turns out that we have to interpret the notion of a shadow

price more deliberately. In particular, the ratio Ŝ = Ŷ 1

Ŷ 0
may fail to be càdlàg. As a result,

we are forced to leave the classical framework of semimartingale theory.
To motivate the new phenomena arising in the framework of general càdlàg price processes

S, we study two illuminating examples that are discussed in more detail in Section 4.
In the first one (Example 4.1), the price process S = (St)0≤t≤1 has a jump occurring at

a predictable stopping time τ , say at τ = 1
2
. This stopping time τ can be interpreted, e.g.,

as the time of a (previously announced) speech by the chair-person of the European Central
Bank (ECB). The process S is designed in such a way that the holdings in stock ϕ̂1

t of a

log-optimal investor are increasing for 0 ≤ t < 1
2
. Therefore, if there is a shadow price Ŝ,

then this process must satisfy Ŝt = St for t ∈ [0, 1
2
), because it is the basic feature of a shadow

price that Ŝt = St holds true, when the optimising agent buys stock, while Ŝt = (1 − λ)St
holds true, when she sells stock.

At time τ = 1
2
, it may happen that the news revealed during the speech are sufficiently

negative to cause the agent to immediately sell stock, so that a shadow price process Ŝ
should satisfy Ŝ 1

2
= (1 − λ)S 1

2
on a set of positive measure. Immediately after time τ = 1

2
,

the situation quickly improves again for the log-optimising agent so that ϕ̂1
t increases for

t > 1
2
, implying that Ŝt = St, for t > 1

2
.

It follows that, if a shadow price process Ŝ exists in this example, then it must have a
left as well as a right jump at time t = 1

2
with positive probability. In particular, Ŝ cannot

be given by the quotient Ŷ 1

Ŷ 0
of two local martingales (Ŷ 0, Ŷ 1) because local martingales are

càdlàg. Moreover, Ŝ cannot be a semimartingale.
We overcome this difficulty by using the classical notion of an optional strong super-

martingale, which was introduced by Mertens [40]. These processes need to be only làdlàg
(i.e., with left and right limits). Therefore, they may very well have non-trivial left as well
as right jumps. It turns out that optional strong supermartingales are tailor-made to replace
the usual càdlàg supermartingales in the present situation. Indeed, we establish the existence
of a dual optimiser Ŷ = (Ŷ 0, Ŷ 1) within this class of processes by using a version of Komlós’
lemma (see [14]) that works directly with non-negative optional strong supermartingales. In
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particular, we derive a candidate shadow price process Ŝ as the ratio Ŷ 1

Ŷ 0
of two optional

strong supermartingales Ŷ 0 and Ŷ 1.
In fact, the phenomenon revealed by Example 4.1 is not yet the end of the story. In

Example 4.2, we study a variant of Example 4.1 that displays an even more delicate issue.
In this example, the optimal strategy sells stock at all times 0 < t < 1

2
as well as at all

times t ≥ 1
2

after an initial purchase at time 0. Just “immediately before” time t = 1
2
, which

is described by considering the left limit S 1
2
−, the optimal strategy buys stock. Therefore

a shadow price Ŝ, provided it exists, would have to satisfy Ŝt = (1 − λ)St, for t < 1
2

as

well as for t ≥ 1
2
, while for t = 1

2
we have Ŝt− = St−. Plainly, such a process Ŝ cannot

exist because these properties cannot be simultaneously satisfied. The way to overcome this
difficulty is to consider two “sandwiched” processes (Ŝp, Ŝ), where Ŝ is a ratio of two optional

strong supermartingales (Ŷ 0, Ŷ 1) as above, while Ŝp is a ration of two predictable strong

supermartingales (Ŷ 0,p, Ŷ 1,p), another classical notion from the general theory of stochastic

processes (see [8]). The process Ŝp pertains to the left limits of S and describes the buying
or selling of the agent “immediately before” predictable stopping times. Using the notion of
a “sandwiched shadow price process” Ŝ := (Ŝp, Ŝ), we are able to fully characterise the dual
optimiser as a shadow price.

In Theorem 3.6, which is one of our main positive results, we clarify in which sense
the optimal trading strategy ϕ̂ = (ϕ̂0, ϕ̂1) for S with transaction costs is also optimal for Ŝ
without transaction costs. More precisely, we show that, under general conditions on a càdlàg
price process S = (St)0≤t≤T , proportional transaction costs λ ∈ (0, 1), and a utility function
U : (0,∞) → R, there exist a primal optimiser ϕ̂ = (ϕ̂0

t , ϕ̂
1
t )0≤t≤T for the problem with

transaction costs and a shadow price process Ŝ = (Ŝp, Ŝ) taking values in the bid-ask spread
[(1 − λ)S, S] in the “sandwiched” sense discussed above satisfying the following properties:
any competing strategy ϕ = (ϕ0

t , ϕ
1
t )0≤t≤T that is allowed to trade without transaction costs at

prices given by Ŝ, while remaining solvent with respect to prices given by S under transaction
costs λ, cannot do better than ϕ̂ with respect to expected utility.

In summary, our four main contributions are:

1) We show that the solution Ŷ = (Ŷ 0, Ŷ 1) to the dual problem is attained as an optional
strong supermartingale deflator.

2) We explain how to extend the candidate shadow price Ŝ := Ŷ 1

Ŷ 0
to a sandwiched shadow

price Ŝ = (Ŝp, Ŝ) that allows to obtain the optimal strategy ϕ̂ = (ϕ̂0, ϕ̂1) under

transaction costs for S by frictionless trading for Ŝ.

3) We clarify in which sense the primal optimiser ϕ̂ = (ϕ̂0, ϕ̂1) for S under transaction

costs is also optimal for Ŝ without transaction costs.

4) We provide examples that illustrate that a shadow price has to be of this generalised
form and a detailed analysis that exemplifies how and why these new phenomena arise.

The remainder of the article is organised as follows. We introduce our setting and formu-
late the problem in Section 2. This leads to our main results that are stated and explained in
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Section 3. For better readability, the proofs are deferred to Appendix A. Section 4 contains
the two examples that illustrate that a shadow price has to be of our generalised form. A
more detailed analysis of the examples is given in Appendix B.

2 Formulation of the problem

We consider a financial market consisting of one riskless asset and one risky asset. The
riskless asset has constant price 1. Trading in the risky asset incurs proportional transaction
costs of size λ ∈ (0, 1). This means that one has to pay a higher ask price St when buying risky
shares but only receives a lower bid price (1−λ)St when selling them. The price of the risky
asset is given by a strictly positive càdlàg adapted stochastic process S = (St)0≤t≤T on some
underlying filtered probability space

(
Ω,F , (Ft)0≤t≤T , P

)
satisfying the usual assumptions

of right continuity and completeness. As usual equalities and inequalities between random
variables hold up to P -nullsets and between stochastic processes up to P -evanescent sets.

Trading strategies are modelled by R2-valued, predictable processes ϕ = (ϕ0
t , ϕ

1
t )0≤t≤T of

finite variation, where ϕ0
t and ϕ1

t describe the holdings in the riskless and the risky asset,
respectively, after rebalancing the portfolio at time t. For any process ψ = (ψt)0≤t≤T of
finite variation we denote by ψ = ψ0 + ψ↑ − ψ↓ its Jordan-Hahn decomposition into two
non-decreasing processes ψ↑ and ψ↓ both null at zero. The total variation Vart(ψ) of ψ on
(0, t] is then given by Vart(ψ) = ψ↑t + ψ↓t . Note that, any process ψ of finite variation is
in particular làdlàg (with right and left limits). For any làdlàg process X = (Xt)0≤t≤T we
denote by Xc its continuous part given by

Xc
t := Xt −

∑
s<t

∆+Xs −
∑
s≤t

∆Xs,

where ∆+Xt := Xt+ − Xt are its right and ∆Xt := Xt − Xt− its left jumps. As explained
in Section 7 of [13] in more detail, we can define for a finite variation process ψ = (ψt)0≤t≤T
and a làdlàg process X = (Xt)0≤t≤T the integrals∫ t

0

Xu(ω)dψu(ω) :=

∫ t

0

Xu(ω)dψcu(ω) +
∑

0<u≤t

Xu−(ω)∆ψu(ω) +
∑

0≤u<t

Xu(ω)∆+ψu(ω) (2.1)

and

ψ • Xt :=

∫ t

0

ψu(ω)dXu(ω) :=

∫ t

0

ψcu(ω)dXu(ω) +
∑

0<u≤t

∆ψu(ω)
(
Xt(ω)−Xu−(ω)

)
+
∑

0≤u<t

∆+ψu(ω)
(
Xt(ω)−Xu(ω)

)
(2.2)

pathwise by using Riemann-Stieltjes integrals such that the integration by parts formula

ψt(ω)Xt(ω) = ψ0(ω)X0(ω) +

∫ t

0

ψu(ω)dXu(ω) +

∫ t

0

Xu(ω)dψu(ω) (2.3)

holds true. Note that, if X = (Xt)0≤t≤T is a semimartingale and ψ = (ψt)0≤t≤T is in addition
predictable, the pathwise integral (2.2) coincides with the classical stochastic integral.
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A strategy ϕ = (ϕ0
t , ϕ

1
t )0≤t≤T is called self-financing under transaction costs λ, if∫ t

s

dϕ0
u ≤ −

∫ t

s

Sudϕ
1,↑
u +

∫ t

s

(1− λ)Sudϕ
1,↓
u (2.4)

for all 0 ≤ s < t ≤ T , where the integrals are defined via (2.1). The self-financing condition
(2.4) then states that purchases and sales of the risky asset are accounted for in the riskless
position:

dϕ0,c
t ≤ −Stdϕ

1,↑,c
t + (1− λ)Stdϕ

1,↓,c
t , 0 ≤ t ≤ T, (2.5)

∆ϕ0
t ≤ −St−∆ϕ1,↑

t + (1− λ)St−∆ϕ1,↓
t , 0 ≤ t ≤ T, (2.6)

∆+ϕ
0
t ≤ −St∆+ϕ

1,↑
t + (1− λ)St∆+ϕ

1,↓
t , 0 ≤ t ≤ T. (2.7)

A self-financing strategy ϕ is admissible under transaction costs λ, if its liquidation value
V liq(ϕ) verifies

V liq
t (ϕ) := ϕ0

t + (ϕ1
t )

+(1− λ)St − (ϕ1
t )
−St ≥ 0 (2.8)

for all t ∈ [0, T ].
For x > 0, we denote by A(x) the set of all self-financing, admissible trading strategies

under transaction costs λ starting with initial endowment (ϕ0
0, ϕ

1
0) = (x, 0).

Applying integration by parts to (2.8) yields that, for ϕ ∈ A(x), the liquidation value
V liq
t (ϕ) is given by the initial value of the position ϕ0

0 = x, plus the gains from trading∫ t
0
ϕ1
sdSs, minus the transaction costs for rebalancing the portfolio λ

∫ t
0
Ssdϕ

1,↓
s , minus the

costs λSt(ϕ
1
t )

+ for liquidating the position at time t so that

V liq
t (ϕ) = ϕ0

0 +

∫ t

0

ϕ1
sdSs − λ

∫ t

0

Ssdϕ
1,↓
s − λSt(ϕ1

t )
+. (2.9)

We consider an investor whose preferences are modelled by a standard utility function1

U : (0,∞)→ R that tries to maximise expected utility of terminal wealth. Her basic problem
is to find the optimal trading strategy ϕ̂ = (ϕ̂0, ϕ̂1) to

E[U(V liq
T (ϕ))]→ max!, ϕ ∈ A(x). (2.10)

Alternatively, (2.10) can be formulated as the problem for random variables to find the
optimal payoffs ĝ to

E[U(g)]→ max!, g ∈ C(x), (2.11)

where
C(x) = {V liq

T (ϕ) | ϕ ∈ A(x)} ⊆ L0
+(P )

denotes the set of all attainable payoffs under transaction costs.
As explained in Remark 4.2 in [6], we can always assume without loss of generality that

the price cannot jump at the terminal time T , while the investor can still liquidate her

1That is a strictly concave, increasing and continuously differentiable function satisfying the Inada con-
ditions U ′(0) = limx↘0 U

′(x) =∞ and U ′(∞) = limx↗∞ U ′(x) = 0.
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position in the risky asset. This implies that we can assume without loss of generality that
ϕ1
T = 0 and therefore have

C(x) = {ϕ0
T | ϕ = (ϕ0, ϕ1) ∈ A(x)} ⊆ L0

+(P ).

Following the seminal paper [10] by Cvitanic and Karatzas, we investigate (2.10) by
duality. For this, we consider the notion of a λ-consistent price system. A λ-consistent
price system is a pair of processes Z = (Z0

t , Z
1
t )0≤t≤T consisting of the density process Z0 =

(Z0
t )0≤t≤T of an equivalent local martingale measure Q ∼ P for a price process S̃ = (S̃t)0≤t≤T

evolving in the bid-ask spread [(1− λ)S, S] and the product Z1 = Z0S̃. Requiring that S̃ is

a local martingale under Q is tantamount to the product Z1 = Z0S̃ being a local martingale
under the historical measure P . We say that S satisfies the condition (CPSλ), if it admits a
λ-consistent price system, and denote the set of all λ-consistent price systems by Z. As has
been initiated by Jouini and Kallal [30], these processes play a similar role under transaction
costs as equivalent local martingale measures in the frictionless theory. Similarly as in the
frictionless case (see [34] and [36]) it is sufficient for the existence of an optimal strategy
for (2.10) under transaction costs to assume the existence of λ′-consistent price systems
locally; see [1]. We therefore say that S admits locally a λ-consistent price system or shorter
satisfies the condition (CPSλ) locally, if there exists a strictly positive stochastic process
Z = (Z0, Z1) and a localising sequence (τn)∞n=1 of stopping times such that Zτn is a λ-
consistent price system for the stopped process Sτn for each n ∈ N. We denote the set of all
such process Z by Zloc.

To motivate the dual problem, let Z = (Z0, Z1) be any λ-consistent price system or, more

generally, any process in Zloc. Then trading for the price S̃ = Z1

Z0 without transaction costs
allows to buy and sell at possibly more favourable prices than applying the price S under
transaction costs. Therefore any attainable payoff in the market with transaction costs can
be dominated by trading at the price S̃ without transaction costs and hence

u(x) := sup
ϕ∈A(x)

E[U(V liq
T (ϕ))] ≤ sup

ϕ∈A(x;S̃)

E[U(x+ ϕ1 • S̃T )] =: u(x; S̃). (2.12)

Here A(x; S̃) denotes the set of all self-financing and admissible trading strategies ϕ =

(ϕ0
t , ϕ

1
t )0≤t≤T for the price process S̃ = (S̃t)0≤t≤T without transaction costs (λ = 0) in the

classical sense, i.e. that ϕ1 = (ϕ1
t )0≤t≤T is an S̃-integrable predictable process such that

x+ϕ1 • S̃t ≥ 0 for all t ∈ [0, T ] and ϕ0 = (ϕ0
t )0≤t≤T is defined via ϕ0

t = x+
∫ t

0
ϕ1
udS̃u−ϕ1

t S̃t,

for t ∈ [0, T ]. Note that A(x) ⊆ A(x; S̃).
As usual we denote by

V (y) := sup
x>0
{U(x)− xy}, y > 0, (2.13)

the Legendre transform of −U(−x).

By definition of Zloc, we have that Z0S̃ = Z1 is a local martingale. Therefore Z0 is an
equivalent local martingale deflator for the price process S̃ = (S̃t)0≤t≤T in the language of
Kardaras [36] and

Z0ϕ0 + Z1ϕ1 = Z0(ϕ0 + ϕ1S̃) = Z0(x+ ϕ1 • S̃)
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is a non-negative local martingale and hence a supermartingale for all ϕ ∈ A(x; S̃).
Combining the supermartingale property with the Fenchel inequality, we obtain

u(x; S̃) = sup
ϕ∈A(x;S̃)

E[U(x+ ϕ1 • S̃T )]

≤ sup
ϕ∈A(x;S̃)

E[V (yZ0
T ) + yZ0

T (x+ ϕ1 • S̃T )] ≤ E[V (yZ0
T )] + xy.

As u(x) ≤ u(x; S̃) by (2.12), the above inequality implies that

u(x) ≤ E[V (yZ0
T )] + xy

for all Z = (Z0, Z1) ∈ Zloc and y > 0 and therefore motivates to consider

E[V (yZ0
T )]→ min!, Z = (Z0, Z1) ∈ Zloc, (2.14)

as dual problem. Again problem (2.14) can be alternatively formulated as a problem over a
set of random variables

E[V (h)]→ min!, h ∈ D(y), (2.15)

where
D(y) = {yZ0

T | Z = (Z0, Z1) ∈ Zloc} = yD(1) (2.16)

for y > 0 and D(1) =: D.

If the solution Ẑ = (Ẑ0, Ẑ1) ∈ Zloc to problem (2.14) exists, the ratio

Ŝt :=
Ẑ1
t

Ẑ0
t

, t ∈ [0, T ],

is a shadow price in the sense of the subsequent definition (compare [32, 33]). This result
seems to be folklore going back to the works of Cvitanic and Karatzas [10] and Loewenstein[38],
but we did not find a reference. We state and prove it in Proposition 3.7 below.

Definition 2.1. A semimartingale S̃ = (S̃t)0≤t≤T is called a shadow price, if

1) S̃ = (S̃t)0≤t≤T takes values in the bid-ask spread [(1− λ)S, S].

2) The solution ϕ̃ = (ϕ̃0, ϕ̃1) to the corresponding frictionless utility maximisation problem

E[U(x+ ϕ1 • S̃T )]→ max!, (ϕ0, ϕ1) ∈ A(x; S̃), (2.17)

exists and coincides with the solution ϕ̂ = (ϕ̂0, ϕ̂1) to (2.10) under transaction costs.

Note that a shadow price S̃ = (S̃t)0≤t≤T depends on the process S, the investor’s utility
function, and on her initial endowment.

The intuition behind the concept of a shadow price is the following. If a shadow price
S̃ exists, then an optimal strategy ϕ̃ = (ϕ̃0, ϕ̃1) for the frictionless utility maximisation
problem (2.17) can also be realised in the market with transaction costs in the sense spelled

out in (2.18) below. As the expected utility for S̃ without transaction costs is by (2.12) a
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priori higher than that of any other strategy under transaction costs, it is – a fortiori – also
an optimal strategy under transaction costs. In this sense, the price process S̃ is a least
favourable frictionless market evolving in the bid-ask spread. The existence of a shadow
price S̃ implies in particular that the optimal strategy ϕ̂ = (ϕ̂0, ϕ̂1) under transaction costs

only trades, if S̃ is at the bid or ask price, i.e.

{dϕ̂1 > 0} ⊆ {S̃ = S} and {dϕ̂1 < 0} ⊆ {S̃ = (1− λ)S}

in the sense that

{dϕ̂1,c > 0} ⊆ {S̃ = S}, {dϕ̂1,c < 0} ⊆ {S̃ = (1− λ)S},
{∆ϕ̂1 > 0} ⊆ {S̃− = S−}, {∆ϕ̂1 < 0} ⊆ {S̃− = (1− λ)S−},
{∆+ϕ̂

1 > 0} ⊆ {S̃ = S}, {∆+ϕ̂
1 < 0} ⊆ {S̃ = (1− λ)S}. (2.18)

As the counter-examples in [2] and [12] illustrate and we shall show in Section 4 below,
shadow prices fail to exit in general, at least in the rather narrow sense of Def 2.1. The
reason for this is that, similarly to the frictionless case [37], the solution ĥ to (2.15) is in
general only attained as a P -a.s. limit

ĥ = y lim
n→∞

Z0,n
T (2.19)

of a minimising sequence (Zn)∞n=1 of local consistent price systems Zn = (Z0,n, Z1,n).
To ensure the existence of an optimiser, one has therefore to work with relaxed versions

of the dual problems (2.14) and (2.15). For the dual problem (2.15) on the level of random
variables, it is clear that one has to consider

E[V (h)]→ min!, h ∈ sol
(
D(y)

)
, (2.20)

where

sol
(
D(y)

)
= {yh ∈ L0

+(P ) | ∃Zn = (Z0,n, Z1,n) ∈ Zloc such that h ≤ lim
n→∞

Z0,n
T }

is the closed, convex, solid hull of D(y) in L0
+(P ) for y > 0.

As sets C(x) and sol
(
D(y)

)
are polar to each other in L0

+(P ) (see Lemma A.1), the
abstract versions (Theorems 3.1 and 3.2) of the main results of [37] carry over verbatim to
the present setting under transaction costs. This has already been observed in [11, 12, 1]
and gives static duality results in the sense that they provide duality relations between the
solutions to the problems (2.11) and (2.20) which are problems for random variables rather
than stochastic processes. See also [16, 5] for static results for more general multivariate
utility functions. However, in the context of dynamic trading, this is not yet completely
satisfactory. Here one would not only like to know the optimal terminal positions but also
how to dynamically trade to actually attain those. We therefore aim to extend these static
results to dynamic ones in the same spirit as Theorems 2.1 and 2.2 of [37]. In particular, we
address the following questions:

1) Is there a “reasonable” stochastic process Ŷ = (Ŷ 0
t , Ŷ

1
t )0≤t≤T such that Ŷ 0

T = ĥ, where

ĥ is a dual optimiser as in (2.19)?
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2) Do we have {dϕ̂1 > 0} ⊆ {Ŝ = S} and {dϕ̂1 < 0} ⊆ {Ŝ = (1 − λ)S} as in (2.18) for

Ŝ = Ŷ 1

Ŷ 0
?

3) In which sense is ϕ̂ = (ϕ̂0, ϕ̂1) optimal for Ŝ?

3 Main results

In this section, we consider the three questions above that lead to our main results. For
better readability, the proofs are deferred to Appendix A.

Let us begin with the first question. Similarly as in the frictionless duality [37], we
consider supermartingale deflators as dual variables. These are non-negative (not necessarily

càdlàg) supermartingales Y = (Y 0, Y 1) ≥ 0 such that S̃ := Y 1

Y 0 is valued in the bid-ask spread
[(1− λ)S, S] and that turn all trading strategies ϕ = (ϕ0, ϕ1) ∈ A(1) into supermartingales,
i.e.

Y 0ϕ0 + Y 1ϕ1 = Y 0(ϕ0 + ϕ1S̃) (3.1)

is a supermartingale for all ϕ ∈ A(1). Recall that in the frictionless case [37], the solution to

the dual problem for an arbitrary semimartingale price process S̃ = (S̃t)0≤t≤T is attained in
the set of (one-dimensional) càdlàg supermartingale deflators

Y(y; S̃) = {Y = (Yt)0≤t≤T ≥ 0 | Y0 = y and Y (ϕ0 + ϕ1S̃) = Y (1 + ϕ1 • S̃)

is a càdlàg supermartingale for all ϕ ∈ A(1; S̃)}.

The reason for this is that by the frictionless self-financing condition the value ϕ0 + ϕ1S̃ of
the position is equal to the gains from trading given by x+ϕ1 • S̃. As the stochastic integral
x+ϕ1 • S̃ is right-continuous, the optimal supermartingale deflator to the dual problem can
be obtained as the càdlàg Fatou limit of a minimising sequence of equivalent local martingale
or supermartingale deflators; see Lemma 4.2 and Proposition 3.1 in [37]. This means as the
càdlàg modification of the P -a.s. pointwise limits along the rationals that are obtained by
combining Komlós’ lemma with a diagonalisation procedure.

We show in [14] that the dual optimiser is attained as Fatou limit under transaction costs
as well, if the price process S is continuous. As the price process does not jump, it doesn’t
matter, if one is trading immediately before, or just at a given time and one can model
trading strategies by càdlàg adapted finite variation processes. By (3.1) the right-continuity
of (ϕ0, ϕ1) then allows to pass the supermartingale property onto to the Fatou limit as in
the frictionless case.

For càdlàg price processes S = (St)0≤t≤T under transactions costs λ, however, one has to
use predictable finite variation strategies ϕ = (ϕ0

t , ϕ
1
t )0≤t≤T that can have left and right jumps

to model trading strategies as motivated in the introduction. This is unavoidable in order to
obtain that the set C(x) of attainable payoffs under transaction costs is closed in L0

+(P ) (see
Theorem 3.5 in [6] or Theorem 3.4 in [44]). As we have to optimise simultaneously over Y 0

and Y 1 to obtain the optimal supermartingale deflator, we need a different limit than the
Fatou limit in (3.1) to remain in the class of supermartingale deflators. This limit also needs
to ensure the convergence of a minimising sequence Zn = (Z0,n

t , Z1,n
t )0≤t≤T of consistent
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price systems at the jumps of the trading strategies. It turns out that the convergence in
probability at all finite stopping times is the right topology to work with (compare [13]).
The limit of the non-negative local martingales Zn = (Z0,n

t , Z1,n
t )0≤t≤T for this convergence

is then an optional strong supermartingale.

Definition 3.1. A real-valued stochastic process X = (Xt)0≤t≤T is called an optional strong
supermartingale, if

1) X is optional.

2) Xτ is integrable for every [0, T ]-valued stopping time τ .

3) For all stopping times σ and τ with 0 ≤ σ ≤ τ ≤ T , we have

Xσ ≥ E[Xτ |Fσ].

These processes have been introduced by Mertens [40] as a generalisation of the notion
of a càdlàg supermartingale. Like the Doob-Meyer decomposition in the càdlàg case, every
optional strong supermartingale admits a unique decomposition

X = M − A (3.2)

called the Mertens decomposition into a càdlàg local martingale M = (Mt)0≤t≤T and a non-
decreasing and hence làdlàg (but in general neither càdlàg nor càglàd) predictable process
A = (At)0≤t≤T . The existence of the decomposition (3.2) implies in particular that every
optional strong supermartingale is làdlàg.

As dual variables we then consider the set B(y) of all optional strong supermartin-
gale deflators consisting of all pairs of non-negative optional strong supermartingales Y =
(Y 0

t , Y
1
t )0≤t≤T such that Y 0

0 = y, Y 1 = Y 0S̃ for some [(1 − λ)S, S]-valued process S̃ =

(S̃t)0≤t≤T and Y 0(ϕ0 + ϕ1S̃) = Y 0ϕ0 + Y 1ϕ1 is a non-negative optional strong supermartin-
gale for all ϕ ∈ A(1), that is,

B(y) =
{

(Y 0, Y 1) ≥ 0
∣∣ Y 0

0 = y, S̃ = Y 1

Y 0 ∈ [(1− λ)S, S] and Y 0(ϕ0 +ϕ1S̃) = Y 0ϕ0 + Y 1ϕ1

is a non-negative optional strong supermartingale for all (ϕ0, ϕ1) ∈ A(1)
}

(3.3)

and, accordingly,
D(y) = {Y 0

T | (Y 0, Y 1) ∈ B(y)} for y > 0.

We will show in Lemma A.1 below that we have D(y) = sol
(
D(y)

)
with this definition.

Using a version of Komlós’ lemma (see Theorem 2.7 in [13]) pertaining to optional strong
supermartingales, then allows us to establish our first main result. It is in the well-known
spirit of the duality theory of portfolio optimisation as initiated by [41, 35, 28, 37].

Theorem 3.2. Suppose that the adapted càdlàg process S admits locally a λ′-consistent
price system for all λ′ ∈ (0, λ), the asymptotic elasticity of U is strictly less than one,

i.e., AE(U) := lim sup
x→∞

xU ′(x)
U(x)

< 1, and the maximal expected utility is finite, u(x) :=

supg∈C(x) E[U(g)] <∞, for some x ∈ (0,∞). Then:
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1) The primal value function u and the dual value function

v(y) := inf
h∈D(y)

E[V (h)]

are conjugate, i.e.,

u(x) = inf
y>0
{v(y) + xy}, v(y) = sup

x>0
{u(x)− xy},

and continuously differentiable on (0,∞). The functions u and −v are strictly concave,
strictly increasing, and satisfy the Inada conditions

lim
x→0

u′(x) =∞, lim
y→∞

v′(y) = 0, lim
x→∞

u′(x) = 0, lim
y→0

v′(y) = −∞.

2) For all x, y > 0, the solutions ĝ(x) ∈ C(x) and ĥ(y) ∈ D(y) to the primal problem

E [U(g)]→ max!, g ∈ C(x),

and the dual problem
E [V (h)]→ min!, h ∈ D(y), (3.4)

exist, are unique, and there are
(
ϕ̂0(x), ϕ̂1(x)

)
∈ A(x) and

(
Ŷ 0(y), Ŷ 1(y)

)
∈ B(y) such

that
V liq
T

(
ϕ̂(x)

)
= ĝ(x) and Ŷ 0

T (y) = ĥ(y). (3.5)

3) For all x > 0, let ŷ(x) = u′(x) > 0 which is the unique solution to

v(y) + xy → min!, y > 0.

Then, ĝ(x) and ĥ
(
ŷ(x)

)
are given by (U ′)−1

(
ĥ
(
ŷ(x)

))
and U ′

(
ĝ(x)

)
, respectively, and

we have that E
[
ĝ(x)ĥ

(
ŷ(x)

)]
= xŷ(x). In particular, the process

Ŷ 0
(
ŷ(x)

)
ϕ̂0(x) + Ŷ 1

(
ŷ(x)

)
ϕ̂1(x) =

(
Ŷ 0
t

(
ŷ(x)

)
ϕ̂0
t (x) + Ŷ 1

t

(
ŷ(x)

)
ϕ̂1
t (x)

)
0≤t≤T

is a càdlàg martingale for all
(
ϕ̂0(x), ϕ̂1(x)

)
∈ A(x) and

(
Ŷ 0
(
ŷ(x)

)
, Ŷ 1

(
ŷ(x)

))
∈

B
(
ŷ(x)

)
satisfying (3.5) with y = ŷ(x).

4) Finally, we have
v(y) = inf

(Z0,Z1)∈Zloc
E[V (yZ0

T )]. (3.6)

Before we continue, let us briefly comment – for the specialists – on the assumption
that S admits locally a λ′-consistent price system for all λ′ ∈ (0, λ). We have to make
this assumption, since we chose that V liq(ϕ) ≥ 0 as admissibility condition; compare [43]
and [44]. Without this assumption, Bayraktar and Yu show that a primal optimiser still
exists, if S admits locally a λ′-consistent price system for some λ′ ∈ (0, λ); see [1, Theorem
5.1]. However, then a modification of the example in [43, Lemma 3.1] shows that the dual
optimiser is only a supermartingale deflator in this case that can no longer be approximated
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by local consistent price systems. To resolve this issue, one can alternatively use (a local
version of) the admissibility condition of Campi and Schachermayer [6, Definition 2.7] and
say that a self-financing trading strategy ϕ = (ϕ0, ϕ1) is admissible, if Z0ϕ0 + Z1ϕ1 is a
non-negative supermartingale for all Z = (Z0, Z1) ∈ Zloc. Then one could also replace the
“all” by a “some” in the assumption.

In order to obtain a crisp theorem instead of getting lost in the details of the technicalities,
we therefore have chosen to use the (stronger) hypothesis pertaining to all λ′ ∈ (0, λ).

Let us now turn to the second question raised at the end of the last section. Defining

Ŝ := Ŷ 1

Ŷ 0
the above theorem provides a price process evolving in the bid-ask spread and

so the natural question is in which sense this can be interpreted as a shadow price. For
example, we show in [14] that for continuous processes S = (St)0≤t≤T satisfying the condition

(NUPBR) of “no unbounded profit with bounded risk” the definition Ŝ = Ŷ 1

Ŷ 0
does yield a

shadow price in the sense of Definition 2.1. However, in general, the counter-examples in
[2, 12, 14] illustrate that the frictionless optimal strategy for Ŝ to (2.17) might do strictly
better (with respect to expected utility of terminal wealth) than the optimal strategy under
transaction costs and both strategies are different. While we show in Theorem 2.10 in [14]
that the dual optimiser is always a càdlàg supermartingale, if the underlying price process
S is continuous, we shall see in Example 4.1 below that it may indeed happen that the dual
optimiser Ŷ = (Ŷ 0, Ŷ 1) as well as its ratio Ŝ do not have càdlàg trajectories and therefore fail
to be semimartingales. Though we are not in the standard setting of stochastic integration
we can still define the stochastic integral ϕ̂1 • Ŝ of a predictable finite variation process
ϕ̂1 = (ϕ̂1

t )0≤t≤T with respect to the làdlàg process Ŝ = (Ŝt)0≤t≤T by integration by parts; see
(2.1) and (2.2). This yields

(ϕ1 • Ŝ)t =

∫ t

0

ϕ1,c
u dŜu +

∑
0<u≤t

∆ϕ1
u

(
Ŝt − Ŝu−

)
+
∑

0≤u<t

∆+ϕ
1
u

(
Ŝt − Ŝu

)
. (3.7)

The integral (3.7) can still be interpreted as the gains from trading of the self-financing trad-

ing strategy ϕ̂1 = (ϕ̂1
t )0≤t≤T without transaction costs for the price process Ŝ = (Ŝt)0≤t≤T .

We may ask, whether Ŝ is the frictionless price process for which the optimal trading strategy
ϕ̂ = (ϕ̂0, ϕ̂1) under transaction costs trades in the sense of (2.18).

It turns out that the left jumps ∆ϕ̂1
u of the optimiser ϕ̂1 need special care. The crux

here is that, as shown in (3.7), the trades ∆ϕ̂1
u are not carried out at the price Ŝu but

rather at its left limit Ŝu−. As motivated in the introduction we need to consider a pair
of processes Y p = (Y 0,p

t , Y 1,p
t )0≤t≤T and Y = (Y 0

t , Y
1
t )0≤t≤T that correspond to the limit of

the left limits Zn
− = (Z0,n

− , Z1,n
− ) and the limit of the approximating consistent price systems

Zn = (Z0,n, Z1,n) themselves retrospectively. As we shall see in Example 4.2 below, the
processes Y p and Y− do not need to coincide so that we have that “limit of left limits 6= left
limit of limits”.

Like the left limits Zn
− = (Z0,n

− , Z1,n
− ), their limit Y p = (Y 0,p, Y 1,p) is a predictable strong

supermartingale.

Definition 3.3. A real-valued stochastic process X = (Xt)0≤t≤T is called a predictable strong
supermartingale, if

1) X is predictable.
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2) Xτ is integrable for every [0, T ]-valued predictable stopping time τ .

3) For all predictable stopping times σ and τ with 0 ≤ σ ≤ τ ≤ T , we have

Xσ ≥ E[Xτ |Fσ−].

These processes have been introduced by Chung and Glover [8] and we refer also to
Appendix I of [19] for more information on this concept.

We combine the two classical notions of predictable and optional strong supermartingales
in the following concept.

Definition 3.4. A sandwiched strong supermartingale is a pair X = (Xp, X) such that Xp

(resp. X) is a predictable (resp. optional) strong supermartingale and such that

Xτ− ≥ Xp
τ ≥ E[Xτ |Fτ−], (3.8)

for all [0, T ]-valued predictable stopping times τ.

For example, starting from an optional strong supermartingale X = (Xt)0≤t≤T we may
define the process

Xp
t := Xt−, t ∈ [0, T ], (3.9)

to obtain a “sandwiched” strong supermartingale X = (Xp, X). If X happens to be a local
martingale, this choice is unique as we have equalities in (3.8). But in general there may be
strict inequalities. This is best illustrated in the (trivial) deterministic case: if Xt = ft for
a non-increasing function f , we may choose Xp

t = fpt , where fpt is any function sandwiched
between ft− and ft.

For a sandwiched strong supermartingale X = (Xp, X) and a predictable process ψ of
finite variation, we may define a stochastic integral in “a sandwiched sense” by

(ψ • X )t =

∫ t

0

ψcudXu +
∑

0<u≤t

∆ψu(Xt −Xp
u) +

∑
0≤u<t

∆+ψu(Xt −Xu). (3.10)

We note that (3.10) differs from (3.7) and (2.2) only by replacing X− by Xp and the two
formulas are therefore consistent, as we can extend every optional strong supermartingale
X = (Xt)0≤t≤T to a sandwiched strong supermartingale X = (Xp, X) by (3.9). Hence, in the
case of a local martingale, both integrals (3.7) and (3.10) are equal to the usual stochastic
integral.

In the context of Theorem 3.2 above, we call Y = (Y p, Y ) =
(
(Y 0,p, Y 1,p), (Y 0, Y 1)

)
a

sandwiched strong supermartingale deflator (see (3.3)), if Y = (Y 0, Y 1) ∈ B(y) and (Y 0,p, Y 0)

and (Y 1,p, Y 1) are sandwiched strong supermartingales and the process S̃p lies in the bid-ask
spread, i.e.

S̃pt :=
Y 1,p
t

Y 0,p
t

∈ [(1− λ)St−, St−], t ∈ [0, T ].

The definitions above allow us to obtain the following extension of Theorem 3.2, which
is our second main result. Roughly speaking, it states that the hypotheses of Theorem 3.2
suffice to yield a shadow price if one is willing to interpret this notion in a more general
“sandwiched sense” rather than in the strict sense of Definition 2.1.

15



Theorem 3.5. Under the assumptions of Theorem 3.2, let (Zn)∞n=1 be a minimising sequence
of local λ-consistent price systems Zn = (Z0,n

t , Z1,n
t )0≤t≤T for the dual problem (3.6), i.e.

E
[
V
(
ŷ(x)Z0,n

T

)]
↘ v

(
ŷ(x)

)
, as n→∞.

Then there exist convex combinations Z̃n ∈ conv(Zn, Zn+1, . . .) and a sandwiched strong

supermartingale deflator Ŷ = (Ŷ p, Ŷ ) such that

ŷ(x)(Z̃0,n
τ− , Z̃

1,n
τ− )

P−→ (Ŷ 0,p
τ , Ŷ 1,p

τ ), (3.11)

ŷ(x)(Z̃0,n
τ , Z̃1,n

τ )
P−→ (Ŷ 0

τ , Ŷ
1
τ ), (3.12)

as n → ∞, for all [0, T ]-valued stopping times τ and we have, for any primal optimiser
ϕ̂ = (ϕ̂0, ϕ̂1), that

Ŷ 0ϕ̂0(x) + Ŷ 1ϕ̂1(x) = Ŷ 0
(
x+ ϕ̂1(x) • Ŝ

)
, (3.13)

where

Ŝ = (Ŝp, Ŝ) =

(
Ŷ 1,p

Ŷ 0,p
,
Ŷ 1

Ŷ 0

)
and

x+ϕ̂1(x) • Ŝt := x+

∫ t

0

ϕ̂1,c
u (x)dŜu+

∑
0<u≤t

∆ϕ̂1
u(x)(Ŝt−Ŝpu)+

∑
0≤u<t

∆+ϕ̂
1
u(x)(Ŝt−Ŝu). (3.14)

This implies (after choosing a suitable version of ϕ̂1(x)) that

{dϕ̂1,c(x) > 0} ⊆ {Ŝ = S}, {dϕ̂1,c(x) < 0} ⊆ {Ŝ = (1− λ)S},
{∆ϕ̂1(x) > 0} ⊆ {Ŝp = S−}, {∆ϕ̂1(x) < 0} ⊆ {Ŝp = (1− λ)S−},
{∆+ϕ̂

1(x) > 0} ⊆ {Ŝ = S}, {∆+ϕ̂
1(x) < 0} ⊆ {Ŝ = (1− λ)S}. (3.15)

For any sandwiched supermartingale deflator Y = (Y p, Y ), with the associated price

process S̃ = (S̃p, S̃) = (Y
1,p

Y 0,p ,
Y 1

Y 0 ), and any trading strategy ϕ ∈ A(x), we have for the
liquidation value V liq(ϕ) defined in (2.8) that

V liq
t (ϕ) ≤ x+

∫ t

0

ϕ1,c
u dS̃u +

∑
0<u≤t

∆ϕ1
u(S̃t− S̃pu) +

∑
0≤u<t

∆+ϕ
1
u(S̃t− S̃u) =: x+ϕ1 • S̃t. (3.16)

Indeed, the usual argument applies that a self-financing trading for any price process S̃ =
(S̃p, S̃) taking values in the bid-ask spread and without transaction costs is at least as
favourable as trading for S with transaction costs. The relations (3.13) and (3.15) illustrate

that the optimal strategy ϕ̂ = (ϕ̂0, ϕ̂1) only trades when Ŝ = (Ŝp, Ŝ) assumes the least
favourable position in the bid-ask spread.

Let us now come to the third question posed at the end of Section 2. We shall state
in Theorem 3.6 that the sandwiched strong supermartingale deflator Ŝ = (Ŝp, Ŝ) may be
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viewed as a frictionless shadow price if one is ready to have a more liberal concept than Def.
2.1 above.

Recall once more that the basic message of the concept of a shadow price Ŝ is that a
strategy ϕ which is trading in this process without transaction costs cannot do better (w.r. to
expected utility) than the above optimiser ϕ̂ by trading on S under transaction costs λ. For

this strategy ϕ̂, we have established in (3.14) that trading at prices Ŝ without transaction
costs or trading in S under transaction costs λ amounts to the same thing. These two facts
can be interpreted as the statement that Ŝ serves as shadow price.

Let us be more precise which class of processes ϕ1 = (ϕ1
t )0≤t≤T we allow to compete

against ϕ̂1 = (ϕ̂1
t )0≤t≤T in (3.14). First of all, we require that ϕ1 is predictable and of finite

variation so that the stochastic integral (3.14) is well-defined. Secondly, we allow ϕ1 to

trade without transaction costs in the process Ŝ which is precisely reflected by (3.14). More
formally, we may associate to the process ϕ1 of holdings in stock the process ϕ0 of holdings
in bond by equating ϕ0

t + ϕ1
t Ŝt to the right hand side of (3.16), i.e.

ϕ0
t := x+ ϕ1 • Ŝt − ϕ1

t Ŝt, 0 ≤ t ≤ T. (3.17)

One may check that ϕ0 is a predictable finite variation process and also satisfies ϕ0
t− =

x+ϕ1 • Ŝt− −ϕ1
t−Ŝ

p
t−. The process ϕ = (ϕ0

t , ϕ
1
t )0≤t≤T then models the holdings in bond and

stock induced by the process ϕ1 considered as trading strategy without transaction costs on
Ŝ.

We now come to the third requirement on ϕ , namely the delicate point of admissibility.
The admissibility condition which naturally corresponds to the notion of frictionless trading
is ϕ0

t +ϕ1
t Ŝt ≥ 0, for all 0 ≤ t ≤ T . This notion was used in Definition 2.1. However, it is too

wide in order to allow for a meaningful theorem in the present general context, even if we
restrict to continuous processes Ŝ. This is shown by a counterexample in [14] (compare also
[2] and [12] for examples in discrete time). Instead, we have to be more modest and define
the admissibility in terms of the original process S under transaction costs λ. We therefore
impose the requirement that the liquidation value V liq

t (ϕ) as defined in (2.8) has to remain
non-negative, i.e.

V liq
t (ϕ) := ϕ0

t + (ϕ1
t )

+(1− λ)St − (ϕ1
t )
−St ≥ 0. (3.18)

Summing up in economic terms: we compare the process ϕ̂ in Theorem 3.5 with all com-
petitors ϕ which are self-financing w.r. to Ŝ (without transaction costs) and such that their
liquidation value V liq

t (ϕ) under transaction costs λ remains non-negative (3.18).

Theorem 3.6. Under the assumptions of Theorem 3.5, let ϕ = (ϕ0
t , ϕ

1
t )0≤t≤T be a predictable

process of finite variation which is self-financing for Ŝ without transaction costs, i.e. satisfies
(3.17) and is admissible in the sense of (3.18). Then the process

Ŷ 0
t ϕ

0
t + Ŷ 1

t ϕ
1
t = Ŷ 0

t

(
x+ ϕ1 • Ŝt

)
, 0 ≤ t ≤ T, (3.19)

is a non-negative supermartingale and

E
[
U
(
x+ ϕ1 • ŜT

)]
≤ E

[
U
(
x+ ϕ̂1 • ŜT

)]
= E

[
U
(
ϕ̂0
T + ϕ̂1

T ŜT
)]

= E
[
U
(
V liq
T (ϕ̂)

)]
. (3.20)
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We finish this section by formulating some positive results in the context of Theorem
3.2. As in [12], we have under the assumptions of Theorem 3.2, the following two results
clarifying the connection between dual minimisers and shadow prices in the sense of Def.
2.1. The first result is motivated by the work of Cvitanic and Karatzas [10] shows that the
following “folklore” is also true in the present framework of general càdlàg processes S: if
there is no “loss of mass” in the dual problem under transaction costs, then its minimiser
corresponds to a shadow price in the usual sense.

Proposition 3.7. If there is a minimiser (Ŷ 0, Ŷ 1) ∈ B
(
ŷ(x)

)
of the dual problem (3.4)

which is a local martingale, then Ŝ := Ŷ 1/Ŷ 0 is a shadow price in the sense of Def. 2.1.

Conversely, the following result shows that if a shadow price exists as above and satisfies
(NUPBR), it is necessarily derived from a dual minimiser. Note that by Proposition 4.19
in [34] the existence of an optimal strategy to the frictionless utility maximisation problem

(2.17) for Ŝ essentially implies that Ŝ satisfies (NUPBR).

Proposition 3.8. If a shadow price Ŝ in the sense of Def. 2.1 exists and satisfies (NUPBR),

it is given by Ŝ = Ŷ 1/Ŷ 0 for a minimiser (Ŷ 0, Ŷ 1) ∈ B
(
ŷ(x)

)
of the dual problem (3.4).

Similarly as in the frictionless case the duality relations above simplify for logarithmic
utility.

Proposition 3.9. For U(x) = log(x), we have under the assumptions of Theorem 3.2 that
the solutions ϕ̂ = (ϕ̂0

t , ϕ̂
1
t )0≤t≤T to the primal problem

E
[

log
(
V liq
T (ϕ)

)]
→ max!, ϕ ∈ A(x),

and Ŷ = (Ŷ 0
t , Ŷ

1
t )0≤t≤T to the dual problem

E[− log(Y 0
T )− 1]→ min!, Y = (Y 0, Y 1) ∈ B

(
ŷ(x)

)
,

for ŷ(x) = u′(x) = 1
x

exist and satisfy

(
Ŷ 0, Ŷ 1

)
=

(
1

ϕ̂0
t + ϕ̂1

t Ŝt
,

Ŝt

ϕ̂0
t + ϕ̂1

t Ŝt

)
0≤t≤T

where Ŝ =
(
Ŷ 1
t

Ŷ 0
t

)
0≤t≤T

can be characterised by (3.15).

Proof. Since V liq
T (ϕ̂) = ϕ̂0

T + ϕ̂1
T ŜT and U ′(x) = 1

x
, we have that Ŷ 0

T = 1

ϕ̂0
T+ϕ̂1

T ŜT
and

Ŷ 0
T ϕ̂

0
T + Ŷ 1

T ϕ̂
1
T = Ŷ 0

T (ϕ̂0
T + ϕ̂1

T Ŝ
1
T ) = 1

by part 3) of Theorem 3.2. Therefore the martingale Ŷ 0ϕ̂0 + Ŷ 1ϕ̂1 = (Ŷ 0
t ϕ̂

0
t + Ŷ 1

t ϕ̂
1
t )0≤t≤T is

constant and equal to 1, which implies that
(
Ŷ 0, Ŷ 1

)
=
(

1

ϕ̂0
t+ϕ̂

1
t Ŝt
, Ŝt
ϕ̂0
t+ϕ̂

1
t Ŝt

)
0≤t≤T

.
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4 Examples

4.1 Truly làdlàg primal and dual optimisers

We give an example of a price process S = (St)0≤t≤1 in continuous time such that for the
problem of maximising expected logarithmic utility U(x) = log(x) the following holds for a
fixed and sufficiently small λ ∈ (0, 1).

1) S satisfies (NFLV R) and therefore also (CPSλ
′
) for all levels λ′ ∈ (0, 1) of transaction

costs.

2) The optimal trading strategy ϕ̂ = (ϕ̂0, ϕ̂1) ∈ A(1) under transaction costs exists and
is truly làdlàg. This means that it is neither càdlàg nor càglàd.

3) The candidate shadow price Ŝ := Ŷ 1

Ŷ 0
given by the ratio of both components of the dual

optimiser Ŷ = (Ŷ 0, Ŷ 1) is truly làdlàg.

In particular, 3) implies that Ŝ cannot be a semimartingale and therefore

4) No shadow price exists (in the strict sense of Def. 2.1).

Note, however, that a shadow price in the more general “sandwiched sense” exists as
made more explicit in Theorem 3.6.

For the construction of the example, let ξ and η be two random variables such that

P [ξ = 3] = 1− P [ξ = 1
2
] = 5

6
= p,

P [η = 2] = (1− ε),
P [η = 1

n
] = ε2−n, n ≥ 1,

where ε ∈ (0, 1
3
). Let τ be an exponentially distributed random variable normalised by

E[τ ] = 1. We assume that ξ, η and τ are independent of each other. The ask price of the
risky asset is given by

St := (1 + (ξ − 1)1[ 1
2
,1](t))

(
1 + at(η − 1)1[(τ+ 1

2
)∧1,1](t)

)
for t ∈ [0, 1], (4.1)

where at = 1
3
− 1

3
(t− 1

2
) is a linearly decreasing function and σ = (τ + 1

2
) ∧ 1. As filtration

F = (Ft)0≤t≤1, we take the one generated by S = (St)0≤t≤1 made right continuous and
complete.

In prose, the behaviour of the ask price S is described as follows. The process starts at 1
and remains constant until it jumps by ∆S 1

2
= (ξ − 1) at time 1

2
. After time 1

2
, the process

jumps again by ∆Sσ = (1 + (ξ − 1)1J 1
2
,1K)
(
1 + aσ(η − 1)

)
at the stopping time σ.

Let us motivate intuitively why S enjoys the above properties 1) - 4). We first concentrate
on t ∈ [1

2
, 1] where the definition of η plays a crucial role. There is an overwhelming proba-

bility for η to assume the value 2 which causes a positive jump of S at time σ. Hence the
log utility maximiser wants to hold many of these promising stocks when σ happens. What
prevents her from buying too many stocks is the (small but) strictly positive probability that
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η takes values less than 1, which results in a negative jump of S at time σ. Similarly as in
[37]Example 5.1’), the definition of η is done in a way that at time σ the “worst case“, i.e.
{η = 0}, does not happen with positive probability, while the “approximately worst cases”
{η = 1

n
} happen with strictly positive probability. The explicit calculations in Appendix B.1

below show that, similarly as in [37, Example 5.1’], the optimal strategy for the log utility
maximiser consists in holding precisely as many stocks such that, if S happens to jump at
time t and η would assume the value η = 0 (which η does not with positive probability) the
resulting liquidation value V liq

t (ϕ) would be precisely 0 (compare Appendix B.1 below) which
would result in U(0) = −∞. Spelling out the corresponding equation (see Proposition B.1)
results in

ϕ̂1
t =

ϕ̂0
t− + ϕ̂1

t−St−
St−

1

λ+ (1− λ)at
, (t, ω) ∈K1

2
, σK,

which the log utility maximiser will follow for t ∈ (1
2
, σ]. As (at) 1

2
≤t≤1 was chosen to be

strictly decreasing we obtain
dϕ̂1

t > 0, t ∈ (1
2
, σ].

Speaking economically, the log utility maximiser increases her holdings in stock during the
entire time interval (1

2
, σ]. Hence, a candidate Ŝ = (Ŝt)0≤t≤1 for a shadow price process has

to equal the ask price St for t ∈ (1
2
, σ).

Let us also discuss the optimal strategy ϕ̂t for 0 ≤ t ≤ 1
2
. The random variable ξ is

designed in such a way that the resulting jump ∆S 1
2

of S at time t = 1
2

has sufficiently
positive expectation so that the log utility maximiser wants to be long in stock at time
t = 1

2
, i.e. ϕ̂1

1
2

> 0 (compare Proposition B.1). As the initial endowment ϕ̂0 = (1, 0) has

no holdings in stock, the log utility maximiser will purchase the stock at some time during
[0, 1

2
). It does not matter when, as S is constant during that time interval. As a consequence,

a candidate Ŝ for a shadow price process must equal the ask price S during the entire time
interval [0, 1

2
), i.e. St = Ŝt, for t ∈ [0, 1

2
).

Finally, let us have a look what happens to the log utility maximiser at time t = 1
2
. If

∆S 1
2
< 0 (which happens with positive probability as P [ξ = 1

2
] = 1

6
> 0), she immediately

has to reduce her holdings in stock, i.e. at time t = 1
2
. Otherwise there is the danger that the

totally inaccessible stopping time σ will happen arbitrarily shortly after t = 1
2
. If, in addition,

η assumes the value 1
n
, for large enough n, this would result in a negative liquidation value

V liq
T (ϕ̂) with positive probability which is forbidden. Hence, conditionally on the set {ξ = 1

2
},

each candidate Ŝ for a shadow price must equal the bid price (1− λ)S at time t = 1
2
, i.e.

Ŝ 1
2

= (1− λ)S 1
2

on {∆S 1
2
< 0}.

Summing up: On {∆S 1
2
< 0} = {ξ = 1

2
} a shadow price process Ŝ = (Ŝt)0≤t≤1 necessarily

satisfies with positive probability

Ŝt :=


St : 0 ≤ t < 1

2
,

(1− λ)St : t = 1
2
,

St : 1
2
< t < σ,

(1− λ)St : σ ≤ t ≤ 1.
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In other words, the process Ŝ has to be truly làdlàg at t = 1
2
. In particular, Ŝ cannot

be a semimartingale and therefore there cannot be a shadow price process in the sense of
Definition 2.1. We have thus shown the validity of assertions 1)–4) above.

Let us still have a look at the dual optimiser which can be explicitly calculated (see
Proposition B.1)

Ŷ =
(
Ŷ 0, Ŷ 1

)
=

(
1

ϕ̂0 + ϕ̂1Ŝ
,

Ŝ

ϕ̂0 + ϕ̂1Ŝ

)
.

This process is a genuine optional strong supermartingale which displays right jumps

∆+Ŷ
0
1
2

= Ŷ 0
1
2

−λ
λ+ (1− λ)a 1

2

∆+Ŷ
1
1
2

= Ŷ 1
1
2

(
1− λ

λ+ (1− λ)a 1
2

)
.

The property of having right jumps is in stark contrast to being a (local) martingale
which is always càdlàg.

However, according to Theorem 3.5, we know that there exists an approximating sequence
(Zn)∞n=1 of λ-consistent price systems Zn = (Z0,n

t , Z1,n
t )0≤t≤1 for the dual minimiser Ŷ =

(Ŷ 0
t , Ŷ

1
t )0≤t≤1 such that

(Z0,n
τ , Z1,n

τ )
P−→ (Ŷ 0

τ , Ŷ
1
τ ), as n→∞,

for all [0, 1]-valued stopping times τ . This illustrates nicely how a sequence of càdlàg pro-
cesses produces a right jump in the limit and we give such an approximating sequence (Zn)∞n=1

of λ-consistent price systems Zn = (Z0,n
t , Z1,n

t )0≤t≤1 in Proposition B.3.
The reader who wants to verify the above characteristics may consult the explicit calcu-

lations in Appendix B.1 below.

4.2 Left limit of limits 6= limit of left limits

While the previous example showed the necessity of going beyond the framework of càdlàg
processes, we now show that there is indeed no way to avoid the appearance of “sandwiched
processes” for the dual optimiser in Theorem 3.5.

For the problem of maximizing logarithmic utility under transaction costs λ ∈ (0, 1) with
initial endowment (ϕ0

0, ϕ
1
0) = (1, 0), we give an example of a semimartingale price process

S = (St)0≤t≤1 such that:

1) S satisfies (NFLV R) and therefore also (CPSλ
′
) for all levels λ′ ∈ (0, 1) of transaction

costs.

2) The primal and dual optimisers ϕ̂ = (ϕ̂0, ϕ̂1) and Ŷ = (Ŷ 0, Ŷ 1) exist.

3) The predictable supermartingale Ŷ p = (Ŷ p
t )0≤t≤T in Theorem 3.5 does not coincide

with the left limit Ŷ− = (Ŷt−)0≤t≤T of the optional strong supermartingale.
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More precisely, the more detailed properties are:

4) There exists a predictable stopping time % > 0 such that, on {% < ∞}, the optimal

strategy buys stocks immediately before time %, i.e. ∆ϕ̂% = ϕ̂% − ϕ̂%− > 0, but Ŝ%− :=
Ŷ 1
%−

Ŷ 0
%−

= (1− λ)S%− 6= S%−.

5) There is a minimising sequence Zn = (Z0,n, Z1,n) of consistent price systems for the
dual problem (3.6) such that

(Z0,n
τ , Z1,n

τ )
P−→ (Ŷ 0

τ , Ŷ
1
τ )

for all finite stopping times τ and

S̃n%− :=
Z1,n
%−

Z0,n
%−

P−→ S%− 6= (1− λ)S%− = Ŝ%− =
Ŷ 1
%−

Ŷ 0
%−

on {% <∞}.

To construct the example, we set tj := 1
2
− 1

2+j
for j ∈ N and t∞ = 1

2
and consider

a stopping time σ valued in {1
2
− 1

2+j
| j ∈ N} ∪ {1

2
} such that P (σ = tj) = 1

2
· 1

2j
and

P (σ = t∞ = 1
2
) = 1

2
. Let η be a random variable independent of σ such that

P (η = 2) = (1− ε),
P (η = 1

n
) = ε2−n, n ∈ N,

where ε ∈ (0, 1
3
). Let (aj)

∞
j=1 be a strictly increasing sequence of real numbers such that

aj >
1
2

and limj→∞ aj = 2
3
. We then define the ask price S = (St)0≤t≤1 to be a process such

that S0 = 1 and

∆Sσ = Sσ − Sσ− =

{
aj(η − 1) : σ = tj,
1
2
(η − 1) : σ = 1

2
,

(4.2)

and that is constant anywhere else.
As the jumps ∆Stj = aj(η − 1)1{σ=tj} and ∆S 1

2
= 1

2
(η − 1)1{σ= 1

2
} are very favourable

for the logarithmic investor, she wants to hold as many stocks as possible, provided the
admissibility constraint V liq

T (ϕ̂) ≥ 0 is not violated. Similarly as in the preceding example,
this amounts to buying before time t1 the maximal amount ϕ̂1

t1
of stocks such that in the

hypothetic event {η = 0} the liquidation value would equal precisely zero which results in

ϕ̂1
t1

=
1

λ+ (1− λ)a1

.

At time t1 we have to possibilities: either σ = t1 in which case the investor may liquidate her
position and go home, as the stock will remain constant after time t1. Or σ > t1 so that there
is still the possibility of jumps at time t2, t3, . . . , t∞. At some point during the interval [t1, t2),
the utility maximiser will adjust the portfolio so that the liquidity constraint Vt2(ϕ̂) ≥ 0 is
not violated. Again, this results in holding the maximal amount ϕ̂1

t2
of stocks at time t2
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so that, in the hypothetical event {η = 0} we find for the liquidation value Vt2(ϕ̂) = 0. A
straightforward computation (see Proposition B.4 below) yields

ϕ̂1
t2

= (1− λϕ̂1
t1

)
1

(1− λ)a2

.

The decisive point is the following: as a2 > a1, we obtain ϕ̂1
t2
< ϕ̂1

t1
; in other words, the

investor has to sell stock between t1 and t2. Of course, she can only do this at the bid price
(1 − λ)S. Continuing in an obvious way, the investor keeps selling stock in each interval
[tj, tj+1) if she was not stopped before, i.e. in the event {σ > tj}. Therefore, a shadow price

must satisfy Ŝtj = (1− λ)Stj for all j ≥ 2 and hence Ŝ 1
2
− = limj→∞(1− λ)Stj = (1− λ)S 1

2
−

on the event {σ ≥ 1
2
}. At time t = 1

2
, the situation changes again. As limj→∞ aj = 2

3
is

higher than 1
2
, the agent buys stock immediately before t = 1

2
(but after all the tj’s), i.e. at

time t = 1
2
− . Of course, for this purchase, the ask price S 1

2
− applies. But, this is in flagrant

contradiction to the above requirement that Ŝtj = (1− λ)Stj for all j ≥ 2 on {σ = 1
2
}. The

way out of this dilemma is precisely the notion of a “sandwiched supermartingale deflator”
as isolated in Theorem 3.5.

Let us understand this phenomenon in some detail. We approximate the process S by
a sequence (Sn)∞n=1 of simpler processes, all defined on the same filtered probability space(
Ω,F , (Ft)0≤t≤1, P

)
generated by S. Let

ηn(ω) =

{
η(ω) : η(ω) ≥ 1

η
,

1
n

: η(ω) < 1
η

and

σn(ω) =

{
σ(ω) : σ(ω) ≤ tn,
1
2

: else.

Similarly as above, we define

∆Snσn = Snσn − S
n
σn− =

{
aj(η

n − 1) : σn ≤ tn,
1
2
(ηn − 1) : σn = 1

2
.

(4.3)

The σ-algebra generated by process Sn is finite and therefore the duality theory of portfolio
optimisation is straightforward (compare [33] and [44]). The primal and dual optimiser for
the log utility maximisation problem for Sn can be easily computed; see Lemma B.5 below.
The dual optimiser Ẑn = (Ẑ0,n

t , Ẑ1,n
t )0≤t≤1 now is a true martingale (taking only finitely

many values). One may explicitly show that the quotient Ŝn = Ẑ1,n

Ẑ0,n
is a shadow prices in

the sense of Definition 2.1 for which we obtain

Ŝnt =


Snt : 0 ≤ t < t1,

(1− λ)Snt : t1 ≤ t < tn,

Snt : tn ≤ t < 1
2
,

(1− λ)Snt : 1
2
≤ t ≤ 1

(4.4)
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on {σ = 1
2
} for sufficiently large n. (More precisely, that it can be extended to a shadow

price.) What is the limit of the processes (Ŝnt )0≤t≤1? Obviously the process Ŝ = (Ŝt)0≤t≤T
defined as

Ŝt =

{
St : 0 ≤ t < t1,

(1− λ)St : t1 ≤ t ≤ 1
(4.5)

satisfies Ŝnτ → (1− λ)Sτ P -a.s. for all [0, 1]-valued stopping times τ . However,

Ŝn1
2
−

P -a.s.−−−→ S 1
2
−, as →∞, (4.6)

an information which is not encoded in the process Ŝ, but only in the approximating sequence
Ŝn. The remedy is to pass to the “sandwiched supermartingales”

(
(Ŷ 0,p

t )0≤t≤1, (Ŷ
0
t )0≤t≤1

)
and

(
(Ŷ 1,p

t )0≤t≤1, (Ŷ
1
t )0≤t≤1

)
and to accompany the process Ŝ = Ŷ 1

Ŷ 0
with the predictable

process Ŝp = Ŷ 1,p

Ŷ 0,p
for which we find

Ŝp1
2

= lim
n→∞

Ŷ 1,n
1
2
−

Ŷ 0,n
1
2
−

= S 1
2
−

as in (4.6) above.
Again the reader who wants to verify the above characteristics may consult the explicit

calculations in Appendix B.2 below.

A Proofs for Section 3

The proof of parts 1)–3) of Theorem 3.2 follow from the abstract versions of the main results
in [37, Theorems 3.1 and 3.2] once we have shown in the lemma below that the relations in
[37, Proposition 3.1] hold true. We call a set G ⊆ L0

+(P ) solid, if 0 ≤ f ≤ g and g ∈ G imply
that f ∈ G, and use that C(x) = xC(1) =: xC and D(y) = yD(1) =: yD.

Lemma A.1. Suppose that S satisfies (CPSλ
′
) locally for all λ′ ∈ (0, λ). Then:

1) C and D are convex, solid and closed in the topology of convergence in measure.

2) g ∈ C iff E[gh] ≤ 1, for all h ∈ D, and h ∈ D iff E[gh] ≤ 1, for all g ∈ C.

3) The closed, convex, solid hull of D in L0
+(P ) is given by D, i.e. sol(D) = D.

4) C is a bounded subset of L0
+(P ) and contains the constant function 1.

5) D := {Z0
T | (Z0, Z1) ∈ Zloc} is closed under countable convex combinations.

Proof. 1) The sets C and D are convex and solid by definition.
To prove the closedness of C, let ϕn = (ϕ0,n, ϕ1,n) ∈ A(1) be such that gn := V liq

T (ϕn)
converge to some g ∈ L0

+(P ) in probability. By the proof of Theorem 3.5 in [6] (or Theorem

24



3.4 in [44]), it is then sufficient to show that V1
T := {VarT (ϕ1) | ϕ = (ϕ0, ϕ1) ∈ A(1)}

and hence also V0
T := {VarT (ϕ0) | ϕ = (ϕ0, ϕ1) ∈ A(1)} are bounded in L0(P ) to deduce

that g = V liq
T (ϕ) ∈ C for some ϕ = (ϕ0, ϕ1) ∈ A(1). Indeed, by Proposition 3.4 in [6]

(or the proof of Theorem 3.4 in [44]), there then exists a sequence of convex combinations
(ϕ̃0,n, ϕ̃1,n) ∈ conv

(
(ϕ0,n, ϕ1,n), (ϕ0,n+1, ϕ1,n+1), . . .

)
and a predictable finite variation process

ϕ = (ϕ0, ϕ1) such that

P
[
(ϕ̃0,n

t , ϕ̃1,n
t )→ (ϕ0

t , ϕ
1
t ), ∀t ∈ [0, T ]

]
= 1,

which already implies that ϕ = (ϕ0, ϕ1) ∈ A(1). Note that this argument uses that A(1)
is convex. To see the boundedness of V1

T in probability, we observe that it is sufficient to
establish that V1

τm := {Varτm(ϕ1) | ϕ = (ϕ0, ϕ1) ∈ A(1)} is bounded in probability for
each m ∈ N for a localising sequence (τm)∞m=1 of stopping times. But, this follows from the
assumption that S satisfies (CPSλ

′
) locally for some λ′ ∈ (0, λ) by Lemma 3.2 in [6] (or

Lemma 3.1 in [44]). Note that our notion of admissibility in (2.8) implies condition (iii) of
Definition 2.7 in [6] for any a > 0 locally.

The closedness of D follows by combining similar arguments as in Lemma 4.1 in [37]
with a new version of Komlós lemma for non-negative optional strong supermartingales in
[13]. To that end, let (hn) be a sequence in D converging to some h in measure. Then there
exists a sequence

(
(Y 0,n, Y 1,n)

)∞
n=1

in B(1) such that Y 0,n
T = hn for each n ∈ N. Since Y 0,n

and Y 1,n are non-negative optional strong supermartingales, there exist by Theorem 2.7 in
[13] a sequence (Ỹ n,0, Ỹ n,1) ∈ conv

(
(Y 0,n, Y 1,n), (Y 0,n+1, Y 1,n+1), . . .

)
for n ≥ 1 and optional

strong supermartingales Ỹ 0 and Ỹ 1 such that

(Ỹ n,0
τ , Ỹ n,1

τ )
P−→ (Ỹ 0

τ , Ỹ
1
τ ), as n→∞, (A.1)

for all [0, T ]-valued stopping times τ . This convergence in probability is then sufficient to

deduce that Ỹ 0
0 = 1, Ỹ 0

T = h, and that Ỹ 0ϕ0 + Ỹ 1ϕ1 is a non-negative optional strong
supermartingale for all (ϕ0, ϕ1) ∈ A(1). To see the latter, observe that, for all stopping
times σ and τ such that 0 ≤ σ ≤ τ ≤ T , we have that

Ỹ 0
σ ϕ

0
σ + Ỹ 1

σ ϕ
1
σ = lim inf

n→∞

(
Ỹ 0,n
σ ϕ0

σ + Ỹ 1,n
σ ϕ1

σ

)
≥ lim inf

n→∞
E
[
Ỹ 0,n
τ ϕ0

τ + Ỹ 1,n
τ ϕ1

τ

∣∣Fσ]
≥ E

[
lim inf
n→∞

(
Ỹ 0,n
τ ϕ0

τ + Ỹ 1,n
τ ϕ1

τ

)∣∣∣Fσ]
= E

[
Ỹ 0
τ ϕ

0
τ + Ỹ 1

τ ϕ
1
τ

∣∣Fσ]
by Fatou’s lemma for conditional expectations.

To conclude that (Ỹ 0, Ỹ 1) ∈ B(1) and hence that h ∈ D, it remains to show that (Ỹ 0, Ỹ 1)

is R2
+-valued and S̃ := Ỹ 1

Ỹ 0
is valued in [(1− λ)S, S]. We begin with the latter assertion. For

this, we assume by way of contradiction that the set F :=
{
S̃ /∈ [(1 − λ)S, S]

}
is not P -

evanescent in the sense that P
(
π(F )

)
> 0, where π denotes the projection from Ω × [0, T ]

onto Ω given by π
(
(ω, t)

)
= ω. Since F =

{
S̃ /∈ [(1−λ)S, S]

}
is optional, there exists by the

optional cross-section theorem (see Theorem IV.84 in [18]) a [0, T ] ∪ {∞}-valued stopping

25



time σ such that Jσ{σ<∞}K ⊆ F , which means that S̃σ /∈ [(1 − λ)Sσ, Sσ] on {σ < ∞}, and

P (σ < ∞) > 0. By (A.1), we obtain that S̃nτ := Ỹ 1,n
τ

Ỹ 0,n
τ

P−→ S̃τ for the [0, T ]-valued stopping

time τ := σ∧T . As S̃nτ ∈ [(1−λ)Sτ , Sτ ], this implies that also S̃τ is valued in [(1−λ)Sτ , Sτ ]
and therefore yields a contradiction to the assumption that P

(
π(F )

)
> 0. The assertion

that (Ỹ 0, Ỹ 1) is R2
+-valued follows by the same arguments and its proof is therefore omitted.

2) The first assertion follows by the local version of the superreplication theorem under
transaction costs (Lemma A.2) below. We then obtain the second assertion by the same
arguments as the proof of Proposition 3.1 in [37] which also imply 3).

4) The fact that C contains the constant function 1 follows by definition; the L0
+(P )-

boundedness is implied by the existence of a strictly positive element in D.
5) Given (Z0,n, Z1,n)∞n=1 in Zloc and (µn)∞n=1 positive numbers such that

∑∞
n=1 µn = 1,

we have that
∑∞

n=1 µnZ
0,n is a non-negative local martingale starting at 1,

∑∞
n=1 µnZ

1,n is a

local martingale and
∑∞
n=1 µnZ

1,n∑∞
n=1 µnZ

0,n takes values in [(1− λ)S, S] which already gives 5).

Lemma A.2. Suppose that S satisfies (CPSλ
′
) locally for all λ′ ∈ (0, λ). Then we have that

g ∈ L0
+(P ) is in C if and only if E[gZ0

T ] ≤ 1 for all Z = (Z0, Z1) ∈ Zloc.
Proof. The “only if” part follows from the fact that Z0ϕ0 + Z1ϕ1 is a non-negative local
optional strong supermartingale by Proposition 1.6 in [43] and hence a true optional strong
supermartingale for all ϕ = (ϕ0, ϕ1) ∈ A(1) and Z = (Z0, Z1) ∈ Zloc.

For the “if” part, let (τm)∞m=1 be a localising sequence of stopping times for some Z ∈ Zloc
such that Zτm = (Z0, Z1)τm is a λ′-consistent price system for Sτm for some λ′ ∈ (0, λ). Then

gm := g1{τm=T} ∈ Cm := {V liq
τm (ϕ)|ϕ ∈ A(1)}

and g ∈ C if and only if gm ∈ Cm for each m ∈ N, as Cm ⊆ C, gm
P−→ g and C is closed.

Assume now for a proof by contradiction that there exists some m′ ∈ N such that gm′ /∈
Cm′ . As Sτm′ satisfies the assumptions of the superreplication theorem under transaction costs

in the version of Theorem 1.4 in [44], there exists a λ′-consistent price system Z = (Z
0
, Z

1
)

for Sτm′ such that
E[gm′Z

0

τm′
] > 1.

By the assumption that S admits a local µ-consistent price system for any µ ∈ (0, λ) we can

extend Z to a local λ-consistent price system Z̃ = (Z̃0, Z̃1) by setting

Z̃0
t =

Z
0

t : 0 ≤ t < τm′ ,

Ž0
t

Z
0
τm′

Ž0
τm′

: τm′ ≤ t ≤ T,

and

Z̃1
t =

(1− µ′)Z1

t : 0 ≤ t < τm′ ,

(1− µ′)Ž1
t

Z
1
τm′

Ž1
τm′

: τm′ ≤ t ≤ T

for some local µ′-consistent price system Ž = (Ž0, Ž1) with 0 < µ′ < λ−λ′
2
. Since

E[gZ̃0
T ] ≥ E[gm′ Z

0

τm′
] > 1,

this yields the contradiction to the assumption that E[gZ0
T ] ≤ 1 for all Z ∈ Zloc.
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Proof of Theorem 3.2. The proof follows immediately from the abstract versions of the main
results (Theorems 3.1 and 3.2) and Proposition 3.2 in [37] by Lemma B.1. The process

Ŷ 0(ŷ(x))ϕ̂0(x) + Ŷ 1(ŷ(x))ϕ̂1(x) =
(
Ŷ 0
t (ŷ(x))ϕ̂1

t (x) + Ŷ 1
t (ŷ(x))ϕ̂1

t (x)
)

0≤t≤T

is a martingale, as it is an optional strong supermartingale that has constant expectation.

Proof of Theorem 3.5. By the self-financing condition and integration by parts we can write

Ŷ 0
t (ŷ(x))ϕ̂0

t (x) + Ŷ 1
t (ŷ(x))ϕ̂1

t (x) = Ŷ 0
t (ŷ(x))(ϕ̂0

t (x) + ϕ̂1
t (x)Ŝt) = Ŷ 0

t (ŷ(x))(x+ ϕ̂1 • Ŝt + At),

where A = (At)0≤t≤T is a non-increasing predictable process given by

At :=

∫ t

0

(
Ŝu − Su

)
dϕ̂1,↑,c

u (x) +

∫ t

0

(
(1− λ)Su − Ŝu

)
dϕ̂1,↓,c

u (x)

+
∑

0<u≤t

(
Ŝpu − Su−

)
∆ϕ̂1,↑

u (x) +
∑

0<u≤t

(
(1− λ)Su− − Ŝpu

)
∆ϕ̂1,↓

u (x)

+
∑

0≤u<t

(
Ŝu − Su

)
∆+ϕ̂

1,↑
u (x) +

∑
0≤u<t

(
(1− λ)Su − Ŝu

)
∆+ϕ̂

1,↓
u (x)

for t ∈ [0, T ]. Since A ≡ 0 if and only if (3.15) holds P×Var(ϕ̂1)-a.e., we immediately obtain
the equivalence of (3.13) and (3.15) after choosing a suitable version of ϕ̂1 and therefore that
it is sufficient to prove (3.15).

To that end, we observe that by the proof of part 1) of Lemma A.1 above and part 4) of
Theorem 3.2 there exists a sequence

(
(Z0,n, Z1,n)

)∞
n=1

in Zloc such that(
ŷ(x)Z0,n

τ , ŷ(x)Z1,n
τ

)
P−→
(
Ŷ 0
τ

(
ŷ(x)

)
, Ŷ 1

τ

(
ŷ(x)

))
(A.2)

and (
ŷ(x)Z0,n

τ− , ŷ(x)Z1,n
τ−

)
P−→
(
Ŷ 0,p
τ

(
ŷ(x)

)
, Ŷ 1,p

τ

(
ŷ(x)

))
(A.3)

for all [0, T ]-valued stopping times τ . As S̃n := Z1,n

Z0,n is valued in the bid-ask-spread [(1 −
λ)S, S], any (ϕ0, ϕ1) ∈ A(x) is also self-financing for S̃n without frictions (λ = 0) and

Z0,n
(
x + ϕ1 • S̃n

)
is a non-negative local martingale and hence a supermartingale. By

integration by parts (see (2.3)) and the self-financing condition (2.4), we can write

ϕ̂0
t (x) + ϕ̂1

t (x)S̃nt = ϕ̂0
t (x) + ϕ̂1(x) • S̃nt

+

∫ t

0

S̃nudϕ̂
1,c
u (x) +

∑
0<u≤t

S̃nu−∆ϕ̂1
u(x) +

∑
0≤u<t

S̃nu∆+ϕ̂
1
u(x)

= x+ ϕ̂1(x) • S̃nt + Ant , (A.4)

where

Ant :=

∫ t

0

(
S̃nu − Su

)
dϕ̂1,↑,c

u (x) +

∫ t

0

(
(1− λ)Su − S̃nu

)
dϕ̂1,↓,c

u (x)

+
∑

0<u≤t

(
S̃nu− − Su−

)
∆ϕ̂1,↑

u (x) +
∑

0<u≤t

(
(1− λ)Su− − S̃nu−

)
∆ϕ̂1,↓

u (x)

+
∑

0≤u<t

(
S̃nu − Su

)
∆+ϕ̂

1,↑
u (x) +

∑
0≤u<t

(
(1− λ)Su − S̃nu

)
∆+ϕ̂

1,↓
u (x)
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is a non-increasing predictable process. Combining this with the supermartingale property
of Z0,n

(
x+ ϕ1 • S̃n

)
, we obtain

E[Z0,n
T ϕ̂0

T (x)] = E
[
Z0,n
T

(
AnT + x+ ϕ̂1(x) • S̃nT

)]
≤ E

[
Z0,n
T AnT

]
+ x.

By Fatou’s Lemma, the latter implies that

xŷ(x) = E
[
Ŷ 0
T

(
ŷ(x)

)
ϕ̂0
T (x)

]
≤ lim inf

n→∞
E[ŷ(x)Z0,n

T ϕ̂0
T (x)] ≤ lim inf

n→∞
E
[
ŷ(x)Z0,n

T AnT
]

+ xŷ(x)

and therefore that

Z0,n
T AnT

L1(P )−→ 0, (A.5)

as Z0,n
T AnT ≤ 0. Defining B := Var(ϕ̂1) and PB := P ×B on

(
Ω× [0, T ],F⊗B

(
[0, T ]

))
, there

exists by (A.5) a subsequence
(
(Z0,n, Z1,n)

)∞
n=1

, again indexed by n, and an optional process

S̃1,∞ and a predictable process S̃0,∞ such that S̃n −→ S̃1,∞ PB-a.e. on F1 := {dϕ̂1,c(x) 6=
0} ∪ {∆+ϕ̂

1(x) 6= 0}, S̃n− −→ S̃0,∞ PB-a.e. on F0 := {∆ϕ̂1(x) 6= 0} and

{dϕ̂1,c(x) > 0} ⊆ {S̃1,∞ = S}, {dϕ̂1,c(x) < 0} ⊆ {S̃1,∞ = (1− λ)S},
{∆+ϕ̂

1(x) > 0} ⊆ {S̃1,∞ = S}, {∆+ϕ̂
1(x) < 0} ⊆ {S̃1,∞ = (1− λ)S},

{∆ϕ̂1(x) > 0} ⊆ {S̃0,∞ = S−}, {∆ϕ̂1(x) < 0} ⊆ {S̃0,∞ = (1− λ)S−}.

To complete the proof, we only need to show that S̃1,∞ and S̃0,∞ are indistinguishable from

Ŝ := Ŷ 1

Ŷ 0
and Ŝp := Ŷ 1,p

Ŷ 0,p
on F1 and F0, respectively, which means that P

(
π(G1)

)
= 0 and

P
(
π(G0)

)
= 0, where G1 := {S̃1,∞ 6= Ŝ}∩F1, G0 := {S̃0,∞ 6= Ŝp}∩F0 and π : Ω× [0, T ]→ Ω

is given by π
(
(ω, t)

)
= ω. For this, we argue by contradiction and suppose that P

(
π(Gi)

)
> 0

for i = 0, 1. As G0 and G1 are optional, there exist [0, T ]∪{∞}-valued stopping times σ0 and
σ1 such that J(σi){σi<T}K ⊆ Gi and P (σi <∞) > 0 for i = 0, 1 by the optional cross-section
theorem (see Theorem IV.84 in [18]). By the definition of the stopping times σ0 and σ1, we

then have that S̃1,∞
σ1
6= Ŝσ1 and S̃0,∞

σ0
6= Ŝpσ0 on {σ1 < ∞} and {σ0 < ∞}, respectively. But,

this contradicts the convergence (A.2) and (A.3), since

S̃nτ1 =
Z1,n
τ1

Z0,n
τ1

P−→
Ŷ 1
τ1

Ŷ 0
τ1

= Ŝτ1 ,

S̃nτ0− =
Z1,n
τ0−

Z0,n
τ0−

P−→
Ŷ 1,p
τ0

Ŷ 0,p
τ0

= Ŝpτ0

for the [0, T ]-valued stopping times τ1 := σ1 ∧ T and τ0 := σ0 ∧ T .

Proof of Theorem 3.6. Fix ϕ with the properties as in Theorem 3.6 and let Z̃n be a sequence
of local λ-consistent price systems satisfying (3.11) and (3.12) in Theorem 3.5. To alleviate

notation, we write Zn = Z̃n.
Define the process Ṽ n by

Ṽ n
t = Z0,n

t ϕ0
t + Z1,n

t ϕ1
t . (A.6)
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This process is non-negative by (3.18) and the fact that S̃n = Z1,n

Z0,n takes its values in the
bid-ask spread of S.

As ϕ is of finite variation, we obtain by integration by parts that

dṼ n
t = (ϕ0

tdZ
0,n
t + ϕ1

tdZ
1,n
t ) + (Z0,n

t dϕ0
t + Z1,n

t dϕ1
t ).

We decompose Ṽ n into Ṽ n = V Gn + V T n, where

V Gn
t = x+

∫ t

0

(ϕ0
udZ

0,n
u + ϕ1

udZ
1,n
u ) (A.7)

V T nt =

∫ t

0

(Z0,n
u dϕ0

u + Z1,n
u dϕ1

u). (A.8)

The names indicate that V Gn correspond to a value originating from the gains due to the
movements of the local consistent price system Zn, while V T n corresponds to the value
originating from trading, i.e. from switching between the positions ϕ0 and ϕ1 at price S̃n =
Z1,n

Z0,n . If ϕ were self-financing for S under transaction costs λ (see (2.5)—(2.7)), we could
conclude that the process V T n is non-increasing. However, we can only use the weaker
hypothesis that ϕ is self-financing for Ŝ without transaction costs (3.17) which does not
allow for this conclusion.

But here is a substitute.

Claim. For ε > 0, there is a [0, T ] ∪ {∞}-valued stopping time σ with P [σ < ∞] < ε and
a subsequence (nk)

∞
k=1 such that the stopped processes V T nk,σ satisfy the uniform estimate

|V T nk,σ| ≤ k−1.

Indeed, by Lemma 7.1 of [13], we know that

lim
n→∞

V T nt = lim
n→∞

∫ t

0

(Z0,n
u dϕ0

u + Z1,n
u dϕ1

u)

=

∫ t

0

Ŷ 0
u dϕ

0,c
u +

∑
0≤u<t

Ŷ 0,p
u ∆ϕ0

u +
∑

0<u≤t

Ŷ 0
u ∆+ϕ

0
u

+

∫ t

0

Ŷ 1
u dϕ

1,c
u +

∑
0≤u<t

Ŷ 1,p
u ∆ϕ1

u +
∑

0<u≤t

Ŷ 1
u ∆+ϕ

1
u

= :

∫ t

0

(Ŷ0
udϕ

0
u + Ŷ1

udϕ
1
u)

the limit holding true in probability, uniformly in t ∈ [0, T ] (u.c.p. topology).

The last process is identically equal to zero as ϕ is self-financing for Ŝ (see (3.17)). For
k ∈ N, let

σk,n = inf{t : |V T nt | ≥ k−1}.

Choose nk large enough so that we have

P [σk,n <∞] < ε2−k.
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We still have to control the possible final jump of V T n at {σk,n < ∞}. To do so, note that
V T n is a predictable process so that σk,n is a predictable stopping time. We therefore may
find an announcing sequence (σk,nk,j) of stopping times, i.e. σk,nk,j < σk,nk on {σk,nk < ∞}
and (σk,nk,j)

∞
j=1 increases a.s. to σk,nk . Letting σk = σk,nk,j for large enough j, we have

P [σk <∞] < ε2−k and |V T nk,σk | ≤ k−1.

Defining σ as the infimum of (σk)
∞
k=1, we have proved the claim.

Now we turn to the processes (V Gn)∞n=1 in (A.7) which are local martingales. By the
above claim and Proposition 2.12 of [13] we conclude that

P − lim
n→∞

V Gn
τ = x+ P − lim

n→∞

∫ τ

0

(ϕ0
udZ

0,n
u + ϕ1

udZ
1,n
u ) (A.9)

= x+ ϕ0 • Ŷ0
τ + ϕ1 • Ŷ1

τ , (A.10)

for all [0, σ ∧ T ]-valued stopping times τ.

In particular, the stopped process (x+ϕ0 • Ŷ0
t +ϕ1 • Ŷ1

t )σ0≤t≤T equals the stopped process

(Ŷ 0
t ϕ

0
t + Ŷ 1

t ϕ
1
t )
σ
0≤t≤T and is a non-negative optional strong supermartingale. As ε > 0 in the

above claim was arbitrary, we may conclude that (ϕ0
t Ŷ

0
t + ϕ1

t Ŷ
1
t )0≤t≤T is a non-negative

optional strong supermartingale.
For the proof of (3.20), we observe that

E
[
U
(
x+ ϕ1 • ŜT

)]
≤ E

[
V (Ŷ 0

T ) + Ŷ 0
T (x+ ϕ1 • ŜT )

]
≤ E

[
V (Ŷ 0

T ) + Ŷ 0
T (x+ ϕ̂1 • ŜT )

]
by Fenchel’s inequality, the supermartingale and the martingale property of Ŷ 0(x+ ϕ1 • Ŝ)

and Ŷ 0(x + ϕ̂1 • ŜT ), respectively. Combining this with Ŷ 0
T = U ′(x + ϕ̂1 • Ŝ) and the fact

that V (y) = U
(
(U ′)−1(y)

)
− (U ′)−1(y)y for y > 0, we obtain

E
[
U
(
x+ ϕ1 • ŜT

)]
≤ E

[
U
(
x+ ϕ̂1 • ŜT

)]
= E

[
U
(
ϕ̂0
T + ϕ̂1

T ŜT
)]

= E
[
U
(
V liq
T (ϕ̂)

)]
,

which completes the proof.

Proof of Proposition 3.7. Suppose that (Ŷ 0, Ŷ 1) ∈ B
(
ŷ(x)

)
is a local martingale and hence

càdlàg. Then, the process (Ŷ 0,p, Ŷ 1,p) coincides with (Ŷ 0
−, Ŷ

1
−) as explained below (3.9) and

the integral x + ϕ̂1 • Ŝ reduces to the usual stochastic integral x + ϕ̂1 • Ŝ with Ŝ := Ŷ 1

Ŷ 0
.

Moreover, the process Ŷ 0ϕ0 + Ŷ 1ϕ1 = Ŷ 0
(
x+ϕ1 • Ŝ

)
is a non-negative local martingale and

hence a supermartingale for all (ϕ0, ϕ1) ∈ A
(
x; Ŝ

)
, which implies that Ŷ 0 is an equivalent

local martingale deflator for Ŝ without transaction costs starting at Ŷ 0
0 = ŷ(x) and hence

Ŷ 0 ∈ Y(ŷ(x); Ŝ). As Ŷ 0
T = U ′

(
V liq
T (ϕ̂)

)
and Ŷ 0ϕ̂0 + Ŷ 1ϕ̂1 = Ŷ 0

(
x + ϕ̂1 • Ŝ

)
is a martingale

by Theorem 3.2, we obtain by the duality for the frictionless utility maximisation problem,
i.e., Theorem 2.2 in [37], that (ϕ̂0, ϕ̂1) ∈ A

(
x; Ŝ

)
and Ŷ 0 ∈ Y

(
ŷ(x); Ŝ

)
are the solutions

to the frictionless primal and dual problem for Ŝ, if ŷ(x; Ŝ) = ŷ(x). To see the latter, we
observe that u(x) = v

(
ŷ(x)

)
+ xŷ(x) by Theorem 3.2 and therefore

v
(
ŷ(x)

)
+ xŷ(x) = u(x) ≤ u

(
x; Ŝ

)
≤ v
(
ŷ(x); Ŝ

)
+ xŷ(x)
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by (2.12). Since v
(
ŷ(x)

)
= E

[
V (Ŷ 0

T )
]
, E[V liq

T (ϕ̂)Ŷ 0
T ] = xŷ(x) and Ŷ 0 ∈ Y

(
ŷ(x); Ŝ

)
, we

obtain that ŷ(x; Ŝ) = ŷ(x), which completes the proof.

Proof of Proposition 3.8. By Theorem 2.1 in [36], the assumption that the shadow price

Ŝ = (Ŝ)0≤t≤T satisfies (NUPBR) implies that Ŝ admits an equivalent local martingale

deflator Z = (Zt)0≤t≤T . As Ŝ is valued in the bid-ask spread [(1 − λ)S, S], we have, as in

argued in (A.4) by integration by parts and the self-financing condition (2.4), that ϕ0+ϕ1Ŝ =

x + ϕ1 • Ŝ − C ≥ V liq(ϕ) ≥ 0 for some non-decreasing predictable process C starting at
C0 = 0, for any (ϕ0, ϕ1) ∈ A(x). The existence of a local martingale deflator Z = (Zt)0≤t≤T

now allows us to apply part (a) of Theorem 4 in [47] to obtain that Y (ϕ0 + ϕ1Ŝ) is a non-
negative local supermartingale and hence a true supermartingale for all (ϕ0, ϕ1) ∈ A(x) and

all Y ∈ Y(y; Ŝ). Therefore, we obtain that (Y 0, Y 1) := (Y, Y Ŝ) ∈ B(y) for all Y ∈ Y(y; Ŝ)
and similarly to (2.12):

v(y) = inf
(Y 0,Y 1)∈B(y)

E[V (Y 0
T )] ≤ inf

Y ∈Y(y;Ŝ)
E[V (YT )] =: v(y; Ŝ).

Moreover, as

u(x) = v
(
ŷ(x)

)
+xŷ(x) ≤ v

(
ŷ(x; Ŝ)

)
+xŷ(x; Ŝ) ≤ v

(
ŷ(x; Ŝ); Ŝ

)
+xŷ(x; Ŝ) = u(x; Ŝ) = u(x),

it follows that ŷ(x) = ŷ(x; Ŝ) and therefore that (Ŷ 0, Ŷ 1) := (Ŷ , Ŷ Ŝ) ∈ B
(
ŷ(x)

)
is the

solution to the frictional dual problem (3.4), where Ŷ ∈ Y
(
ŷ(x; Ŝ); Ŝ

)
is the solution to its

frictionless counterpart

E[V (YT )]→ min!, Y ∈ Y(ŷ(x); Ŝ),

for Ŝ.

B A more detailed analysis of the examples

After the formal discussion of the examples in Section 4, let us now give in the next two
subsections a more detailed analysis.

B.1 Truly làdlàg primal and dual optimisers

We begin with the first example discussed in Section 4.1.

Proposition B.1. Let ε ∈ (0, 1
3
) and fix λ ∈ (0, 1) sufficiently small. Then:

1) The solution ϕ̂ = (ϕ̂0, ϕ̂1) ∈ A(1) to the problem

E
[

log
(
V liq

1 (ϕ)
)]
→ max!, ϕ ∈ A(1), (B.1)

for the ask price S = (St)0≤t≤1 defined in (4.1) exists and is given by

ϕ̂1
t = ϕ̂1

1
2
1K0, 1

2
K + ϕ̂1

1
2

+
1K 1

2
,1K +

∫ t

1
2
∧t
dϕ̂1,c

s ,
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where

ϕ̂1
1
2

=
4− λ
1 + λ

,

ϕ̂1
1
2

+
=

1 + ϕ̂1
1
2

∆S 1
2

S 1
2

1

λ+ (1− λ)a 1
2

1{∆S 1
2
>0} +

1 + ϕ̂1
1
2

(
(1− λ)S 1

2
− S 1

2
−
)

(1− λ)S 1
2

1

a 1
2

1{∆S 1
2
<0},

dϕ̂1,c
t = 1K 1

2
,σK

ϕ̂0
1
2

+
+ ϕ̂1

1
2

+
S 1

2

S 1
2

1− λ(
λ+ (1− λ)at

)2

1

3
dt

and ϕ̂0
0 = 1 and dϕ̂0 is determined by the self-financing condition (2.5) - (2.7) with equality.

2) The solution Ŷ = (Ŷ 0, Ŷ 1) to the dual problem

E[− log(Y 0
T )− 1]→ min!, Y = (Y 0, Y 1) ∈ B

(
ŷ(x)

)
, (B.2)

for ŷ(x) = u′(x) = 1
x

= 1 exists and is given by

(Ŷ 0, Ŷ 1) =

(
1

ϕ̂0 + ϕ̂1Ŝ
,

Ŝ

ϕ̂0 + ϕ̂1Ŝ

)
, (B.3)

where

Ŝt =


S0 : 0 ≤ t < 1

2
,

S 1
2
1{∆S 1

2
>0} + (1− λ)S 1

2
1{∆S 1

2
<0} : t = 1

2
,

S 1
2

: 1
2
< t < σ,

(1− λ)Sσ : σ ≤ t ≤ 1

(B.4)

and

ϕ̂0
t + ϕ̂1

t Ŝt = 1 + ϕ̂1 • Ŝt

= 1 + ϕ̂1
1
2
∆S 1

2
1{∆S 1

2
>0}1{ 1

2
≤t} + ϕ̂1

1
2

(
(1− λ)S 1

2
− S 1

2
−
)
1{∆S 1

2
<0}1{ 1

2
≤t}

+ϕ̂1
1
2

(
S 1

2
− (1− λ)S 1

2

)
1{∆S 1

2
<0}1{ 1

2
<t} + ϕ̂1

σ

(
(1− λ)Sσ − Sσ−

)
1{σ≤t} (B.5)

for t ∈ [0, 1].

Proof. 1) Since trading for any price within the bid-ask spread is always more favourable
than trading under transaction costs (see (3.16)), we have that

V liq
1 (ϕ) ≤ 1 + ϕ1

1
2

((
(1− λ)S 1

2
− S 1

2
−
)
1{∆S 1

2
<0} + ∆S 1

2
1{∆S 1

2
>0}

)
+ ϕ1

1
2

(
S 1

2
− (1− λ)S 1

2

)
1{∆S 1

2
<0} + ϕ1

σ

(
(1− λ)Sσ − S 1

2

)
=
(

1 + ` 1
2

((
(1− λ)S 1

2
− S 1

2

)
1{∆S 1

2
<0} + ∆S 1

2
1{∆S 1

2
<0}

)
×
(
1 + ` 1

2
+λ1{∆S 1

2
<0}
)(

1 + `σ
(
(1− λ)(1 + aσ(η − 1))− 1

))
, (B.6)
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where

` 1
2

= ϕ1
1
2
,

` 1
2

+ =
ϕ1

1
2+

S 1
2

1 + ϕ1
1
2

((
(1− λ)S 1

2
− S 1

2
−
)
1{∆S 1

2
<0} + ∆S 1

2
1{∆S 1

2
>0}

) ,
`t =

ϕ1
tS 1

2

1 + ϕ1
1
2

((
(1− λ)S 1

2
− S 1

2
−
)
1{∆S 1

2
<0} + ∆S 1

2
1{∆S 1

2
>0}

)
+ ϕ1

1
2

+
λS 1

2
1{∆S 1

2
<0}

, (B.7)

for t ∈ (1
2
, 1]. By the scaling of the logarithm, this implies that

E
[

log
(
V liq

1 (ϕ)
)]
≤ E

[
log
(

1 + ` 1
2

((
(1− λ)S 1

2
− S 1

2
−
)
1{∆S 1

2
<0} + ∆S 1

2
1{∆S 1

2
>0}

))]
+ E[log(1 + ` 1

2
+λ)] + E

[
log
(

1 + `σ

(
(1− λ)

(
1 + aσ(η − 1)

)
− 1
))]

.

(B.8)

The basic idea to derive the optimal trading strategy ϕ̂ = (ϕ̂0
t , ϕ̂

1
t )0≤t≤1 for (B.1) is now to

maximise the right hand side of (B.8) over all predictable processes ` = (`t)0≤t≤1 and to show
that solving (B.7) allows us to define a self-financing trading strategy under transaction costs
such that we have equality in (B.6). For this, we observe that we can maximise the terms
on the right hand side of (B.8) independently of each other and only need to solve

E
[

log
(

1 + ` 1
2

((
(1− λ)S 1

2
− S 1

2
−
)
1{∆S 1

2
<0} + ∆S 1

2
1{∆S 1

2
>0}

))]
→ max

` 1
2
∈F 1

2−

! (B.9)

E
[

log
(

1 + `σ

(
(1− λ)

(
1 + aσ(η − 1)

)
− 1
))]
→ max

pred. (`t) 1
2
<t≤1

! (B.10)

We show below that the solution to (B.9) and (B.10) are given by

̂̀1
2

=
4− λ
1 + λ

, (B.11)

̂̀
t =

1

λ+ (1− λ)at
for t ∈ (1

2
, 1]. (B.12)

This will then also imply the optimal value for

E[log(1 + ` 1
2

+λ)]→ max!, (B.13)

when we maximise over all possible limits ` 1
2

+ = limt↘ 1
2
`t of predictable processes (`t) 1

2
<t≤1

for which the problem (B.10) is well-defined > −∞, i.e. `t ≤ 1
λ+(1−λ)at

for t ∈ (1
2
, 1] and

therefore ̂̀1
2

+ = 1
λ+(1−λ)a 1

2

.

We first illustrate how to obtain the solution to (B.10). To that end, we observe that

h(`, t) := E
[

log
(

1 + `
(

(1− λ)
(
1 + at(η − 1)

)
− 1
))]
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is given by

h(`, t) = log
(

1+`
(
(1−λ)(1+at)−1

))
(1−ε)+

∞∑
n=1

log
(

1+`
(

(1−λ)
(
1+at(

1
n
−1)

)
−1
))
ε2−n

and its derivative ∂h
∂`

(`, t) by

∂h

∂`
(`, t) =

(1− λ)at − λ
1 + `

(
(1− λ)at − λ

)(1− ε) +
∞∑
n=1

(1− λ)at(
1
n
− 1)− λ

1 + `
(
(1− λ)at(

1
n
− 1)− λ

)ε2−n. (B.14)

As

∂h

∂`
(̂̀t, t) =

(
(1− λ)at

)2 − λ2

2(1− λ)at
(1− ε)

−
∞∑
n=1

(
(1− λ)at + λ

)2

(1− λ)at
εn2−n +

∞∑
n=1

(
(1− λ)at + λ

)
ε2−n

=

(
(1− λ)at

)2 − λ2

2(1− λ)at
(1− ε)

−
(
(1− λ)at + λ

)2

(1− λ)at

1

2

1

(1− 1
2
)2
ε+

(
(1− λ)at + λ

)
ε > 0 (B.15)

for ̂̀t = 1
λ+(1−λ)at

and ε ∈ (0, 1
3
) and λ ∈ (0, 1) sufficiently small, the concave function

` 7→ h(`, t) is maximised over its domain (− 1
(1+λ)at

, ̂̀t] by ̂̀t.
The solution to (B.9) is simply obtained by solving the first order condition f ′(̂̀1

2
) = 0

for

f(`) = E
[
log
(

1 + `
(
(1− λ)S 1

2
− S 1

2
−
))
1{∆S 1

2
<0} + log(1 + `∆S 1

2
)1{∆S 1

2
>0}

]
= log

(
1 + `

(
(1− λ)1

2
− 1
))

1
6

+ log(1 + `2)5
6

and

f ′(`) =
(1− λ)1

2
− 1

1 + `((1− λ)1
2
− 1)

1

6
+

2

1 + `2

5

6
, (B.16)

which gives ̂̀1
2

= 4−λ
1+λ

.

To obtain the optimal strategy ϕ̂ = (ϕ̂0
t , ϕ̂

1
t )0≤t≤T to (B.1), we only need to observe that

solving (B.7) gives a self-financing and admissible trading strategy under transaction costs,
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as

∆+ϕ̂
1
0 =

4− λ
1 + λ

> 0,

∆+ϕ̂
1
1
2

=
1 + ϕ̂1

1
2

∆S 1
2

S 1
2

1

λ+ (1− λ)a 1
2

− 4− λ
1 + λ

> 0 on {∆S 1
2
> 0},

∆+ϕ̂
1
1
2

=
1 + ϕ̂1

1
2

((1− λ)S 1
2
− S 1

2
−)

(1− λ)S 1
2

1

a 1
2

− 4− λ
1 + λ

< 0 on {∆S 1
2
< 0},

dϕ̂1,2
t = 1K 1

2
,σK

ϕ̂0
1
2

+
+ ϕ̂1

1
2

S 1
2

S 1
2

1− λ
(λ+ (1− λ)at)2

1

3
dt

and ϕ̂0 can be defined by the self-financing conditions (2.5) – (2.7) with equality.
2) That the solution to the dual problem (B.2) is given by (B.3) follows immediately

from Proposition 3.9 and the formulas (B.4) and (B.5) from (3.15).

Let us now come to the approximation of the dual optimiser by consistent price systems.
For this, it is more convenient to think of the consistent prices systems Zn = (Z0,n, Z1,n)

as pairs (Qn, S̃n) of processes S̃n = (S̃nt )0≤t≤1 evolving in the bid-ask spread and equivalent
martingale measures Qn for those.

Since Ŷ = (Ŷ 0, Ŷ 1) is a martingale on [0, 1
2
] by the first order condition (B.16), we can

simply set

Z0,n
t = Ŷ 0

t , t ∈ [0, 1
2
],

Z1,n
t = Ŷ 1

t , t ∈ [0, 1
2
],

for all n or, equivalently,

dQn

dP

∣∣∣
F 1

2

= Ŷ 0
1
2
,

S̃nt = S0, t ∈ [0, 1
2
),

S̃n1
2

=

{
S 1

2
: ∆S 1

2
> 0,

(1− λ)S 1
2

: ∆S 1
2
< 0.

On {∆S 1
2
< 0}, we can extend the probability measures Qn to measure Q̃n ∼ P such that

τ ∼ exp(n) is exponentially distributed, the expectations EQ̃n [η − 1] =: bn decrease to −1,

i.e. EQ̃n [η − 1] = bn ↘ −1, and τ and η remain independent under Q̃n. Indeed, let (η̃n)∞n=1

be a sequence of strictly positive σ(η)-measurable random variables such that E[η̃n] = 1 and
E[η̃n(η − 1)] = bn ↘ −1. Then

dQ̃n

dP
= Ŷ 0

1
2

exp
(
− (n− 1)τ

)
η̃n
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is the Radon-Nikodym derivative of a probability measure Q̃n ∼ P such that EQ̃n [η−1] = bn

and τ ∼ exp(n) under Q̃n. The density process Z̃n of Q̃n is given by

Z̃n
t = Ŷ 0

1
2
∧t exp

(
− (n− 1)(σ ∧ t− 1

2
)+
)(

1 + (nη̃n − 1)1Jσ,1K(t)
)
, 0 ≤ t ≤ 1. (B.17)

Therefore, the expectation of the jump EQ̃n [(1− λ)∆Sσ] of the bid price (1− λ)S at time σ

under Q̃n is strictly negative.
Since the stopping time σ remains totally inaccessible on (1

2
, 1) under Q̃n, the compensator

Ant of the bid price (1− λ)S under Q̃n is a continuously decreasing process

Ant :=

∫ t∧σ

1
2

(1− λ)S 1
2
asEQ̃n [η − 1]n ds = (1− λ)S 1

2

∫ t∧σ

1
2

asbnn ds, t ∈ [1
2
, 1).

Therefore, the Q̃n-martingale

Mn
t := (1− λ)St − Ant , t ∈ [1

2
, 1),

is continuously increasing, if there is no jump, and we need to stop it at

σn := inf{t > 1
2
| Mn

t > S 1
2
}

to keep it in the bid-ask spread [(1− λ)S, S].
As n increases, the martingales Mn increase steeper and steeper, if there is no jump, so

that the stopping times σn converge P -a.s. to 1
2

and the right jump

∆+Ŝ 1
2

= lim
n→∞

(Mn
σn −M

n
1
2
) = λS 1

2

arises as the limit of the continuous compensators An.
As the probability that σ is very close to 1

2
under Q̃n increases with n, we obtain that

lim
n→∞

Q̃n
[

1
2
≤ σ ≤ σn

∣∣∣ F 1
2

]
=: c > 0 on {∆S 1

2
< 0}.

But, since limn→∞ P [1
2
≤ σ ≤ σn] = 0, this implies that the measures Q̃n loose the mass c

on the sets {1
2
≤ σ ≤ σn}, which causes a right jump of the limit of the density processes

Z̃0,n of the Q̃n, i.e.

lim
n→∞

(Z̃0,n
σn − Z̃

0,n
1
2

) = −c < 0 on {∆S 1
2
< 0}.

However, comparing c with ∆+Ŷ
0
1
2

, we obtain that

∆+Ŷ
0
1
2
> −c on {∆S 1

2
< 0}.

The reason for this is that the martingale Mn does not jump to the bid price at time σ, but
we rather have

Mn
σ = (1− λ)Sσ − Anσ > (1− λ)Sσ.
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In order to adjust for this, we need to modify Mn to obtain a Q̃n-martingale M̃n such that

M̃n
σ = (1− λ)Sσ.

This results in choosing the jump of M̃n such that

∆M̃n
σ = (1− λ)∆Sσ + Ãnσ < (1− λ)∆Sσ

and therefore gives a steeper (than An) decreasing compensator Ãn, where M̃n and Ãn are
both implicitly related by

Ãnt =

∫ t∧σ

1
2

EQ̃n [∆M̃n
σ |Fσ−]n ds =

∫ t∧σ

1
2

(
(1− λ)S 1

2
asbn + Ãns

)
n ds. (B.18)

As Ãn is decreasing steeper than An on {σn < σ}, we obtain that the stopping times

σ̃n := inf{t > 1
2
| M̃n

t > S 1
2
} (B.19)

decrease faster to 1
2

than σn and therefore the measures Q̃n loose less mass on the sets
{1

2
≤ σ ≤ σ̃n} so that

∆+Ŷ
0
1
2

= − lim
n→∞

Q̃n
[

1
2
≤ σ ≤ σ̃n

∣∣∣ F 1
2

]
.

To show the existence of the Q̃n-martingales (M̃n
t )t∈[ 1

2
,1], we only need to observe that

Ãnt = (1− λ)S 1
2

(
n−1
n
a 1

2
bn +

(∫ t
1
2
nasbne

−n(s− 1
2

)ds− n−1
n
a 1

2
bn

)
en(t− 1

2
)
)
,

for t ∈ [1
2
, 1], is a solution to the integral equation (B.18) satisfying the boundary condition

Ãn1
2

= 0 and therefore setting

M̃n
t =


Ŝt : 0 ≤ t ≤ 1

2
,

(1− λ)S 1
2
− Ãnt : 1

2
< t < σ,

(1− λ)Sσ : σ ≤ t ≤ 1

(B.20)

gives the desired Q̃n-martingale.
Moreover, since M̃n

σ̃n = S 1
2

on {σ̃n < σ} and σ̃n ↘ 1
2
, we have that

lim
n→∞

(−Ãnσn)

= lim
n→∞

(1− λ)S 1
2

[
n−1
n
a 1

2
bn +

(∫ σ̃n
1
2
nasbne

−n(s− 1
2

)ds− n−1
n
a 1

2
bn

)
en(σ̃n− 1

2
)
]

= (1− λ)S 1
2
a 1

2

(
1− limn→∞ e

n(σ̃n− 1
2

)
)

= S 1
2

and hence

lim
n→∞

Q̃n
[

1
2
≤ σ ≤ σ̃n

∣∣F 1
2

]
= Ŷ 0

1
2

(
1− limn→∞ e

−n(σ̃n− 1
2

)
)

= Ŷ 0
1
2

λ
λ+(1−λ)a 1

2

= −∆+Ŷ
0
1
2
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and limn→∞(Z̃n
σ̃n − Z̃

n
1
2

) = ∆+Ŷ
0
1
2

. To simplify notation, we set σ̃n = 1
2

on {∆S 1
2
> 0} and

then use the above to define Qn = Q̃n on Fσ̃n and S̃nt = M̃n
t for t ∈ (1

2
, σ̃n].

To obtain an approximation sequence of consistent price systems on Kσ̃n, 1K, we recall
that from Proposition B.1 the primal and dual optimisers on Kσ̃n, 1K are determined by the

solution ̂̀t to the problem

h(`, t) = E
[

log
(

1 + `
(
(1− λ)(1 + at(η − 1)

)
− 1
)]
→ max

`∈R
! (B.21)

In order to approximate the dual optimiser, we therefore consider, for n ∈ N, the auxiliary
problems

hn(`, t) := E
[

log
(

1 + `
(

(1− λ)
(
1 + at(η

n − 1)
)
− 1
))]
→ max

`∈R
! (B.22)

where

ηn(ω) :=

{
η(ω) : η(ω) ≥ 1

n
,

1
n

: η(ω) < 1
n

for n ∈ N. These problems can be interpreted as logarithmic utility maximisation problems
(without transaction costs) for a one-period price process R̃n,t given by R̃n,t

0 = 1 and R̃n,t
1 :=

(1 + λ)
(
1 + at(η

n − 1)
)
. Therefore, we obtain the following lemma from the theory of one-

period frictionless utility maximisation.

Lemma B.2. 1) The solution ̂̀nt to problem (B.22) exists and satisfies, for all t ∈ [1
2
, 1],

that

E[η̂nt ] = 1, (B.23)

E
[
η̂nt

(
(1− λ)

(
1 + at(η

n − 1)
)
− 1
)]

= 0, (B.24)

where

η̂nt :=
1

1 + ̂̀nt ((1− λ)
(
1 + at(ηn − 1)

)
− 1
) (B.25)

for all n ∈ N and t 7→ ̂̀n
t is continuous.

2) Moreover, we have that

̂̀n
t −→ ̂̀

t, (B.26)

η̂nt −→
1

1 + ̂̀t((1− λ)(2 + at(η − 1))− 1)
=: η̂∞t , (B.27)

as n→∞, for all t ∈ [1
2
, 1].
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Proof. 1) This part follows essentially from the frictionless duality theory for utility max-
imisation; see for example [42]. Since ηn takes for n ∈ N only finitely many different values,

the solution ̂̀nt to problem (B.22) is determined by (hn)′(̂̀nt , t) = 0, where

hn(`, t) = E
[

log
(

1 + `
(
(1− λ)(1 + at(η

n − 1)
)
− 1
)]

= (1− ε) log
(

1 + `
(
(1− λ)at − λ

))
+

n−1∑
m=1

ε−m log
(

1− `
(
(1− λ)at(1− 1

m
) + λ)

))
+ ε2−n+1 log

(
1− `

(
(1− λ)at(1− 1

n
) + λ)

))
and

∂hn

∂`
(`, t) = E

[
(1− λ)

(
1 + at(η

n − 1)
)
− 1

1 + `
(
(1− λ)(1 + at(ηn − 1))− 1

]

= (1− ε) (1− λ)at − λ
1 + `

(
(1− λ)at2− 1

)
−

n−1∑
m=1

ε2−m
(1− λ)at(1− 1

m
) + λ

1− `((1− λ)at(1− 1
m

) + λ)
− ε2−m+1 (1− λ)at(1− 1

m
) + λ

1− `((1− λ)at(1− 1
m

) + λ)
.

Since ( ∂
2

∂`2
hn)(̂̀nt , t) > 0 by concavity, we obtain by an application of the implicit function

theorem that t 7→ ̂̀n
t is continuous.

2) Since

lim
n→∞

(
∂

∂`
hn)(̂̀t) = (

∂

∂`
h)(̂̀t, t) > 0

for ̂̀t = 1
λ+(1−λ)αt

and lim`↗`n,max
t

(hn)′(`, t) := 1
(1−λ)at(1− 1

n
)+λ

, we obtain that ̂̀nt ∈ (̂̀∞t , `n,max
t )

for sufficiently large n and therefore (B.26) and (B.27).

After these preparations, we have now everything in place to give the approximating
sequence of λ-consistent price systems.

Proposition B.3. Let the processes (Z̃n
t )0≤t≤1, (M̃

n
t ) 1

2
≤t≤1 and (η̂nt ) 1

2
≤t≤1 be as defined in

(B.17), (B.20), and (B.25) and the stopping times σ̃n as in (B.19). Then:

1) The processes Zn = (Z0,n, Z1,n) given by

Z0,n
t =


Ŷ 0
t : 0 ≤ t ≤ 1

2
,

Z̃n
t : 1

2
< t ≤ σ̃n,

Z̃n
σ̃n

(
1 + (η̂nt − 1)1Jσ,1K(t)

)
: σ̃n < t ≤ 1

and

Z1,n
t =


Ŷ 1
t : 0 ≤ t ≤ 1

2
,

Z̃n
t M̃

n
t : 1

2
< t ≤ σ̃n,

Z̃n
σ̃n

(
1 + (η̂nt − 1)[(1− λ)(1 + at(η

n − 1)− 1)]1Jσ,1K(t)
)
S 1

2
: σ̃n < t ≤ 1

are martingales and, in particular, λ-consistent price systems (for sufficiently large n).
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2) We have that

(Z0,n
τ , Z1,n

τ )
P−→ (Ŷ 0

τ , Ŷ
1
τ ), as n→∞,

for all finite stopping times τ.

Proof. 1) From the first order condition f ′(̂̀1
2
) = E[Ŷ 0

1
2

(Ŝ 1
2
− Ŝ0)] = 0 in (B.16), we obtain

that
E[Ŷ 0

1
2
|Ft] = 1− ϕ̂1

1
2
E[Ŷ 0

1
2
(Ŝ 1

2
− Ŝ0)|Ft] = 1 = Ŷ 0

t , 0 ≤ t ≤ 1
2
,

and therefore that (Ŷ 0
t )0≤t≤ 1

2
and hence (Z0,n

t )0≤t≤ 1
2

are martingales. This also implies that

E[∆Ŷ 1
1
2
|F 1

2
−] = E[Ŷ 0

1
2
∆Ŝ 1

2
] + E[∆Ŷ 0

1
2
S0] = 0

and therefore that (Ŷ 1
t )0≤t≤ 1

2
and hence (Z1,n

t )0≤t≤ 1
2

are martingales.

The martingale property of Z0,n on (1
2
, σ̃n] follows from the definition of Z̃n as density

process of Q̃n and that of Z1,n on (1
2
, σ̃n] by Bayes formula, since (M̃n

t ) 1
2
≤t≤1 is a Q̃-martingale.

That Z0,n and Z1,n are martingales on (σ̃n, 1] as well, then follows from the fact that ηn and
η̂n are σ(η)-measurable, η is independent of σ and one can therefore verify the martingale
condition directly by using (B.23) and (B.24).

To conclude that Zn = (Z0,n, Z1,n) is a λ-consistent price system, it remains to observe

that S̃n := Z1,n

Z0,n is valued in the bid-ask spread [(1 − λ)S, S] for sufficiently large n ≥ n(λ).
To see this, we observe that we can fix n(λ) ∈ N such that (1− λ)

(
1 + at(

1
n
− 1)

)
< 1− at

for all n ≥ n(λ) and therefore have (1− λ)St ≤ S̃nt ≤ St for all n ≥ n(λ).
2) For the proof of the convergence in probability at all finite stopping times, let τ be

any finite stopping time and recall that σ̃n
P−→ 1

2
, Z̃n

σ̃n

P−→ Ỹ 0
1
2

+
, M̃σ̃n

P−→ S 1
2

and η̂n
P−→ η̂∞,

as n→∞, by the definitions and discussions above. Therefore

Z0,n
τ = Ŷ 0

τ 1{τ≤ 1
2
} + Z̃n

τ 1{ 1
2
<τ≤σ̃n} + Z̃n

σ̃n(1 + (η̂n − 1)1Jσ,1K(τ)1{σ̃n<τ≤1}
P−→ Ŷ 0

τ ,

Z1,n
τ = Ŷ 1

τ 1{τ≤ 1
2
} + Z̃n

τ M̃
n
τ 1{ 1

2
<τ≤σ̃n}

+ Z̃n
σ̃n(1 + (η̂n − 1)1Jσ,1K(τ))S 1

2
(1 + aτ (η

n − 1)1Jσ,1K(τ))1{σ̃n<τ≤1}
P−→ Ŷ 1

τ ,

as n→∞, as 1{ 1
2
<τ≤σ̃n}

P−→ 0 and 1{σ̃n<τ≤1}
P−→ 1{ 1

2
<τ≤1}.

B.2 Left limit of limits 6= limit of left limits

Let us now turn to the second example discussed in Section 4.2.

Proposition B.4. Let ε ∈ (0, 1
3
) and fix λ ∈ (0, 1) sufficiently small. Then:

1) The solution ϕ̂ = (ϕ̂0
t , ϕ̂

1
t )0≤t≤1 ∈ A(1) to the problem

E
[

log
(
V liq

1 (ϕ)
)]
→ max!, ϕ ∈ A(1), (B.28)

40



for the ask price S = (St)0≤t≤1 given by (4.2) exists and is given by

ϕ̂1
t =

∞∑
j=1

ϕ̂1
tj
1(tj−1,tj ](t) + ϕ̂1

1
2
1[ 1

2
,1](t)

for t ∈ [0, 1], where

ϕ̂1
t1

= ∆+ϕ̂
1
0 =

1

λ+ (1− λ)a1

=: π̂t1 > 0,

ϕ̂1
tj

= (1− λϕ̂1
t1

)
1

(1− λ)aj
1{σ>tj−1} =: (1− λϕ̂1

t1
)π̂tj , j ≥ 2,

ϕ̂1
1
2
− = lim

j→∞
ϕ̂1
tj

= (1− λϕ̂1
t1

)
1

(1− λ)a∞
1{σ= 1

2
} = (1− λϕ̂1

t1
)π̂ 1

2
−,

ϕ̂1
1
2

=
(
1− λ(ϕ̂1

t1
− ϕ̂1

1
2
−)
) 1

λ+ (1− λ)1
2

1{σ= 1
2
} =:

(
1− λ(ϕ̂1

t1
− ϕ̂1

1
2
−)
)
π̂ 1

2

and ϕ̂0
0 = 1 and dϕ̂0 is determined by the self-financing conditions (2.5) - (2.7) with equality.

2) The solution Ŷ = (Ŷ 0, Ŷ 1) to the dual problem

E[− log(Y 0
T )− 1]→ min!, Y = (Y 0, Y 1) ∈ B

(
ŷ(x)

)
, (B.29)

for ŷ(x) = u′(x) = 1
x

= 1 exists and is given by

(Ŷ 0, Ŷ 1) =

(
1

ϕ̂0 + ϕ̂1Ŝ
,

Ŝ

ϕ̂0 + ϕ̂1Ŝ

)
, (B.30)

where

Ŝt = 1+
(
(1−λ)St1−St1−

)
1{t1≤t}+

∞∑
j=2

(1−λ)∆Stj1{tj≤t}+
(
(1−λ)S 1

2
−S 1

2
−
)
1{ 1

2
≤t} (B.31)

and

ϕ̂0
t + ϕ̂1

t Ŝt = 1 + ϕ̂1
t1

(
(1− λ)St1 − St1−

)
1{t1≤t} +

∞∑
j=2

ϕ̂1
tj

(1− λ)∆Stj1{tj≤t}

+ ϕ̂1
1
2
−

(
S 1

2
− − (1− λ)S 1

2
−
)
1{ 1

2
≤t} + ϕ̂1

1
2

(
(1− λ)S 1

2
− S 1

2
−
)
1{ 1

2
≤t}

=
(

1 + π̂t1
(
(1− λ)St1 − St1−

)
1{t1≤t}

) ∞∏
j=2

(
1 + π̂tj(1− λ)∆Stj1{tj≤t}

)
×
(

1 + π̂ 1
2
−
(
S 1

2
− − (1− λ)S 1

2
−
)
1{ 1

2
≤t}

)(
1 + π̂ 1

2

(
(1− λ)S 1

2
− S 1

2
−
)
1{ 1

2
≤t}

)
(B.32)

for t ∈ [0, 1].
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Proof. 1) We begin with the solution to the primal problem (B.28). As already explained in
Section 4.2, since S is constant on [tj−1, tj) for j ∈ N and [1

2
, 1], it does not matter, where

the positions are rebalanced during the intervals [tj−1, tj) and we can therefore assume that
the trades take place immediately after time tj−1 for j ∈ N and there is no trading after
time 1

2
. Next, we recall that trading for any price within the bid-ask spread is always more

favourable than trading under transaction costs. So we have

V liq
1 (ϕ) ≤ 1 + ϕ1

t1

(
(1− λ)St1 − St1−

)
+
∞∑
j=2

ϕ1
tj

(1− λ)∆Stj

+ ϕ1
1
2
−

(
S 1

2
− − (1− λ)S 1

2
−
)

+ ϕ1
1
2

(
(1− λ)S 1

2
− S 1

2
−
)

(B.33)

for all ϕ ∈ A(1). By the scaling of the logarithm, this allows us to estimate

E
[

log
(
V liq

1 (ϕ)
)]
≤E
[

log
(

1 + πt1
(
(1− λ)St1 − St1−

))]
+
∞∑
j=1

E
[

log
(
1 + πtj(1− λ)∆Stj

)]
+ E

[
log
(

1 + π 1
2
−
(
S 1

2
− − (1− λ)S 1

2
−
))]

+ E
[

log
(

1 + π 1
2

(
(1− λ)S 1

2
− S 1

2
−
))]

, (B.34)

where

πt1 = ϕ1
t1

πtj =
ϕ1
tj

1 + ϕ1
t1((1− λ)St−1 − St1−) +

∑j−1
k=2 ϕ

1
tk

(1− λ)∆Stk
,

π 1
2
− =

ϕ1
1
2
−

1 + ϕ1
t1((1− λ)St1 − St1−) +

∑∞
k=2 ϕ

1
tk

(1− λ)∆Stk
,

π 1
2

=
ϕ1

1
2

1 + ϕ1
t1((1− λ)St1 − St1−) +

∑∞
k=2 ϕ

1
tk

(1− λ)∆Stk + ϕ1
1
2
−(S 1

2
− − (1− λ)S 1

2
−)
.

(B.35)

The basic idea to derive the optimal trading strategy ϕ̂ = (ϕ̂0
t , ϕ̂

1
t )0≤t≤1 for (B.28) under

transaction costs is now to maximise the right hand side of (B.34) over all predictable
processes π = (πt)0≤t≤1 and to show that this allows us to define by solving (B.35) a self-
financing strategy under transaction costs such that we have equality in (B.33). For this, we
observe that we can maximise the terms on the right hand side of (B.34) independently of
each other and only need to solve

E
[

log
(

1 + πt1
(
(1− λ)St1 − St1−

))]
→ max!, πt1 ∈ Ft1−, (B.36)

E
[

log
(

1 + πtj(1− λ)∆Stj

)]
→ max!, πtj ∈ Ftj−, (B.37)

E
[

log
(

1 + π 1
2

(
(1− λ)S 1

2
− S 1

2
−
))]
→ max!, π 1

2
∈ F 1

2
−, (B.38)
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where the solutions are, as explained below, given by

π̂t1 =
1

λ+ (1− λ)a1

, (B.39)

π̂tj =
1

(1− λ)aj
1{σ>tj−1}, j ≥ 2, (B.40)

π̂ 1
2

=
1

λ+ (1− λ)1
2

1{σ= 1
2
}. (B.41)

This will also give the optimal value for

E
[

log
(

1 + π 1
2
−
(
S 1

2
− − (1− λ)S 1

2
−
))]
→ max! (B.42)

when maximising over all possible limits π 1
2
− = limj→∞ πtj of processes π = (πt)0≤t≤1 for

which the problems (B.37) are well-defined > −∞, i.e. π̂tj ≤ 1
(1−λ)aj

1{σ>tj} for all j ≥ 2.

As S 1
2
− − (1 − λ)S 1

2
− = λS 1

2
− > 0 on {σ = 1

2
}, this is precisely the upper boundary

π̂ 1
2
− = limj→∞ π̂tj = 1

(1−λ) 2
3

of the domain of (B.42).

The proof that the solution to problems (B.36) - (B.38) are given by (B.39) - (B.41)
follows by the same arguments as that of Proposition B.1 and is therefore omitted. Note,
however, that these arguments use that ε ∈ (0, 1

3
) and λ is sufficiently small, as in (B.15).

To conclude, we only need to observe that defining ϕ̂ = (ϕ̂0
t , ϕ̂

1
t )0≤t≤1 by solving (B.35),

i.e. by (ϕ̂0
0, ϕ̂

1
0) = (1, 0),

ϕ̂1
t1

= π̂t1 ,

ϕ̂1
tj

=

(
1 + ϕ̂1

t1

(
(1− λ)St1 − St1

)
+

j−1∑
k=2

ϕ̂1
tk

(1− λ)∆Stk

)
π̂tj

= (1− λϕ̂1
t1

)
1

(1− λ)aj
1{σ>tj−1}, j ≥ 2,

ϕ̂1
1
2
− = lim

j→∞
(1− λϕ̂1

t1
)

1

(1− λ)aj
1{σ>tj−1} = (1− λϕ̂1

t1
)

1

(1− λ)2
3

1{σ= 1
2
},

ϕ̂1
1
2

=

(
1 + ϕ̂1

t1

(
(1− λ)St1 − St1−

)
+
∞∑
k=2

ϕ̂1
tk

(1− λ)∆Stk + ϕ̂1
1
2
−

(
S 1

2
− − (1− λ)S 1

2
−
))

π̂ 1
2

=
(
1− λ(ϕ̂1

t1
− ϕ̂1

1
2
−)
) 1

λ+ (1− λ)1
2

and dϕ̂0 by the self-financing condition (2.4) with equality gives a self-financing and admis-
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sible trading strategy under transaction costs, since

∆+ϕ̂
1
0 = ϕ̂1

t1
=

1

λ+ (1− λ)a1

> 0,

∆+ϕ̂
1
t1

= ϕ̂1
t2
− ϕ̂1

t1
=

1− λϕ̂1
t1

1− λ
1

a2

− 1

λ+ (1− λ)a1

< 0,

∆+ϕ̂
1
tj

= ϕ̂1
tj+1
− ϕ̂1

tj
=

1− λϕ̂1
t1

1− λ

(
1

aj+1

− 1

aj

)
< 0, j ≥ 2,

∆ϕ̂1
1
2

= ϕ̂1
1
2
− ϕ̂1

1
2
− =

(
1− λ(ϕ̂1

t1
− ϕ̂1

1
2
−)
) 1

λ+ (1− λ)1
2

− (1− λϕ̂1
t1

)
1

(1− λ)2
3

> 0, (B.43)

where we use that λ is sufficiently small in (B.43).
2) Again, the fact that the solution to the dual problem (B.29) is given by (B.30) follows

immediately from Proposition 3.9 and the formulas (B.31) and (B.32) from (3.15).

Let us now explain how one can construct a sequence Zn = (Z0,n, Z1,n) of λ-consistent

price systems that is approximating the dual optimiser Ŷ = (Ŷ 0, Ŷ 1).

Lemma B.5. The solution ϕ̂n = (ϕ̂0,n
t , ϕ̂1,n

t )0≤t≤1 to the frictionless utility maximisation
problem

E[log(1 + ϕ1 • Ŝn1 )]→ max!, ϕ ∈ A(1; Ŝn), (B.44)

for the price process Ŝn = (Ŝnt )0≤t≤1 defined in (4.4) is given by

ϕ̂1,n =
n∑
j=1

ϕ̂1,n
tj 1(tj−1,tj ](t)

for t ∈ [0, 1], where

ϕ̂1,n
t1 = π̂nt1 > 0,

ϕ̂1,n
tj = (1− λϕ̂1,n

t1 )π̂ntj1{σ>tj−1}, 2 ≤ j ≤ n,

ϕ̂1,n
1
2

=
(
1− λ(ϕ̂1,n

t1 − ϕ̂
1,n
tn )
)
π̂n1

2
1{σ>tn},

ϕ̂0,n is defined by the frictionless self-financing condition with equality and (π̂ntj)
n
j=1 and π̂n1

2

are the solutions to

E[log(1 + πtj∆Ŝ
n
tj

)]→ max!, πtj ∈ Ftj−, 1 ≤ j ≤ n,

E[log(1 + π 1
2
∆Ŝn1

2
)]→ max!, π 1

2
∈ F 1

2
−.

Moreover, we have that

E[η̂n1
2
] = E[η̂nj ] = 1, 1 ≤ j ≤ n,

E[η̂n1
2
∆Ŝn1

2
] = E[η̂nj ∆Ŝntj ] = 0, 1 ≤ j ≤ n,

where η̂nj = 1

1+π̂ntj
∆Ŝntj

and η̂n1
2

= 1

1+π̂n1
2

∆Ŝn1
2

.
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Proof. The proof follows by similar scaling arguments as that of Proposition B.4 and is
therefore omitted.

Since ηn → η, as n → ∞, we obtain as in Lemma B.2 that π̂ntj → π̂tj for j ∈ N and

π̂n1
2

→ π̂ 1
2
, as n → ∞, and therefore also ϕ̂1,n

tj → ϕ̂1
tj

for j ∈ N and ϕ̂1,n
1
2

→ ϕ̂1
1
2

, as n → ∞.
As this implies that ∆+ϕ̂

1,n
0 > 0, ∆+ϕ̂

1,n
tj < 0 for 1 ≤ j ≤ n − 1 and ∆+ϕ̂

1,n
tn > 0 for

sufficiently large n, the optimal strategy for the frictionless utility maximisation problem
(B.44) coincides with the solution ϕ̂n = (ϕ̂0,n

t , ϕ̂1,n
t )0≤t≤1 to the utility maximisation problem

under transaction costs

E[log(V n
T (ϕ))]→ max!, ϕ ∈ An(x),

for the price process Sn = (Snt )0≤t≤1 given by (4.3), where

V n
T (ϕ) := ϕ0

T + (ϕ1
T )+(1− λ)SnT − (ϕ1

T )−SnT

and An(x) denotes the set of all self-financing and admissible trading strategies under trans-
action costs λ for the price process Sn.

For the frictionless dual problem corresponding to (B.44), we obtain that the solution

Ŷ n = (Ŷ n
t )0≤t≤1 is given by

Ŷ n
t =

1

1 + ϕ̂1,n • Ŝnt
=

n∏
j=1

(
1 + (η̂nj − 1)1{tj≤t}

)(
1 + (η̂n1

2
− 1)1{ 1

2
≤t}
)
, t ∈ [0, 1],

where

1 + ϕ̂1,n • Ŝnt = 1 +
n∑
j=1

ϕ̂1,n
tj ∆Ŝtj + ϕ̂1,n

1
2

∆Ŝ 1
2

=
(

1 + π̂nt1
(
(1− λ)Snt1 − S

n
t1−
)
1{t1≤t}

) n−1∏
j=2

(
1 + π̂ntj(1− λ)∆Sntj1{tj≤t}

)
×
(

1 + π̂ntn
(
Sntn − (1− λ)Sntn−

)
1{tn≤t}

)
×
(

1 + π̂n1
2

(
(1− λ)Sn1

2
− Sn1

2
−

)
1{ 1

2
≤t}

)
, (B.45)

and is the density of an equivalent martingale measure for Ŝn. Therefore

Ẑn
t = (Ẑ0,n

t , Ẑ1,n
t ) := (Ŷ n

t , Ŷ
n
t Ŝ

n
t ), t ∈ [0, 1], (B.46)

is a λ-consistent price system for the price process Sn = (Snt )0≤t≤1. Comparing the formulas
(B.32) with (B.45) and (4.5) and (4.4), we immediately obtain that

(Ẑ0,n
τ , Ẑ1,n

τ )
P−→ (Ẑ0

τ , Ẑ
1
τ ), as n→∞, (B.47)

for all finite stopping times τ and (4.6), as π̂ntj → π̂tj for all j ∈ N. To turn the Ẑn’s (for
sufficiently large n) into λ-consistent price systems for the price S = (St)0≤t≤1, we need to

modify the Ẑn’s on {tn < σ < 1
2
} to obtain martingales Zn = (Z0,n

t , Z1,n
t )0≤t≤1 such that

their ratio S̃n := Z1,n

Z0,n is valued in the bid-ask spread on {tn < σ < 1
2
} as well.
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Proposition B.6. Let Ẑn = (Ẑ0,n, Ẑ1,n) be as defined in (B.47) and η be a strictly positive
σ(η)-measurable random variable such that E[η] = 1 and E[η(η − 1)] = 0. Then:

1) The processes Zn = (Z0,n, Z1,n) given by

Z0,n
t (ω) =

{
Ŷ n
tn∧t(ω)

(
1 + (η(ω)− 1)1{σ≤t}

)
: σ(ω) ∈ (tn,

1
2
),

Ŷ n
t : else,

S̃nt (ω) =

{
Ŝnt 1{t<σ} + St(ω)1{σ≤t} : σ(ω) ∈ (tn,

1
2
),

Ŝnt (ω) : else,

Z1,n
t (ω) = Z0,n

t (ω)S̃nt (ω)

are (for sufficiently large n) λ-consistent price systems.

2) We have that

(Z0,n
τ , Z1,n

τ )
P−→ (Ŷ 0

τ , Ŷ
1
τ ), as n→∞, (B.48)

for all finite stopping times τ and (4.6), i.e.

S̃n1
2
− =

Z1,n
1
2
−

Z0,n
1
2
−

P−→ S 1
2
−, as n→∞. (B.49)

Proof. 1) To see the martingale property of Z0,n, we simply observe that the process M1
t =

Ŷ n
t = Ẑ0,n

t and M2
t = Ŷ n

tn∧t(1 + (η − 1)1{σ≤t}) are strictly positive martingales and so their
“fork convex” combination or “pasting”

Z0,n
t =

{
M1

t : 0 ≤ t < tn,

M1
tn

(
1F

• M1
t

M1
tn

+ 1F c
• M2

t

M2
tn

)
: tn ≤ t ≤ 1

is a martingale as well, where the predictable set F is given by F := ∪∞j=n{σ > tj} × (tj, 1).
Similarly, we obtain that

Z1,n
t =

{
N1
t : 0 ≤ t < tn,

N1
tn

(
1F

• N1
t

N1
tn

+ 1F c
• N2

t

N2
tn

)
: tn ≤ t ≤ 1

is a martingale, since N1
t = Ẑ1,n

t and N2
t = Ẑ1,n

tn∧t
(
1 + (η − 1)St1{σ≤t}

)
are.

That Zn = (Z0,n, Z1,n) is for sufficiently large n a λ-consistent price system then follows

from the fact that S̃nt is valued in the bid-ask spread [(1−λ)St, St] for t < σ as well as σ ≤ t
for sufficiently large n.

2) The convergences (B.48) and (B.49) then simply follow from (B.47) and (4.6) after
observing that P

(
σ ∈ (tn,

1
2
)
)
−→ 0, as n→∞.
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