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Abstract

We consider a multi-agent Bayesian persuasion problem where an in-

formed sender tries to persuade a group of agents to adopt a certain prod-

uct. The sender is allowed to commit to a signalling policy where she sends

a private signal to every agent. The payoff to the sender is a function of

the subset of adopters. We characterize an optimal signalling policy and

the maximal revenue to the sender for three different types of payoff func-

tions: supermodular, symmetric submodular, and a supermajority function.

Moreover, using tools from cooperative game theory we provide a necessary

and sufficient condition under which public signalling policy is optimal.

1 Introduction

Due to the recent technological advances and the raising of online social networks,

new forms of advertising have been developed, viral marketing being one of them.

These forms of advertising use the network structure and the fact that customers

often share information with others via the network channels to advertise their

product and increase its awareness.

This brings two main challenges to marketers that want to increase their rev-

enue by maximizing their number of customers. The first is to understand who
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are the “opinion leasers” in the network and what would be the implications, in

terms of revenue, if a given subgroup of opinion leaders adopted their product.

The second is how one should approach the opinion leaders and what sort of in-

formation should be revealed to them in order to achieve a profit maximization.

This work focuses on the second question and tries to study the optimal informa-

tion revelation under the assumption that the marketer can estimate its expected

revenue from any subgroup of initial adopters.

The fundamentals of our model have the following features. A group of opinion

leaders, henceforth agents, should choose whether to adopt a certain product. A

firm, henceforth the sender, that knows all relevant information about the product

is allowed to communicate privately with the customers to try to persuade them

to purchase the product. Each agent has his own incentives and the sender’s

utility depends on the group of agents that adopt the product. This defines a

multiple-agent problem of information revelation to the sender.

We assume that the sender can commit in advance to a revelation policy in

terms of signal distribution. That is the sender commits in advance to a dis-

tribution over an abstract set of signals conditional on every state of the world.

Our main goal in this paper is to provide an optimal revelation policy for the

sender when private communication is allowed. Clearly, such an optimal policy

may depend on the utility function of the sender. We restrict attention to utility

functions that are increasing in the size of the set of adopters.

The first observation is that the payoff function of the sender is a coalition

function that specifies a payoff to every subset of agents. We provide an optimal

policy for three different types of payoff functions of the sender. The first is

a supermodular (convex) function, the second sumodular (concave) symmetric

function, and the third is a supermajority function. The convex case represents a

sender that his marginal utility from persuading an additional agent is increasing in

the size the current group adopters. This may hold due to, for example, decreasing

production cost. The concave symmetric case represents a risk averse sender.

Finally the supermajority function corresponds to the case where the revenue of
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the sender is a threshold function. That is, the sender achieves a utility of 1 if the

group of adopters comprises at least k agents and 0 otherwise.

1.1 Related Literature

Most of the theoretical literature on viral marketing and advertising in networks

such as Kempe et al. [7], and Domingos [5] try to estimate the optimal seeding

strategy of the marketer in a given social network. The underlying assumption is

that any subset of agents form a contagious process that spreads throughout the

network. Here we take a complementary approach and assume that the marketer

can accurately estimate his revenue from any subset of potential seeders. We try to

focus on the inherent asymmetry between the information that is available to the

marketer versus the information of the customers. These assumptions therefore

translate the problem to a Bayesian persuasion problem for the marketer.

The recent literature on Bayesian persuasion, starting with Kamenica and

Gentzkow [6], extends the cheap talk model of Crawford and Sobel [4] by allowing

an informed sender to commit in advance to a signalling policy that reveals partial

information to the receiver. Building upon the classical work by Aumann and

Maschler [2], Kamenica and Gentzkow relate the optimal policy and the revenue

of the sender to the concavification of the function that corresponds to the revenue

of the sender for every given prior distribution, where communication is forbidden.

Another recent paper by Rayo and Segal [9] provides the optimal signalling policy

where a realized prospect, which specifies a profit to the sender and to the receiver,

is through private information to the sender.

Schnakenberg [10] studies Bayesian persuasion problem where a sender can

publicly disclose information to a set of voters prior to a vote over whether or not

to implement a proposal. He studies conditions under which the receiver can use

information to manipulate collective choices. He shows that this may reduce the ex

ante expected utilities of all voters. Another recent paper by Alonso and Camara

[1] characterizes, using a novel geometric tool, an optimal public signalling policy

in the voting framework. The public signal is determined as a function of the
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set of approval beliefs that comprises all posterior beliefs for which the proposal is

accepted by the voters. In addition they show that under a simple-majority rule, a

majority of voters might be strictly worse off due to the politician’s intervention.

Our work is different from these works in three main aspects. First, we allow

the sender to communicate privately with the agents. This provides the sender

more flexibility to manipulate the agent, by forming either negative or positive

correlation among agents’ private information. Second we consider the case where

there is no payoff externalities among the agents. Third, our analysis is restricted

to a binary state space. In light of these results, we also characterize necessary

and sufficient conditions under which the optimal policy is achieved via public

signals.

Several previous works incorporate private signals in a Bayesian persuasion

environment. Wang [12] considers a persuasion model in a voting setup where he

restricts attention to private signal distributions that are conditionally indepen-

dent among the agents given the realised state. We, however, allow for general

private signal distribution. Another work by Taneva [11] considers a multi-agent

model of information revelation by a sender where the agents have payoff external-

ities. She characterizes the optimal information structure for the sender subject

to the agents playing a Bayes Nash equilibrium in the special case of 2× 2 games.

Finally Chan, Li, and Wang [3] study a multi-agent Bayesian persuasion model

when the sender has a supermajority function and private signalling policy is

allowed. They construct the optimal signalling policy for a sender that is restricted

to signal distribution which satisfies a monotone likelihood ratio property. They

show that the optimal policy follows a cutoff rule where the sender only tries to

influence the beliefs of those voters who are sufficiently easy to persuade. This

cutoff property is not guaranteed by our optimal policy. In contrast, we allow for a

general signalling policy and provide a precise expression for the optimal revenue

of the sender. The main distinction of these works with ours is that we consider

the case where there are no payoff externalities among the agents.
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2 Preliminaries

Our Bayesian persuasion model comprises a group of agents N = [n] = {1, 2, ..., n}

and a sender. Each agent i ∈ N has a binary action set {0, 1} and a utility function

ui : Ω×{0, 1} → R, where Ω = {ω0, ω1} is a binary state space. The players share

a common prior distribution where 0 < γ < 1 is the probability of state ω1, and

1 − γ of state ω0. The sender’s utility V : Ω × {0, 1}N → R is a function of

the state and the group of adopters, i.e., those that choose action 1. We assume

throughout that the senders’ payoff is monotonically increasing with the group of

adopters. That is, V (ω, T ) ≤ V (ω, S) for every S ⊆ T and ω ∈ Ω.

For clarity of the exposition, we make two simplifying assumptions. First

we assume that all agents prefer action 1 at ω1 and action 0 at ω0. Namely,

ui(ω1, 1) > ui(ω1, 0) and ui(ω0, 0) > ui(ω0, 1). Second we assume that the Sender’s

utility is independent of the state. That is V : 2N → R. We show in Section 4

that all the analyses can be applied to the general case, where the utility of the

agents is any general function and the sender’s utility is state dependent.

We assume that the sender is informed of the realized state and the agents

are not. As in Kamenica and Gentzkow [6] we allow the sender to commit in

advance to an information revelation policy. In this work, however, we allow the

sender to reveal the information to every agent privately. This translates to a

state-dependent signalling distribution. Formally a policy of the informed sender

comprises n finite sets {Θi}i=1,...,n where Θi is the private signal set of agent i, and

a mapping F : Ω → ∆(Θ1 × · · · × Θn). The sender can commit to a policy that

is known to the agents prior to a stage where the state ω is realized. In contrast

to the related literature we allow the sender to communicate privately with the

agents, namely to produce different signals to different agents.

The timing of the interaction is as follows. First the sender commits to a

signalling policy F . Then a state ω ∈ Ω is realized in accordance with the prior

(γ, 1− γ). Then a profile of signals θ = (θ1, . . . , θn) is generated according to Fω.

Every agent i observes his private signal realisation θi ∈ Θi. She then forms a
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posterior PF (ω1|θi) = p(θi) and plays 1 if and only if

p(θi)ui(ω1, 1) + (1− p(θi))ui(ω0, 1) ≥ p(θi)ui(ω1, 0) + (1− p(θi))ui(ω0, 0).

We assume that in case of indifference, agents take action 1. Agent i’s best-reply

action when he observes the signal θi is denoted by gi(θi) ∈ {0, 1}. We denote by

g(θ) the action profile of the agents when the realized vector of signals is θ. Let

Θ = Θ1× · · · ×Θn. Let F1 ∈ ∆(Θ) be the signal distribution conditional on state

ω1 and F0 ∈ ∆(Θ) be the signal distribution conditional on state ω0. The sender’s

utility from the policy (Θ, F ) is denoted by

s(F ) := γEθ∼F1 [V (g(θ))] + (1− γ)Eθ∼F0 [V (g(θ))]. (1)

A signalling policy (Θ, F ) is optimal if it maximizes sender’s utility (among

all possible signal sets Θ, and all possible signals F : Ω → Θ). Our goal is to

characterize the optimal policy for the sender as a function of the properties of V .

2.1 Finding the Optimal Policy

In this section we shall show that in order to find the optimal policy for the sender

we can restrict attention to a class of simple policies. In the spirit of Kamenica

and Gentzkow we call a signalling policy (F,Θ) straightforward if Θi = {0, 1} for

every agent i ∈ N and gi(θi) = θi. The following lemma generalizes Proposition

1 in Kamenica and Gentzkow and is fundamental to our analysis. It shows that

one can restrict attention to a particular class of straightforward policies and it

allows us to translate the optimization problem faced by the sender to a neat linear

programming optimization problem.

Lemma 1. There exists an optimal signalling policy (F,Θ) such that for every

player i

1. Θi = {0, 1}.

2. F1(θi = 1) = 1 for every agent i.

3. F0(θi = 1) ≤ ai where ai = min( γ
1−γ

ui(ω1,1)−ui(ω0,1)
ui(ω0,0)−ui(ω0,1)

, 1).
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Moreover, every policy that satisfies the above conditions is straightforward.

We note that since every policy (F,Θ) that satisfies the above conditions is

straightforward, condition (2) implies that the utility of the sender from any such

policy is:

s(F ) = γV (N) + (1− γ)Eθ∼F0V (θ).

Since the utility of the sender from any of the above policies is fixed and equals

V (N) conditional on state ω1 we can translate the optimization problem of the

sender to finding a policy that satisfies the above conditions and which maximizes

the utility of the sender conditional on state ω0. That is, Lemma 1 translates

the original optimization problem of the sender to a simpler problem where the

sender should find a signalling policy that maximizes his payoff conditional on

state ω0 subject to the constraint F0(θi = 1) ≤ ai. We can therefore identify

F0 = µ = {µS}S⊂N with a vector µ where µS is the probability of the signal’s

profile θ = S where S is the indicator vector with Si = 1 iff i ∈ S. We get the

following corollary from the lemma.

Corollary 1. There exists an optimal policy (F0, F1) in which F1 sends the signal

N with probability 1 and F0 = µ maximizes the following linear optimization

problem.

max
µ

∑
S⊆N

µSV (S)

s.t. µS ≥ 0 ∀S ⊂ N∑
S⊆N

µS = 1

marg(µ)i =
∑
{S:i∈S}

µS ≤ ai ∀i ∈ N.

(2)

Note that the number ai which we henceforth call the persuasion level of agent

i has a very simple interpretation when we view the signals of the senders as a

recommendations to every agent. The optimal policy always recommends action

1 at state ω1 to every agent i. In contrast, at state ω0, in order to keep the policy

straightforward he cannot always recommend agent i to play action 1. However,
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the sender can “lie” with a certain probability and recommend 1 also in state 0.

ai represents the maximal probability that he can lie so that the policy is still

straightforward. The higher the persuasion level ai, the more the sender can bluff

agent i.

Without loss of generality we assume throughout that the persuasion level are

decreasing with i. That is,

a1 ≥ a2 ≥ . . . ≥ an.

3 Main Results

Using Lemma 1 and Corollary 1 we construct the optimal policy and provide an

exact account for the sender’s utility for three different important classes of utility

functions. We start with a motivating example.

Example 1. To gain more intuition on the nature of our result consider the

following setup. There are two agents N = {1, 2} with common utility u : Ω ×

{0, 1} → R such that 0 is a safe action that guarantees 0 at every state. Action 1

is a risky action that yields a payoff of 1 at state ω1 and −2 at state ω0. The prior

is γ = 1
2
. The utility for the sender is 1 if at least one of the agents takes action 1

and c ≥ 1 if both of them take 1. By Lemma 1 and Corollary 1 the optimization

problem of the sender is equivalent to maximize the utility conditional on state

0 subject to the probability that every signal for every player is 1
2
. That is to

maximize

µ{1}V ({1}) + µ{2}V ({2}) + µ{1,2}V ({1, 2}) = µ{1} + µ{2} + µ{1,2}c,

subject to the constraint µ{i} + µ{1,2} ≤ 1
2

for i = 1, 2. We claim that if c ≥ 2

then letting µ{1,2} = 1
2

= 1
2

is optimal for the sender. To see this note that such a

policy yields a conditional utility of c
2
. If the sender decreases the µ{1,2} to 1

2
− ε,

his maximal revenue is at most (2ε) + (1
2
− ε)c. Since c ≥ 2 this is not larger than

c. This entails that if c ≥ 2 sending public signal of 1 with probability 1
2

in state

ω0 is an optimal policy for the sender.
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In contrast, consider the case where c < 2. We claim that letting µ{i} = 1
2

for

i = 1, 2 is optimal for the sender. This yields a utility of 1. To see this note that

letting µ{1,2} = ε yields a utility of at most (1 − 2ε) + εc which is smaller than 1

when c < 2. The policy µ{i} = 1
2

for i = 1, 2 corresponds to sending a signal (1, 0)

with probability 1
2

and (0, 1) with probability 1
2
. This minimizes the correlation

between the signals of agents 1 and 2. This reflects the fact that roughly speaking

when the game is convex the sender wishes to increase the correlation among the

signals of the agents and when the game is concave the sender wishes to decrease

the correlation among the signal distribution of the agents.

3.1 Supermodular utility

As common in the literature a utility function V : 2N → R is supermodular if for

every two subsets S, T ⊆ N it holds that,

V (S) + V (T ) ≤ V (S ∪ T ) + V (S ∩ T ).

It can be easily shown that a function V is supermodular iff for every player i the

function V (S∪ i) is increasing with respect to inclusion as a function of the subset

S ⊂ N \{i}. The economic interpretation of supermodularity is that the marginal

revenue of the sender from persuading agent i is increasing with the size of the

other adopters. If for example the sender is a seller who tries to persuade the

agents to buy a certain product supermodularity can be explained by decreasing

production costs as a function of the group of adopters.

We start by describing the optimal policy F0 = µ. The policy assigns positive

probability only to the sets ∅ and {1, 2, ..., k} for k ≤ n. The exact probabilities

are given by

µS =



an if S = N,

ak − ak+1 if S = {1, . . . , k} for some k < n,

1− a1 if S = ∅

0 otherwise.

(3)
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The policy has a very simple characterization. Conditional on state ω0 the

sender first sends a public signal

σ1 =

1 with probability a1

0 with probability 1− a1

If σ1 = 0, then all agents see this and know that the true state is ω0 and hence all

play action 0. If the signal is 1, then the sender sends an additional signal

σ2 =

1 with probability a2
a1

0 with probability 1− a2
a1

that can be observed only by agents {2, . . . , n}. Again, if σ2 = 0 than all agents

in {2, . . . , n} know that the state is ω0 and therefore play action 0. This happens

with probability µ{1} = a1 × (1 − a2
a1

) = a1 − a2. If σ2 = 1 then he proceeds and

sends the signal

σ3 =

1 with probability a3
a2

0 with probability 1− a3
a2

to agents {3, . . . , n} only, and so forth.

This policy can be viewed also as a “greedy” policy that persuades as many

agents as possible under the marginal constraints, and then does the same with

the remaining agents whose marginal constraints are still positive.

Theorem 1. The policy µ is optimal for every sender with a supermodular utility

V .

In particular Theorem 1 implies that the sender’s optimal revenue in the su-

permodular case is given by

max
F

s(F ) = γV (N) + (1− γ)[anV (N) +
n−1∑
k=1

(ak − ak+1)V ({1, ..., k})].

Proof Outline of Theorem 1. We consider first a linear programming prob-

lem which is less constrained than the one introduced in equation (6). The new

linear programming problem is identical to (6) but we omit the constraint that
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∑
S⊆N µS = 1. We then show that µ is an optimal policy for the less constrained

problem. This in particular shows that µ solves (6).

We show this in three steps. First in Lemma 4 we show, using the supermod-

ularity condition, that there exists an optimal policy ν whose support is a chain,

namely, if S,Q are two subsets with νS, νQ > 0 then either Q ⊂ S or S ⊂ Q.

Second, we show further that there exists an optimal ν = {νS}S⊆N such that the

supported chain is ∅ ⊂ {1} ⊂ {1, 2} ⊂ ... ⊂ N . Then using stochastic dominance

considerations we show that µ achieves larger utility than any ν that satisfies the

above two conditions. The formal proof is relegated to the appendix.

3.2 Submodular utility

We recall that a utility function V : 2N → R is submodular if for every two subsets

S, T ⊂ N it holds that,

V (S) + V (T ) ≤ V (S ∪ T ) + V (S ∩ T ).

Analogously to the supermodular case, a function V is submodular iff for every

player i the function V (S∪i) is decreasing with respect to inclusion as a function of

the subset S ⊂ N \ {i}. The interpretation of submodularity is that the marginal

revenue of the sender from persuading agent i is decreasing with the size of the

other adopters. Thus submodularity represents decreasing marginal gains from

any individual i.

In this section we consider the optimal revenue for a sender with anonymous

submodular functions V ; i.e., V (S) = f(|S|) for a concave increasing function

f : N→ R.

We first present a natural upper bound for the optimal revenue of the sender

and then we show using constructive proof that this value is indeed achievable

and therefore it is optimal. We denote by f : R→ R the linear interpolation of f .

That is, if x ∈ [0, n] satisfy x = αl + (1− α)(l + 1) for some 0 ≤ l < n and some

0 ≤ α ≤ 1 then

f(x) = αf(l) + (1− α)f(l + 1).
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We let a =
∑n

i=1 ai be the sum of the persuasion levels of all players. Our

second main theorem states

Theorem 2. Sender’s utility in an optimal policy is γf(n) + (1− γ)f(a).

Moreover, we show (see Lemma 5) that in an optimal policy, conditional on

state ω0 the sender always persuades either bac or dae agents.

The proof comprises two parts. First we show below why γf(n) + (1− γ)f(a)

is an upper bound for the senders utility. This part is straightforward. Second we

provide a constructive proof for an optimal policy that achieve this bound. This

part is more involved, and is relegated to the appendix.

Lemma 2 (First part of Theorem 2). For every policy, conditional on state ω0

sender’s utility is at most f(a).

Proof. We denote by Sk the subsets of N of size k. Consider the optimization prob-

lem (6) introduced in Corollary 1. Under the corollary the optimization problem

translates to maximizing
∑

S⊆N µSV (S) subject to the constraints marg(µ)i ≤ ai

in (6) over all i ∈ N . By summing these constraints, we can deduce that for every

feasible µ = {µS}S⊆N that satisfies the constraints it holds that

∑
S⊆N

µS · |S| =
n∑
i=1

∑
S:i∈S

µS ≤ a.

Or equivalently,
∑n

j=1 µ(Sj) · j ≤ a. Note that f is concave, because f is concave.

Therefore, by Jensen’s inequality we have

∑
S⊆N

µSV (S) =
n∑
j=1

µ(Sj)f(j) =
n∑
j=1

µ(Sj)f(j) ≤ f

(
n∑
j=1

µ(Sj) · j

)
≤ f(a).

3.2.1 Proof outline of Theorem 2: the constructive part

We next outline the construction of the optimal policy that achieves the above

upper bound. Consider the optimization problem (6) of Corollary 1. The follow-

ing key lemma provides a tight characterization of the maximal “mass” that can
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be placed on subsets of size k under the constraints marg(µ)i ≤ ai. This charac-

terization turns useful in the construction of the optimal policy. For any positive

measure µ on {0, 1}n we let |µ| =
∑

S⊂N µS be the total mass of µ.

Lemma 3. Let 1 ≥ a1 ≥ a2 ≥ . . . ≥ an ≥ 0 be a monotonic sequence. For every

1 ≤ k ≤ n define

βk = min
0≤m<k

1

k −m
(am+1 + . . .+ an).

There exists a positive measure µ (not necessarily a probability measure) that as-

signs positive values only to elements of Sk such that |µ| = βk, and µ satisfies

the marginal constraints: marg(µ)i ≤ ai for every 1 ≤ i ≤ n. Moreover, for any

positive measure ν over Sk that satisfies the marginal constraints marg(ν)i ≤ ai it

holds that |ν| ≤ βk.

The proof of the lemma is constructive and is relegated to the appendix.

We then show the following corollary of Lemma 3.

Corollary 2. Let a =
∑n

i=1 ai. If 0 ≤ ai ≤ 1 and a = k is an integer, then there

exists a probability measure (i.e., |µ| = 1) µ over Sk such that margi(µ) ≤ ai for

every i.

Corollary 2 constitutes a significant step in proving Theorem 2. For instance,

in the particular case where a turns out to be an integer, Corollary 2 proves an

existence of the required distribution µ. The case where a is not an integer is

more involved. We denote k < a < k + 1 for k ∈ N. The idea is to construct the

desired distribution µ as a convex combination of two probability distributions

µ = (k + 1 − a)κ + (a − k)ν, where κ(Sk) = 1 and ν(Sk+1) = 1. We do it by

splitting the persuasion levels ai into two numbers ai = (k + 1 − a)bi + (a − k)ci

such that
∑

i bi = k,
∑

i ci = k + 1, 0 ≤ bi ≤ 1, and 0 ≤ ci ≤ 1. This allows us to

use Corollary 2 to construct κ and ν.

3.3 Supermajority utility

A leading application of Bayesian persuasion problems is for the case of voting. In

this case the sender is a politician that wishes to persuade voters to vote for him or
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pass a certain law. The recent paper by Alonso and Camara [1] considers a setting

of persuading voters via public signal. In their setting, unlike here, the state space

is any finite set. Their first main result characterizes the optimal signalling policy

as a function of the approval set which comprises all posterior beliefs for which

the law passes.

In this case we assume that the sender has a supermajority utility Vk : 2N →

{0, 1} that yields a utility of 1 if at least k voters take action 1 and utility 0

otherwise. It is important to note that Vk is neither supermodular nor submodular

and hence this case doesn’t follow directly from our previous two main theorems.

Moreover in our setup there are no payoff externalities among the agents, and the

the utility of every agent depends only on his action and the realised state of the

world.

The following theorem characterizes the optimal utility of the politician as a

function of k using Lemma 3.

Theorem 3. For every 1 ≤ k ≤ n the optimal utility vk of the politician with a

utility function Vk is given by the following expression.

vk = γ + (1− γ) max{1, βk}.

It is worth noting that when the number of agents increases one can construct

an example wherein the ratio between the optimal utility of a politician that is re-

stricted to public signals versus his optimal utility with private signals, approaches

0. This demonstrates, as already noted by Chan, Li, and Wang [3], that in some

cases allowing private signals may improve the welfare of the sender significantly.

Proof of Theorem 3. Note that every distribution µ over {0, 1}N can be con-

verted to a distribution ν over Sk ∪ {(0, ..., 0)} with equal utility for the sender,

and weakly smaller marginals in all coordinates (i.e., marg(µ)i ≥ marg(ν)i). This

can be done simply by removing all mass from Sm for m < k to (0, ..., 0), and

removing all mass from Sm for m > k to Sk by letting some signals be 0 (in an

arbitrary manner) in some of the coordinates in the support of Sm such that the

number of 1s becomes exactly k. Therefore, we can assume that the support of
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the optimal policy lies over Sk∪{(0, ..., 0)}. Now the theorem follows immediately

from Lemma 3.

3.4 Public vs. private Signals

This work integrates private signals to the multi-agent Bayesian persuasion prob-

lem. A natural question to ask is under which conditions does there exist a public

optimal signalling policy where agents share the same signal. Indeed in some

instances the only channel to deliver information is public. In this section we

try to characterize the cases where communicating publicly with the agents is in-

deed optimal. Surprisingly this question has a strong connection to the theory of

cooperative games.

Note that the utility of the sender V defines a cooperative game (N, V ). We

recall that the core of the game is the subset C(N, V ) ⊂ Rn of all efficient pay-

off vectors where no coalition can profit by deviating from the grand coalition.

Formally,

C(N, V ) = {x ∈ Rn :
n∑
i=1

xi = V (N) and
∑
i∈S

xi ≥ V (S) for every S ⊆ N}.

Our characterization relates to the non-emptiness of the core.

Theorem 4. Consider a Bayesian persuasion problem for which an < 1. Under

the following conditions an optimal public signalling policy exists.

1. All agents have the same persuasion level. I.e., a1 = a2 = . . . = an.

2. The core of the game (N, V ) is nonempty.

Moreover, if V is strictly increasing with respect to inclusion, then the above con-

ditions are also necessary.

Proof. We first show that if the above two conditions hold, then an optimal public

signalling policy exists. We let α = ai and define a policy using public signal by

sending the signal 1 in state ω0 with probability α and 0 with probability 1 − α.

This public signal guarantees a utility of γV (N) + (1 − γ)αV (N) to the sender.
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We show first that this policy is optimal. To see this let µ = {µS}S⊂N be any

positive measure such that marg(µ)i ≤ α for every agent i. We contend that,∑
S⊂N

µSV (S) ≤ αV (N).

To see this we note that we can assume that marg(µ)i = α for every player i.

If marg(µ)i < α we can redefine µ by increasing the weight of the singleton set

S = {i} and make marg(µ)i = α. By monotonicity of V this can only increase

the expectation
∑

S⊆N µSV (S). Since the core of the game (N, V ) is nonempty it

follows from the Bondareva-Shapley theorem (see Maschler et al. [8]) that∑
S⊂N

µSV (S) ≤ αV (N).

For the converse consider the case where V is strictly increasing. We show

that if one of the conditions (1) or (2) is not satisfied, then public signal cannot

constitute an optimal policy.

Assume that (1) is not satisfied. In that case a1 > an. We let F be an

optimal policy for the sender. If F constitutes a public signal then we can assume,

by Lemma 1 and Corollary 1, that F1 assigns probability 1 to (1, . . . , 1) and

F0 = µ = {µS}S⊆N has the property that µN = b, µ∅ = 1 − b, and µS = 0 for

every nonempty S ( N . Again by Lemma 1 we must have that marg(µ)i ≤ ai for

every agent i; hence b < a1. Define a probability measure ν as follows: νN = b,

ν{1} = a1 − b and ν{∅} = 1 − a1. Note that marg(ν)i ≤ ai for every agent i and

since V ({1}) > 0 by strict monotonicity we also have that ν achieves a strictly

higher expected utility than µ. This stands in contradiction to the optimality of

µ.

Assume now that condition (1) is satisfied but not condition (2). Assume by

way of contradiction that µ = {µN , µ∅} is an optimal policy. We clearly have that

µN = α and ,µ∅ = 1 − α. Again by the Bondareva-Shapley theorem there exists

a vector ν = {νS}∅6=S⊂N for which marg(ν)i = 1 for every agent i such that,∑
S⊂N

νSV (S) > V (N).
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Note that since marg(ν)i = 1 for every agent i we must have that
∑

S⊆N νS = K ≥

1. Let ε = min{1−α
K
, α}. Note that ε > 0 since 0 < α < 1. Define a probability

measure λ = {λS}S⊆N as follows:

λS =


ενS if S 6∈ {∅, N},

α− ε+ ενN if S = N,

1− α− (K − 1)ε if S = ∅.

(4)

We claim first that λ is a probability measure. To see this note first that by the

definition of ε it holds that λS ≥ 0 for every S ⊆ N. Moreover∑
S⊆N

λS = α−ε+(1−α−Kε+ε)+ε
∑
S⊂N

νS = α−ε+(1−α−Kε+ε)+ε+Kε = 1.

Note further that for every agent i it holds that marg(λ)i = α−ε+εmarg(ν)i = α.

Finally, ∑
S⊆N

λSV (S) = (α− ε)V (N) + ε
∑
S⊂N

νSV (S) > αV (N).

Hence λ achieves a strictly higher utility than µ. This concludes the proof of

Theorem 4.

4 Extensions

In this section we explain how our results can be easily generalized to the case

where the utility of the sender is state dependent and the case where the agents

do not have identical interest conditional on the realised state. Consider first a

general weakly increasing utility function V : Ω× 2N → R for the sender. Lemma

1 and Corollary 1 remain valid also for this case. Hence the utility for the sender

from any policy F that satisfies the condition of Lemma 1 is:

s(F ) = γV (ω1, N) + (1− γ)Eθ∼F0V (ω0, θ).

Therefore in order to generalize Theorem 2 for example one should only require

that V (ω0, ·) : 2N → R is supermodular. This is also valid for the rest of the

results.
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We now turn to the case where agents do not have identical interest conditional

on ω. In this case we can divide the group of agents into four disjoint subsets

N1, N2, N3, N4. The subset N1 (N2) comprises those agents who prefer action 1

(0) at state ω1 and action 0 (1) at state ω0. The subset N3 (N4) comprises of those

agents who prefer action 0 (1) at both states. Note that an agent i ∈ N3 ∪N4 is

not persuadable, and therefore we may ignore these agents in the analysis.

Let

ai = min(
γ

1− γ
ui(ω1, 1)− ui(ω0, 1)

ui(ω0, 0)− ui(ω0, 1)
, 1) for every i ∈ N1,

bj = min(
1− γ
γ

uj(ω0, 1)− uj(ω1, 1)

uj(ω1, 0)− uj(ω1, 1)
, 1) for every j ∈ N2.

By similar considerations as in Lemma 1 we can restrict attention to a policy

with binary signal distribution F : Ω→ ∆({0, 1}n) such that satisfy the following

conditions:

1. F1(θi = 1) = 1 for every i ∈ N1,

2. F0(θi = 1) ≤ ai for every i ∈ N1,

3. F0(θj = 1) = 1 for every j ∈ N2,

4. F1(θj = 1) ≤ bj for every j ∈ N2.

Under these conditions the policy is straightforward.

The optimization problem of the sender is therefore naturally divided into two

distinct problems for each of the two states as follows. The optimization problem

associated with state ω0:

max
µ

∑
S⊂N1

µSV (S ∪N2)

s.t. µS ≥ 0 ∀S ⊂ N∑
S⊆N1

µS = 1

marg(µ)i ≤ ai ∀i ∈ N.

(5)
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The optimization problem associated with state ω1:

max
ν

∑
S⊆N2

µSV (S ∪N1)

s.t. µS ≥ 0 ∀S ⊂ N∑
S⊆N1

µS = 1

marg(µ)i ≤ ai ∀i ∈ N.

(6)

These problems are solved separately for each of the two states. Note that if

V : 2N1∪N2 → R is supermodular/submodular/supermajority function then both

functions V1 : 2N1 → R and V2 : 2N2 → R that are defined by V1(S) = V (S ∪N2)

and V2(S) = V (S ∪ N1) are supermodular/submodular/supermajority functions.

Therefore we can get a similar characterization of optimal policies in all three

cases: supermodular, symmetric submodular, and supermajority.

5 Conclusion

In this work we study a multi-agent Bayesian persuasion problem where a sender

that is interested in persuading a designated group of agents to adopt a certain

product is allowed to send private signals. The sender extracts a utility from any

subgroup of adopters. We study the optimal policy and the revenue to the sender,

as a function of his utility, for three different types of utilities: supermodular,

submodular, and supermajority. Moreover, we provide a necessary and sufficient

condition under which the optimal policy is achievable via public signals.

There is one natural question that arises from our results. Throughout we

restrict attention to the binary state space. This facilitates our analysis and allows

us to translate the problem to a linear programming problem. We believe that

our analysis together with [1] can serve as a starting point for studying a private

Bayesain persuasion problem in a general state space. This question is beyond the

scope of this paper and we leave it open for future work.
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A Appendix

A.1 Proof of Lemma 1

Proof of Lemma 1. Note first that, given a signalling policy F = (F0, F1, (Θi)i∈N),

agent i plays action 1 for the signal θi iff his posterior belief p(θi) lies above qi =

ui(ω0,0)−ui(ω0,1)
ui(ω1,1)−ui(ω0,1)+ui(ω0,0)−ui(ω1,0)

. Hence a binary signalling policy F is straightforward

(gi(θi) = θi) iff P(θi = 1) ≥ qi and p(θi = 0) ≥ qi

We claim first that for every policy G there exists a straightforward policy

K defined over {0, 1}n that yields the same utility for the sender as G. That is

K satisfies PK(ω1|θi = 1) ≥ qi, and PK(ω1|θi = 0) < qi. This follows directly

from Proposition 1 in [6]. Instead of showing agent i his realised signal θi one

can show him only gi(θi). This yields a binary straightforward signalling policy K

that yields the same utility as G.

Let K be a a straightforward signalling policy with binary signals. Given such

K we shall show that there exists another straightforward policy which is better

for the sender, for which:

H1(θi = 1) = 1.

To see this note first that for every agent i,

PH(ω1|θi = 1) =
γH1(θi = 1)

γH1(θi = 1) + (1− γ)H0(θi = 1)
.

Therefore PH(ω1|θi = 1) is increasing in H1(θi = 1). Hence we can increase

H1(θi = 1) to 1 without changing the fact that PH(ω1|θi = 1) ≥ qi. Formally,

we define M : Ω → {0, 1}n as follows. M0 = H0 and let M1 assign probability

one to the vector (1, . . . , 1). We then have that EM(V |ω0) = EH(V |ω0) and

EM(V |ω1) ≥ EH(V |ω1).

The last thing that should be noted is that a binary signalling policy H for

which H1(θi = 1) = 1 is straightforward iff p(θi = 1) ≥ qi for every agent i. Since

the prior probability of state ω1 is γ it follows from Bayes rule that this holds iff

H0(θi = 1) ≤ γ(1− qi)
qi(1− γ)

=
γ

1− γ
ui(ω1, 1)− ui(ω0, 1)

ui(ω0, 0)− ui(ω0, 1)
.
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Hence when ai = min( γ
1−γ

ui(ω1,1)−ui(ω0,1)
ui(ω0,0)−ui(ω0,1)

, 1) such H is straightforward iff H0(θi =

1) ≤ ai. This concludes the proof of Lemma 1.

A.2 Proof of Theorem 1

It is straightforward to see that µ satisfies the constraints of Equation (6). We

consider, instead, the following less constraint optimization problem.

max
κ

∑
S⊆N

κSV (S)

s.t. κS ≥ 0 ∀S ⊂ N

marg(κ)i ≤ ai ∀i ∈ N.

(7)

We will show that µ solves the optimization problem (7), and therefore, obviously

µ solves the (more restrictive) optimization problem (6).

The distinction between the two problems is that in problem (7) the variables

{µS}S⊆N are not required to sum up to one and hence clearly the optimal value

in problem (7) is at least as large as in problem (6).

We first show that an optimal solution to the maximization problem (7) assigns

positive probability only to sets such that one contains the other.

Lemma 4. Let κ = {κS}S⊆N , be any feasible vector of the optimization problem

(7). Assume Q, T ⊆ N are two sets such that Q \ T 6= ∅, T \ Q 6= ∅, and

κQ ≥ κT > 0. There exists a feasible vector ν = {νS}S⊆N such that νT = 0, and∑
S

κSV (S) ≤
∑
S

νSV (S). (8)

The idea is that, given κ, we can “move mass” from the pair of sets Q and T to

the pair of sets Q∪T and Q∩T , in a way that preserves the marginal constraints

and increases the sender’s utility (because of the supermodularity). Formally, the

proof is as follows.
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Proof of Lemma 4. We define ν as follows,

νS =



0 if S = T

κQ − µT if S = Q

κQ∩T + µT if S = Q ∩ T

κQ∪T + µT if S = Q ∪ T

κS otherwise.

(9)

We will show first that ν is feasible, namely, it satisfies the constraints of Equation

(7). We clearly have that νS ≥ 0 for every S ⊆ N . We have left to show that for

every player i, marg(ν)i ≤ ai. This is straightforward for players i 6∈ T ∪ Q. Let

i ∈ T ∪Q and let

Di = {S : i ∈ S, S 6= Q, T,Q ∩ T,Q ∪ T}.

We can write, ∑
S⊆N :i∈S

νs =
∑
S∈Di

κS + νQ + νT + νQ∩T + νQ∪T

=
∑
S∈Di

κS + (κQ − κT ) + (κQ∩T + κT ) + (κQ∪T + κT )

=
∑
S∈Di

κS + κQ + κT + κQ∩T + κQ∪T = marg(κ)i ≤ ai.

The last inequality follows since κ is feasible.

To see equation (8) we need to show that∑
S∈Di

κSV (S) + κQV (Q) + κTV (T ) + κQ∩TV (Q ∩ T ) + κQ∪TV (Q ∪ T )

is smaller than∑
S∈Di

κSV (S) + (κQ − κT )V (Q) + (κQ∩T + κT )V (Q ∩ T ) + (κQ∪T + κT )V (Q ∪ T )

or equivalently,

κQV (Q) + κTV (T ) + κQ∩TV (Q ∩ T ) + κQ∪TV (Q ∪ T )

≤ (κQ − κT )V (Q) + (κQ∩T + κT )V (Q ∩ T ) + (κQ∪T + κT )V (Q ∪ T ). (10)
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Rearranging (10) yields,

V (Q) + V (T ) ≤ V (Q ∩ T ) + V (Q ∪ T ).

This clearly holds by supermodularity of V .

Corollary 3. The optimal value of problem (7) is obtained by a chain vector

ν = {νS}S⊆N that satisfies νQ > 0 and νT > 0 implies Q ⊂ T or T ⊂ Q.

The Corollary follows from repeated application of Lemma 4. We can therefore

conclude that the optimal solution of problem (7) is obtained by a vector ν =

{νSj
}j=1,...,k such that νSj

> 0 for every j and Sl ( Sj iff l < j. The proof of

Theorem 1 follows after noting that among policies that have the above chain

structure in their support, the suggested one µ has a maximal utility (roughly

speaking, because it uses the marginal constraints up to the maximal point).

Proof of Theorem 1. Let ν = {νSj
}j=1,...,k for which the above inclusion prop-

erty is satisfied and that marg(ν)i ≤ ai for every agent i. We first show that we

can assume, with no loss of generality, that if Sj 6= ∅ then Sj = {1, . . . , lj} for

some lj ≥ 1. That is, Sj comprises all agents i such that 1 ≤ i ≤ lj. To see this let

Sj be a subset that doesn’t have the above form. We let lj be the maximal agent in

Sj. We claim that we can replace any such subset with the set {1, . . . , lj} without

violating the marginal constraint. To see this let ν̃ = {νS̃j
}j=1,...,k be the new vec-

tor that is obtained after the replacement. Consider agent n first. It clearly holds

for every j that n ∈ Sj iff n ∈ S̃j; hence marg(ν)n = marg(ν̃)n ≤ an. We proceed

by induction. Let i be any agent and assume that marg(ν̃)l ≤ al for every l > i.

Let m be the maximal index such that i ∈ Sm and let lm be the maximal agent in

Sm. Then we must have that i ≤ lm by definition. By the inclusion property we

have for every j that if i ∈ Sj then lm ∈ Sj. Hence in particular,

marg(ν̃)i ≤ marg(ν̃)lm ≤ alm ≤ ai.

The last inequality follows since i ≤ lm, and the second to last follows by the

induction hypothesis. Clearly since the utility of the sender is monotonically
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increasing, the vector ν̃ achieves (weakly) higher utility than ν. We claim that for

every m ≤ n it holds that, ∑
S:|S|≥m

νS ≤ am.

To see this let j0 be the minimal index for which |Sj| ≥ m. Since |Sj0 | ≥ m it

must contain an agent l ≥ m. By the inclusion property l ∈ Sj for every j ≥ j0.

Hence, ∑
S:|S|≥m

νS =
n∑

j=j0

νSj
≤ marg(µ)l ≤ am.

The last equality follows since l ≥ m. We note that
∑

S:|S|≥m µS = marg(µ)m =

am. Let ν : {1, . . . , n} → R be the vector that is defined by ν(m) = νSj
if there

exists Sj such that |Sj| = m and ν(m) = 0 otherwise. Define µ similarly with

respect to µ. By the calculation above µ first order stochastic dominates ν. We

let f(m) = V ({1, . . . ,m}). Note that f is increasing with m. We can therefore

write ∑
S⊆N

νSV (S) =
n∑

m=1

ν(m)f(m),

and ∑
S⊆N

µSV (S) =
n∑

m=1

µ(m)f(m).

By the stochastic dominance we must therefore have∑
S⊆N

µSV (S) ≥
∑
S⊆N

νSV (S).

This concludes the proof of Theorem 1.

A.3 Construction of the optimal policy

Recall that Sk denotes the subsets of size k. The second part of Theorem 2 can

be stated as follows.

Lemma 5 (Second part of Theorem 2). There exists a policy F for which the

sender’s utility is γf(n) + (1 − γ)f(a). Moreover, the optimal policy F0 = µ

satisfies µ(Sk) = 0 for k /∈ {bac, dae}.
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In this subsection we provide a constructive proof for this lemma.

We start with the proof of Lemma 3.

Lemma 3. Let a1 ≥ a2 ≥ . . . ≥ an ≥ 0 be a monotonic sequence. For every

1 ≤ k ≤ n define

βk = min
0≤m<k

1

k −m
(am+1 + . . .+ an).

There exists a positive measure µ (not necessarily a probability measure) over Sk
such that |µ| = βk, and µ satisfies the marginal constraints: marg(µ)i ≤ ai for

every 1 ≤ i ≤ n. Moreover, for any positive measure ν over Sk which satisfies the

marginal constraints marg(ν)i ≤ ai holds |ν| ≤ βk.

Proof of Lemma 3. We start with proving that βk is an upper bound on the

mass. For every 0 ≤ m < k, every set of size k contains at least (k − m)

elements from {m + 1, ..., n}. Therefore, for every measure ν over Sk holds∑n
i=m+1 marg(ν)i ≥ (k−m)|ν|, because every unit of mass appears in

∑n
i=m+1 marg(ν)i

at least k − m times. If ν satisfies the marginal constraints then it follows that

|ν| ≤ 1
k−m(am+1 + ... + an). Since the inequality holds for every m, it also holds

for the minimal m, i.e., |ν| ≤ βk.

For existence of such a measure, it is sufficient to construct a measure µ and an

index 0 ≤ m < k such that |µ| = 1
k−m(am+1 + . . .+ an). We consider the following

recursive process for producing the measure µ.

We set the initial marginal constraints vector (a01, ..., a
0
n) = (a1, ..., an) to be

the original constraints.

During the process we preserve the monotonicity of the marginal constraints

vector and therefore we can denote the marginal constraints vector at time t− 1

by

(at−11 , ..., at−1n ) = (b1, ..., bj, c, c, ..., c︸ ︷︷ ︸
l−j times

, bl+1, ..., bn)

where bj > c > bl+1 and j < k ≤ l. Note that if at−1k = at−1k+1 = ... = at−1n

then l = n and for simplicity of notation we assume bn+1 = 0. Note that if

at−11 = at−12 = ... = at−1k then j = 0, and for simplicity of notation we assume

b0 = n is a large constant.
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At step t, the idea is to distribute mass equally over the subsets S of size k

that satisfy [j] ⊆ S ⊆ [l] (we have
(
l−j
k−j

)
such sets). If we do so, after we have

distributed x units of mass the remaining marginal constraints vector will be

b(x) = (b1 − x, ..., bj − x, c−
k − j
l − j

x, ..., c− k − j
l − j

x, bl+1, ..., bn) (11)

because every element i = j + 1, j + 2, ..., l appears in exactly k−j
l−j fraction of the

above subsets. Step t terminates at the moment when one of the following two

happens:

(1) The jth coordinate becomes equal to the (j + 1)th coordinate.

(2) The lth coordinate becomes equal to the (l + 1)th coordinate.

We denote by α the amount of mass that has been distributed during step1 t.

We denote by

µt(S) =


α

(k−m
l−m)

if |S| = k, and {1, ...,m} ⊂ S ⊂ {1, ..., l},

0 otherwise,

the measure of the distributed mass at step t. We denote by (at1, ..., a
t
n) = b(α)

the marginal constraints vector after step t, where b(·) is defined in equation (11).

If (2) happens before (1) and l = n, then it must be the case that (at1, ..., a
t
n) =

(at1, ..., a
t
m, 0, ..., 0). In such a case we terminate the process, and we denote by

T = t the number of steps in the process. In any other case we proceed to step

t+ 1.

Finally, we define our measure to be µ =
∑T

t=1 µt. Note that at the moment

of termination

(aT1 , ..., a
T
n ) = (aT1 , ..., a

T
m, 0, ..., 0) = (a1 − |µ|, ..., am − |µ|, 0, ..., 0)

for some index 0 ≤ m < k, because during the entire process the marginals ati

for i ≤ m are reduced at the same rate as the amount of the distributed mass.

1Simple calculations show that α = min( l−j
k−j (bj− c), l−j

k−j (c− bl+1)), but this exact expression

will not be needed for the proof.
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Moreover, |µ| = 1
k−m(am+1 + ...+ an) because during the process (atm+1 + ...+ atn)

is decreasing k −m times faster than the amount of the distributed mass (since

every subset S of size k that satisfies {1, ...,m} ⊂ S has exactly k−m elements in

{m+ 1, ..., n}). Therefore we found a measure µ and an index m as needed.

As claimed, the following is a corollary of Lemma 3.

Corollary 2. If 0 ≤ ai ≤ 1 and
∑n

i=1 ai = k is an integer, then there exists a

probability measure (i.e., |µ| = 1) µ over Sk such that margi(µ) ≤ ai for every i.

Proof of Corollary 2. To see this we first claim that for every m < k

1

k −m
(am+1 + . . .+ an) ≥ 1

or equivalently that,

am+1 + . . .+ an ≥ k −m. (12)

Adding a1 + · · ·+ am to the two sides of equation (12) we have to show that,

a ≥ k −m+ a1 + · · ·+ am.

Since a = k we have left to show that,

m ≥ a1 + · · ·+ am,

which follows directly as ai ≤ 1 for every 1 ≤ i ≤ m. Clearly, by letting m = 0 we

can see that βk = 1.

Hence by Lemma 3 there exists a probability measure µ ∈ ∆({0, 1}n) such that

µk = 1 and marg(µ)i ≤ ai for every 1 ≤ i ≤ n.

Lemma 6. Let (a1, ..., an) ∈ [0, 1]n be such that ai ≥ ai+1 and let a =
∑

i ai and

k < a < k + 1. There exist two vectors (b1, . . . , bn), (c1, ..., cn) ∈ [0, 1]n with the

following properties:

1. ai = (k + 1− a)bi + (a− k)ci.

2. b =
∑

i bi = k.

3. c =
∑

i ci = k + 1.
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Proof. We claim first that we can restrict attention to finding an appropriate vector

(b1, . . . , bn) only. From property (1) the value of ci = ai−(k+1−a)bi
a−k is uniquely

determined by bi. Property (3) follows from property (1) and property (2) as

follows:

a = (k + 1− a)b+ (a− k)c = (k + 1− a)k + (a− k)c⇒ c = k + 1.

The only thing that should be noted is that we require (c1, ..., cn) ∈ [0, 1]n.

This requirement translates to the following two inequalities on bi

ai − (a− k) ≤ bi(k + 1− a) ≤ ai.

Therefore to prove Lemma 6 we should prove the existence of a vector (b1, . . . , bn)

that satisfies b = k under the following constraints

0 ≤ bi ≤ 1 and ai − (a− k) ≤ bi(k + 1− a) ≤ ai. (13)

Note that the constraints in (13) are linear. Hence it is sufficient to prove the

existence of two vectors (b′1, . . . , b
′
n) and (b′′1, . . . , b

′′
n) that satisfy the constraints of

(13) such that
∑

i b
′
i ≤ k and

∑
i b
′′
i ≥ k. Given such two vectors we can choose

(b1, ..., bn) as an appropriate convex combination of (b′1, . . . , b
′
n) and (b′′1, . . . , b

′′
n)

that satisfies b = k.

We set b′i = max(0, ai−(a−k)
k+1−a ). Note that b′i satisfies the constraints in (13)

because

ai − (a− k) ≤ k + 1− a⇒ b′i ≤ 1 and

ai − (a− k) ≤ ai ⇒ b′i(k + 1− a) ≤ ai.

We have ∑
i

b′i =
∑

i:ai>a−k

ai − (a− k)

k + 1− a
=

m∑
i=1

ai − (a− k)

k + 1− a

where m is the maximal index for which ai > a− k. We argue that it must be the

case that m ≤ k, because otherwise (if m ≥ k + 1) we have

a =
∑
i

ai ≥ (k + 1)(a− k)⇒ k2 − k ≥ ak ⇒ k − 1 ≥ a,
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which is a contradiction. Therefore the inequality
∑

i b
′
i < k follows trivially from

the fact that b′i ≤ 1 (because we sum up at most k elements).

We set b′′i = min(1, ai
k+1−a). It is easy to check that (b′′i ) satisfies the constraints

(13). Note that

∑
i

b′′i = m+
n∑

i=m+1

ai
k + 1− a

where m is the minimal index such that ai < k+ 1− a. We argue that it must be

the case that m ≥ k because otherwise (if m ≤ k − 1) we have

a =
∑
i

ai ≤ (k − 1)(k + 1− a)⇒ ak ≤ k2 − 1⇒ a ≤ k − 1

k
,

which is a contradiction. Therefore the inequality
∑

i b
′′
i ≥ k follows immediately.

Now the proof of Lemma 5 follows directly from Corollary 2 and Lemma 6.

Proof of Proposition 5. Let (bi) and (ci) be the vectors from Lemma 6. Let

κ be a distribution over Sk with marginals marg(κ)i ≤ bi. Let ν be a distribution

over Sk+1 with marginals marg(ν)i ≤ ci. Such κ and ν exist by Corollary 2 and

properties (2),(3) in Lemma 6. We define µ = (k+1−a)κ+(a−k)ν. By property

(1) in Lemma 6, µ satisfies the marginal constraints marg(µ)i ≤ ai. Note that

every signal in κ achieves utility of f(k) to the sender, while every signal in ν

achieves utility of f(k + 1). Therefore the expected utility of the sender is given

by (k + 1− a)f(k) + (a− k)f(k + 1) which (by the definition of interpolation) is

equal to f(a).
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