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We consider point estimation and inference based on modifications of
the profile likelihood in models for dyadic interactions between n agents
featuring agent-specific parameters. This setup covers the β-model of
network formation and generalizations thereof. The maximum-likelihood
estimator of such models has bias and standard deviation of O(n−1) and
so is asymptotically biased. Estimation based on modified likelihoods
leads to estimators that are asymptotically unbiased and likelihood-ratio
tests that exhibit correct size. We apply the modifications to versions of
the β-model for network formation and of the Bradley-Terry model for
paired comparisons.

1. Introduction. A growing literature has uncovered the importance of

interactions between agents through social networks as drivers for economic

outcomes. Examples include employment opportunities (Calvó-Armengol

and Jackson 2004), risk sharing (Fafchamps and Gubert 2007; Jackson,

Rodriguez-Barraquer and Tan 2012), and also educational achievements

(Calvó-Armengol, Patacchini and Zenou 2009).

A leading approach to statistical modelling of dyadic interaction is through

the inclusion of agent-specific parameters (see, e.g., Snijders 2011). One of

the most popular applications of this paradigm is the β-model for network

formation. In this model, agent fixed effects capture degree heterogeneity

in link formation (Chatterjee, Diaconis and Sly 2011, Rinaldo, Petrovic and

Fienberg 2013, and Yan and Xu 2013 are recent references). Graham [2015]

augments the standard β-model with observable dyad characteristics. This

allows to empirically distinguish degree heterogeneity from homophily (see

Jackson 2008 and McPherson, Smith-Lovin and Cook 2001 for discussion on

the importance of homophily in network formation). Clearly, estimation of

such fixed-effect models is non-standard as the number of parameters grows
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with the sample size. Inference on the homophily parameter is plagued by

asymptotic bias that needs to be corrected for. The bias problem comes from

the presence of the agent-specific parameters in the model, and is similar to

the well-known incidental-parameter problem (Neyman and Scott 1948) in

models for panel data. The same problem appears in more general models for

dyadic interactions between heterogenous agents, such as in the references

given above.

The problem of inference in the presence of many nuisance parameters

has a long history in statistics. In this paper we look at generic estimation

problems for dyadic data and argue in favor of inference based on modified

likelihood functions. In its most general form, the modified likelihood is a

bias-corrected version of the profile likelihood, that is, of the likelihood after

having profiled-out the nuisance parameters. The adjustment is both general

and simple in form, involving only the score and Hessian of the likelihood

with respect to the nuisance parameters. The adjustment term removes the

leading bias from the profile likelihood and leads to asymptotically-unbiased

inference and likelihood ratio statistics that are χ2-distributed under the

null. The form of the adjustment can be specialized by using the likelihood

structure (as in DiCiccio et al. 1996), in which case the modified likelihood

penalizes the profile likelihood for deviations from the information equality,

arising due to the estimation noise in the fixed effects.1

We work out the modifications to the profile likelihood in a linear version

of the β-model and in a linear version of the Bradley and Terry [1952] model

for paired comparisons. These simple illustrations give insight in how the

adjustments work. We next apply them to the β-model of Graham [2015],

and evaluate our approach using his simulation designs. We find that both

modifications dramatically improve on maximum likelihood in terms of bias

and mean squared error as well as reliability of statistical inference, and

that they can be more reliable than bias-correcting the maximum-likelihood

estimator.

1It can be further simplified when an information-orthogonal reparametrization of βi
exist, as in Cox and Reid [1987] and Lancaster [2002]. However, as such reparametrizations
do not exist in general (see, e.g., Severini 2000) we do not consider such modifications
further here.



3

2. Fixed-effect models for dyadic data. We consider data on dyadic

interactions between n agents. For each of n(n − 1)/2 distinct agent pairs

(i, j) with i < j we observe the random variable zij . The data may be

multivariate. For example, we may observe an outcome yij generated by

pair (i, j) together with a vector of dyad characteristics xij , in which case

we have zij = (yij , x
′
ij)
′.

The density of zij (relative to some dominating measure) takes the form

f(zij ;ϑ, βi, βj),

where ϑ and β1, . . . , βn are unknown Euclidean parameters. Models of this

form are relevant for the analysis of network formation (see, for example,

Fafchamps and Gubert 2007 and Attanasio et al. 2009 for applications), for

studying strategic behavior among agents, or for the construction of rankings

(Bradley and Terry 1952).

Our goal will be to perform inference on ϑ treating the βi as fixed effects.

As is well known, the maximum-likelihood estimator of ϑ generally performs

poorly when the number of nuisance parameters is large relative to the

sample size (see, for example, Neyman and Scott 1948 and Li, Lindsay and

Waterman 2003). We will consider modifications of the maximum-likelihood

method that yield estimators with good statistical properties. Before doing

so, we first discuss two leading types of models that fit into our framework.

2.1. Models with complementarity. In one important class of models the

parameters βi and βj enter the density of the dyad (i, j) additively, that is,

f(zij ;ϑ, βi, βj) = f(zij ;ϑ, βi + βj).

Such models arise, for example, when agents i and j interact to generate

output, and working together creates a surplus.

A leading example of such a model is the β-model of network formation

(Chatterjee, Diaconis and Sly 2011; Graham 2015). Here, zij = (yij , xij)
′

and the probability distribution of yij given xij is Bernoulli with parameter

P(yij = 1|xij ;ϑ, βi, βj) = F (βi + βj + xijϑ)

for a cumulative distribution function F . The likelihood of i and j to engage

in a relation with one another is increasing in βi + βj and also in xijϑ.
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The first factor represents degree heterogeneity among agents. Some agents

are more open to interaction than others, and engaging in a relation is a

reciprocal decision. The second factor can capture homophily, that is, the

fact that agents with similar characteristics are more likely to interact. If

xij is a measure of distance (or dissimilarity), for example, homophily would

correspond to ϑ < 0. Disentangling these two factors is a long-standing

problem. See McPherson, Smith-Lovin and Cook [2001] for an overview on

the large literature on homophily.

More generally, one may wish to analyze an output yij produced by the

dyad (i, j) rather than the production decision. Such a problem can often

be cast into a (nonlinear) regression model of the form

yij = t(βi + βj + x′ijϑ, εij)

for a transformation function t and a latent disturbance εij . The motivation

of the index would be as before. One application of this type of regression

model would be a gravity equation for bilateral trade flows featuring country

fixed effects (see Head and Mayer 2014 for an overview of the large literature

on gravity equations).

2.2. Models with competition. An alternative specification can feature

agent-specific parameters to express substitutability or competition effects.

An example is the model of Bradley and Terry [1952] for paired comparisons.

Again letting zij = (yij , xij)
′, this model has

P(yij = 1|xij ;ϑ, βi, βj) = F (βi − βj + xijϑ).

In contrast to the β-model, here, this probability is increasing in βi and

decreasing in βj . In the same vain, xij could be a the difference between

various characteristics of the agents in the dyad. One application of such a

framework is in modelling the outcome of contests (Simons and Yao 1999).

In an industrial-organization context, the framework could be used to model

strategic interactions such as market-entry decisions.

Generalizations of the Bradley and Terry [1952] model are derived in

Hunter [2004], and the techniques discussed below will equally be applicable

to such generalizations.

Contrary to in the models with complementarities above, here, the mean

of the βi is undetermined. Therefore, a normalization needs to be imposed
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when estimating these models. One common normalization is
∑n

i=1 βi = 0.

An alternative normalization would be to set βi = 0 for some chosen i. The

choice of normalization is irrelevant for estimation and inference on ϑ.

3. Estimation and inference. The log-likelihood for our data is

`(ϑ, β) =
n∑
i=1

∑
i<j

log f(zij ;ϑ, βi, βj),

where we let β = (β1, . . . , βn)′. For simplicity of exposition we ignore any

normalization that may be needed on β to achieve identification. When a

normalization of the form c(β) = 0 is needed, everything to follow goes

through on replacing `(ϑ, β) by the constrained likelihood `(ϑ, β) − λ c(β),

where λ denotes the Lagrange multiplier. We will give a detailed example

below.

It is useful to recall that the maximum-likelihood estimator of ϑ can be

expressed as

ϑ̂ = arg max
ϑ

ˆ̀(ϑ),

where ˆ̀(ϑ) = `(ϑ, β̂(ϑ)), with

β̂(ϑ) = arg max
β

`(ϑ, β),

is the profile likelihood.

Inference based on the profile likelihood performs poorly, even in large

samples, because the dimension of β is n, which grows with the sample size

n(n − 1)/2. Quite generally, estimating the n parameters βi along with ϑ

will imply that

E(ϑ̂− ϑ) = O(n−1).

As E((ϑ̂ − ϑ)2) = O(n−2), bias and standard deviation are of the same

order of magnitude, and the maximum-likelihood estimator is asymptotically

biased.

3.1. Modified profile likelihood. Estimation and inference in the presence

of nuisance parameters has a long history in statistics. The seminal work of

Barndorff-Nielsen [1983] and Cox and Reid [1987] contains modifications

to the profile likelihood that lead to superior inference. More recent work
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includes DiCiccio et al. [1996] and Severini [1998]. Modified likelihoods have

been found to solve the incidental-parameter problem in models for panel

data under so-called rectangular-array asymptotics (as defined in Li, Lindsay

and Waterman 2003). See, notably, Sartori [2003] and Arellano and Hahn

[2007]. We argue that they can equally be used to yield asymptotically-valid

inference in the current context.

In its simplest form, modified likelihoods can be understood as yielding

a superior approximation to the target likelihood

`(ϑ) = `(ϑ, β(ϑ)), β(ϑ) = arg max
β

E(`(ϑ, β)).

Moreover, the profile likelihood is the sample counterpart to this infeasible

likelihood. Replacing β(ϑ) with β̂(ϑ) introduces bias that leads to invalid

inference.

Under regularity conditions we have that

β̂(θ)− β(ϑ) = Σ(ϑ)−1V (ϑ) +Op(n
−1),

where we introduce

V (ϑ) =
∂`(ϑ, β)

∂β

∣∣∣∣
β=β(ϑ)

, Σ(ϑ) = − E
(
∂2`(ϑ, β)

∂β∂β′

)∣∣∣∣
β=β(ϑ)

.

An expansion of the profile likelihood around β(ϑ) yields

ˆ̀(ϑ)− `(ϑ) = (β̂(θ)− β(ϑ))′V (ϑ)

− 1

2
(β̂(θ)− β(ϑ))′Σ(ϑ)(β̂(θ)− β(ϑ)) +Op(n

−1/2).

Combining the two expansions and taking expectations then shows that the

bias of the profile likelihood is of the form

E(ˆ̀(ϑ)− `(ϑ)) =
1

2
trace(Σ(ϑ)−1Ω(ϑ)) +O(n−1/2)

for

Ω(ϑ) = E[V (ϑ)V (ϑ)′],

the variance of V (ϑ).

A modified likelihood then is

˙̀(ϑ) = ˆ̀(ϑ)− 1

2
trace(Σ̂(ϑ)−1Ω̂(ϑ)),
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where we define the plug-in estimators

Σ̂(ϑ) = Σ̂(ϑ, β̂(ϑ)), Ω̂(ϑ) = Ω̂(ϑ, β̂(ϑ)),

for matrices

−(Σ̂(ϑ, β))i,j =



∑
i<j

∂2 log f(zij ;ϑ,βi,βj)

∂β2
i

+
∑

i>j
∂2 log f(zji;ϑ,βj ,βi)

∂β2
i

if i = j

∂2 log f(zij ;ϑ,βi,βj)
∂βi∂βj

if i < j

∂2 log f(zji;ϑ,βj ,βi)
∂βi∂βj

if i > j

and

(Ω̂(ϑ, β))i,j =



∑
i<j

(
∂ log f(zij ;ϑ,βi,βj)

∂βi

)2
+
∑

i>j

(
∂ log f(zji;ϑ,βj ,βi)

∂βi

)2
if i = j(

∂ log f(zij ;ϑ,βi,βj)
∂βi

)2
if i < j(

∂ log f(zji;ϑ,βj ,βi)
∂βi

)2
if i > j

In large samples, this modification removes the leading bias from the profile

likelihood. Consequently, in large samples, the likelihood-ratio statistic has

correct size and

ϑ̇ = arg max
ϑ

˙̀(ϑ),

will have bias o(n−1). Furthermore, under regularity conditions, we have the

limit result

Ḣ(ϑ̇)1/2(ϑ̇− ϑ)
d→ N (0, Idimϑ)

as n→∞, where we let

Ḣ(ϑ) = −∂
2 ˙̀(ϑ)

∂ϑ∂ϑ′

be the observed Fisher information for ϑ derived from ˙̀(ϑ).

Following the arguments in Arellano and Hahn [2007] we can exploit the

likelihood structure to get

1

2
trace(Σ̂(ϑ)−1Ω̂(ϑ)) = −1

2
log(det Σ̂(ϑ)) +

1

2
log(det Ω̂(ϑ)) +O(n−1),

which validates the alternative modified likelihood

῭(ϑ) = ˆ̀(ϑ) +
1

2
log(det Σ̂(ϑ))− 1

2
log(det Ω̂(ϑ));

see DiCiccio et al. [1996]. Its maximizer, say ϑ̈ satisfies the same asymptotic

properties as ϑ̇.
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3.2. Illustration: A linear β-model. Consider the following extension of

the classic many normal means problem of Neyman and Scott [1948]. Data

are generated as

zij ∼ N (βi + βj , ϑ),

and are independent across dyads. The likelihood function for all parameters

(ignoring constants) is

`(ϑ, β) = −1

2

n(n− 1)

2
log ϑ− 1

2

n∑
i=1

∑
i<j

(zij − βi − βj)2

ϑ
.

Its first two derivatives with respect to the βi are

∂`(ϑ, β)

∂βi
=
∑
i<j

zij − βi − βj
ϑ

+
∑
i>j

zji − βj − βi
ϑ

and
∂2`(ϑ, β)

∂βi∂βj
=

{
− (n−1)

ϑ if i = j

− 1
ϑ if i 6= j

.

Let z̃i = (n−2)−1
∑

i<j zij +(n−2)−1
∑

i>j zji and z = (2(n−1)−1
∑n

i=1 z̃i.

Solving for the maximum-likelihood estimator of βi gives β̂i = z̃i− z for any

ϑ. The profile likelihood is therefore

ˆ̀(ϑ) = −n(n− 1)

2
log ϑ− 1

2

n∑
i=1

∑
i<j

(zij − (z̃i − z)− (z̃j − z))2

ϑ
,

and its maximizer is

ϑ̂ =
2

n(n− 1)

n∑
i=1

∑
i<j

(zij − (z̃i − z)− (z̃j − z))2.

Some tedious but straightforward calculations yield

ϑ̂− ϑ ∼ N
(
− 2

n− 1
ϑ,

n− 3

n− 1

2ϑ2

n(n− 1)/2

)
,

which confirms that the maximum-likelihood estimator of ϑ suffers from

asymptotic bias.

To set up the modified likelihood, first note that

(Σ̂(ϑ))i,j =

{
n−1
ϑ if i = j
1
ϑ if i 6= j

, (Σ̂(ϑ)−1)i,j =

{
ϑ
2

2n−3
(n−1)(n−2) if i = j

−ϑ
2

1
(n−1)(n−2) if i 6= j

,
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and that

(Ω̂(ϑ))i,j =


∑

i<j
(zij−(z̃i−z)−(z̃j−z))2

ϑ2
+
∑

i>j
(zji−(z̃j−z)−(z̃i−z))2

ϑ2
if i = j

(zij−(z̃i−z)−(z̃j−z))2
ϑ2

if i < j

(zji−(z̃j−z)−(z̃i−z))2
ϑ2

if i > j

.

It is then easily seen that

1

2
trace(Σ̂(ϑ)−1Ω̂(ϑ)) =

1

2

2

n− 1

n∑
i=1

∑
i<j

(zij − (z̃i − z)− (z̃j − z))2

ϑ
.

From this we obtain

˙̀(ϑ) = −n(n− 1)

2
log ϑ−

(
1 +

2

n− 1

)
1

2

n∑
i=1

∑
i<j

(zij − (z̃i − z)− (z̃j − z))2

ϑ
,

and its maximizer

ϑ̇ =
n+ 1

n− 1
ϑ̂ = ϑ̂+

2

n− 1
ϑ̂.

Clearly, this estimator removes the leading bias from the maximum-likelihood

estimator. Moreover,

ϑ̇− ϑ ∼ N

(
−
(

2

n− 1

)2

ϑ,
n(n(n− 1)− 5)

(n− 1)3
2ϑ2

n(n− 1)/2

)
,

which shows that the remaining bias in the point estimator is small relative

to its standard deviation.

As an alternative correction, we may exploit the likelihood structure to

adjust the profile likelihood by the term

−1

2
log(det Σ̂(ϑ)) +

1

2
log(det Ω̂(ϑ)) =

n

2
log ϑ+ c,

where c is a constant that does not depend on ϑ. This yields the modification

῭(ϑ) = −n(n− 3)

2
log ϑ− 1

2

n∑
i=1

∑
i<j

(zij − (z̃i − z)− (z̃j − z))2

ϑ
,

whose maximizer satisfies

ϑ̈− ϑ ∼ N
(

0,
2ϑ2

n(n− 3)/2

)
.
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This estimator is exactly unbiased.

To give an idea of the magnitude of the bias in this problem, Table 1

contains the bias and standard deviation of the estimators ϑ̂, ϑ̇, and ϑ̈ for

various sample sizes n and variance parameter fixed to ϑ = 1. These results

are invariant to the value of the βi.

Table 1
Many normal means

n ϑ̂ ϑ̇ ϑ̈ ϑ̂ ϑ̇ ϑ̈
bias standard deviation

5 -0.5000 -0.2500 0.0000 0.3162 0.4743 0.6325
10 -0.2222 -0.0494 0.0000 0.1859 0.2272 0.2390
15 -0.1429 -0.0204 0.0000 0.1278 0.1460 0.1491
20 -0.1053 -0.0111 0.0000 0.0970 0.1073 0.1085
25 -0.0833 -0.0069 0.0000 0.0782 0.0847 0.0853
50 -0.0408 -0.0017 0.0000 0.0396 0.0412 0.0413
75 -0.0270 -0.0007 0.0000 0.0265 0.0272 0.0272

100 -0.0202 -0.0004 0.0000 0.0199 0.0203 0.0203

3.3. Illustration: A linear Bradley-Terry model. As an alternative to the

Neyman and Scott [1948] model with complementarities, now suppose that

zij ∼ N (βi − βj , ϑ)

independently across dyads. This model is overparametrized as, clearly, the

mean of the βi is not identified. A common normalization in this type of

model is
∑n

i=1 βi = 0 (Simons and Yao 1999), and we will maintain it here.

The constrained likelihood is

−1

2

n(n− 1)

2
log ϑ− 1

2

n∑
i=1

∑
i<j

(zij − βi + βj)
2

ϑ
+ λ

n∑
i=1

βi,

where λ is the Lagrange multiplier for our normalization constraint. The

first-order condition for the constrained problem for βi for a given ϑ equals∑
i<j zij −

∑
i>j zji

ϑ
− n

ϑ
βi = 0.

This gives

β̂i =

∑
i<j zij −

∑
i>j zji

n
= z̃i (say)
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for all i and any ϑ. Observe that the sign of β̂i is driven by the comparison of

the magnitudes of
∑

i<j zij and
∑

i>j zji. Also note that
∑n

i=1 β̂i = 0 holds.

We therefore have

ˆ̀(ϑ) = −1

2

n(n− 1)

2
log ϑ− 1

2

n∑
i=1

∑
i<j

(zij − z̃i + z̃j)
2

ϑ
,

and with it, the maximum-likelihood estimator

ϑ̂ =
2

n(n− 1)

n∑
i=1

∑
i<j

(zij − z̃i + z̃j)
2.

A calculation shows that E(ϑ̂− ϑ) = −2n−1.

It is immediate that

Σ̂(ϑ) = diag
(n
ϑ

)
, Σ̂(ϑ)−1 = diag

(
ϑ

n

)
,

and that

(Ω̂(ϑ))i,j =


∑

i<j
(zij−z̃i+z̃j)2

ϑ2
+
∑

i>j
(zji−z̃j+z̃i)2

ϑ2
if i = j

(zij−z̃i+z̃j)2
ϑ2

if i < j

(zji−z̃j+z̃i)2
ϑ2

if i > j

.

Therefore,

˙̀(ϑ) = −1

2

n(n− 1)

2
log ϑ− 1

2

(
1 +

2

n

) n∑
i=1

∑
i<j

(zij − z̃i + z̃j)
2

ϑ
,

῭(ϑ) = −1

2

n(n− 3)

2
log ϑ− 1

2

n∑
i=1

∑
i<j

(zij − z̃i + z̃j)
2

ϑ
.

The corresponding estimators are

ϑ̇ =

(
1 +

2

n

)
ϑ̂, ϑ̈ =

n− 1

n− 3
ϑ̂ =

(
1 +

2

n− 3

)
ϑ̂.

Both remove the leading bias from the maximum-likelihood estimator, as

E(ϑ̇− ϑ) = − 4

n2
= O(n−2), E(ϑ̈− ϑ) =

2

n(n− 3)
= O(n−2),
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but, in this case, neither is exactly unbiased. The first estimator has bias

that is strictly negative (for any finite n). The second estimator overcorrects

and has strictly positive bias. The second-order bias is monotone in n. We

have
4

n2
>

2

n(n− 3)

for all n > 7. As n→∞,√
n(n− 1)

2
(ϑ̇− ϑ)

d→ N (0, 2ϑ2),

and ‖ϑ̈− ϑ̇‖ = op(n
−1); that is, the two modifications to the likelihood yield

asymptotically-equivalent estimators.

4. Application to the β-model. The β-model of network formation

(Chatterjee, Diaconis and Sly 2011) generates Bernoulli outcome variables

with success probability

P(yij = 1|xij ;ϑ, βi, βj) = F (βi + βj + x′ijϑ),

where F (a) = (1 + e−a)−1 is the logistic cumulative distribution function.

4.1. Modified profile likelihood. The likelihood function, conditional on

the regressors, is

`(ϑ, β) =
n∑
i=1

∑
i<j

yij log Fij(ϑ, βi, βj) + (1− yij) log (1− Fij(ϑ, βi, βj)),

where we let Fij(ϑ, βi, βj) = F (βi + βj + x′ijϑ).

For a given value of ϑ, the score the incidental parameters has elements

∂`(ϑ, β)

∂βi
=
∑
i<j

yij − Fij(ϑ, βi, βj) +
∑
i>j

yji − Fji(ϑ, βj , βi)

while the n× n Hessian matrix has (i, j)th-entry equal to

∂2`(ϑ, β)

∂βi∂βj
=


−
∑

i<j fij(ϑ, βi, βj)−
∑

i>j fji(ϑ, βj , βi) if i = j

−fij(ϑ, βi, βj) if i < j

−fji(ϑ, βj , βi) if i > j

,
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for fij(ϑ, βi, βj) = Fij(ϑ, βi, βj) (1−Fij(ϑ, βi, βj)). The maximum-likelihood

estimator of the βi for a given value of ϑ is not available in closed form

and needs to be computed numerically. Because the likelihood is globally

concave, Newton’s algorithm is well-suited for the task, and will typically

find the solution in two or three iterations.

Introduce the shorthands

F̂ij(ϑ) = Fij(ϑ, β̂i(ϑ), β̂j(ϑ)), f̂ij(ϑ) = fij(ϑ, β̂i(ϑ), β̂j(ϑ)).

The profile likelihood is

ˆ̀(ϑ) =

n∑
i=1

∑
i<j

yij log F̂ij(ϑ) + (1− yij) log (1− F̂ij(ϑ)),

and a modified likelihood is readily constructed by appropriately combining

the matrices Σ̂(ϑ) and Ω̂(ϑ).

4.2. Simulation experiments. We next present the results from a Monte

Carlo experiment. The designs are borrowed from Graham [2015]. All designs

are of the following form. Let ui ∈ {−1, 1} so that P(ui = 1) = 1
2 . We

generate the dyad covariate as

xij = ui uj ,

and the fixed effects as

βi = µ+ γ1
1 + ui

2
+ γ2

1− ui
2

+ ui,

where vi ∼ Beta(λ1, λ2). We set µ = −λ1(λ1 + λ2)
−1, so that µ + vi has

mean zero, and will consider several choices for the parameters (γ1, γ2) and

(λ1, λ2). The parameter choices are summarized in Table 2. In the first four

designs (A1–A4), the βi are drawn independently of xij from symmetric

Beta distributions. In the next four designs (B1–B4) the βi are generated

from skewed distributions that depend on ui (and thus correlate with the

regressor xij).

We simulate 10, 000 data sets for each design for n ∈ {25, 50, 75, 100} and

ϑ = 1. Because the results across designs are qualitatively very similar, we

present the full set of results only for Design A1 (Table 3). Tables 4 and 5
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Table 2
Simulation designs for the β-model

Design γ1 γ2 λ1 λ2

A1 0 0 1 1
A2 -0.25 -0.25 1 1
A3 -0.75 -0.75 1 1
A4 -1.25 -1.25 1 1

B1 0 0.50 0.25 0.75
B2 -0.50 0 0.25 0.75
B3 -1.00 -0.50 0.25 0.75
B4 -1.50 -1.00 0.25 0.75

provide and results for n ∈ {50, 100} for all designs. Each table contains the

mean and median bias of ϑ, ϑ̇, and ϑ̈, along with their standard deviation

and their interquartile range (both across the Monte Carlo replications).

The tables also provide the empirical size of the likelihood ratio test for

the null that ϑ = 1 for theoretical size α ∈ {.05, .10}. Because the results

for n = 100 can be compared (up to Monte Carlo error) to the numerical

results collected in Graham [2015, Table 2], Table 5 contains two additional

columns in which we reproduce the results for his analytically bias-corrected

maximum-likelihood estimator (ϑ̃) and his ‘tetrad logit’ estimator (ϑ̌). The

latter is based on moment conditions that are free of βi using a sufficiency

argument. Bias correcting ϑ̂ does not salvage the likelihood ratio statistic,

and the conditional likelihood function of the ‘tetrad logit’ estimator does

not satisfy the information equality. Hence, the results on size for these two

estimators are based on the Wald statistic.

Table 3 clearly shows that both the bias and standard deviation of ϑ̂ are

O(n−1). Consequently, the likelihood ratio test is size distorted even in large

samples. Point estimation through the modified likelihoods gives estimators

with small bias relative to their standard error. Even for n = 25, the bias

is only about 20% of the bias in maximum likelihood estimator. In larger

samples, the estimators are essentially unbiased. Interestingly, both ϑ̇ and ϑ̈

are also less volatile than is ϑ̂. Thus, at least here, bias correction does not

come at the cost of an increase in dispersion. Together with the substantial

decrease in mean squared error, inference, too, improves dramatically. The

likelihood ratio statistic for both ˙̀(ϑ) and ῭(ϑ) have near theoretical size for

all n.
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Table 3
β-model. Design A1 for all n

n ϑ̂ ϑ̇ ϑ̈ ϑ̂ ϑ̇ ϑ̈
mean bias standard deviation

25 0.1098 0.0204 0.0304 0.1897 0.1560 0.1572
50 0.0492 0.0045 0.0071 0.0717 0.0679 0.0681
75 0.0320 0.0020 0.0032 0.0467 0.0450 0.0451

100 0.0237 0.0011 0.0017 0.0341 0.0332 0.0332
median bias interquartile range

25 0.1029 0.0154 0.0253 0.2069 0.1873 0.1889
50 0.0487 0.0042 0.0067 0.0961 0.0913 0.0914
75 0.0316 0.0017 0.0028 0.0630 0.0607 0.0608

100 0.0236 0.0010 0.0017 0.0464 0.0450 0.0451
empirical size (α = .10) empirical size (α = .05)

25 0.1937 0.1134 0.1147 0.1142 0.0627 0.0637
50 0.1896 0.1128 0.1125 0.1178 0.0558 0.0555
75 0.1866 0.1092 0.1081 0.1142 0.0575 0.0569

100 0.1890 0.1042 0.1025 0.1103 0.0520 0.0513

Tables 4 and 5 show that all conclusions from Design A1 carry over to the

other designs. Moreover, the introduction of correlation between regressors

and heterogenous coefficients or skewing the distribution from which the

latter are drawn does not prevent the modified likelihood to improve on

maximum likelihood both in terms of point estimation and inference. A

comparison of the two tables clearly shows that both the bias and standard

deviation of ϑ̂ shrink by a factor of one half as n doubles, again illustrating

that both are of order n−1. The subsequent reduction in bias by considering

ϑ̇ and ϑ̈ and improvement in the likelihood ratio test are manifest for all

designs.

Table 5 further shows that the modified-likelihood approach outperforms

bias correction of the maximum-likelihood estimator in Designs A3 and B3

and, in particular, in Designs A4 and B4, where bias correction of maximum

likelihood introduces additionial bias relative to ϑ̂. The additional bias also

leads to a large deterioration of the empirical size of the Wald statistic

associated with ϑ̌. The performance of the modified likelihood is comparable

to Graham’s ‘tetrad logit’ estimator ϑ̌ in terms of bias, and it tends to be

somewhat more accurate in terms of the empirical size of the associated

hypothesis tests.
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Table 4
β-model. All designs for n = 50

Design ϑ̂ ϑ̇ ϑ̈ ϑ̂ ϑ̇ ϑ̈
mean bias standard deviation

A1 0.0492 0.0045 0.0071 0.0717 0.0679 0.0681
A2 0.0499 0.0054 0.0079 0.0742 0.0704 0.0705
A3 0.0467 0.0033 0.0047 0.0933 0.0890 0.0891
A4 0.0497 0.0049 0.0024 0.1391 0.1335 0.1335
B1 0.0526 0.0073 0.0096 0.0768 0.0728 0.0729
B2 0.0490 0.0035 0.0059 0.0747 0.0707 0.0708
B3 0.0493 0.0046 0.0060 0.0936 0.0891 0.0891
B4 0.0500 0.0043 0.0005 0.1380 0.1320 0.1316

median bias interquartile range
A1 0.0487 0.0042 0.0067 0.0961 0.0913 0.0914
A2 0.0482 0.0040 0.0064 0.0995 0.0943 0.0945
A3 0.0441 0.0008 0.0022 0.1247 0.1191 0.1191
A4 0.0412 -0.0032 -0.0059 0.1827 0.1748 0.1748
B1 0.0513 0.0061 0.0084 0.1034 0.0981 0.0982
B2 0.0479 0.0024 0.0049 0.0999 0.0948 0.0949
B3 0.0470 0.0024 0.0039 0.1252 0.1195 0.1196
B4 0.0438 -0.0018 -0.0052 0.1827 0.1740 0.1743

empirical size (α = .10) empirical size (α = .05)
A1 0.1896 0.1128 0.1125 0.1178 0.0558 0.0555
A2 0.1857 0.1135 0.1118 0.1139 0.0602 0.0603
A3 0.1565 0.1098 0.1082 0.0878 0.0581 0.0563
A4 0.1287 0.1095 0.1083 0.0664 0.0594 0.0592
B1 0.1902 0.1141 0.1112 0.1146 0.0582 0.0579
B2 0.1801 0.1081 0.1049 0.1040 0.0574 0.0564
B3 0.1498 0.1052 0.1030 0.0830 0.0554 0.0538
B4 0.1236 0.1064 0.1067 0.0634 0.0543 0.0551
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