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Abstract. The combination of several socio-economic data bases originating from
different administrative sources collected on several different partitions of a geographic
zone of interest into administrative units induces the so called areal interpolation problem.
This problem is that of allocating the data from a set of source spatial units to a set of
target spatial units. A particular case of that problem is the re-allocation to a single target
partition which is a regular grid. At the European level for example, the EU directive
’INSPIRE’, or INfrastructure for SPatial InfoRmation, encourages the states to provide
socio-economic data on a common grid to facilitate economic studies across states. In the
literature, there are three main types of such techniques: proportional weighting schemes,
smoothing techniques and regression based interpolation. We propose a stochastic model
based on Poisson point patterns to study the statistical accuracy of these techniques for
regular grid targets in the case of count data. The error depends on the nature of the
target variable and its correlation with the auxiliary variable. For simplicity, we restrict
attention to proportional weighting schemes and Poisson regression based methods. Our
conclusion is that there is no technique which always dominates.

Keywords. Areal interpolation, spatial disaggregation, pycnophylactic property, spa-
tial misalignment, accuracy.

1 Introduction

The analysis of socio-economic data often involves the integration of various spatial
data sources. Those data are often independently collected by a variety of offices and for
different purposes. The zonal set systems used by distinct offices are rarely compatible
and this leads to many difficulties. The problem of merging data bases on different
spatial supports is called the areal interpolation or basis change problem (Goodchild
and Lam 1980). In France, the need for official statistics at a more and more refined
territorial level has been recognized by INSEE. In Europe, one of the objectives of the EU
directive “INSPIRE”, for INfrastructure for SPatial InfoRmation, is to harmonize quality
geographic information to support the formulation and evaluation of public policies and
activities which directly or indirectly impact the environment. Many statistical methods
are proposed in the literature to handle this problem (dasymetric methods, regression
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methods, smoothing techniques) and the reader is referred to Do et al. (2014) for a recent
review of the simplest ones. The problem of their relative accuracy is most often treated at
an empirical level (see for example Reibel and Bufalino (2005), Mennis (2006), Flowerdew
and Green (1992), Flowerdew et al. (1991), Reibel and Agrawal (2007), Gregory (2002)).
At the theoretical level, only few articles address this problem (Sadahiro (1999, 2000))
and this is the objective of this work.

Comparing the accuracy of the different methods is difficult because the relative ac-
curacy depends on several factors: nature of the target variable, correlation between the
target and auxiliary variables, shapes of zonal sets, relative size between the two zonal
sets,... In order to derive theoretical results, we need to consider simplifying restrictions.
For this reason, in this document, we first of all restrict attention to data obtained from
counts (see section 2): they are frequent in the literature and cover most of the cases in
the socio-economic applications. We also restrict the comparison to the simplest classes
of methods which are the dasymetric and the regression ones. At last, we make the as-
sumption that target zones are nested within source zones. Indeed, this is not really a
restriction since the intersections between sources and targets are always nested within
sources and it is immediate to go from intersection level to target level by aggregating the
predictions as we will see later. In section 2, we define what we mean by data obtained
from counts and we introduce a mathematical model adapted to this case. In order to
illustrate the methods and check our theoretical results, we present two sets of simulated
data that we use later. In section 3, we recall the formulas for the dasymetric and Poisson
regression areal interpolation. Finally, in section 4, we compare the relative accuracy
of areal weighting and dasymetric methods with finite distance results whereas in sec-
tion 5, we compare the relative accuracy of dasymetric and Poisson regression methods
with asymptotic methods. In both sections, we comment the results obtained on the toy
examples presented in section 2. All proofs are in the appendix.

2 Count data and Poisson point pattern model

The variable of interest Y that needs to be interpolated is called the target variable
and it needs to have a meaning on any subregion of the given space. YD will denote the
value of the target variable on the subregion D of the region of interest Ω.
In the general area-to-area reallocation problem, the original data for the target variable
is available for a set of source zones Ss (s = 1, · · · , nS,) and has to be transferred to an
independent set of target zones Tt (t = 1, · · · , nT ). The variable YSs will be denoted by
Ys for simplicity and similarly for YTt by Yt. The source zones and target zones are not
necessarily nested and their boundaries do not usually coincide.
Overlaps between the two sets are called intersection zones and denoted by Ast for the
intersection between the source Ss and the target Tt. For simplicity, YAst will be denoted
by Yst. Many methods involve the areas of different subregions (sources, targets or other).
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We will denote by | A | the area of any subregion A.
Most of economic data collected at regional level result from aggregating point data and
are only released in this aggregated form. Intuitively, let us say that a point data set is
a set of a random number of random points in a given region of geographical space. The
collection of corresponding numbers of such points in given subdivisions of this region
is a count data set. For example with census data, a population count on a given zone
is the number of inhabitants of the zone. This number is obtained from the knowledge
of the addresses of these people. The collection of coordinates of such addresses is the
underlying point data set. Examples of areal interpolation of population or subpopulation
counts can be found for example in Goodchild and Lam (1980), Langford (2005), Mennis
and Hultgren (2006), Reibel and Agrawal (2007). Other types of counts are encountered
frequently, for example number of housing units in Reibel and Bufalino (2005). Another
frequent type of count related variable is the number of points per areal unit associated
to a point data set: it is a density type variable. Examples of areal interpolation of
population densities can be found in Yuan et al. (1997) and Murakami (2011). An even
more general type is when the variable is a ratio of counts such as number of doctors
per patient. There is an easy one to one correspondence between a count variable and a
density variable which allows to transform one type into the other so that any treatment
of counts can be extended to densities and reversely. A count variable belongs to the
family of extensive variables, which are variables whose value on a region is obtained by
summing up its values on any partition into subregions (aggregation formula hereafter).
A density variable belongs to the family of intensive variables, which are variables whose
value on a region is obtained from values on any partition into subregions by a weighted
sum (see Do et al. 2014 for more details). In the case of population density, the weights
are given by the areas of the subregions of the partition. In the remainder of this paper,
we will concentrate on pure count variables.

We introduce a model for an extensive count variable by assuming that there exists
an underlying (unreleased) Poisson point pattern ZY (in the population example, the
positions of the individuals of the population) and that the target variable Y on a subzone
A is the number of points of ZY in A. For a partition Ωi, i = 1, 2, ..., k of the region Ω,
the extensive property is clearly satisfied

YΩ =
k∑
i=1

YΩi

With the proposed Poisson point pattern assumption, for any zone A, YA =
∑

i 1A(Zi)
is a Poisson distributed random variable with mean λA =

∫
A
λZY

(s)ds, where λZY
is the

intensity of the point process ZY .
This model implies that YA and YB are automatically independent for all disjoint couples
of subregions A and B due to the Poisson process nature. We could use point pattern
models with interaction effects while retaining the extensive property but we rather devote
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this article to this first case, keeping the interaction case for further developments.
As we will see in the next section, some methods we want to compare (dasymetric and
univariate regression) make use of an auxiliary information. For the auxiliary variable
X to be relevant, there must be some relationship between the target variable and the
auxiliary variable. In many cases a categorical information is used such as land cover:
Reibel and Agrawal (2007) and Yuan et al. (1997) use land cover type data on a 30
meters resolution grid, Mennis and Hulgren (2006) use 5 types of land cover obtained
manually from aerial photography. Li et al. (2007) just use a binary information such
as unpopulated versus populated zones. Reibel and Bufalino (2005) interpolate the 1990
census tract counts of people and housing using length of streets as auxiliary information.
Mugglin and Carlin (1998) exploit population to interpolate the number of leukemia
cases. The use of a continuous auxiliary information can also be found: Murakami (2011)
utilizes distance and land price to predict population density. In the rest of the paper,
we concentrate on a single extensive auxiliary variable X that is also a count in order
to be able to consider the accuracy of all methods simultaneously (more details at the
end of section 3). Therefore it corresponds to another underlying point process ZX with
intensity λZX

.
The auxiliary variable X, has to be known at intersection level in the case of dasymetric
and at the target level in the case of regression. We need to write a formal relationship
between our target variable and the auxiliary information. The model we propose assumes
that the following relationship holds between the two underlying point processes intensity
functions

λZY
(s) = α + βλZX

(s), (1)

where s is location. Therefore, the following relationship holds between Y given X: at
the level of any subset A of the region, the conditional distribution of YA given XA = xA
is given by

YA ∼ P(α|A|+ βxA) (2)

This relationship will be used at target level A = T and at source level A = S. This
model in its general form will be called auxiliary information model (AIM). In this model,
the intensity of ZY is driven by two effects: the effect of the auxiliary variable X and the
effect of the area of the zone. If we look at target level, the target variable is Poisson
distributed with a mean comprising two parts E(YT ) = α|T | + βxT : the first part α|T |
reflects the impact of the area of the zone T , whereas βxT is the impact of the auxiliary
variable. The linearity of the expected value of Y with respect to the area and to the
auxiliary information is not canonical in a Poisson regression model for counts but in our
case it derives naturally from (1).
In sections 4.2 and 4.3, we introduce two sub-models of model (2) depending on the
intensity function λZY

. We consider the case of a constant intensity (homogeneous model)
and the case of a piecewise constant intensity (piecewise homogeneous model).
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3 Methods

3.1 Prediction techniques

Do et al.(2014) classify areal interpolation methods into three groups: smoothing,
dasymetric and regression based methods. We discard smoothing since it is concerned with
continuous target variables which is not adapted to our count data model. We therefore
focus here on the remaining two groups: dasymetric and regression based methods.

Dasymetric is a class of methods using a weighting scheme to allocate the original
data to the intersections and then applying an aggregation step to get to target level.
The simplest method in the dasymetric class is the areal weighting interpolation which
uses area as weighting scheme: the data is allocated to the targets based on the assumption
that the target variable is homogeneous at source level:

Ŷt =
∑

s:s∩t6=∅

Ŷst =
∑

s:s∩t6=∅

|Ast|
|Ss|

Ys.

Note that areal interpolation does not use any auxiliary information other than area which
is usually available.

The general dasymetric method is supposed to improve upon the areal weighting inter-
polation method when an additional variable is known to be linked to the target variable
leading to alternative weighting schemes. Voss et al. (1999) use road segment length and
the number of road nodes for allocating demographic characteristics. Population, which
is collected at fine levels in general, is often used as an auxiliary information for other
variables like in Gregory (2002) or Mugglin and Carlin (1998). Instead of homogeneity,
the dasymetric method with auxiliary information X assumes that the target variable is
proportional to the auxiliary variable at intersection level.

Ŷt =
∑

s:s∩t6=∅

Ŷst =
∑

s:s∩t6=∅

Xst

Xs

Ys

where Xs =
∑

tXst. This entails that X has to be known at intersection level, which is
quite restrictive.

Concerning the regression based methods, there are several types of regression based
methods also involving auxiliary information (see Do et al, 2014). Given the nature of
the target variable in our model (2), we concentrate on the Poisson regression presented
in Flowerdew et al. (1991) for the purpose of predicting population (which is an extensive
variable) with categorical auxiliary information. Based on model (2), a Poisson regression
with identity link is performed at source level yielding estimators α̂, β̂ for the parameters
α and β.
The prediction of the target variable at intersection level is then obtained by

Ŷ REG
st = α̂|Ast|+ β̂Xst (3)
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and the final step aggregates intersections predictions at target levels. The regression
based methods can be considered as more powerful than the dasymetric methods in the
sense that they can incorporate multivariate auxiliary information and that the knowl-
edge of auxiliary information is only needed at target level and not at intersection level.
However, the purpose of this paper being to compare the accuracy of dasymetric methods
and Poisson regression methods from a methodological point of view and for the case
of extensive count data, we therefore concentrate on the unidimensional auxiliary count
variable case.
One property often quoted concerning these methods is the pycnophylactic property.
This property requires the preservation of the initial data in the following sense at some
geographical level: at source level for example, it means that the predicted value for
source Ss obtained by aggregating the predicted values on intersections with Ss should
coincide with the observed value on Ss. The enforcement of this property will allow us to
introduce an improved version of the basic Poisson regression method.

3.2 Prediction error criteria

The accuracy assessment necessitates the choice of a prediction error criterion and of
a geographic level. In this framework, examples of criteria are root mean square error or
mean square error (Sadahiro 1999, Reibel 2006,...) at regional level (that is the union of
all sources), or relative absolute error at target level (Langford, 2007). We denote by MET
a generic method of prediction and let MET be DAW for the areal weighting method,
DAX for the general dasymetric method, REG for the Poisson regression method and
ScR for the scaled regression method which will be presented later in section 5. We recall
that we assume all target zones are nested within source zones.
In section 4, we use mean square error at source level to compare the areal weighting and
dasymetric methods. For method MET, the source level error is then computed as follows

ErMET
S =

∑
t⊂S

ErMET
t =

∑
t⊂S

E(Ŷ MET
t − Yt)2 (4)

and the overall regional error is

ErMET =
∑
S

∑
t∈S

E(Ŷ MET
t − Yt)2 (5)

In section 5, we use mean square error at target level

ErMET
t = E(Ŷ MET

t − Yt)2 (6)

to compare the dasymetric and Poisson regression methods.
In general, we will also use the relative error criterion defined as
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ReMET
S =

√
ErMET

S

E(YS)
(7)

where ReMET
S is the relative error of method MET at source level for source S with

method MET .

4 Relative accuracy of areal weighting and dasymet-

ric: finite distance assessment

Let us briefly summarize the findings of the assessments found in the literature for the
comparison of general dasymetric and areal weighting. For empirical assessments, several
authors report that the dasymetric method improves upon areal weighting. Depending on
the context, the improvement varies: Langford (2007) reports improvements of 54%, 57%,
and 59% better depending on the auxiliary information used; Reibel and Bufalino (2005)
reports improvements of 71.26% and 20.08% with street length auxiliary information for
the two target variables: housing units and total population. For theoretical assessments,
Sadahiro (1999, 2000) compares the areal weighting interpolation and the point-in-polygon
method with a theoretical model. We did not mention yet the point-in-polygon method
because it is a very elementary one consisting in allocating a source value to the target
which contains its centroid. Using a stochastic model, he finds that the factors that
impact the accuracy of the methods are the size and shape of target and source zones,
the properties of underlying points.
In this section, we prove some theoretical properties in subsection 4.1, with two particular
cases in 4.2 and 4.3, and a toy example in 4.4.
Since targets are nested within sources, the predictors of the two methods depend only on
the source that contains the concerned target zone. For that reason, we focus on studying
one source zone denoted by S. For a target T in S, the two predictors are as follows

Ŷ DAW
T =

|T |
|S|

YS (8)

and
Ŷ DAX
T =

xT
xS
YS (9)

4.1 General auxiliary information model

Lemma 4.1 gives the expression of the prediction bias and variance in model AIM for
areal weighting interpolation and dasymetric interpolation at target level.
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Lemma 4.1. In model AIM, the prediction biases and variances of areal weighting inter-
polation and dasymetric methods are given by

E(Ŷ DAW
T − YT ) = βxS(

|T |
|S|
− xT
xS

) (10)

E(Ŷ DAX
T − YT ) = α|S|(xT

xS
− |T |
|S|

) (11)

V ar(Ŷ DAW
T − YT ) = βxS(

|T |
|S|
− xT
xS

)2 + βxT (1− xT
xS

) + α|T |(1− |T |
|S|

) (12)

V ar(Ŷ DAX
T − YT ) = α|S|( |T |

|S|
− xT
xS

)2 + βxT (1− xT
xS

) + α|T |(1− |T |
|S|

) (13)

First note that the two biases have opposite signs, in other words, if the areal weighting
interpolation method underestimates then the dasymetric method overestimates and vice
versa. This fact can be interpreted as follows: while the true intensity comprises two
effects, these methods treat only one of them which causes the contrast. Although the

signs of biases are opposite, their absolute values are both proportional to
|T |
|S|
− xT
xS

which measures the divergence between the share of the auxiliary information in target
T with respect to S and the share of the area of T with respect to S. This divergence is

also proportional to
xS
|S|
− xT
|T |

and hence can be viewed as a distance to proportionality

between area and auxiliary information. The bias of the areal interpolation method with
its assumption of homogeneity is independent in the areal effect α|S| but is proportional
to the ignored auxiliary information effect, and reversely the dasymetric method which
focuses on the effect of the auxiliary information gets rid of the βxS in its bias but is
proportional to the ignored areal effect. We will build on this to propose a new method
in the next section.

The two variances have a common part βxT (1−xT
xS

)+α|T |(1−|T |
|S|

) which we can interpret

as the loss of information when transferring data from a large source zone to a smaller
target zone. For the remaining part, the same explanations as for the bias stands. Both
variances have a parabola shape with respect to xT (respectively to |T |) with a maximum

at xT =
1

2
xS, (resp. |T | =

1

2
|S|): we can say loosely that the variances are maximum

when the target zone is around a haft of the source. They vanish when the target zone
is either empty or coincide with the source which makes sense. The reallocation to a
larger target intuitively decreases the difficulty of the disaggregation problem except that
the error also depends on the expected number of points so we should turn attention to
relative error. If one divides the variances by the square of the expected number of points
in the target zone E(YT ), we can see that the relative error will tend to zero as E(YT )
tends to infinity.
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Since the dasymetric method is pycnophylactic, the bias at source level is zero. Lemma
4.2 reports the expression of the prediction variances in model AIM for areal weighting
interpolation and dasymetric interpolation at source level.

Lemma 4.2. In model AIM, the variances of areal weighting and dasymetric methods at
the source level are

V arDAWS = βxS
∑
T

(
|T |
|S|
− xT
xS

)2 + βxS(1−
∑
T

x2
T

x2
S

) + α|S|(1−
∑
T

|T |2

|S|2
) (14)

V arDAXS = α|S|
∑
T

(
|T |
|S|
− xT
xS

)2 + βxS(1−
∑
T

x2
T

x2
S

) + α|S|(1−
∑
T

|T |2

|S|2
) (15)

To get an insight at impact of the number nT of the target zones, we consider the special

case where all targets have the same size. In this case,
|T |
|S|

=
1

nT
for any T , and we get

V arDAWS = (1− 1

nT
)(α|S|+ βxS)

V arDAXS = (1− 1

nT
)(α|S|+ βxS) +

∑
T

(
x2
T

x2
S

− 1

nT
)(α|S| − βxS)

It is obvious that the larger the number of the target zones, the larger the variances,
which agrees with our conclusion concerning the size of targets. Indeed, when the area of
the target zones gets smaller, the error on each target decreases but the total error at the
source level gets larger due to the effect of the number of the targets.
We are now ready to compute the mean square error difference between the two meth-
ods. We introduce the following quantities which quantify a relative contribution of the
corresponding effect to the overall mean at the geographical level of a subregion A:

IA(X) =
βxA

α|A|+ βxA

IA(X) is the relative contribution of variable X and similarly IA(|.|) = α|A|
α|A|+βxA

is the
relative contribution of the areal effect.

The imbalance between the two effects is measured by the difference

∆A = IA(|.|)− IA(X) =
α|A| − βxA

E(YA)
.

This quantity ranges between −1 when there is a pure X effect and 1 when there is a
pure areal effect with a value of zero when the two effects are of equal size.
We can derive from lemmas 4.1 and 4.2 the expression of the absolute and relative errors
of the two methods at source level as a function of the relative contributions terms.
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Theorem 4.3.

ErDAWS =IS(X)2E(YS)2D + IS(X)E(YS)(D +B) + IS(|.|)E(YS)C (16)

⇒ (ReDAWS )2 = IS(X)2D +
1

E(YS)
[IS(X)(D +B − C) + C] (17)

(ReDAXS )2 = IS(|.|)2D +
1

E(YS)
[IS(|.|)(D −B + C) +B] (18)

where D =
∑

T (
|T |
|S|
− xT
xS

)2, B = 1−
∑

T

x2
T

x2
S

, C = 1−
∑

T

|T |2

|S|2
are positive.

Note that B,C and D only depend on the the geometry of the problem and the auxiliary
information, whereas the relative contribution terms and E(YS) depend on the coefficients
α and β. It is interesting to mention the symmetry between the two methods which stands
clearly in these formulas when we exchange the two contributions terms. One can derive
from this theorem the difference between the relative errors of the two methods

(ReDAWS )2 − (ReDAXS )2 = −D ∗∆S(1 +
1

E(YS)
) (19)

which turns out to be clearly proportional to the imbalance term ∆S. Similarly, one can
approximate the ratio of the two relative errors when E(YS) is large on the target A = T
and on the source A = S by

ReDAWA

ReDAXA

≈ IA(X)

IA(|.|)
(20)

This ratio roughly ranges from 0 to +∞ at the extreme cases of a pure X or areal effect
showing that one can outperform the other by a large amount. Let us now turn attention
to the difference between the two errors.

Theorem 4.4. The difference between the errors of areal weighting and dasymetric meth-
ods on a target zone T is

ErDAWT − ErDAXT = (
|T |
|S|
− xT
xS

)2∆SE(YS)(E(YS) + 1)

The important conclusion of this result is that the sign of the difference in error agrees
with the sign of ∆S, i.e. the sign of (α|S| − βxS). Moreover, the stronger the effect of
the auxiliary information IS(X) is, the better the dasymetric method and the larger the
difference between the two methods.
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This computation result leads to a very interesting consequence: if one of two effect
dominates on a given source, the related method wins on all target zones belonging to the
source. It also shows that two methods will have the same accurracy if the two effects are
balanced or the auxiliary variable is homogeneous.

The normalized difference between the two effects ∆S clearly determines which method
is best.
At this point, it seems natural to look for a linear combination of these two predictors

Ŷ C
T (w) = wŶ DAW

T + (1− w)Ŷ DAX
T , (21)

which would combine their good properties. It turns out that in the class of linear
combinations of areal weighting and dasymetric predictors, the best predictor is given
by the following theorem

Theorem 4.5. In model AIM, the best predictor in the sense of minimizing (with respect
to the weight w) the errors on any target zone T in the class (21) is

Ŷ C
T = Ŷ C

T (w∗) =
α|T |+ βxT
α|S|+ βxS

YS (22)

for w∗ =
α|T |

α|S|+ βxS
. Its error and relative error are respectively given by

ErCT =
λT (λS − λT )

λS
(23)

(ReCS )2 =
1

4E(YS)
[∆2

SD + 2∆S(C −B) +D + 2B + 2C] (24)

Moreover, this predictor coincides with the best linear unbiased predictor in model AIM.

Because
λT (λS − λT )

λS
= V ar(Ŷ DAX

T −YT )−λS(
xT
xS
− λT
λS

)2 = V ar(Ŷ DAW
T −YT )−λS(

|T |
|S|
−

λT
λS

)2, the prediction error of the best predictor is smaller than the variances of the other

two methods and the distance is the more important that the auxiliary information is
further from homogeneity. Of course, Ŷ C

T is not a feasible predictor since it depends on
the unknown coefficients α and β of model AIM but we will use it as a benchmark tool
on the one hand and we will relate it later on to the regression predictor. If we look at

the error at the level of source S, we have that ErCS = λS −
∑

T

λ2
T

λS
≤ λS −

λS
nT (S)

, where

nT (S) is the number of targets in source S, and hence this predictor’s accuracy is worse

when all targets have the same expected number of points
λS

nT (S)
. It is interesting to
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note that the relative error (at source level S) of the best predictor tends to zero as the
expected number of points in the source S tends to infinity, which was not the case for
the dasymetric methods. For a fixed expected number of points in a given source S, we
can easily find the value of the imbalance ∆S which minimizes the relative error of Ŷ C

T

∆∗ =
B − C
D

=

∑
T (
|T |
|S|

)2 − (
xT
xS

)2

∑
T (
|T |
|S|
− xT
xS

)2

and thus derive a lower bound for the relative error

for a given geometry.
Because intuitively, it is natural to think that areal weighting should be outperformed by
dasymetric when the underlying process is inhomogeneous, we consider the two cases of
homogeneous and piecewise homogeneous submodels.

4.2 Homogeneous model

Areal weighting interpolation is a simple and natural rule which is based on the as-
sumption that the target variable is homogeneous at source level. Indeed in model AIM, it
is equivalent to assume that the point process is homogeneous and its intensity is therefore
constant (equal to α > 0) leading to:

YA ∼ P(α|A|).

Substituting β = 0 in (10), (12), (14) we get the bias, variance and error in this case:

E(Ŷ DAW
T − YT ) = 0

ErDAWT = V ar(Ŷ DAW
T − YT ) = α|T |(1− |T |

|S|
)

ErDAWS = V arDAWS = α|S|(1−
∑
T

|T |2

|S|2
)

Since
1

nT
≤
∑

T

|T |2

|S|2
≤ 1, the error at source level is maximum when all target zones

have the same size, and minimal when there is a unique target which coincides with the
source.

Substituting β = 0 in (22) leads to the conclusion that the best linear unbiased
predictor in the homogeneous AIM model is given by the areal weighting method which
is a natural result. Let us now turn attention to a very simple non homogeneous model to
illustrate the intuitive fact that the areal weighting interpolation method is not the best
choice in a non homogeneous situation.
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4.3 Piecewise homogeneous model

Suppose the source zone S comprises two homogeneous subzones C1 and C2 called
control zones with intensities α1 and α2 respectively. In this case, we get

YA ∼ P(α∗|A|)

where A ⊂ C∗ with ∗ = 1, 2. For simplification reasons, we assume the target zones to be
nested within the control zones. The results of lemmas 4.1 and 4.2 give in this case

E(Ŷ DAW
T − YT )T :T⊂C1 =

|T |
|S|

(α2 − α1)|C2|

E(Ŷ DAW
T − YT )T :T⊂C2 =

|T |
|S|

(α1 − α2)|C1|

V arDAWS = α1|C1|(1−
∑

T :T⊂C1

|T |2

|S|2
) + α2|C2|(1−

∑
T :T⊂C2

|T |2

|S|2
)

ErDAWS = V arDAWS +
∑

T :T⊂C1

|T |2

|S|2
(α2 − α1)2|C2|2 +

∑
T :T⊂C2

|T |2

|S|2
(α2 − α1)2|C2|2

The variance has a similar structure to the one of the homogeneous model. The bias
clearly shows that the difference between the two intensities of the subzones will drive the
size of the error.

4.4 Toy example

In order to illustrate our findings, we use a simulated toy example. We intentionally
drop the assumption that targets are nested in sources which was made for mathematical
convenience and this will allow us to test the robustness of the results with respect to
that assumption. On a square grid with 25 cells, we design three sources and seven
targets as unions of cells. On Figure 1, we see the design of sources and targets together
with the cell counts for two target variables Y1 and Y2 and one auxiliary variable X
(for one particular draw). To generate X, we simulate a Poisson point process with an
inhomogeneous intensity. We then recover the counts at the cell level to get the auxiliary
information. The two target variables are then generated according to their relationship
with the auxiliary variable (model (1)) and the source values are obtained by aggregation
of cells. The true value of two target variables is also shown at target level for accuracy
comparison for one particular draw. For Y1, we use the set of parameters α = 80 and
β = 1 and for Y2 we use α = 0 and β = 1 so that the area has a strong impact on Y1 and
that Y2 is only driven by X. Conditionally upon one draw of X (for which we observe
1011 points), we draw 1000 repetitions of Y1 and Y2 and present the relative error and
the error at target level on Figure 2.
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(a) Y1 at cells
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(b) X at cells
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(c) Y2 at cells (d) Targets
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S2

y1 = 683
y2 = 185
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(e) Y1, Y2 at sources
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T6
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y2 = 58

T7

y1 = 584
y2 = 192

(g) Y1, Y2 at targets

Figure 1: Toy example: Data at source, target, intersection zones.

The accuracy criterion is an average of the error over all 1000 draws. We present the
relative error and the error at target level on Figure 2.
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(c) DAW for Y2
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(d) DAX for Y2

Figure 2: Toy example. Comparison of areal weighting interpolation and dasymetric
method.

Figure 2 is in agreement with the theoretical results: areal weighting interpolation is
better than dasymetric for Y1 for which the areal effect dominates and worse for Y2 for
which the auxiliary information effect driven by X dominates. We can see that Y2 is less
homogeneous than Y1 on Figure 1 (a) and (c): at the right-bottom target zone T5 has
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Table 1: Square root of overall regional errors
Methods Y1 Y2

Areal weighting interpolation 201 197
Dasymetric 452 26
Regression 55 33

very small Y2 counts. The dasymetric predictor is therefore very good for Y2 (Figure 2
(d)). To be more precise, we compute the ratio of the two average errors at target level
for the two methods and it shows that areal weighting is best for Y1 with a ratio of square
root of errors of 201

452
= 44%, whereas dasymetric is best for Y2 with ratio of square root

of errors of 26
197

= 13%. Table 1 reports the square root of the overall regional error (from
formula (5)) for the three methods: areal weighting, dasymetric and Poisson regression.
For Y1, the regression method is best, for Y2 dasymetric is best because the impact of X
is strong (almost no areal effect).

For the practitioner, an important question is to be able to guess which method will
perform better in a given situation. We might believe that a good correlation between
Y and X is a sign that dasymetric based on X will perform better than areal weighting.
However in our case the correlation between Y1 and X is 0.94 and the correlation between
Y2 and X is 0.98 which shows that this is a bad idea to rely on correlation. We could look
at a measure of homogeneity to predict that areal weighting is the best method: in our
case, the Gini coefficient of Y1 is 0.14 and of Y2 is 0.40 which goes in that direction. As we
have seen in Theorem 4.4, the sign of the imbalance index at source level ∆S determines
which method is best (see Table 2).

To be more precise, let us examine the results of Table 3 in comparison with Theorem
4.4. Theorem 4.4 shows that the difference of errors at target level is influenced by
three factors: the mean number of points of the source, the imbalance of the source and
the inhomogeneity of the auxiliary information of the given target. Let us look at each
impact. For the influence of the inhomogeneity of the auxiliary variable, we compare
targets of a source S1 for example. The first two impacts are constant (1164 points and
0.10 imbalance), and we see that the more homogenous the auxiliary information is (in
increasing order A16, A13, A17, A12), the more distant the two methods are (18, 20, 1728,
2529 respectively). To examine the impact of the imbalance, we consider intersection
zones A17 and A33 which are nested within two sources with similar number of points (S1

with 1164 points and S3 with 1168 points respectively). Even though their inhomogeneity
are not very different (0.12 vs 0.10), the difference of the errors on A33 is 3.7 times larger
than on A17. This fact is explained by the distance between the two imbalances of S1 and
S3 (0.10 vs 0.51). The last but not least effect is the number of points of the source zones.
The comparison between A24 and A35 shows its impact: they have similar inhomogeneities
(0.20 vs 0.19), not too different imbalances (0.41 vs 0.51), but the difference in errors for
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Table 2: Imbalance index at source level
Source zones S1 S2 S3

Y1 0.10 0.41 0.51
Y2 -1 -1 -1

A35 (25707) is three times larger than the difference in errors for A24 (7938) and this is
linked to the discrepancy in the mean numbers of points (1168 vs 679). As Table 3 shows,
the combination of the three impacts is very complex. In other words, choosing between
the areal weighting interpolation and the dasymetric is not an easy problem.

Sources S1 S2 S3

E(Y1) 1164 679 1168
Imbalance 0.10 0.41 0.51

Intersections A12 A13 A16 A17 A21 A24 A25 A31 A32 A33 A34 A35 A37

| |A||S| −
XA

XS
| 0.14 0.01 0.01 0.12 0.03 0.20 0.18 0.02 0.17 0.10 0.06 0.19 0.09

ErDAX − ErDAW 2529 20 18 1728 135 7938 5999 199 19858 6435 16817 25707 2240

ReDAX/ReDAW 1.5 1.3 1.1 1.4 1.8 5.4 5.4 3.1 8.8 7.5 8.7 8.8 6.0

Table 3: Errors at intersection level for Y1

5 Relative accuracy of the other methods: asymp-

totic assessment

Let us now try to extend the comparison to the Poisson regression method. This
cannot be done anymore by finite distance methods and so we introduce an asymptotic
framework. Model (2) yields at source level

Ys ∼ P(α|Ss|+ βxs) (25)

where xs =
∑

t:t∩s6=∅ xst. Besides the Poisson regression predictor defined by (3), inspired
by Theorem 4.5, we propose a new predictor called scaled Poisson regression predictor
defined as follows

Ŷ ScR
st =

α̂|Ast|+ β̂xst

α̂|Ss|+ β̂xs
YS, (26)

where α̂ and β̂ are the estimators of α and β obtained through the Poisson regression
at source level. Note that if model (1) contains only one of the two effects (that of X
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for example), then it is easy to see that the predictor of the scaled regression method
coincides with the dasymetric method (corresponding to X):

Ŷ ScR
T =

β̂xT

β̂xS
YS = Ŷ DAX

T .

In section 5.1, we establish the asymptotic properties of the estimators α̂ and β̂ and these
results will enable us to compare the predictors in section 5.2. Section 5.3 illustrates these
results on a toy example.

5.1 Estimators of the regression coefficients

In this section, we adapt proofs from Fahrmeir and Kaufmann (1985) to establish the
consistency and asymptotic normality of the estimators α̂, β̂. We first need to describe
an asymptotic framework. To be realistic, we assume that the whole region Ω is fixed
and that the number of source zones nS (hereafter denoted by n) increases to infinity.
In this section, the source zones will be denoted by Sn,i : i = 1, 2, ..., n and Ω = ∪iSn,i.
Because of the extensive property of X, we also assume a similar property of Xn,i: the
total auxiliary information on the region Ω remains constant xΩ =

∑
i xn,i. In order to

get a consistent regression however we need the amount of information at source level to
increase and we thus assume that the intensity of Y increases with a rate kn −→ ∞ so
that

YA ∼ P(α|̃A|+ βx̃A)

where |̃A| = kn|A|, x̃A = knxA.

Let γ =

(
α
β

)
, ZA =

(
|A|
xA

)
, Zn,i =

(
|Sn,i|
xn,i

)
. With these notations we have λA =

γ′ZA, Z̃A =

(
|̃A|
x̃A

)
= knZA and YA ∼ P(knλA). The true value of the parameter γ will be

denoted by γo =

(
αo
βo

)
.

The log likelihood function ln(γ), the score function sn(γ) and the information matrix
Fn(γ) are then given by

ln(γ) =
n∑
i=1

yn,i ln(γ′Z̃n,i)− γ′Z̃n,i − ln(yn,i!)
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sn(γ) =
∂ln(γ)

∂γ
=

n∑
i=1

Z̃n,i

γ′Z̃n,i
yn,i − Z̃n,i

Fn(γ) = covγ(sn(γ)) =
n∑
i=1

Z̃n,iZ̃
′
n,i

γ′Z̃n,i

Differentiation of the score yields

Hn(γ) = −∂sn(γ)

∂γ
=

n∑
i=1

Z̃n,iZ̃
′
n,i

(γ′Z̃n,i)2
yn,i

It is easy to see that Eγ(sn(γ)) = 0,Eγ(Hn(γ)) = Fn(γ). We further simplify the notations
and use sn, Fn, Hn,E instead of sn(γo), Fn(γo), Hn(γo),Eγo . It is clear that the matrix Hn

is positive definite and therefore the log likelihood function is concave which leads to a
unique minimum. In the sequel, we also need the square root F

1/2
n of the symmetric

matrix Fn, i.e. F
1/2
n F

1/2
n = Fn.

Our asymptotic framework differs from that of Fahrmeir and Kaufmann (1985) in the
sense that at each step they have one new observation whereas in our case at each step
all observations are new and we have one more than at the previous step. For this reason,
we modify slightly their conditions and assume that

(C1) {Z̃n,i} ⊂ Z ∀n, i with Z is a compact set.

(C2) λmin(
∑

i Z̃
′
n,iZ̃n,i)→∞ as n→∞ where λmin(W ) denotes the minimum eigenvalue

of the matrix W .

Condition (C1) is satisfied if there exists two positive numbers c1, c2 (note that ||Z̃n,i|| 6= 0)
s.t.

c1 < ||Z̃n,i|| < c2 (27)

In that case, the number of source zones increases with the rate of growth of the intensity
at a similar rate and the number of points in one source zone is quite stable during the
change process.
Under these conditions, we get the following asymptotic behavior for the Poisson regres-
sion coefficients.

Theorem 5.1. Under conditions (C1) and (C2), the following statements holds for the
Poisson regression estimator γ̂n of γ

(i) γ̂n →p γo (weak consistency)

(ii) F
1/2
n (γ̂n − γo)→d N (0, I) (asymptotic normality)

In the next section, we use these results to study the asymptotic behavior of the predictors.
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5.2 Predictors

In this section, we consider the asymptotic properties of the following two predictors:
the regression predictor (3) and the scaled regression predictor (26). We prove that
the scaled regression predictor is asymptotically as accurate as the unfeasible composite
predictor. We also compare these two methods with areal weighting interpolation and
dasymetric interpolation.

The first proposition is concerned with the pycnophylactic property, which is of interest
in the areal interpolation literature. It shows that, whereas it is satisfied by the scaled
Poisson regression predictor, it is not satisfied at source level by the ordinary Poisson
regression predictor but only at region level.

Proposition 5.2. The scaled Poisson regression predictor satisfies the pycnophylactic
property at source level. The ordinary Poisson regression predictor is pycnophylactic at
region level and asymptotically pycnophylactic at source level.

To prove proposition 5.2, we need the following asymptotic normality result for the target
variables

Yni − γ′oZ̃n,i√
γ′oZ̃n,i

→d N (0, 1) (28)

We now turn attention to the asymptotic behavior of the prediction error for the ordinary
Poisson regression predictor.

Theorem 5.3. The asymptotic normality of the prediction error of the Poisson regression
predictor at source level is given by

Ŷ REG
ni − Yni√
γ′oZ̃n,i

→d N (0, 1)

If we also assume a lower bound for Z̃T , the following similar result at the target level
holds

Ŷ REG
T − YT√

γ′oZ̃T

→d N (0, 1)

The next result is about the quadratic prediction error and relative prediction error of
the Poisson regression predictor.

Theorem 5.4. For any η > 0, there exists a sequence of sets {Qi}i : P(Qi)→ 1 such that

−η + γ′oZ̃T < E(Ŷ REG
T − YT )21Qi

< η + γ′oZ̃T
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If the number of target zones contained in one source zone Sn,i is bounded, the relative
error at source level can be approximated by

ReREGn,i ≈
1√

E(Yn,i)
=

1√
αo |̃Sn,i|+ βox̃n,i

(29)

Because V ar(YT ) = E(YT ) = γ′oZ̃T , this theorem says that the quadratic prediction error
of the regression predictor is asymptotically equivalent to the variance of the underlying
process. Equation (29) shows that the relative error of the regression predictor is going to
be small when the number of points on a source zone is large. However, this number being
bounded by condition (C1), this relative error cannot converge to zero in this framework.
Let us now turn attention to the difference between the relative prediction errors of the
Poisson regression method and that of the areal weighting and the dasymetric methods.
If the target zones are nested within the source zones and the number of target zones
contained in one source is bounded, we get the following approximation at source level
for the differences between the relative errors of the methods when E(Yn,i) are large:

[(ReREGn,i )2 − (ReDAWn,i )2] ≈ −(1 + ∆n,i)
2
∑
T

(
|T |
|Sn,i|

− xT
xn,i

)2 (30)

[(ReREGn,i )2 − (ReDAXn,i )2] ≈ −(1−∆n,i)
2
∑
T

(
|T |
|Sn,i|

− xT
xn,i

)2 (31)

(32)

This result shows that, among the three methods: areal weighting, dasymetric and Poisson
regression, regression outperforms the other two methods asymptotically (negative sign).

However, from the proof in the annex, we can see that if (
|̃T |
|̃Sn,i|

− x̃T
x̃n,i

) = 0 then the

regression is less accurate than areal weighting and dasymetric asymptotically so that
none of them is always dominant.
For areal weighting and dasymetric predictors, we have seen that if one method is better
on one target, then it is also true on all targets contained on the same source zone. The
difference between the accuracy of the regression method and the other two methods
depends on the difference of ratios |T |

xT
− |S|

xS
: the higher this difference, the larger the

difference between regression and the other two.
The fact that the regression predictor doesn’t satisfy the pycnophylactic property is not
surprise but the fact that it does satisfy this property on the whole region is interesting.
The idea of scaling to obtain the pycnophylactic property can be found also in Yuan et. al.
(1997) for ordinary linear regression without theoretical justifications; we have extended
it to the Poisson regression case and provided some theoretical motivation for it.
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We now turn attention to the scaled regression and prove it is better than the unscaled one
and that its accuracy can be approximated by that of the unfeasible composite predictor.
The first lemma proves an asymptotic equivalence between the scaled regression predictor
and the unfeasible composite predictor.

Lemma 5.5. For any target T ,

Ŷ ScR
T − Ŷ C

T →p 0 (33)

The next result is about the quadratic prediction error of the scaled Poisson regression
predictor.

Theorem 5.6. For any η > 0, there exists a sequence of sets {Qi}i : P(Qi)→ 1 such that

−η + Z̃Tγo −
(Z̃Tγo)

2

Z̃n,iγo
< E(Ŷ ScR

T − YT )21Qi
< η + Z̃Tγo −

(Z̃Tγo)
2

Z̃n,iγo

Since ErCT = Z̃Tγo− (Z̃T γo)2

Z̃n,iγo
, this theorem shows that the quadratic prediction error of

the scaled regression predictor is asymptotically equivalent to the one of the composite.
Consequently, the scaled regression method is the best among the areal weighting, the
dasymetric and the regression predictors.

5.3 Accuracy: simulation assessment with a toy example

We devise a simple simulation to illustrate these results. On a square region Ω with
16× 16 cells, we build three systems of sources with respectively 14, 7 and 4 sources (see
Figure 5.3). We simulate two Poisson point patterns (our auxiliary information) with an
expected overall number of points of 100, 000: X1 is very inhomogeneous (Gini coefficient
of cell counts of 0.74 with 100,247 points) and X2 is very homogeneous (Gini coefficient
of cell counts of 0.03 with 100,008 points).
Target variables are then generated following model (2). For each of the auxiliary vari-
ables, we choose four couples of coefficients α, β to study the effects of imbalance so that
we get eight different target variables. Table 4 reports the minimum, maximum and
average imbalance for each case and for each system of source zones.

We then apply the four considered methods (areal weighting, dasymetric, Poisson
regression and scaled Poisson regression) to transfer the data from each of the three
systems of source zones to cell level. For each case, we generate the data 1000 times, and
calculate prediction errors for each method and each iteration. Table 5 (respectively Table
6) reports the average absolute square root of prediction errors (respectively the average
absolute square root of relative prediction errors). The two tables also present the mean
of the target variables at region level E(YΩ) = α|Ω|+βxΩ (because it appears in Theorem
5.4) and the theoretical composite prediction error as a benchmark (see Theorem 5.6).
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Figure 3: Spatial polygons

Table 5 shows that when β is fixed and α increases, resulting in an increase of the
mean of the target variables at region level (α|Ω| + βxΩ), all errors get larger. For fixed
coefficients α, β, the errors increase from the first set of sources to the third one, which is
natural since the available information decreases from 14 observations for the first case,
to 4 for the third.

In accordance with the toy example of section 4.4, the errors for X2 are much smaller
than the ones for X1 for the areal weighting and the dasymetric methods due to the
difference of homogeneity of the auxiliary variables. The more homogeneous the auxiliary
variable is, the more accurate the areal weighting interpolation and dasymetric methods
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Table 4: Imbalances

Case Sources Min Mean Max
α = 100 14 sources -0.92 -0.40 0.96
β = 1 7 sources -0.90 -0.59 0.64
X1 4 sources -0.87 -0.44 0.64

α = 600 14 sources -0.62 0.11 0.99
β = 1 7 sources -0.53 -0.05 0.93
X1 4 sources -0.43 0.07 0.93

α = 1000 14 sources -0.43 0.29 1
β = 1 7 sources -0.33 0.17 0.96
X1 4 sources -0.21 0.26 0.96

α = 1000 14 sources 0.6 0.86 1
β = 0.1 7 sources 0.67 0.84 1
X1 4 sources 0.74 0.86 1

Case Sources Min Mean Max
α = 100 14 sources -0.63 -0.6 -0.58
β = 1 7 sources -0.61 -0.6 -0.59
X2 4 sources -0.6 -0.6 -0.59

α = 600 14 sources 0.16 0.21 0.22
β = 1 7 sources 0.18 0.2 0.22
X2 4 sources 0.19 0.2 0.22

α = 1000 14 sources 0.39 0.43 0.45
β = 1 7 sources 0.41 0.43 0.44
X2 4 sources 0.42 0.43 0.44

α = 1000 14 sources 0.92 0.92 0.93
β = 0.1 7 sources 0.92 0.92 0.93
X2 4 sources 0.92 0.92 0.93

are. As we discussed earlier, if the auxiliary information is almost homogeneous, the
regression might be less exact than the areal weigthing. But Table 4 shows that the
regression methods are still quite good for X2: in general, they are better than the two
classical methods except in some particular cases. The errors of the regression and scaled
regression methods are very comparable for X1 and X2. Indeed, the prediction errors of
the regression are very similar to the mean of the target variables Y and the accuracy of
the scaled regression predictor is equivalent to the one of the composite predictor.

The effect of imbalance can be studied by looking at a change of α with fixed β. A
larger α corresponds to a larger influence of the areal effect α|S| which is expected to lead
to the domination of the areal weighting interpolation method (indeed we can observe this
effect in the table for both auxiliary variables X1 and X2). The imbalance also affects the
regression and scaled regression methods: if one of the two effects α|S| and βXS is much
larger than the other one, the corresponding errors seem to be further from their bench-
marks (respectively the mean of Y and the composite prediction error): see for example
the cases α = 1000, β = 0.1. However this effect is not very large for regression and scaled
regression. One factor which influences more these two methods is the homogeneity of the
auxiliary variable: comparing the results for X1 and X2 illustrates this. For X1, the re-
gression prediction errors are almost equal to their respective benchmarks and the amount
of initial information does not seem to have a big influence (the errors are not monotonic
from the first to the third set of sources). For X2, the accuracy increases with the number
of source zones (the best being for the first one) and the errors of the regression method
tend to the mean of Y . If we consider the particular case α = 1000, β = 0.1 for X2, the
areal impact is much stronger than the auxiliary information impact, and we see that the
areal weighting interpolation is the best method, and that the scaled regression predictors
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Table 5: Square root of prediction errors.

Methods
√

E(YΩ) Sources DAW DAX REG ScR Composite
α = 100

354.7
14 sources 6580.5 1621.6 353.0 333.1 332.1

β = 1 7 sources 6962.7 2087.7 352.1 341.3 341.2
X1 4 sources 7215.7 2090.6 352.1 347.6 347.8

α = 600
503.8

14 sources 6589.6 9532.5 500.6 481.9 482.1
β = 1 7 sources 6971.3 12363.7 502.9 493.4 491.7
X1 4 sources 7225.3 12374.7 502.5 498.8 497.4

α = 1000
596.9

14 sources 6597.3 15878.2 594.0 574.5 574.2
β = 1 7 sources 6982.2 20595.2 595.6 586.5 584.6
X1 4 sources 7229.6 20614.5 594.4 590.8 590.3

α = 1000
515.8

14 sources 826.7 15875.6 513.6 500.7 500.9
β = 0.1 7 sources 861.9 20592.8 515.0 509.4 508.3
X1 4 sources 883.5 20612.4 514.5 512.3 511.6

α = 100
354.4

14 sources 458.8 353.5 356.6 348.3 344.5
β = 1 7 sources 469.0 358.6 357.7 354.2 349.5
X2 4 sources 474.2 361.3 359.6 358.2 351.6

α = 600
503.6

14 sources 573.9 677.4 504.9 492.9 489.6
β = 1 7 sources 587.3 690.0 508.1 503.1 496.6
X2 4 sources 591.2 697.7 509.1 507.2 499.6

α = 1000
596.7

14 sources 654.8 969.9 599.0 585.0 580.1
β = 1 7 sources 665.5 992.6 601.7 595.7 588.4
X2 4 sources 671.8 1002.6 602.2 600.0 592.0

α = 1000
515.8

14 sources 502.9 924.7 518.6 506.8 501.4
β = 0.1 7 sources 510.3 947.4 520.4 515.5 508.6
X2 4 sources 512.9 960.9 522.2 520.2 511.7
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Methods E(YΩ) Sources DAW DAX REG ScR Composite
α = 100

125847
14 sources 50.459 47.464 6.979 6.872 6.873

β = 1 7 sources 55.664 54.021 6.970 6.941 6.951
X1 4 sources 57.122 54.054 6.978 6.966 6.969

α = 600
253847

14 sources 20.458 59.087 3.492 3.422 3.421
β = 1 7 sources 21.865 73.067 3.495 3.471 3.466
X1 4 sources 22.557 73.208 3.490 3.480 3.481

α = 1000
356247

14 sources 14.859 62.210 2.813 2.754 2.757
β = 1 7 sources 15.827 77.405 2.823 2.801 2.794
X1 4 sources 16.324 77.589 2.820 2.811 2.808

α = 1000
266025

14 sources 4.297 72.322 3.093 3.018 3.020
β = 0.1 7 sources 4.433 89.662 3.100 3.069 3.064
X1 4 sources 4.508 90.028 3.098 3.086 3.082

α = 100
125608

14 sources 5.685 4.503 4.545 4.438 4.391
β = 1 7 sources 5.799 4.569 4.559 4.514 4.455
X2 4 sources 5.859 4.603 4.581 4.564 4.482

α = 600
253608

14 sources 3.574 4.121 3.186 3.108 3.088
β = 1 7 sources 3.655 4.196 3.205 3.174 3.134
X2 4 sources 3.679 4.236 3.211 3.199 3.153

α = 1000
356008

14 sources 2.918 4.084 2.692 2.627 2.606
β = 1 7 sources 2.966 4.172 2.704 2.677 2.645
X2 4 sources 2.993 4.211 2.706 2.696 2.661

α = 1000
266001

14 sources 3.022 5.133 3.118 3.045 3.015
β = 0.1 7 sources 3.068 5.246 3.129 3.099 3.059
X2 4 sources 3.084 5.320 3.140 3.128 3.078

Table 6: Relative prediction errors (in percentages).
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can catch up the areal weighting interpolation when there are more source zones.
Table 6 contains the corresponding relative errors. For example, in the case α = 1000, β =
1 for X2, we see that whatever the number of sources the relative error is around 2.6%
to 2.7% for the scaled regression (very close to the benchmark given by the last column)
whereas dasymetric is around 4% and areal weighting around 3%. Looking at the second
column, we see that when the expected number of points increases, the relative prediction
error tends to decrease which was naturally not the case for the prediction error itself.
We now turn attention to the robustness of the methods with respect to the model.
As previously with the same geometrical design, we generate two auxiliary information
scenarios: X1 is as in the previous simulation, and X3 is inhomogeneous and uncorrelated
with X1 (correlation coefficient of −0.16). A target variable Y is generated from X3 with
the relationship YA ∼ P(600|A| + X3). We transfer Y from the first set of 14 sources
to the cells (Figure 5.3) by using areal weighting interpolation, dasymetric interpolation
with X1 and X3 as auxiliary variables, the regression methods (REG and SCR) with the
true model (areal effect and X3), a simple model with only the areal effect, an auxiliary
variable model with an irrelevant variable (with area and X1), an auxiliary variable model
involving an unnecessary variable (the area and both X1 and X3). Table 7 presents the
results.

Methods Relative error

DAW 7.74

DAX with X3 9.49
REG with area and X3 2.66
ScR with area and X3 2.62

DAX with X1 14.70
REG with area and X1 10.48
ScR with area and X1 8.26

REG with area 10.62
ScR with area 7.74

REG with area, X1 and X3 2.66
ScR with area, X1 and X3 2.62

Table 7: Robusness of methods.

The most accurate method is the scaled regression with area and X3 (true model).
Note that the relative error for DAW and ScR with area only is the same which was
expected since we proved that in that case the two methods coincide. The regression
methods for the model involving area plus X1 and X3 as auxiliary have the same errors
(2.66% and 2.62%): in other words using unnecessary variables in the regression does not
decrease the accuracy. On the other hand, if we use the regression with a wrong choice of
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auxiliary variable, it gives bad predictions (10.48% and 8.26% for the model with area and
X1, 10.62% and 7.74% for the model with only areal effect). The dasymetric method with
X3 is better than with X1 (9.49% vs 14.70%) which makes sense because the correlation
of the target variable Y with X3 is 0.998 while with X1 it is of −0.159 however we see
that despite the strong correlation between Y and X3 the dasymetric method with X3 is
not so good because the areal effect is strong. The scaled regression is always better than
the regression method and the scaled regression in the case of areal effect model yields
the same result as the areal weighting interpolation method.

6 Conclusion

In this paper we have analyzed the accuracy of four areal interpolation methods: areal
weighting interpolation, dasymetric interpolation, Poisson regression and scaled Poisson
regression for the case of count data. We have introduced a model based on an underly-
ing Poisson point pattern to be able to evaluate the accuracy of the different methods.
We have proposed a scaled version of the Poisson regression method resulting in the
enforcement of the pycnophylactic property. Areal weighting interpolation and dasymet-
ric interpolation have been compared with a finite distance approach and the regression
methods have been compared together and with the previous ones with an asymptotic
approach.

We found out that one shouldn’t rely on the correlation of the target variable and the
auxiliary variable or on the homogeneity of the target variable to decide between areal
interpolation or dasymetric but we should also take into account the relative imbalance
between the areal effect and the auxiliary effect. A strong areal effect leads to the domi-
nance of the areal weighting interpolation and a strong auxiliary effect is in favor of the
dasymetric method. Moreover, the imbalance index allows to approximate the ratio of
the two relative errors and their lower bounds as the number of points on the source zones
gets large. We establish the formula for the best linear predictor (therefore better than
the areal weighting and the dasymetric), which leads to the introduction of the scaled
regression method.

For the comparison of areal weighting and dasymetric, a combination of several factors
explains the complexity of the behavior: the size of sources, the auxiliary information, the
number and size of target zones, . . . The error at source level is better when sources are
divided into a smaller number of target zones. A large number of points makes the error
at source level worse but improves the accuracy of the relative error. These two types of
errors have the same behavior as a function of the imbalance index. The impact of the
expected number of points and of the inhomogeneity on the comparative advantage of the
methods should not be forgotten: indeed when we have several sources, the sign of the
imbalance index may vary from source to source and the overall effect, being an aggregate
of the source level effect, will also depend on the magnitude of the source error differences
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which is driven by the expected number of points and by the inhomogeneity. We proved
that the accuracy of the unfeasible composite predictor is decreasing when the expected
number of points are similar on all targets and this fact extends to scaled regression (due
to the approximation results).

To be able to include the regression methods in the comparison, we need to resort
to some asymptotic approach. We propose an asymptotic framework and prove that
the Poisson regression prediction error is equivalent to the variance of the underlying
process and for the scaled regression, it is approximated by the composite’s prediction
error. These results show the regression predictor is not automatically better than the
areal weighting interpolation or the dasymetric method, but when the number of points
at source level is large, it is in general better. Finally the scaled regression turns out
to be the best one among the considered methods. These results are confirmed by our
simulation study of the last section. The robustness with respect to the model is also
considered. The simulations show that a model with extra auxiliary variables doesn’t
create any loss while missing variables or unrelated variables (in place of the correct ones)
decrease the accuracy of all methods.

7 Appendix

7.1 Proofs

7.1.1 Proof of Lemma 4.1 and lemma 4.2

From (8), (9) and the properties of a Poisson point process we have

E(Ŷ DAW
T − YT ) = E(

|T |
|S|

YS − YT ) =
|T |
|S|

(α|S|+ βxS)− (α|T |+ βxT ) = βxS(
|T |
|S|
− xT
xS

)

E(Ŷ DAX
T − YT ) = E(

xT
xS
YS − YT ) =

xT
xS

(α|S|+ βxS)− (α|T |+ βxT ) = α|S|(xT
xS
− |T |
|S|

)

Taking into account the independence of two disjoint target zones with the fact that
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the target T is a portion of the source S the variances of each method are given as follows

V ar(Ŷ DAW
T − YT ) = V ar(

|T |
|S|

YS − YT )

=
|T |2

|S|2
V ar(YS) + V ar(YT )− 2

|T |
|S|

Cov(YS, YT )

=
|T |2

|S|2
E(YS) + E(YT )− 2

|T |
|S|

Cov(YS\T + YT , YT )

=
|T |2

|S|2
E(YS) + E(YT )− 2

|T |
|S|

V ar(YT )

=
|T |2

|S|2
(α|S|+ βxS) + (α|T |+ βxT )− 2

|T |
|S|

(α|T |+ βxT )

= βxS(
|T |
|S|
− xT
xS

)2 + βxT (1− xT
xS

) + α|T |(1− |T |
|S|

)

V ar(Ŷ DAX
T − YT ) = V ar(

xT
xS
YS − YT )

=
x2
T

x2
S

V ar(YS) + V ar(YT )− 2
xT
xS
Cov(YS, YT )

=
x2
T

x2
S

E(YS) + E(YT )− 2
xT
xS
Cov(YS\T + YT , YT )

=
x2
T

x2
S

E(YS) + E(YT )− 2
xT
xS
V ar(YT )

=
x2
T

x2
S

(α|S|+ βxS) + (α|T |+ βxT )− 2
xT
xS

(α|T |+ βxT )

= α|S|( |T |
|S|
− xT
xS

)2 + βxT (1− xT
xS

) + α|T |(1− |T |
|S|

)

Summing up the variances at target level with the fact that
∑

T
|T |
|S| =

∑
T
xT
xS

= 1, we
get the variances at source level

V arDAWS =
∑
T

V ar(Ŷ DAW
T − YT )

=
∑
T

βxS(
|T |
|S|
− xT
xS

)2 + βxT (1− xT
xS

) + α|T |(1− |T |
|S|

)

= βxS
∑
T

(
|T |
|S|
− xT
xS

)2 + βxS(1−
∑
T

x2
T

x2
S

) + α|S|(1−
∑
T

|T |2

|S|2
)
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V arDAXS =
∑
T

V ar(Ŷ DAX
T − YT )

= α|S|
∑
T

(
|T |
|S|
− xT
xS

)2 + βxS(1−
∑
T

x2
T

x2
S

) + α|S|(1−
∑
T

|T |2

|S|2
)

7.1.2 Proof of Theorem 4.3

From Lemma 4.1 and the fact that α|S| = IS(|.|)E(YS), βXS = IS(X)E(YS) we have

ErDAWT = IS(X)E(YS)(
|T |
|S|
− xT
xS

)2 + IS(X)E(YS)(
xT
xS
− x2

T

x2
S

) + IS(|.|)E(YS)(
|T |
|S|
− |T |

2

|S|2
)

+ IS(X)2E(YS)2(
|T |
|S|
− xT
xS

)2

ErDAXT = IS(|.|)E(YS)(
|T |
|S|
− xT
xS

)2 + IS(X)E(YS)(
xT
xS
− x2

T

x2
S

) + IS(|.|)E(YS)(
|T |
|S|
− |T |

2

|S|2
)

+ IS(|.|)2E(YS)2(
|T |
|S|
− xT
xS

)2

If the expectation of the number of points is sufficiently large, we can approximate the
ratio of the two errors as follows

ErDAWT

ErDAXT

≈ IS(X)2

IS(|.|)2

and also
ReDAWT

ReDAXT

≈ IS(X)

IS(|.|)
At source level, we get a similar result by adding up errors on all target zones using the

fact that
∑

T

|T |
|S|

=
∑

T

xT
xS

= 1

30



ErDAWS = IS(X)E(YS)
∑
T

(
|T |
|S|
− xT
xS

)2 + IS(X)E(YS)(1−
∑
T

x2
T

x2
S

) + IS(|.|)E(YS)(1−
∑
T

|T |2

|S|2
)

+ IS(X)2E(YS)2
∑
T

(
|T |
|S|
− xT
xS

)2

ErDAXS = IS(|.|)E(YS)(1−
∑
T

xT
xS

)2 + IS(X)E(YS)(1−
∑
T

x2
T

x2
S

) + IS(|.|)E(YS)(1−
∑
T

|T |2

|S|2
)

+ IS(|.|)2E(YS)2
∑
T

(
|T |
|S|
− xT
xS

)2

⇒

ReDAWS =
1

E(YS)
[IS(X)

∑
T

(
|T |
|S|
− xT
xS

)2 + IS(X)(1−
∑
T

x2
T

x2
S

) + IS(|.|)(1−
∑
T

|T |2

|S|2
)]

+ IS(X)2
∑
T

(
|T |
|S|
− xT
xS

)2

ReDAXS =
1

E(YS)
[IS(|.|)(1−

∑
T

xT
xS

)2 + IS(X)(1−
∑
T

x2
T

x2
S

) + IS(|.|)(1−
∑
T

|T |2

|S|2
)]

+ IS(|.|)2
∑
T

(
|T |
|S|
− xT
xS

)2

Using the relationship IS(|.|) + IS(X) = 1, the above results prove Theorem 4.3.

7.1.3 Proof of Theorem 4.4

Lemma 4.1 yields

ErDAWT − ErDAXT = V ar(Ŷ DAW
T − YT ) + [E(Ŷ DAW

T − YT )]2

− V ar(Ŷ DAX
T − YT )− [E(Ŷ DAX

T − YT )]2

= (
|T |
|S|
− xT
xS

)2(βxS − α|S|) + (
|T |
|S|
− xT
xS

)2(β2x2
S − α2|S|2)

= (
|T |
|S|
− xT
xS

)2(βxS − α|S|)((βxS + α|S|+ 1)

= (
|T |
|S|
− xT
xS

)2 (βxS − α|S|)
(βxS + α|S|)

((βxS + α|S|+ 1)(βxS + α|S|)

= (
|T |
|S|
− xT
xS

)2∆S(E(YS) + 1)E(YS)
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7.1.4 Proof of Theorem 4.5

We calculate the error of the composite predictors then minimize with respect to w to
find the optimal w∗

Ŷ C
T = wŶ DAW

T + (1− w)Ŷ DAX
T = [w

|T |
|S|

+ (1− w)
xT
xS

]YS := uYS

Bias2
T = [E(Ŷ DAW

T − Ŷ DAX
T )]2 = (uλS − λT )2

V arT = V ar(uYS − YT ) = u2λS + λT − 2uλT

ErT = u2λS(λS + 1)− 2uλT (λS + 1) + λ2
T + λT

u∗ = argminuErT =
λT
λS

⇔w∗ |T |
|S|

+ (1− w∗)xT
xS

=
α|T |+ βxT
α|S|+ βxS

⇔w∗ =
α|T |

α|S|+ βxS

Substituting the w∗ in (21) we get the composite predictor (22).
The bias, variance and error of the above composite predictor are calculated as follows

Bias = E(Ŷ C
T − YT ) = 0

ErCT = V ar(Ŷ C
T − YT ) = V ar(

λT
λS
YS − YT )

=
λ2
T

λ2
S

V ar(YS) + V ar(YT )− 2
λT
λS
Cov(YS, YT )

=
λ2
T

λ2
S

λS + λT − 2
λT
λS
λT

= λT −
λ2
T

λS

=
x2
T

x2
S

λS + λT − 2
xT
xS
λT −

x2
T

x2
S

λS + 2
xT
xS
λT −

λ2
T

λS

=
x2
T

x2
S

λS + λT − 2
xT
xS
λT − λS(

xT
xS
− λT
λS

)2

= V ar(Ŷ DAX
T − YT )− λS(

xT
xS
− λT
λS

)2

= V ar(Ŷ DAW
T − YT )− λS(

|T |
|S|
− λT
λS

)2
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Since

YT |YS ∼ Bi(YS,
E(YT )

E(YS)
)

we have

E(YT |YS) =
E(YT )

E(YS)
YS = Ŷ C

T

This shows that the composite predictor is the best linear predictor.

7.1.5 Proof of Theorem 5.1

To prove the theorem, we will prove the following lemmas

Lemma 7.1. Under conditions (C1) and (C2), the normed score function F
−1/2
n sn is

asymptotically normal
F−1/2
n sn →d N (0, I) (34)

Lemma 7.2. Under conditions (C1) and (C2), for all δ > 0

maxγ∈Nn(δ)||Vn(γ)− I|| →p 0 (35)

where Nn(δ) = {γ : ||F 1/2
n (γ − γo)|| ≤ δ}, Vn(γ) = F

−1/2
n Hn(γ)F

−1/2
n .

Lemma 7.1 is proved by using the Lindeberg-Feller theorem.
Indeed, for τ fixed with τ ′τ = 1, considering the triangular array

zn,i = τ ′F−1/2
n

Z̃n,i

γ′Z̃n,i
(yn,i − γ′Z̃n,i) (36)

we have

E(zn,i) = 0∑
i

V ar(zn,i) = 1

We will show that the Lindeberg condition is satisfied, i.e. for any ε > 0∑
i

E(z2
n,i1|zn,i|>ε)→ 0 (37)

as n→∞.

Let an,i = τ ′F
−1/2
n

Z̃n,i

γ′Z̃n,i
, because z2

n,i = a2
n,i(yn,i−γ′Z̃n,i)2 , E(z2

n,i1|zn,i|>ε) = a2
n,iE((yn,i−

γ′Z̃n,i)
21|yn,i−γ′Z̃n,i|> ε

|an,i|
) , yields
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∑
i

E(z2
n,i1|zn,i|>ε) =

∑
i

a2
n,iE((yn,i − γ′Z̃n,i)21|yn,i−γ′Z̃n,i|> ε

|an,i|
)

≤ (
∑
i

a2
n,i)supiE((yn,i − γ′Z̃n,i)21|yn,i−γ′Z̃n,i|> ε

|an,i|
)

Moreover, condition (C1) yields that there is a positive number K1 s.t. 1
γ′Z̃n,i

<

K1,∀(n, i), hence ∑
i

a2
n,i = τ ′F−1/2

n

∑
i

Z̃n,iZ̃
′
n,i

(γ′Z̃n,i)2
F−1/2
n τ

< K1τ
′F−1/2
n

∑
i

Z̃n,iZ̃
′
n,i

γ′Z̃n,i
F−1/2
n τ = K1

In addition, conditions (C1) (C2) lead to

maxi
ε

|an,i|
→ ∞

as n→∞, hence for any M > 0,∃n1 s.t. ∀n > n1

supiE((yn,i − γ′Z̃n,i)21|yn,i−γ′Z̃n,i|> ε
|an,i|

) ≤ supiE((yn,i − γ′Z̃n,i)21|yn,i−γ′Z̃n,i|>M)

≤ supi

√
E((yn,i − γ′Z̃n,i)4E(1|yn,i−γ′Z̃n,i|>M)

≤ supi

√
E((yn,i − γ′Z̃n,i)4

V ar(yn,i − γ′Z̃n,i)
M2

= supi

√
γ′Z̃n,i(1 + 3γ′Z̃n,i)

γ′Z̃n,i
M2

<
K2

M

hence
supiE((yn,i − γ′Z̃n,i)21|yn,i−γ′Z̃n,i|> ε

|an,i|
)→ 0 as n→∞

where the existence of K2 is derived from condition (C1). This argument shows that the
(37) holds. So does Lemma 7.1.
Proof of Lemma 7.2

Using the same notation in the proof of Lemma 7.1, τ fixed s.t. τ ′τ = 1, let bn,i =

τ ′F
−1/2
n Z̃n,i, the equation (35) can be rewritten as

τ ′(Vn(γ)− I)τ = An +Bn + Cn (38)
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where

An =
∑
i

b2
n,i(

1

(γ′Z̃n,i)2
− 1

(γ′oZ̃n,i)
2
)(yn,i − γ′Z̃n,i) (39)

Bn =
∑
i

b2
n,i

1

(γ′oZ̃n,i)
2
(yn,i − γ′Z̃n,i) (40)

Cn =
∑
i

b2
n,i(

1

γ′Z̃n,i
− 1

γ′oZ̃n,i
) (41)

We will prove that the three terms converge in probability to 0 as n tends to ∞. To
prove (40), we first study its properties. We have

E(Bn) = 0

V ar(Bn) =
∑
i

b4
n,i

1

(γ′oZ̃n,i)
4
V ar(yn,i − γ′Z̃n,i)

=
∑
i

b4
n,i

1

(γ′oZ̃n,i)
4
γ′Z̃n,i

≤
∑
i

b2
n,i

1

γ′oZ̃n,i
sup
i

b2
n,i

(γ′oZ̃n,i)
3
γ′Z̃n,i

= sup
i
b2
n,i

1

(γ′oZ̃n,i)
3
γ′Z̃n,i < K3 sup

i
b2
n,i

Because of the boundedness of (γ′oZ̃n,i)
3 and the definition of Nn(δ), γ′Z̃n,i is bounded

when n is large enough, moreover, supi b
2
n,i → 0 due to the condition (C1) (C2), therefore

Bn →p 0

We can use similar argument to prove An →p 0, Cn → 0, and this shows that the
lemma 7.2 holds.

7.1.6 Proof of Theorem 5.3

Let
znij ∼ P(γ′oZn,i)− γ′oZn,i := z̃n,i, j = 1, 2, ..., kn i.i.d

This yields ∑
j

znij = Yn,i − γ′oZ̃n,i

We have
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E(znij) = 0∑
j

V ar(znij) = γ′oZ̃n,i

We will prove that this array satisfies the Lindeberg-Feller condition, i.e. ∀δ > 0∑
j

E(z2
nij1|znij |>δ)→ 0, as n→∞

Indeed, ∑
j

E(z2
nij1|znij |>δ) =knE(z̃2

n,i1|z̃n,i|>δ) = E(u2
n,i1|un,i|>

√
knδ)

where un,i =
√
knz̃n,i. Because Eun,i = 0, Eu2

n,i = V arun,i = knV arz̃n,i = γ′oZ̃n,i < ∞.
Moreover kn →∞ as n→∞, we have

E(u2
n,i1|un,i|>

√
knδ)→ 0

as n→∞
From the Lindeberg-Feller theorem we get

Yn,i − γ′oZ̃n,i√
γ′oZ̃n,i

→d N (0, 1)

This proof can be applied at the target level, i.e.

YT − γ′oZ̃T√
γ′oZ̃T

→d N (0, 1)

7.1.7 Proof of Proposition 5.2

The pycnophylactic property of the scaled regression predictor is obvious.
To prove the pycnophylactic property of the regression predictor at region level, we

sum up regression predictors over source zones

ŶΩ =
∑
i

∑
T :T⊂Sn,i

Ŷ REG
T =

∑
i

∑
T :T⊂Sn,i

γ̂nZ̃T = γ̂′nZ̃Ω
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Recall that γ̂ is the solution of the score equation sn(γ) = 0, i.e.

n∑
i=1

Z̃n,i

γ̂′Z̃n,i
yn,i − Z̃n,i = 0

⇒
n∑
i=1

γ̂′Z̃n,i

γ̂′Z̃n,i
yn,i − γ̂′Z̃n,i = 0

⇔
n∑
i=1

yn,i − γ̂′Z̃Ω = 0

⇔γ̂′Z̃Ω = yΩ

In other words, the regression predictor satisfies the pycnophylactic property on the region
Ω.

To study the pycnophylactic property of the regression predictor at source level, we
consider

Ŷ REG
n,i − Yn,i

We have

Ŷ REG
n,i − Yn,i = γ̂′nZ̃n,i − Yn,i

= (γ̂′n − γ′o)Z̃n,i − (Yn,i − γ′oZ̃n,i)
= F−1/2

n F 1/2
n (γ̂′n − γ′o)Z̃n,i − (Yn,i − γ′oZ̃n,i)

The first term converges to 0 in distribution due to the conditions (C1), (C2) and the
theorem 5.1. The second term is different from 0, even asymptotically (Proposition 5.2).

Moreover, because of the boundedness of Z̃n,i, the above argument yields

Ŷ REG
n,i − Yn,i√

γ′oZ̃n,i

→d N (0, 1)

This completes the proof of proposition 5.2.
If Z̃T is bounded below, a similar result at target level holds

Ŷ REG
T − YT√

γ′oZ̃T

→d N (0, 1)

7.1.8 Proof of Theorem 5.4

For any target T , the error of the regression predictor on the target is
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E(Ŷ REG
T − YT )2 = E(γ̂′nZ̃T − γ′oZ̃T )2 + E(γ′oZ̃T − YT )2 − 2E(γ̂′nZ̃T − γ′oZ̃T )(γ′oZ̃T − YT )

From Theorem 5.1 and condition (C1), for any η1 > 0,∃ε > 0 s.t.when n is sufficiently
large

E(γ̂′nZ̃T − γ′oZ̃T )21||γ̂n−γo||<ε < η1 (42)

||2E(γ̂′nZ̃T − γ′oZ̃T )(γ′oZ̃T − YT )1||γ̂n−γo||<ε|| < η1 (43)

As we proved in Proposition 5.2 (γ̂′nZ̃T − γ′oZ̃T )→p 0, we have

P(||γ̂n − γo|| < ε)→ 1 as n→∞

In addition
E(γ′oZ̃T − YT )2 = γ′oZ̃T

Hence there is n1 s.t.

E(γ′oZ̃T − YT )21||γ̂n−γo||≥ε < E(γ′oZ̃T − YT )4P(||γ̂n − γo|| ≥ ε) < η1

for n > n1. In other words,

γ′oZ̃T − η1 < E(γ′oZ̃T − YT )21||γ̂n−γo||>ε < γ′oZ̃T

This implies ∀η > 0, ∃ε > 0, n1 s.t. for n > n1

−η + γ′oZ̃T < E(Ŷ R
T − YT )21||γ̂n−γo||<ε < η + γ′oZ̃T (44)

with a remark that P(||γ̂n − γo|| < ε)→ 1 as n→∞.
Combining (42), (43), (44) we get Theorem 5.4.

7.1.9 Proof of equations (30)

We rewrite the error of the areal interpolation and dasymetric for the asymptotic
model. For a target T ⊂ Sn,i, from (23), (24), and Lemma 4.1 we have

ErDAWT = β2x̃n,iγ
′
oZ̃T −

(γ′oZ̃T )2

γ′oZ̃n,i
+ γ′oZ̃n,i(

|̃T |
|̃Sn,i|

− γ′oZ̃T

γ′oZ̃n,i
)2 + β2x̃2

S(
|̃T |
|̃Sn,i|

− x̃T
x̃n,i

)2

ErDAXT = γ′oZ̃T −
(γ′oZ̃T )2

γ′oZ̃n,i
+ γ′oZ̃n,i(

x̃T
x̃n,i
− γ′oZ̃T

γ′oZ̃n,i
)2 + α2 |̃Sn,i|

2

(
|̃T |
|̃Sn,i|

− x̃T
x̃n,i

)2
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A similar argument as in the proof of theorem 5.4 shows that, for any η1 > 0, ε > 0, ∃n1

s.t. ∀n > n1

ErDAWT − η1 < E(Ŷ DAW
T − YT )21||γ̂n−γo||<ε < ErDAWT

ErDAXT − η1 < E(Ŷ DAX
T − YT )21||γ̂n−γo||<ε < ErDAXT

With ε chosen as in theorem 5.4, let Qi = {||γ̂n − γo|| < ε}, we have

γ′oZ̃T − ErDAWT − η < E(Ŷ REG
T − YT )21Qi

− E(Ŷ DAW
T − YT )21Qi

< γ′oZ̃T − ErDAWT + η + η1

γ′oZ̃T − ErDAXT − η < E(Ŷ REG
T − YT )21Qi

− E(Ŷ DAX
T − YT )21Qi

< γ′oZ̃T − ErDAXT + η + η1

for all n > n1. Moreover,

γ′oZ̃T − ErDAWT = βx̃n,i
x̃2
T

x̃2
n,i

+ α|̃Sn,i|
|̃T |

2

|̃Sn,i|
2 − βx̃n,i(

|̃T |
|̃Sn,i|

− x̃T
x̃n,i

)2 − β2x̃2
n,i(
|̃T |
|̃Sn,i|

− x̃T
x̃n,i

)2

γ′oZ̃T − ErDAWT = βx̃n,i
x̃2
T

x̃2
n,i

+ α|̃Sn,i|
|̃T |

2

|̃Sn,i|
2 − α|̃Sn,i|(

|̃T |
|̃Sn,i|

− x̃T
x̃n,i

)2 − α2 |̃Sn,i|
2

(
|̃T |
|̃Sn,i|

− x̃T
x̃n,i

)2

Taking the sum over all target zones which belong to Sn,i then scaling the sum by E(Yn,i)
and calculating the differences in terms of ∆n,i = ∆Sn,i

, we have

4

∑
T γ
′
oZ̃T − ErDAWT

E(Yn,i)2
= 4

1

E(Yn,i)
[
βx̃n,i
E(Yn,i)

∑
T

x̃2
T

x̃2
n,i

+
α|̃Sn,i|
E(Yn,i)

∑
T

|̃T |
2

|̃Sn,i|
2 −

βx̃n,i
E(Yn,i)

∑
T

(
|̃T |
|̃Sn,i|

− x̃T
x̃n,i

)2]

− 4(
βx̃n,i
E(Yn,i)

)2
∑
T

(
|̃T |
|̃Sn,i|

− x̃T
x̃n,i

)2

= 2
1

E(Yn,i)
[(1 + ∆n,i)

∑
T

x2
T

x2
S

+ (1−∆n,i)
∑
T

|T |2

|Sn,i|2
−

− (1 + ∆n,i)
∑
T

(
|T |
|Sn,i|

− xT
xn,i

)2]− 4(1 + ∆n,i)
2
∑
T

(
|T |
|Sn,i|

− xT
xn,i

)2
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4

∑
T γ
′
oZ̃T − ErDAXT

E(Yn,i)2
= 4

1

E(Yn,i)
[
βx̃n,i
E(Yn,i)

∑
T

x̃2
T

x̃2
n,i

+
α|̃Sn,i|
E(Yn,i)

∑
T

|̃T |
2

|̃Sn,i|
2 −

α|̃Sn,i|
E(Yn,i)

∑
T

(
|̃T |
|̃Sn,i|

− x̃T
x̃n,i

)2]

− 4(
α|̃Sn,i|
E(Yn,i)

)2
∑
T

(
|̃T |
|̃Sn,i|

− x̃T
x̃n,i

)2

= 2
1

E(Yn,i)
[(1 + ∆n,i)

∑
T

x2
T

x2
n,i

+ (1−∆n,i)
∑
T

|T |2

|Sn,i|2
−

− (1−∆n,i)
∑
T

(
|T |
|Sn,i|

− xT
xn,i

)2]− 4(1−∆n,i)
2
∑
T

(
|T |
|Sn,i|

− xT
xn,i

)2

If (
|̃T |
|̃Sn,i|

− x̃T
x̃n,i

) = 0 then the regression is less accurate than areal weighting and dasy-

metric asymptotically. If this difference increases, the difference between the regression
and the other two methods gets smaller and then the regression method can do better

than the other two methods. Indeed, for example when
xT
|T |

=
βxSn,i

− α|Sn,i|
2β|S|

, this yields

T, xT satisfy (
|̃T |
|̃Sn,i|

− x̃T
x̃n,i

) 6= 0, we have

(γ′oZ̃T )2

γ′oZ̃n,i
− 1

γ′oZ̃n,i
β2x̃2

n,i(
|̃T |
|̃Sn,i|

− x̃T
x̃n,i

)2 = 0

therefore,

γ′oZ̃T − ErDAWT = −β2x̃2
n,i(
|̃T |
|̃Sn,i|

− x̃T
x̃n,i

)2 < 0

Choosing η, η1 to be sufficient small, the regression predictor is asymptotically better than
the areal weighting interpolation predictor. A similar result for the case of the dasymetric
predictor can be proved similarly.

We therefore proved that none of the considered three methods is always dominant.
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7.1.10 Proof of Lemma 5.5

Assume T ∈ Sn,i, the difference between the predictors of scaled regression and com-
posite predictor is given by

Ŷ ScR
T − Ŷ C

T =
γ̂′nZ̃T

γ̂′nZ̃n,i
Yn,i −

γ′oZ̃T

Z̃n,iγo
Yn,i

= (γ̂′n − γ′o)
γ̃′nZ̃n,iZ̃T − γ̃′nZ̃T Z̃n,i

(Z̃n,iγ̃n)2
Yn,i

= (γ̂′n − γ′o)F−T/2n F T/2
n Yn,i

γ̃′nZ̃n,iZ̃T − γ̃′nZ̃T Z̃n,i
(Z̃n,iγ̃n)2

where γ̃n belongs to the segment of γ̂n and γo.
From Theorem 5.1, property (28), conditions (C1), (C2), we have

F T/2
n (γ̂n − γo)→d N (0, I)

F−T/2n

Yn,i − Z̃Sn,i
γo√

Z̃Sn,i
γo

→d 0

γ̃′nZ̃n,iZ̃T − γ̃′nZ̃T Z̃n,i
(Z̃n,iγ̃n)2

bounded,

In other words,
Ŷ ScR
T − Ŷ C

T →p 0

7.1.11 Proof of Theorem 5.6

Because of the boundedness of Z̃n,i, upper boundedness of Z̃T , there exists

M = supZ̃T ,Z̃n,i,γ∈B(γo,1)||
Z̃n,iγnZ̃T − Z̃TγnZ̃n,i

(Z̃n,iγn)2
||E(Y 2

n,i)

where B(γo, 1) = {γ : ||γo − γ|| < 1}. Since γ̂n − γo →p 0, the sequence γ̂n, n = 1, 2, ... is
bounded, therefore for any ε > 0, when n is large enough

supZ̃T ,Z̃n,i,γ̃∈segment(γo,γ̂n)||
Z̃n,iγ̃nZ̃T − Z̃T γ̃nZ̃n,i

(Z̃n,iγ̃n)2
||E(Y 2

n,i)1||γ̂n−γo||<ε < M

For any η > 0, there is an ε > 0 s.t.

E(Ŷ ScR
T − Ŷ C

T )21||γ̂n−γo||<ε = E(||Z̃n,iγ̃nZ̃T − Z̃T γ̃nZ̃n,i
(Z̃n,iγ̃n)2

||2||Yn,i||2||(γ̂n − γo)||21||γ̂n−γo||<ε) < M2ε2 < η
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Evaluating the error on the set {||γ̂n − γo|| < ε}, we have

E(Ŷ ScR
T − YT )21||γ̂n−γo||<ε = E(Ŷ ScR

T − Ŷ C
T )21||γ̂n−γo||<ε + E(Ŷ C

T − YT )21||γ̂n−γo||<ε

− 2E(Ŷ ScR
T − Ŷ C

T )(Ŷ C
T − YT )1||γ̂n−γo||<ε

Moreover

E(Ŷ C
T − YT )21||γ̂n−γo||<ε ≤ E(Ŷ C

T − YT )2 = V ar(Ŷ C
T − YT ) = Z̃Tγo −

(Z̃Tγo)
2

Z̃n,iγo

With the same argument as in theorem 5.4, when n is large enough

E(Ŷ C
T − YT )21||γ̂n−γo||<ε = E(Ŷ C

T − YT )2 − E(Ŷ C
T − YT )21||γ̂n−γo||≥ε

> Z̃Tγo −
(Z̃Tγo)

2

Z̃n,iγo
− η

Using a similar argument as above, we can prove ∀η > 0,∃ε > 0 and n large enough
such that

||E(Ŷ ScR
T − Ŷ C

T )(Ŷ C
T − YT )1||γ̂n−γo||<ε|| < η

In other words

−3η + Z̃Tγo −
(Z̃Tγo)

2

Z̃n,iγo
< E(Ŷ ScR

T − YT )21||γ̂n−γo||<ε < 2η + Z̃Tγo −
(Z̃Tγo)

2

Z̃n,iγo

Note that P(||γ̂n − γo|| < ε)→ 1 as n→∞ and the theorem holds.
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