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TESTING UNIFORMITY ON HIGH-DIMENSIONAL SPHERES
AGAINST CONTIGUOUS ROTATIONALLY SYMMETRIC
ALTERNATIVES

By CHRISTINE CUTTING, DAVY PAINDAVEINE® AND THOMAS VERDEBOUT
Université libre de Bruxelles

We consider the problem of testing for uniformity on high-dimen-
sional unit spheres. We are primarily interested in non-null issues. To
this end, we consider rotationally symmetric alternatives and iden-
tify alternatives that are contiguous to the null of uniformity. This
reveals a Locally and Asymptotically Normality (LAN) structure,
which, for the first time, allows to use Le Cam’s third lemma in the
high-dimensional setup. Under very mild assumptions, we derive the
asymptotic non-null distribution of the high-dimensional Rayleigh
test and show that this test actually exhibits slower consistency rates.
All (n, p)-asymptotic results we derive are “universal”, in the sense
that the dimension p is allowed to go to infinity in an arbitrary way
as a function of the sample size n. Part of our results also cover the
low-dimensional case, which allows to explain heuristically the high-
dimensional non-null behavior of the Rayleigh test. A Monte Carlo

study confirms our asymptotic results.

1. Introduction. Problems involving a number p of variables that is large compared
to the number n of individuals are of course very common in modern statistics. In various
such problems, only the relative magnitude of the p variables is important, so that it may
be assumed that the observations belong to the unit sphere SP~! := {x € R? : |x|| =
VX/'x = 1}, with p large. This found applications in magnetic resonance, gene-expression,
and text mining, among others; see Dryden (2005), Banerjee et al. (2003), and Banerjee

et al. (2005), respectively. Developing inference procedures for data on high-dimensional
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spheres, in an (n, p)-asymptotic framework, is therefore a legitimate objective, which was
already considered, e.g., in Dryden (2005), Cai and Jiang (2012), Cai, Fan and Jiang
(2013), Paindaveine and Verdebout (2015), and Ley, Paindaveine and Verdebout (2015).
In this paper, we consider hypothesis testing for high-dimensional spherical data and
restrict to the most fundamental problem in the field, namely the problem of testing for
uniformity over the unit sphere. More precisely, we assume that observations take the form
of a triangular array of random vectors X,,;, ¢ =1,...,n,n =1,2,..., where, for any n, the
X ,.;’s are mutually independent and share a common distribution on the unit sphere SP»~1,
and, as in Cai and Jiang (2012), Cai, Fan and Jiang (2013), and Paindaveine and Verdebout
(2015), we want to test the null hypothesis Hg, that the common distribution of the X,,;’s,
i =1,...,n is the uniform over SP»~!. We are primarily interested in the high-dimensional
case (p, — 0); yet some of our results will also apply to the low-dimensional case (the
sequence (py,) is bounded), hence to the classical fixed p-case (p, = p for n large enough).
This will allow us to compare the low- and high-dimensional cases.
Whenever p,-dimensional observations X;,, 7 = 1,...,n are available, the most classical
test of uniformity is the Rayleigh (1919) test, that rejects Ho,, for large values of
o K2 = . 4 2Pn e
Ry = npn || Xn|® = pn + o ISZ;SH XiXng
where X,, := %Z?:l X, For fixed p, the test is based on the null asymptotic X;% distri-
bution of R,. In the high-dimensional setup, Paindaveine and Verdebout (2015) showed
that, after appropriate standardization, the Rayleigh statistic is asymptotically normal

under the null. More precisely, they established the following result.

THEOREM 1.1 (Paindaveine and Verdebout (2015)). Let p, be a sequence of positive
integers converging to oo as n — o0o. Assume that Xy, i = 1,...,n,n =1,2,..., is a
triangular array of random vectors such that, for any n, Xn1, Xna, ..., Xnn are mutually

independent and are all uniformly distributed on SP»~1. Then

Ry — N
(1.1) RSt = f/%": np" S XXy
n

converges weakly to the standard normal as n — oco.

1<i<j<n

The resulting high-dimensional Rayleigh test, that rejects Ho, at asymptotic level «

whenever R,%t exceeds the a-upper standard Gaussian quantile, has excellent asymptotic
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null properties. Quite remarkably, indeed, the asymptotic result above is “universal” in the
sense that it does not impose any condition on the way p,, goes to infinity with n, so that
the test can be applied as soon as p,, and n are large, without bothering about their relative
magnitude. This is in sharp contrast with most results in high-dimensional statistics that
typically impose conditions such as p,/n — ¢ for some ¢ > 0 (for another recent work
that defines a universal high-dimensional test, see Wang, Peng and Li (2015)). Moreover,
a common asymptotic null distribution is obtained for each (n, p)-regime, unlike, e.g., for
the tests proposed in Cai and Jiang (2012) and Cai, Fan and Jiang (2013).

On their own, however, the asymptotic result stated in Theorem 1.1 is not sufficient
to justify resorting to the Rayleigh test : the trivial test, that would discard the data
and reject Hg, with probability «, is also “universally” asymptotically valid under the
null, yet is a very poor test since its power function is uniformly equal to the nominal
level a. Showing that the Rayleigh test is to be recommended therefore requires a careful
investigation of its power behaviour, which is one of the main objectives of this paper.

Throughout, we will actually consider a specific, semiparametric, class of alternatives,
associated with the so-called rotationally symmetric distributions; see Section 2 for a defi-
nition. While they may at first seem arbitrary, these alternatives are actually the analog, in
the directional problem of testing for uniformity, of the “spiked” alternatives that are very
often considered in the Euclidean case for tests on covariance matrices; see, e.g., Berthet
and Rigollet (2013), Onatski, Moreira and Hallin (2013, 2014), and Wang, Berthet and
Samworth (2014). Our first main contribution is to identify sequences of rotationally sym-
metric alternatives that are contiguous to the null of uniformity. More : we actually show
that Local and Asymptotical Normality (LAN) holds in the vicinity of uniformity, which,
to the best of our knowledge, is the first instance of LAN in high-dimensional statistics.
This LAN result is universal, still in the sense that it does not impose any restriction on
the way p, goes to infinity with n (throughout, we use the word universal in this sense).

As usual, the LAN structure allows to use sophisticated asymptotic results such as Le
Cam’s third lemma. When applied to the Rayleigh test, this well-known asymptotic result
reveals that the Rayleigh test has, under sequences of contiguous alternatives, asymptotic
powers that are equal to the nominal level a. Under such alternatives, thus, this test is no

better than the trivial test. To have a complete understanding of the asymptotic power
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behavior of the Rayleigh test, we then derive its asymptotic distribution under virtually
arbitrary rotationally symmetric alternatives. Our result, which, at least under the so-
called Fisher-von Mises Langevin (FvML) alternatives, is universal, allows to identify
sequences of rotationally symmetric alternatives along which the Rayleigh test achieves
non-trivial limiting powers. While it is not asymptotically optimal (not even rate-optimal),
the Rayleigh test therefore is of interest in the high-dimensional setup considered.

The outline of the paper is as follows. In Section 2, we define the class of rotationally
symmetric alternatives and we identify the corresponding contiguous alternatives. There,
we also provide the first LAN result in the high-dimensional setup. In Section 3, we de-
scribe some (infeasible) “oracle” tests that achieve Le Cam optimality, we explain their
link with the Rayleigh test, and we apply Le Cam’s third lemma to the latter. In Sec-
tion 4, we derive the asymptotic distribution of the Rayleigh test statistic under general
rotationally symmetric alternatives and study the resulting limiting powers. In Section 5,
we illustrate our asymptotic results through simulations. We summarize the main findings
of the paper in Section 6. Finally, the appendix collects most of the proofs (the remaining
proofs, that require original bounds on modified Bessel functions ratios, are reported in

the supplementary article Cutting, Paindaveine and Verdebout (2015)).

2. Contiguous alternatives and local asymptotic normality. As already men-
tioned, we will consider specific alternatives to the null uniformity over the p-dimensional
unit sphere SP~!, namely rotationally symmetric alternatives. A p-dimensional vector X
is said to be rotationally symmetric about (€ SP~1) if and only if OX is equal in distri-
bution to X for any orthogonal p x p matrix O satisfying O8 = 0; see, e.g., Saw (1978).
Such distributions are fully characterized by the location parameter # and the cumulative
distribution function F' of X’8. The null of uniformity (under which @ is not identifiable)

is associated with

t (s
2.1 Fy(t) :=c / 1 — s%)(P=3)/2 ds, with ¢, == ——22__
2.1 o) i=cp [ (1-4) »= Zrp(e]

where T'(-) is the Euler Gamma function. Particular alternatives are given, e.g., by the
so-called Fisher-von Mises-Langevin (FvML) distributions, that are obtained for
(2.2)

t 9 P_q
FE:ML(t) = ng;ML/ (1-— 52)(”73)/2 exp(ks)ds,  with cg‘;ML = (/{/_1)2 ,
’ “ ) ® T AT T ()
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where Z,(-) is the order-v modified Bessel function of the first kind and (> 0) is a
concentration parameter (the larger the value of k, the more concentrated about € the
distribution is on SP~1); see Mardia and Jupp (2000) for further details.

In this section, we will actually restrict to rotationally symmetric distributions that are
absolutely continuous (with respect to the surface area measure on SP~1) and for which
the corresponding densities, in the spirit of FvML distributions, involve a concentration

parameter. More precisely, we consider densities of the form
(2.3) X — Cpp ff(£X0), x €SP,

where the location parameter  belongs to SP~!, the concentration parameter (> 0) plays
the same role as for FvML distributions, and the function f : R — RT satisfies f(0) =
1 and admits a positive derivative at 0 (f’(0) > 0). These restrictions on f guarantee
identifiability of 8, x and f. Irrespective of f, the boundary value x = 0 corresponds to
the uniform distribution over SP~!. Finally, it is well-known that, if X has density (2.3),
then X’@ has density

t s g (1= 82" D2 f(at) U]t € [-1,1]]

(throughout I[A] stands for the indicator function of the set or condition A). This is
compatible with the cumulative distribution functions in (2.1)-(2.2), and shows that
1 —1
Cpnf = (/1(1 —12)P=3/2 (k1) dt> :
To address the high-dimensional case, we will consider triangular arrays of observa-
tions X4, ¢ = 1,...,n, n = 1,2,... where the random vectors X,;, ¢ = 1,...,n take

values in SP»~1. More specifically, for any 6,, € SP»~ !, k, > 0 and f as above, we will
(n)

denote as P‘9
TL?’{

o f the hypothesis under which X,,;, ¢ = 1,...,n are mutually independent
and share the common density x — ¢, .7 f (K, x'0,). In line with our interpretation of
concentration parameters, larger values of k, provide increasingly severe deviations from
the null of uniformity, which is obtained as x,, goes to zero. Denoting the null hypothesis
as Pén), it is then natural to wonder whether or not “appropriately small” sequences k,,

make Péz)nn f and P((]n) mutually contiguous. The following result answers this question

(see Appendix A for a proof).
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THEOREM 2.1.  Let (p,) be a sequence in {2,3,...}. Let (0,,) be an arbitrary sequence

with 6,, € SP»~ for all n, (k) be a positive sequence such that k2 = O(B~), and assume

that f is twice differentiable in 0. Then, the sequence of alternative hypotheses Pé:)nn 7

and the null sequence P(()n) are mutually contiguous.

This contiguity result covers both the low- and high-dimensional cases. In the low-
dimensional case, the usual parametric rate k,, ~ 1/y/n provides contiguous alternatives,
which implies that, irrespective of f, there exist no consistent tests for Ho, : {P(()n)}
against Hyy, : {Pé:%nm f} if kK, = 7/y/n, 7 > 0. The high-dimensional case is more inter-
esting. First, we stress that the contiguity result in Theorem 2.1 is universal, hence in
particular applies when (a) p,/n — ¢ for some ¢ € (0,00) or (b) p,/n — co. Interestingly,
the result shows that contiguity in cases (a)-(b) can be achieved for sequences (k) that
do not converge to zero : a constant sequence (k,) ensures contiguity in case (a), whereas
contiguity in case (b) may even be obtained for a sequence (k,) that converges to infinity
in a suitable way. In both cases, there then exist no consistent tests for Ho, : {P(()n)}

against the corresponding sequence of alternatives Hi, : {Pé")ﬁ 7

}, despite the fact that
the sequences (k) are not o(1). This may be puzzling at first since such sequences are
expected to lead to severe alternatives to uniformity; it actually makes sense, however,
that the fast increase of the dimension p,,, despite the favorable sequences (ky,), makes the
problem difficult enough to prevent the existence of consistent tests.

The next result states that the model considered is Locally and Asymptotically Normal
(LAN), with contiguity rate s, = O(y/pn/n). As Theorem 2.1, the result covers both the
low- and high-dimensional cases. In low dimensions, it shows that the usual parametric
contiguity rate k, ~ 1/y/n is obtained. More importantly, it provides to the best of our
knowledge, the first instance of the LAN structure in high dimensions (see Appendix A

for a proof).

THEOREM 2.2.  Let (p,) be a sequence in {2,3,...}. Let (6,) be an arbitrary sequence
with 0,, € SP»~ for all n, Ky = Tu\/pn/n, where the positive sequence (1) is O(1) but

not o(1), and assume that f is twice differentiable in 0. Let

m . VR I S ey
(2.4) A = /npaf'(0)X} 0, with X, —nZIXn
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and Ty := (f'(0))%. Then, as n — oo under Pén), we have that

dPén) 1
(2.5) (i) tog —22el = 7 AGY STy + op(1)
dPy
and that (ii) Aéz)f is asymptotically mormal with zero mean and variance I'y. In other
words, the model {Pé:)ﬁf : k > 0} is locally and asymptotically normal (LAN) at k = 0

with central sequence Aé:? I Fisher information I'¢, and contiguity rate \/pn/n.

As usual, local asymptotic normality paves the way to the construction of (locally and
asymptotically) optimal tests. The corresponding asymptotic powers provide the natural
benchmark to evaluate the performance of the Rayleigh test, both in the low- and high-

dimensional cases. These points are addressed in the next section.

3. Optimal testing and performances of the Rayleigh test against contiguous
alternatives. Fix (0,), (k,) and f as in Theorem 2.2, and consider the problem of
testing {P(()n)} (uniformity over SP»~1) against {Pé:)ﬁn #}- Denoting by ® the cumulative

distribution function of the standard normal, the test QS(S:) that rejects the null whenever

Ay ,
(3.1) bt — \/ripn X! 0, > 2o, with 2z, := &7 1(1 —a),

E

is locally and asymptotically most powerful at level «. This test does not depend on f
(whence the notation ¢((,Z)), hence is also locally and asymptotically most powerful at
level o when testing {P(()n)} against Uyse ]-'{sz)nn f}, where F stands for the collection of
functions f : R — RT that are twice differentiable at 0 and satisfy f(0) = 1 and f/(0) > 0.

Le Cam’s third lemma implies that, under Pé:?nn’ £ with Kk, = 7+/pn/n, Ag:l)’ 7 is asymp-

totically normal with mean I' ;7 and variance I';. Consequently, the corresponding asymp-

totic power of gb(gz) is

(n)
opm [Peus :
(3.2) lim P [ > za} =1—®(z0 — f'(0)7).

n—soo  Onikn.f \/17

This applies both to the low- and high-dimensional cases.
Of course, the “oracle” test above is infeasible since ,, is unspecified in practice (all the
more so that, under the null of uniformity, 6,, is not identifiable). Of course, it is natural

to replace 8, with an estimator, such as the so-called spherical mean 8,, = X, /X ]l. The
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resulting test rejects the null of uniformity for large values of

Ay, . )

ﬁ = v/1pn X505 = /i | X,
or equivalently, for large values of the Rayleigh test statistic R,, = np,||X,||?>. This suggests
that the Rayleigh test may be locally and asymptotically most powerful at level a when
testing {Pén)} against Use ;{sz)ﬁm 7} We now investigate whether this is the case or not,
both in the low- and high-dimensional cases.

We start with the low-dimensional case. We actually restrict to the fixed-p case, since it

is needed that p, — p for the Rayleigh test statistic to have a non-trivial asymptotic distri-

(n)
onyﬂnvf’

with &, = 7,1/p/n, where the sequence (7,,) converges to some 7 € (0, 00); compare with

bution under contiguous alternatives. Consider then the contiguous alternatives P

the local alternatives from Theorem 2.2. Denoting by x7(6) the non-central chi-square
distribution with k£ degrees of freedom and non-centrality parameter ¢, Le Cam’s third

lemma allows to show that, as n — oo under the sequence of alternatives above,

D
(3.3) Ry, = x5 ((£'(0))?),
where 3 denotes wealk convergence (for the sake of completeness, we provide a proof
in Section 1 of the supplementary article Cutting, Paindaveine and Verdebout (2015)).
Consequently, the asymptotic power of the Rayleigh test under this sequence of alternatives
is
(3.4) P[Y > U (1-a)], withY ~x2((f(0)7)?),

where W, (+) denotes the cumulative distribution function of the x2 distribution. This shows
that, in the fixed-p case, the Rayleigh test has non-trivial asymptotic powers against the
contiguous alternatives from Theorem 2.2, but that it is not locally and asymptotically
most powerful at level « (it can indeed be checked that, irrespective of f'(0)(> 0), 7(> 0),
and a(€ (0,1)), the powers in (3.4) are strictly smaller than those in (3.2)).

The story for the high-dimensional case is very different, as it can be guessed from
the fixed-p result in (3.3), by adopting the following heuristic reasoning. In view of (3.3),
we have that, as n — oo under piv) with Kk, = 7, \/1)/7, where the sequence (73,)

O kin, f

converges to some 7 € (0, 00),

_ap g X(OD) 1 3= 0o
n \/% \/% \/% ,
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where both chi-square terms are independent. When both n and p are large, it is therefore

expected that, under the same sequence of alternatives,

o A 0)7)? 2(f'(0)7)?
R§~N< NeT L1+ ) )

where Z,, = £ means “the distribution of Z,, is close to £”. Thus, in the high-dimensional

case (where p = p,, — o0), R,SLt is expected to be standard normal under these alternatives,
which would imply that the Rayleigh test has asymptotic powers equal to the nominal
level @ (Theorem 1.1 indeed states that the asymptotic null distribution of RSt is also
standard normal).

Thanks to our high-dimensional LAN result in Theorem 2.2, this heuristics can be

confirmed rigorously. Theorem 2.2 readily yields that, as n — oo under P(()n)7 and with k, =

Tn\/Pn/n (where 7, is O(1)),

dP(n)
Cov | RS!, log — 2l | — Cov (R, ALY |7 +0(1)
n dP(TL) n onyf
0

- \gfzn f,(O)TZ Z E[(X},:0) (X}, X0n0)] 4+ o(1) = o(1),

i=1 1<k<(<n

so that Le Cam’s third lemma implies that R,Sf remains — (7, p)-universally — asymptoti-
cally standard normal under Pé:),nn, > where ki = 7, \/Pn/n, with 7,, = O(1). This confirms
that, unlike in the low-dimensional case, the Rayleigh test does not show any power under
the high-dimensional contiguous alternatives from Theorem 2.2. Equivalently, this shows
that the Rayleigh test fails to be rate-consistent in high dimensions.

This of course raises natural questions on the Rayleigh test : in the high-dimensional
case, can this test asymptotically detect non-trivial alternatives? If the answer is posi-

tive, how close are these alternatives to the contiguous alternatives in Theorem 2.27 We

thoroughly address these questions in the next section.

4. Asymptotic non-null behavior of the Rayleigh test. In this section, we derive
the (n, p)-asymptotic distribution of the Rayleigh test under distributions that encompass
those considered in Section 2, namely under general rotationally symmetric distributions.
We do not require that the rotationally symmetric alternatives considered are absolutely
continuous with respect to the surface area measure on the unit sphere, nor that they

involve a concentration parameter . Yet one of our objectives is to interpret the results we
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derive in this section in the light of the contiguity /LAN /rate-consistency results obtained
in Sections 2 and 3.

More specifically, the sequences of alternatives we consider in this section are described
by triangular arrays of observations X,;, i = 1,...,n, n = 1,2,... such that, for any n,
Xn1, Xpa, - .., Xppn are mutually independent and share a common rotationally symmetric
distribution on SP»~!. We will denote by Pé:? P, the corresponding hypothesis in the case
where X,,; is rotationally symmetric about 8, and X! .0, has cumulative distribution
function F),. Since the Rayleigh test statistic is invariant under rotations, we will, without
any loss of generality, restrict to the case for which 6,,, for any n, coincides with the first
vector of the canonical basis of RP». The corresponding sequence of hypotheses will then

simply be denoted as Pgi).

Under the null of uniformity Pén), the test statistic RS* in (1.1) has mean zero and
variance ”Tfl(—> 1). Rotationally symmetric alternatives are expected to have an impact
on the asymptotic mean and variance of RS'. Exact values are obtained in the following

result (see Appendix B.1 for a proof).

ProrosiTiON 4.1.  Under P%ZL), the mean and variance of RS are given by

i) - L,

and
n—1 Pn
pn_l

where we let ey = B[(X.0,)¢] and &,y := E[(X,0,, — en1)’] denote the Lth-order non-

Var[RTSZt] — (pnéfﬂ + ,%2 +2(n — 1)pne$ﬂén2>,

central and central moments associated with F,, and where fr == E[(1 — (X’,0,)%)%?].

Note that, under P(()n), we have ey, = 0 and €z, = €2, = 1/p,, which provides the null
values of E[RS'] and Var[R3!] stated above. Now, as soon as p,, goes to infinity with n,

the asymptotic variance in the previous result is equivalent to the simpler quantity
(4.1) 0p = Pnry + 20Pn€iéna + fia,

which we use in the sequel. Parallel to to the null case (see Theorem 1.1), it can be expected

that, when properly standardized by using the mean and variance in Proposition 4.1 (or
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the asymptotically equivalent variance o2), the Rayleigh test statistic will be asymptoti-
cally standard normal under a broad class of rotationally symmetric alternatives. This is

confirmed in the following result (see Appendix B.2 for a proof).

THEOREM 4.1. Let (p,) be a sequence of positive integers converging to oo as n — 0o.

(n)

Assume that the sequence (Pp”) is such that, as n — oo,

(6) min (22522, S0 ) = o(1),  (id) éaa/é2y = oln), and (i) fua/ S = o(n).
n2 nl

Then, under Pg;),

RSt _ E[RSt] /2pn )
g On s noy, Z (X5iXaj =€)
1<i<j<n

converges weakly to the standard normal distribution as n — oo.

This result applies under very mild assumptions, that in particular do not impose ab-
solute continuity nor any other regularity conditions. The only structural assumptions are
the conditions (i)-(iii) above. These, however, may only be violated for rotationally sym-
metric distributions that are very far from the null of uniformity (hence, for alternatives
under which there is in practice no need for a test of uniformity). Indeed, a necessary
— yet far from sufficient — condition for (i)-(iii) to be violated is that X! @, converges
in probability to some constant c¢(€ [—1,1]), which is also quite pathological in the high-
dimensional context considered. Moreover, if one restricts to FvML rotationally symmetric
distributions (see Section 2), then (i)-(iii) always hold, that is, they hold without any con-
straint on the concentration k,, nor on the way the dimension p, goes to infinity with n
(the proof of this statement is very lengthy and requires original results on modified Bessel
functions ratios, hence is provided in the supplementary article; see Section 2 of Cutting,
Paindaveine and Verdebout (2015)). This shows that the non-null asymptotic result in
Theorem 4.1, parallel to the null one in Theorem 1.1, may be considered universal.

Convergence rates in the asymptotic normality in Theorem 4.1 can be obtained by deriv-
ing appropriate Berry-Esseen bounds. This relatively easily follows from a classical result
from Heyde and Brown (1970) and the estimates provided in the proof of Theorem 4.1.
More precisely, we establish the following result in Appendix B.3.
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THEOREM 4.2. Let (py) be a sequence of positive integers converging to oo as n — 0o.
Assume that the sequence (PE;;)) satisfies the assumptions of Theorem 4.1. Then, there
exist a constant C' and a positive sequence (sy) converging to one as n — 0o such that

~9 ~ ~ 1/5
e e é 1
< C<min (pn2n2’ n22 >+ fL24 i fn;i +)
fn2 neén Nena MJn2 Pn

RS — B[R

On

SUp,er

Pgl) { < snz] —P(2)

for n large enough (the exact expression of s, is given in the appendix; see (B.7)).

Theorems 4.1 and 4.2 allow to compute the asymptotic power of the Rayleigh test under
appropriate sequences of alternatives. As mentioned above, the null of uniformity Ho,
provides ey, = 0 and éy, = 1/p,. Here, we therefore consider “local” departures from
uniformity of the form Hi, : {Pg;) sent = 0+ v, 62 = (1/py) + fnTQ}- A natural
question is : in the high-dimensional case, what are the rates v, and &, at which the
Rayleigh test can discriminate between the null and these local alternatives? The following

result is also proved in Appendix B.3.

THEOREM 4.3. Let (pn) be a sequence of positive integers converging to oo as n — 00.

Consider a sequence (P%l)) that satisfies the assumptions of Theorem 4.1 and provides

71 1 _ 1 1
4.2 =1 S d - = <7>
( ) €nl nl/zpyll” + O<n1/2p71/4> an €n2 ” +o0 o
(n) . . . o 2
Then, under P, the asymptotic power of the Rayleigh test is given by 1 <I)(za Ti /\/i)

Clearly, it is of interest to investigate how severe are the local alternatives in (4.2)
compared to the contiguous alternatives in Theorem 2.2, under which the Rayleigh test
does not show any power in the high-dimensional case; see Section 3. To do so, note that,
as n — oo under Pé:),nn,f’ with x, = 7, \/m, where the positive sequence (7,) is o(y/n),

we have

1
eln = cpm,%f/ 8(1—82)(p"_3)/2f(/<;ns)ds

-1 1
_ (Cr#) pn / (1= s2)Pn=3/2 o s F(ns) ds
-1

Cpn Ko f Kn

(4.3) - (1+if”(O)+o(ﬁ‘))_l<xﬂ(0)+o<]’j’;>>,
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where we used twice Lemma A.l. Under the same sequence of alternatives, we obtain

similarly

1
eoy, = cpm,.gmf/ 32(1—32)(p”*3)/2f(mn3)ds
-1

_ < Cpn )_1%/1(1_32)(1””3)/2(/<;n8)2f(f€n8)d5

2
Cpn fin, f Kn J-1

(44 - (o) (o)

The contiguous alternatives in Theorem 2.2 are of the form Pé?nn, f’ with Kk, = 7/pn/n
(for the sake of simplicity, we consider here the case 7,, = 7 for all n). For such alternatives,
(4.3)-(4.4) provide

(0 1 1 1
(45) enl = f ( )T + 0<7) and €no = — + 0<7>7

npn \/@ Pn Pn

which clearly corresponds to (slightly) less severe deviations from the null than the local

alternatives in (4.2).
Interestingly, we might have guessed that, in the high-dimensional case, the local alter-
natives in (4.2) are those that can be detected by the Rayleigh test. Recall indeed that
heuristic arguments in Section 3 suggested that, under Pé:)’nm £ with &, = 7\/])/7, the
distribution of RS' is close to N'(72/y/2p,1 + 2(f'(0)7)?/p) for n large. Consequently, to
obtain, in the high-dimensional case, an asymptotic non-null distribution that is differ-
ent from the limiting null (standard normal) one, we need to consider alternatives of the
form Pé:{ﬂm P with &, = Tpi/ 4 /+/n, under which, the distribution of R5' should approxi-
mately be N'(72/v/2,1) for n large. At least if p, = o(n?) (a constraint that is superfluous
in the FvML case), these alternatives, in view of (4.3)-(4.4), lead to
(4.6) enl = & + 0<1> and €na = * + 0(i>,

nl/zprll/‘l n1/2p}/4 Dn Dn

which coincides with the local alternatives in (4.2).

5. A Monte-Carlo study. In this section, we present the results of a Monte Carlo
study we conducted to check the validity of our asymptotic results. We performed two

simulations. In the first one, we generated independent random samples of the form

(5.1) X\ i=1..n j=12 (=0,1234
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For ¢ = 0, the common distribution of the XZ(,?’S is the uniform distribution on the unit
sphere SP~!, while, for £ > 0, the XE?’S have an FvML distribution on SP~! with location

0 =(1,0,...,0) € RP and concentration /{;@)’ with

3/4
€ p ) p

=0.644/= d = 0.6/ —-

K;l \/; an K/2 \/’E

In the second simulation, we considered again independent random samples of the form (5.1),

still with Xg})’s that are uniform over SP~!. Here, however, the X(fj)’s, for ¢ =1,2,3,4, are

i
rotationally symmetric with location § = (1,0,...,0)" € RP and are such that the H'XZ(?’S
(0)

are beta with mean e;.; and variance éy,; = 1/p, where we let

15
0y  0.6¢ o  0.6¢
61;1 = \/Tip and 61;2 = W

In both simulations, the value £ = 0 corresponds to the null hypothesis of uniformity, while
¢ =1,2,3,4 provide increasingly severe alternatives. The case j = 1 corresponds to the
contiguous alternatives under which local asymptotic normality holds (see Theorem 2.2
and (4.5)), whereas j = 2 is associated with the alternatives under which the Rayleigh
test shows non-trivial asymptotic powers in the high-dimensional setup (see (4.2) and the
discussion above (4.6)).

For any (n,p) € C x C, with C' := {30,100,400}, any j € {1,2}, and any ¢ €
{0,1,2,3,4}, we generated M = 2,500 independent random samples XE?, t=1,...,n, as
described above, and evaluated the rejection frequencies of the following two tests, con-
ducted at nominal level 5%: (i) the oracle test gbé:) in (3.1) and (ii) the high-dimensional
Rayleigh test (that is, the test that rejects the null of uniformity whenever the statis-
tic RS in (1.1) exceeds the 95%-quantile of the standard normal distribution). Rejection
frequencies are plotted in Figures 1 and 2, for FvML and “beta” alternatives, respectively.
In each figure, we also plot the corresponding asymptotic powers, obtained from (3.2),
Theorem 4.3, and the facts that (i) the high-dimensional Rayleigh test does not show any
asymptotic power against (j = 1)-alternatives and that (ii) the oracle test is consistent
against (j = 2)-alternatives.

Clearly, for both simulations, rejection frequencies match extremely well the correspond-
ing asymptotic powers, irrespective of the tests and types of alternatives considered (the
only possible exception is the oracle test under (¢ = 1, j = 1)-alternatives; this, however,

is obviously only a consequence of the lack of continuity of the corresponding asymptotic
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power curve). Quite remarkably, this agreement is also very good for relatively small sam-
ple size n and dimension p. Beyond validating our asymptotic results, this Monte Carlo

study therefore also shows that these results are relevant for practical values of n and p.

n=30 n=100 n=400

1.0

p=30
04 06 08

0.2

0.0

100
06 08 1.0

p=
0.4
1

0.0

1.0

p=400
04 06
1 1

0.2

0.0

Fic 1. Rejection frequencies (dashed) and asymptotic powers (solid), under the null of unifor-
mity over the p-dimensional unit sphere (¢ = 0) and increasingly severe FuML alternatives
(¢ =1,2,3,4), of the oracle test from Section 3 (red/orange) and the high-dimensional Rayleigh
test (green). Light colors (orange and light green) are asociated with contiguous alternatives under
which LAN holds, whereas dark colors (red and dark green) correspond to the more severe alter-
natives under which the Rayleigh test shows non-trivial (n, p)-asymptotic powers; see Section 5 for
details.
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1.0

=30
06 08

0.2
1

1.0

0.8

p=100
0.4
1

0.0
1

1.0

400
06 08

p=
0.4
1

0.2

Fic 2. Rejection frequencies (dashed) and asymptotic powers (solid), under the null of uniformity
over the p-dimensional unit sphere (£ = 0) and increasingly severe “beta” rotationally symmetric
alternatives (¢ = 1,2,3,4), of the oracle test from Section 3 (red/orange) and the high-dimensional
Rayleigh test (green). Light colors (orange and light green) are asociated with contiguous alterna-
tives under which LAN holds, whereas dark colors (red and dark green) correspond to the more
severe alternatives under which the Rayleigh test shows non-trivial (n,p)-asymptotic powers; see
Section 5 for details.
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6. Conclusions. We summarize the results derived in the paper. In the problem
of testing uniformity on the unit sphere against rotationally symmetric alternatives, we
identified contiguous alternatives and showed that the model considered is locally and
asymptotically normal (LAN) in the vicinity of the null hypothesis. This LAN structure
allows to determine the maximal local asymptotic powers that can be achieved and to
define “oracle” tests achieving these. Oracle tests are infeasible since they require the
location parameter 6, to be known. When replacing 6,, with the spherical mean esti-
mator X,,/||X,||, the oracle test actually reduces to the Rayleigh test. We thoroughly
studied the asymptotic behaviour of the latter test under general rotationally symmetric
alternatives.

Throughout, both the low-dimensional and high-dimensional cases are covered and ac-
tually lead to very different conclusions. In the low-dimensional case, the contiguity rate is
the classical 1/4/n rate and the Rayleigh test shows non-trivial asymptotic powers against
the corresponding alternatives, even though it is not asymptotically optimal. In the high-
dimensional case, contiguity rates are of the form \/m, irrespective of the speed at
which p, goes to infinity with n. Under such local alternatives, the Rayleigh test has
powers equal to the nominal level a, so that the cost of estimating 6, is more severe
in the high-dimensional case than in the low-dimensional one. While the Rayleigh test
is not rate-optimal in high dimensions, we identified less severe local alternatives, with
rate pi/ 4 /+/n, that can be detected asymptotically by this test. Simulation results are in

remarkable agreement with our asymptotic results, even for moderate values of n and p.

APPENDIX A: PROOFS FOR SECTION 2

The proofs of Theorem 2.1 and Theorem 2.2 require the following preliminary result.

LEMMA A.1. Let g: R — R be twice differentiable in 0. Let k,, be a positive sequence

that is o(\/pn) as n — oo. Then

R ( ) /1 (1 2)(pn73)/2 ( )d (0) + 5721 //(O) + (K/'?L)
n = Cp, — S RnpS S = - o\— |.
P ) ! / 200" P

Proor or LEMMA A.1. Write first

1
R, (9) = 9(0) + cp, /1(1 — 52)(”"*3)/2(9(/%3) —g(0) — knsg'(0)) ds.
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Using the identity
1
1
o, [0 = L
-1 Pn

and letting ¢ = ks then provides

Ru() = 90)+ 22 [ bt (9“) ~9(0) - tg’<o>) "

pn —HkKn

SN

where h,, is defined through

()20 = (L)) 2
) = e ey =

By using the fact that x, = o(\/pn), it is easy to check that the h,’s form an approzimate

d-sequence, in the sense that

o0 g
/ ha(t)dt =1 ¥n  and /hn(t)dt—u

—00 —€

for any € > 0. It follows that

t? Pn
2 / / 2
g'(t) — g'(0) K
oo ()
0+ 52ty (TEZEO) o (52),
where we used L’Ho6pital’s rule. This yields the result. (Il

PROOF OF THEOREM 2.1. In this proof, all expectations and variances are taken un-
)

der the null of uniformity P(()n and all stochastic convergences and op’s are as n — oo

under P(()n). Consider then the local log-likelihood ratio

(n)
A, = log APy et _ i log Cpnim,f f (K X0:00)
0 i=1 n
n
c
= n(log %ﬁ + En1> + Z (log f(knX1,0n) — En1)
Pn pa
(Al) =: Lp + Ln27

throughout, we write £, := (log f)¥ and E,, = E[Eﬁk(/{nX;an)] (B, actually depends
on kn, pp, and f, but we simply write F,; to avoid a heavy notation).

Lemma A.1 readily yields

1
nlogcpzﬂ = —nlog (cpn /1(1 — P21 (g, 6) ds)
Pn -
K2 K2 nek2 nrk2
A2 = —nl 14+ 2 f" - =——=2f —2).
(A.2) n og< s “”“(pn)) 0L 11(0) + o222
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Similarly, for any positive integer k,

! 2 3)/2 K 1" K
(A.3) Enp = cpn/lu — §2)Pn=/20 4 (kps) ds = ﬁeﬁk(o) +0(—>.

Combining (A.2) and (A.3), and using the identity ¢}, (0) = f"(0) — ('(0))? readily yields

Ly = %( — 11(0) + £4.4(0)) +o(2’f) - Z’;j (F(0))? +o(’;j).

Turning to Ly, write

n n , B
Lo = \/ni‘/n Z W = \/m Z log f(ﬁanlon) Enl’
i=1 i=1 \/7

nVy

where we wrote V,, := Var[log f(k,X,;0,)]. First note that (A.3) provides

2 2 2

nﬁz

(A.4) nVy =n(Ep — E4) = 2p:e” ,(0) +0(’;’Z ) _ %(f/(o))z +O(%>’

which leads to

(A5) A= 7;;2 (F(0))* + \/ ﬁ(f’(o»? to( ) ZWm + 0@12)

Since the W,;, i = 1,...,n are mutually independent with mean zero and variance 1/n,

we obtain that

(A6) E[A2) = (B[A])*+Var[A,] = (o) +0(n2ﬁ4)+”’“21<f'<0>>2+0(%%).
" 4p2 P2 Pn Pn

If k2 = o(E2), then (A.6) implies that exp(A,) — Z in distribution, where Z = 1. Since
P[Z = 0] = 0 and E[Z] = 1, Le Cam’s first lemma yields that Péz),nn,f and P(()n) are
mutually contiguous.

We may therefore assume that x2 = 72p, /n, where the positive sequence (7,,) is O(1)

but not o(1). In this case, (A.5) rewrites as

,7_2 n
An == (F(0)* + V7R (F1(0))? + o(1) Z Whi 4 o(1)

Applying the Cauchy-Schwarz inequality and the Chebychev inequality, then using (A.3)

and (A.4), provides that, for some positive constant C,

ZE (Wil > ] < ny/EIWAIP[ Wl > €] \/E WA Var[Wy] = ‘zﬁ E[W4]

nk2 " (0) nK2 1/2
onti2pl? (MRS o(u)) o(r) o

S (o o(sd)) RUOP o)’
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where we have used the fact that ¢},(0) = 0. This shows that Y I, W;,; satisfies the
classical Levy-Lindeberg condition, hence is asymptotically standard normal (as already
mentioned, Wy;, i = 1,...,n are mutually independent with mean zero and variance 1/n).

For any subsequence (exp(Ay,,)) converging in distribution, we must then have

exp(Ay,,) = exp(Y), withY NN( - (f/(20)> lim 77 ,(f'(0))* lim 77 )

n
n—00 n—oo M

Mutual contiguity sz)ﬁn s and Pén) then follows from the fact that Plexp(Y) = 0] =
and Elexp(Y)] = 1. O
PRrROOF OF THEOREM 2.2. As in the proof of Theorem 2.1, all expectations and variances

(n)

in this proof are taken under the null of uniformity P,

op’s are as n — oo under P(()n)
of the result, since E[Aé:)f] =0 and Var[A(n) ] = B2(f(0))*Var[ 31, X!.0,] = (f(0))%.

It therefore remains to establish Part (i). Recall that, in the case where (7,) is O(1) but

and all stochastic convergences and

. The central limit theorem then directly establishes Part (ii)

not o(1), we have obtained in the proof of Theorem 2.1 that

7'2 “
An = —3 )2+\/T,%(f’<0)>2+o<1>ZWm+o(1>
2
= —%(f( +Tnf Zan+OP

where Y Wy = (1/v/nV,) Y i (log f(knX.,0,) — En1) is asymptotically standard
normal. To establish the result, it is therefore sufficient to show that 7,[(>"  Whi) —

(1/f’(0))A§:)f} converges to zero in quadratic mean. To do so, write

Tn < zn: Wm) - lA(n) = S Zn: (log f(ﬁnX/ 0n) —Eni—v/pnVa X, on) = Mn :
2 W) =0y Sont = v 2 i VPnV X @

Then using E[X/,0,] = 0 and E[(X/,0,)?] = 1/p,, we obtain

E[Mg] = nTﬁE[(log f(/{nX;lzon) e \/MX;ZOn)Q]

= n72(2V, — 2¢/pnVn E[X! 0, (log f(kn X! :0,) — En1)])

= 2n71%vn - 27’7177,3/2 V Vi E[HnX;nen log f(’inX;uan)]a

which, letting g(x) := x(log f(x)), provides

(A7) [(Tn(z W) = s 5] )] =272 32% Elg(rnX00)]-
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Using Lemma A.1,

1
Elg(rX.0,)] = cp / (1= 82)®n9)/2 (1, 5) ds
-1
2 2 2 2
o AN K
2png (0)+0( n) pnf(O)—i—o( n)

Plugging in (A.7) and using (A.4) then yields

o (m (o) - i) =2t - =t

as was to be showed. O

APPENDIX B: PROOFS FOR SECTION 4

In this second appendix, we establish Proposition 4.1, and Theorems 4.1, 4.2 and 4.3.

We start with some preliminary results and the proof of Proposition 4.1.

B.1. Preliminary lemmas and proof of Proposition 4.1. Define the quantities

2

/
Upi = X0, and vy i=4/1 —ul,

that are associated with the tangent-normal decomposition Xy; = unify + VniSni of Xy,
where
Xni — (X!.6,)0,
S, i= [ Xoni — (X;uon)onn

if X, # 6,
0 otherwise.

With this notation, e, = E[u’;] and f,, = E[v’,] (see Proposition 4.1). We start with the

nt

following lemma.

LEmMA B.1.  Under Pg;), we have that

(i) BIXXog] = €2y for any i < j.
(ii) B[(X],,Xnj)?] = €ny + fia/(pn — 1) for any i < j.
(ii1) E[(X];Xnk) (X!, Xnj)] = en2e2y for any i < j and k < £ such that there are exactly
three different indices in {i,j, k,(}.
(iv) E[(X],Xn;) (X! Xne)] = €by for any i < j and k < € such that there are exactly four
different indices in {i,7,k,(}.
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PROOF. The first part of the lemma directly follows from
X! iXpnj = (uni®n + niSni) (Un0n 4 v0jSnj) = Uniting + VniVnjSn;Snj-
For the remaining claims, write
(X7 Xn) (X Xne) = (Uniting + VniVngSp,iSnj) (Unkting + UnkvneSy;Sne)
= UpilnjUnklUne + umunjvnkvngS;LkSng
+0niUnjUnkUneSiSnj + UnitngUnkUne (S7Sn;) (S7xSne),
which, for ¢ < j and k < £, entails
(B.1) E[(X},;X0n;) (X} Xne)] = E[tnitinjunitine] + E[vnivnjvakvnd E[(Sh;Sn;) (ShiSne)]-

Part 2 of the result then follows from the fact that E[(S/,S,;)?] = 1/(p, — 1). For Parts
3-4 of the result, there is always one of the indices i, j, k, £ that is different from the other
three indices, which implies that E[(S];S,;)(S].Sn¢)] = 0. The result readily follows. [

Lemma B.1 allows to prove Proposition 4.1.

PROOF OF PROPOSITION 4.1. Since the expectation readily follows from Lemma B.1(i),

we can focus on the variance. Using Lemma B.1(i) again, we obtain

P
Varg, [R,] = % Y Y CoviXLiXag XX
1<i<j<n 1<k<f<n

2pn
= TN Y (B (X Xa)] — ehy).
1<i<j<n 1<k<t<n

In this sum, there are (g) terms corresponding to Lemma B.1(ii). There are 6(2) terms

corresponding to Lemma B.1(iv) (these terms do not contribute to the sum). Therefore,

() ~(5) (i) =worvee-2

terms corresponding to Lemma B.1(iii). Consequently,

there are

Var, [Rfvtn] _ 2 { (Z) (622 + fa/(pn — 1) — eil) +n(n—1)(n—2) <€n2631 - eil)}

2
= pn(nn—l){ (632 + fra/(pn — 1) — €i1) +2(n —2) <€n26127,1 - eil)}

n—1 9
- n {p”6”2+

Pn

pn_l

22 +2(n — 1)pn€i1én2},
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which establishes the result. O

Both following lemmas are needed to establish Theorems 4.1 and 4.2.

LEmMMA B.2. Under Pgl), we have that

(i) B[(Xni — en10n) (Xni — €n10n)'] = éns88), + L221(T,, — 6,,6),).
(ii) Var[(X],0n — en1) (X},;0n — €n1)] = €na — €9 fori=j and &%y fori# j.
(iti) B[X!,;(X,, —0,0,,)Xy;] = fa2 fori=j and 0 fori# j.

(iv) Var[X;u»(Ipn — 0n0%)an] = fpa — f,2L2 fori=7j and fflz/(pn — 1) fori#j.

PROOF. (i) Using the tangent-normal decomposition, we obtain

E |:(Xm - enlen) (an - 6n10n)/} =E [((unz - enl)on + Unisni) ((unz - enl)on + Unisni),]

fn2

n

= B[(wni — €01)*]048), + Fr2 E[81S}] = €0s,8), + —2— (L, —0,.6)).

(ii)-(iv) The results readily follow from the fact that X! .0, —en1 = upi —e,1 and X/ (I, —
0,.0,)X,,; = Vnivn;S,;Sn; (and the identity E[(S!;S,;)%] = 1/(pn — 1)). d

LEMMA B.3. Consider expectations of the form cijrs = E[NjDjiAreAge] taken un-

der Pg;), with Ay = (Xpi — €n10n) (Xpe — €010,) and i < j <r < s < (. Then
. - 2 3f2, ... .
(1) cijrs = 624 + %(E [vfw(um — enl)z]) + pgfﬁ‘ll ifi=j=r=s.
~ 2
(ii) Cijrs = Enbna + 222B2B[02 (s — en)?] + L2202 if i = j <7 =>s.

(1) cijrs = 0 otherwise.

PrOOF. We start with the proof of (iii). Assume that j = r, so that we are not in
case (ii). Since case (i) is excluded, we have i < j or 7 < s. In both cases, one of the
four indices 14, 7,7, s is different from the other three indices. Since E[A;] = 0, we obtain
that ¢;jrs = 0, which establishes (iii). Turning to the proof of (i)-(ii), we use the tangent-

normal decomposition again to write Ajs as (unj — €n1)(Une — €n1) + vnjvng(S;Lj Sne). Since
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E[(S;lang)k] = 0 for any odd integer k, this leads to decomposing c;;, into
cijrr = B [(Unj — €n1)? (tnr — €n1)*(Une — €n1)"]
+2E [(um« — enl)z(ung — enl)%njvng(s Sne) ]
HAE [(unj — en1)(Unr — €n1) (Une = €n1)*0njnrvip(S7,1Sne) (S1,-Sne)]
B [0202,044(S)S00) (Sl Sue)?]
The result then follows from the identities E[(S;USM)Q] =1/(pn — 1) and E[(S;Lang)‘l] =

3/(pi —1). =

B.2. Proof of Theorem 4.1. The proof is based on the following central limit the-

orem for martingale differences.

THEOREM B.1 (Billingsley 1995, Theorem 35.12). Let Dypy, £ =1,...,n, n =1,2,...,
be a triangular array of random wvariables such that, for any n, Dp1, Dpo, ..., Dpy is a
martingale difference sequence with respect to some filtration Fpn1, Fn2,- .-, Fnn- Assume
that, for any n, £, Dy has a finite variance. Letting Uie = E[D?w | J’-'mg_l] (with Fpno being

the trivial o-algebra {0, Q} for all n), further assume that, as n — oo,
n
(B.2) S B
/=1
(where B denotes convergence in probability), and

(B.3) Zn:E[DEM]IUDMy >el] = 0.
/=1

Then >y, Dy is asymptotically standard normal.

Writing E,,y for the conditional expectation with respect to the o-algebra JF,,; generated

by X1, ..., X, we have

Ene[Rf’Lt] = nipn{ Z (X;MXM 62 (n—1¢ enlz —€enl }

1<i<j<e
Let

Dni = En [Rrslt] —En—1 [Rgt]

-1 !
(B.4) _ V2 { > (Xni — entf) + (n — l)en10n} (Xt — €m16),

no
n i=1
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for any ¢ = 1,2,... (throughout, sums over empty set of indices are defined as being equal
to zero). It can be checked that RSt = > v—1 Dne. The following lemmas then take care of

the conditions required in Theorem B.1.

LEMMA B.4. Let the assumptions of Theorem 4.1 hold. Then, under Pﬁ), (i) > 75— Elo?,]

converges to one as n — 0o, and Var[>_;_, 02,] converges to zero as n — oo.

LEMMA B.5. Let the assumptions of Theorem 4.1 hold and fix e > 0. Then, under p(

Fp
> i1 E[(Dne)?I[| Dye| > €]] = 0 as n — .

In the rest of the paper, C is a positive constant that may change from line to line.
PRrROOF OF LEMMA B.4. (i) Note that

2p -1 /

/
07216 = nQOnQ { Z(Xm —en1bn) + (n — 1)en10n} E [(Xné - enlan) (Xné - enlan) :|
not =1

/—1
{ Z nj — en1fn) + (n — 1)en10n}.

7j=1

Using the fact that

E |:(Xng — enlon) (Xng — enlon)/:| = én20n0% + » fn_2 1 (Ipn — 0,10;)

n

(see Lemma B.2), we obtain

~ /-1 /-1
2p €n2
Uié = n;gg { Z (X7i0n — enl)(X;zjon —en1) +2(n — 1)en Z(X;nen —en1) +(n— 1) nl}
n

1,j=1 =1
2pn fn2 ’
B. E X!, — 0,0
(B5) +(p _1n202‘1 1 X
Therefore
2pnén2 _ Wn(l — 1) f2
27 _ 2.2 2
(BG) E[O’nd == n20_721 {(f - 1)6712 + 0+ (n - 1) enl} + m,

where we have used Lemma B.2(iii). This yields

n -~ ~
—Upnény  2pnéne (n — Dpnfp
B.7 2. Elg2 :(” n2 —1)2e2 n2 _,q
(BT = 2 Flowd = T e e G s

as n — 0o, as was to be shown.
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(ii) From (B.5), we obtain

n

Var| Yo < C(Varld, ] + Var[B,] + Ve G,

(=1
where
D €n2 =
n-n. /
= 2.2 Z Z 05, — en1) (X800 — €n1),
n4o;
(=1 1,5=1
p e @ n f—1
n nl n2
B, = Z enl
/=1 z:l
and
f2
n = 2nzzzx = 0.0,)X,,
n
nf 114,7=1

We establish the result by showing that, under the assumptions considered, Var[A4,],
Var[B,] and Var[C,,] all are o(1) as n — co. We start with A,,, which we split into

n€1

e 2 e
Ay = BE2 N e S S (X006 (X)y 0 — )
Tn = 11:1 " (=1 1<i<j<t—1
- n-1 -
_ pnenQ X . X/ 0 2 2pn€n2 . X/ 0 X/ 0
= 202 (n_l)( ni n_enl) + n202 Z (n_])( ni n_enl)( njon
no=1 " <i<j<n—1
= A%l) +A512)7
say. Clearly,
p2&2 n-1
var[ (] = i 3 (n —i)* Var[(X},8 — en1)’]

p%égﬂ (én‘l - 5312) p%é?ﬁ (én4 - 57212) _ €nd 1
<C 1 <C =3 =Cl———),
nop, n(pnésy) nés, N
which, by assumption, is o(1) as n — oo. Since (X],0,, — €n1)(X;j9n —en1), i < j, and

(X! 100 — en1) (X!, 0, — €en1), k < £, are uncorrelated as soon as (i,7) # (k, ), we obtain

4p? &2 p2él

Var[AP)] = - ;j? Yo (n =) Var[(X),0n — en1)(X,0n — en1)] < C =2
a

In 1<i<j<n—1 n

In view of the majorations

2 54 2 2 ~4 52 (92
(& € (& (&)
pn 4n2 <C Pn 2n2 - C( n2 ) and P 4n2 < C(pn2n2) ’
o} (2nppe;€n2) ne?, o} 2,

Var [Ag)], by assumption, is o(1) as n — oo. Therefore, Var[4,,] is indeed o(1) as n — oo.

- enl)
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Turning to By,

p 1e 2 - p 21622 = np 1632

n-n mn n-n mn n-"n n

Var[B,| = 2,1 Var[ E n—i) X On—en1)| = T E n—i) 26,0 < 074,
néog — n P on

which can be upper-bounded by

2.2 53 = 2.2 53 ~2
npnenlenZ _ C €n2 and by C npnenlenQ CrpnenQ

2 5 - 2 2 = 2
(annenlen2)2 nen np”enle"2fn2 n2

We conclude that Var[B,,] is also o(1) as n — oo.

Finally, we consider C,,. Proceeding as for A,, we split C), into

f ) n (-1 2f )
Co = 355 —0,6,)X "Z > XL, - 60.6,)X,
Tin =1 i=1 Tin =1 1<i<j<t-1
fr2 2fn
_ HZ( DXLy, — 0,0, Xni + 375 Y (0= DX(T,, — 0.8,)X,
On i=1 N 1<i<j<n—1
= OV + 0P,

say. Clearly,

2 n—1
Var[CV] = n4f;24 (n —i)? Var[X],; (I, — 0,00,)X]
n =1

4 = 2 2
noy, nfzo nfis N

as n — oo. Since X/ (I, —6,0,)X njs 1 < j, and X7, (I, —0,0,)X,¢, k < ¢, are uncor-

< Can(fn4 f ) < Cfn4 — fgﬂ — C’( fn4 1) = 0(1)

related as soon as (i, j) # (k, ), we obtain

4 . C
Var[CP)] = n{"i > (n—j)?Var[X), (I, — 0,0,,)X,;] < CWQ—U < 2.
N 1<i<j<n—1 nALmn

Therefore, Var[C,,] is also o(1) as n — oo, which establishes the result. ]

Proor or LEMMA B.5. Using first Cauchy-Schwarz inequality and then Chebychev’s

inequality, we obtain

n 1 n
ZE 200Duel > €] 3 \JE[DLIP(IDuel > ] < =37 \JE[DL|Var [ Due].
(=1 (=1
Recalling that Une = E[D?w | Foo— 1] (B.6) yields

2 2
( Eoy + nep Ena + f"2>

no? pn — 1

=2 2 52
< C( Pn€pa + Pneri€ng + n2 ) < g
- npné?l2 2npneilén2 n 52 - n

Var[Dy] < E[D/] = E[o7] <
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Besides, using (B.4), the inequality (a + b)* < 8(a* + b?) and the fact that o2 >

2npne72ﬂén2, we obtain

/—1 4
E[D}] < ;f;é (EKZ(XM—en10n)'(Xng—en19n)> }—i—n 4 B[(X,8, —en1)4]>

=1
Cp?z — ! 4 Cén4
(BQ) S n40_;11 E[(; (Xm — enlﬁn) (Xn@ — en10n) n2 7212 .
Applying Lemma B.3, we have
—1 4 6 9 3f2
B [(Z (Xni_enlon)/(xnf_enlen)> :| (E 1) < €ng T+ P — 1E[’U2n(unz - enl)Q] + 1)2541>
=1 n n

2802 fn2 frofna
3((—1)(¢—2) ( &2yent + pni_lE[v?n-(um- —em)’] + @f_l)a> )

By Cauchy-Schwarz, this yields

/-1 4
77,14);4 E |:<Z (Xm - enlon)/(Xne — enlen)> :|

i=1
1 1/251/2
< ol (pn €na T 6P fra€nag +3fn4 (pn €r9€na + 2Pnéna frafoy / / + fﬁzfm)
C (e é é & \1/2
<SG Bl du )+2(;4 +(BS" 1 b,
n fr2€no 7\ €ha fRaels n2

Plugging into (B.9), we conclude that

C é% fn4en4 f C (€éna fn4én4 1/2 fn4
E[Dp] < <~44+ 22 T )+n(2+< 2~2) +z)

n3 €n2 n26n2 n2 €n2 726n2 o
C ~1/2 1/2\ 2 c/

(BlO) < 3(€n4 _}.']624) +2<€n4 + fn4 ) < ( eiL24 + fn;l >7
nd\ ez, n2 n“ \ en2 fn2 n\né2, nf2

which, by assumption, is o(1/n) as n — oco.

All majorations and o’s above being uniform in ¢, we finally obtain that

Z\/E D4 Var ng] <C(n max E[D ])1/2—>0

_17 -1

as n — 0o, which, in view of (B.8), establishes the result. O
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B.3. Proof of Theorems 4.2 and 4.3.

PROOF OF THEOREM 4.2. Applying the main result from Heyde and Brown (1970)
with § = 1, we obtain that, for n large enough,

RS — EIRS]

(B.11) sup,cp
On

P [ < snz} — ()

C n n 2 1/5
< 8%<;E[D;‘fb£]+\/ar[2<fgl] > .
An inspection of the proof of Lemma B.4(ii) reveals that

n - -9 N 5 9 B )
Var[ZO'il] < C< €n4 + (InlIl (annQ’ en22 )) + min (pnen2 €n2 ) + fna i >

52 2 2 2
/=1 nena n2  TM€n1 fn2 neén1 nan Dn

Plugging this and (B.10) in (B.11) and using the fact that s,, converges to one as n — oo

provides the result. [l

PROOF OF THEOREM 4.3. First, note that in view of Theorem 4.2,

P[RS > 2] — (1— o (Fe LI E[Rrsﬂ))\ - \szg RS < 2] - o (2o Bl E[REW)'

SnOn SnOn

n Rrszt - E[Rrszt] Ro — E[Rvszt] o — E[P%Szt}
= P%”) [ Snon, = SnOn } B <1>< SnOn ) ‘
n RSt —E RSt
< sup P%)[”i["] < z} —®(z)| =0
z€R " SnOn

as n — 0o. Recalling that s,, — 1 as n — o0, this implies that

. n . RSt — B[RSt 2
llmn%wP%n) [RELt > zq] =1— <I><hmn_>oo Un[]> =1- CI’(ZQ — \/%),

as was to be proved. O

SUPPLEMENTARY MATERIAL

Supplement to “Testing Uniformity on High-Dimensional Spheres against
Contiguous Rotationally Symmetric Alternatives”
(doi: completed by the typesetter; .pdf). In this supplementary article, we derive the fixed-p
asymptotic non-null distribution of the Rayleigh test statistic in (3.3), and we show that
the conditions (i)-(iii) of Theorem 4.1 always hold under FvML distributions.
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