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Abstract

Understanding complex relationships between random variables is of fundamental impor-
tance in high-dimensional statistics, with numerous applications in biological and social sci-
ences. Undirected graphical models are often used to represent dependencies between random
variables, where an edge between to random variables is drawn if they are conditionally de-
pendent given all the other measured variables. A large body of literature exists on methods
that estimate the structure of an undirected graphical model, however, little is known about the
distributional properties of the estimators beyond the Gaussian setting. In this paper, we focus
on inference for edge parameters in a high-dimensional transelliptical model, which generalizes
Gaussian and nonparanormal graphical models. We propose ROCKET, a novel procedure for
estimating parameters in the latent inverse covariance matrix. We establish asymptotic nor-
mality of ROCKET in ultra high-dimensional setting under mild assumptions, without relying
on oracle model selection results. ROCKET requires the same number of samples that are
known to be necessary for obtaining a »/n consistent estimator of an element in the precision
matrix under a Gaussian model. Hence, it is an optimal estimator under a much larger family
of distributions. The result hinges on a tight control of the spectral norm of the non-parametric
estimator of the correlation matrix, which is of independent interest. Empirically, ROCKET
outperforms the nonparanormal and Gaussian models in terms of achieving accurate inference
on simulated data. We also compare the three methods on real data (daily stock returns), and
find that the ROCKET estimator is the only method whose behavior across subsamples agrees
with the distribution predicted by the theory.

Keywords: Graphical model selection; Transelliptical graphical models; Covariance selection;
Uniformly valid inference; Post-model selection inference; Rank-based estimation



1 Introduction

Probabilistic graphical models (Lauritzen, 1996) have been widely used to explore complex system
and aid scientific discovery in areas ranging from biology and neuroscience to financial modeling
and social media analysis. An undirected graphical model consists of a graph G = (V| E), where
V ={1,...,p} is the set of vertices and F is the set of edges, and a p-dimensional random vector
X =(Xy,... ,Xp)T that is Markov with respect to GG. In particular, we have that X, and X, are
conditionally independent given the remaining variables {X. | ¢ € {1,...,p}\{a,b}} if and only if
{a,b} ¢ E. One of the central questions in high-dimensional statistics is estimation of the undirected
graph G given n independent realizations of X, as well as quantifying uncertainty of the estimator.

In this paper we focus on (asymptotic) inference for elements in the latent inverse covariance
matrix under the semiparametric elliptical copula model (Embrechts et al., 2003; Kliippelberg et al.,
2008), also known as the transelliptical model (Liu et al., 2012b). Let X7, ..., X,, be n independent
copies of the random vector X that follows a transelliptical distribution,

X ~TEX, & fry---0 fp), (1.1)
where ¥ € RP is a correlation matrix (that is, ¥;; = 1 for j = 1,...,p), £ € R is a nonnegative ran-
dom variable with P{¢ = 0} = 0, and f1, ..., f, are univariate, strictly increasing functions. Recall

that X follows a transelliptical distribution if the marginal transformation (fi(X1),..., fp(Xp)) of
X follows a (centered) elliptically contoured distribution with covariance matrix ¥ (Fang et al.,
1990). Let © = X~! be the inverse covariance matrix, also known as the precision matrix; under
a Gaussian model, nonzero elements in ) correspond to pairs of variables that are conditionally
dependent, i.e. form an edge in the graph G. Under the model in (1.1), we construct an estimator
for a fixed element of the precision matrix, ., that is asymptotically normal. Furthermore, we
construct a confidence interval for the unknown parameter €., that is valid and robust to model
selection mistakes. Finally, we construct a uniformly valid hypothesis test for the presence of an
edge in the graphical model.

Our main theoretical result establishes that given initial estimates of the regression coefficients
for (fa(Xa), fo(Xp) on (fj(X;))j-ap, One can obtain a y/n-consistent and asymptotically normal
estimator for 2,;. These initial estimators need to converge at a sufficiently fast rate (see Section 3).
In particular, we note that we do not require strict sparsity in these regressions, and allow for an
error rate that is achievable by known methods such as a nonconvex Lasso (Loh and Wainwright,
2013) (see Section 3.1). To achieve 4/n-consistent rate, our estimator requires the same scaling for
sample size n as in the Gaussian case, which is minimax optimal (Ren et al., 2013).

Given accurate initial estimates, in order to construct the asymptotically normal estimator, we
prove a key result: that the vector sign(X; — X;/) is subgaussian at the scale C(X2) (the condition
number of ¥), with dependence on the dimension p coming only through 3. This result allows
us to construct an asymptotically normal estimator by combining the initial regression coefficient
estimates with the Kendall’s tau rank correlation matrix. In particular, the subgaussianity result
allows us to establish a new concentration result on the operator norm of the Kendall’s tau cor-
relation matrix that hold with exponentially high probability. This result allows us to uniformly
control deviations of quadratic forms involving the Kendall’s tau correlation matrix over approxi-
mately sparse vectors. These results are of independent interest and could be used to improve recent



results of Mitra and Zhang (2014), Wegkamp and Zhao (2013) and Han and Liu (2013). Further-
more, subgaussianity of sign(X; — X;/) allows us to study properties of penalized rank regression in
high-dimensions.

We base our confidence intervals and hypothesis tests on the asymptotically normal estimator
of the element 2, (see Section 2). We point out that our results hold under milder conditions than
those required in Ren et al. (2013), which treats the special case of Gaussian graphical models. Most
notably, we give a /n-consistent estimator for elements in the precision matrix without requiring
strong parametric assumptions.

1.1 Relationship To Literature

Our work contributes to several areas. First, we contribute to the growing literature on graphical
model selection in high dimensions. There is extensive literature on the Gaussian graphical model,
where it is assumed that X ~ N(0,X), in which case the edge set E of the graph G is encoded by
the non-zero elements of the precision matrix 2 (Meinshausen and Biithlmann, 2006; Yuan and Lin,
2007; Rothman et al., 2008; Friedman et al., 2008; d’Aspremont et al., 2008; Fan et al., 2009; Lam
and Fan, 2009; Yuan, 2010; Cai et al., 2011; Liu and Wang, 2012; Zhao and Liu, 2014). Learning
structure of the Ising model based on the penalized pseudo-likelihood was studied in Hofling and
Tibshirani (2009), Ravikumar et al. (2010) and Xue et al. (2012). More recently, Yang et al.
(2013) studied estimation of graphical models under the assumption that each node’s conditional
distribution belongs to an exponential family distribution. See also Guo et al. (2011a), Guo et al.
(2011b), Lee and Hastie (2012), Cheng et al. (2013), Yang et al. (2012) and Yang et al. (2014) who
studied mixed graphical models, where node’s conditional distributions are not necessarily all from
the same family (for instance, there may be continuous-valued nodes as well as discrete-valued
nodes). The parametric Gaussian assumption was relaxed in Liu et al. (2009), where graphic
estimation was studied under a Gaussian copula model. More recently, Liu et al. (2012a), Xue
and Zou (2012) and Liu et al. (2012b) show that the graph can be recovered in the Gaussian and
elliptical semiparametric model class under the same conditions on the sample size n, number of
nodes p and the maximum node degree in the graph s as if the estimation was done under the
Gaussian assumption. In our paper, we construct a novel y/n-consistent estimator of an element in
the precision matrix without requiring oracle model selection properties.

Second, we contribute to the literature on high-dimensional inference. Recently, there has been
much interest on performing valid statistical inference in the high-dimensional setting. Zhang and
Zhang (2013), Belloni et al. (2013a), Belloni et al. (2013d), van de Geer et al. (2014), Javanmard
and Montanari (2014), Javanmard and Montanari (2013), and Farrell (2013) developed methods for
construction of confidence intervals for low dimensional parameters in high-dimensional linear and
generalized linear models, as well as hypothesis tests. These methods construct honest, uniformly
valid confidence intervals and hypothesis test based on the ¢1-penalized estimator in the first stage.
Similar results were obtained in the context of the ¢1-penalized least absolute deviation and quantile
regression (Belloni et al., 2013¢,b). Lockhart et al. (2014) study significance of the input variables
that enter the model along the lasso path. Lee et al. (2013) and Taylor et al. (2014) perform
post-selection inference conditional on the selected model. Liu (2013), Ren et al. (2013) and Chen
et al. (2013) construct 4/n-consistent estimators for elements of the precision matrix 2 under a
Gaussian assumption. We extend these result to perform valid inference under semiparametric



ellitical copula models. In a recent independent work, Gu et al. (2015) propose a procedure for
inference under a nonparanormal model. We will provide a detailed comparison in Section 3.

1.2 Notation

Let [n] denote the set {1,...,n} and let I{-} denote the indicator function. For a vector a € R, we
let supp(a) = {j : a; # 0} be the support set, and let ||al|q, for ¢ € [1,0), be the £;-norm defined
as [lallg = (Ziepn] |a;|9)/ with the usual extensions for ¢ € {0, 00}, that is, ||a||o = |supp(a)| and
lalloo = maxen) |ai-

For a matrix A € R™*"2 for sets S < [n1] and T < [n2], we write Agr to denote the |S| x |T|
submatrix of A obtained by extracting the appropriate rows and columns. The sets S and/or T
can be replaced by single indices, for example, for S < [n1] and j € [n2], Ag; is a |S|-length vector.
If Ae R™ " is a square matrix, for any 7' < [n] we may write Ap to denote the square submatrix
Arr.

For a matrix A € R™*"2 we use the notation vec(A) to denote the vector in R™"2 formed
by stacking the columns of A. We denote the Frobenius norm of A by ||A[|2 = Duie[ni],je[na] A?j,
and the operator norm (spectral norm) by ||A||op, that is, the largest singular value of A. The
norms [|A[[; and [[A| are applied entrywise, with [|A[[1 = };; |A;j| and [|A|[e = max;; [A;5[. We
write C(A) to denote the condition number of A, that is, the ratio between the largest and smallest
singular values. For two matrices A € R"*™ and B € R"*%, A® B € R"*™* denotes the Kronecker
product, with (A® B);j ji = Ay By For two matrices of the same size, A, B € R"™*™, Ao B e R"*™
denotes the Hadamard product (that is, the entrywise product), with (Ao B);; = A;;B;;. Kronecker
products and Hadamard products are defined also for vectors, by treating a vector as a matrix with
one column.

Throughout, ®(-) denotes the cumulative distribution function of the standard normal distri-
bution, that is, ®(t) = P{N(0,1) < t}.

1.3 Organization of the paper

In Section 2 we introduce Gaussian graphical models and their nonparametric extensions: nonpara-
normal and transelliptical graphical models. It is illustrated that transelliptical graphical models
are useful for modeling dependent tail events, which cannot be modeled with Gaussian and nonpara-
normal graphical models. We further introduce our asymptotically normal estimator, ROCKET,
for edge parameters in a transelliptical model. Our main theoretical result, which establishes dis-
tributional properties of the ROCKET estimator, is given in Section 3 together with technical
assumptions. Section 3.1 discusses choices of initial estimators. It is shown that the non-convex
Lasso estimator can be used under the same conditions used to study the Gaussian case. Section 4
provides an outline of the proof for the main result and the key technical result. Section 5 provides
illustrative simulations. An application to S&P 500 stock price closing data is given in Section 6.
We conclude the paper with a discussion. Technical proofs are relegated to Appendix.



2 Preliminaries and method

Before introducing our method, we begin with some preliminary definitions and properties of the
transelliptical distribution, and related models.

Gaussian and nonparanormal graphical models Suppose that X = (Xj,..., X)) follows a
multivariate normal distribution,
X ~N(p,X).

A Gaussian graphical model represents the structure of the covariance matrix ¥ with a graph,
where an edge between nodes a and b indicates that Qg # 0, where Q = 7! is the precision
(inverse covariance) matrix. This model can be generalized by allowing for arbitrary marginal
transformations on the variables X7, ..., X). Liu et al. (2009) study the resulting distribution, the
nonparanormal model (also known as a Gaussian copula), where we write

X ~ NPN(Zaflv : 'afp)a

if the marginally transformed vector (f1(X1),..., fp(Xp)) follows a (centered) multivariate normal
distribution,

(fl(Xl)a R fp(Xp)) ~ N(O> Z) .

The sparse structure of the underlying graphical model, representing the sparsity pattern in () =
¥.~! can then be recovered using similar methods as in the Gaussian case. Note that the Gaussian
model is a special case of the nonparanormal model (by setting fi,..., f, each to be the identity
function).

Elliptical and transelliptical graphical models The elliptical model is a generalization of
the Gaussian graphical model that allows for heavier-tailed dependence between variables. The

random vector X = (Xi,..., X)) follows an elliptical distribution with the mean vector p € RP,
covariance matrix ¥ € RP*P, and a random variable (the “radius”) £ = 0, denoted by
X ~ E(:U’a E,f) >

if we can write X = pu + &+ A-U, where AAT = ¥ is a Cholesky decomposition of ¥, and where
U € R? is a unit vector drawn uniformly at random (independently from the radius £). Note that
the level sets of this distribution are given by ellipses, centered at p and with shape determined by
Y. The Gaussian model is a special case of the elliptical model (by taking £ ~ xp).

The transelliptical model (also known as an elliptical copula) combines the elliptical distri-
bution with marginal transformations, much as the nonparanormal distribution applies marginal
transformations to a multivariate Gaussian. For a random vector X € RP we write

X NTE(Zagvflavfp)

to denote that the marginally transformed vector (f1(X1),..., fp(X,)) follows a centered elliptical
distribution, specifically,

(fi(X1),..., fp(Xp)) ~ E(0,%,¢) .

Here the marginal transformation functions fi,..., f, are assumed to be strictly increasing. Note
that the Gaussian, nonparanormal, and elliptical models are each special cases of this model.



Pearson’s rho and Kendall’s tau From this point on, we assume for each distribution that
i = 0 and that ¥ is a correlation matrix (that is, diagonal elements are equal to one, ¥4, = 1).
In the case of the Gaussian distribution X ~ N(0,X), the entries of ¥ are the (population-level)
Pearson’s correlation coefficients for each pair of variables, which in this case we can also write as
Yap = E[X,Xp]. In this setting, we can estimate ¥ with the sample covariance.

In the nonparanormal setting, X ~ NPN(X; f1,..., fp), it is no longer the case that ¥, is equal
to the (population-level) correlation Corr(X,, X3), due to the marginal transformations. However,
we can estimate f1,. .., f, by performing marginal empirical transformations of each X, to the stan-
dard normal distribution. After taking these empirical transformations, ¥ can again be estimated
via the empirical covariances. Similarly, for the elliptical model X ~ E(0,X,¢), after rescaling so
that E[¢2] = p we also have Y, = E[X,X}]. We can therefore again estimate ¥ via the empirical
covariance.

For the transelliptical distribution, in contrast, this is no longer possible. Taking scaling E[¢?] =
p for simplicity, we generalize the calculations above to have

Yab = E[fa(Xa)fb(Xb)] .

Therefore, if we can estimate the marginal transformations fi,..., fp, then we can estimate X
using the empirical covariance of the transformed data. However, unlike the nonparanormal model,
estimating fi,..., fp is not straightforward. The reason is that, for the elliptical distribution
E(0, 3, &), the marginal distributions are not known unless the distribution of the radius ¢ is known.
Therefore, marginally for each X,, we cannot estimate f, because we do not know what should be
the marginal distribution after transformation, that is, what should be the marginal distribution
of fa(Xg). (In contrast, in the nonparanormal model, we know that f,(X,) is marginally normal.)

As an alternative, Liu et al. (2012b) use the Kendall rank correlation coefficient (Kendall’s tau).
At the population level, Kendall’s tau is given by

Tab 1= T(Xq, Xp) = E [sign(X, — X],) - sign(X, — X3)] ,

where X’ is an i.i.d. copy of X. Unlike Pearson’s rho, the Kendall’s tau coefficient is invariant to
marginal transformations: since f,, f; are strictly increasing functions, we see that

sign(fa(Xa) — fa(X3)) - sign(fo(Xp) — fo(X3)) = sign(Xa — Xy) - sign(Xp — Xj) .

At the sample level, Kendall’s tau can be estimated by taking a U-statistic comparing each pair of
distinct observations:

~ 1 . .
Tab = 7 Z sign(Xiq — Xyg) - sign(X;p — Xirp) - (2.1)
(2) 1<i<i’'<n

When X follows an elliptical distribution, Therorem 2 of Lindskog et al. (2003) gives us the fol-
lowing relationship between Kendall’s tau and the Pearson’s rho coefficients given by the covariance
matrix X:

Yabp = sin <g7_ab) for each a,b € [p] .



Since Kendall’s tau is invariant to marginal transformations, this identity holds for the transellip-
tical family as well. For this reason, Liu et al. (2012b) estimate the covariance matrix ¥ by

S, = sin (g%) . (2.2)

Note, however, that $ is not necessarily positive semidefinite.

For the remainder of this paper, S} denotes the estimate given here in (2.2). The matrix of
the Kendall’s tau coefficients is denoted as T', that is, T,p := 745, and its empirical estimate (with
entries defined as in (2.1)) is denoted as 7.

Comparing models: tail dependence It is clear that, compared to a Gaussian graphical
model, the nonparanormal model allows for data that may be extremely heavy-tailed (in the
marginal distributions). A more subtle consideration is the question of tail dependence between
two or more of the variables. In particular, the nonparanormal model does not allow for tail depen-
dence between two variables to be any stronger than in the Gaussian distribution itself. Specifically,
consider pairwise a-tail dependence between X, and X, given by

Tailo (X, Xp) := Corr (I[ {Xa = qf"} ; H{Xb = Q()x(b}) )

where ¢X¢ is the a-quantile of the marginal distribution of X,, and same for X;. Taking o — 1,
this is a measure of the correlation between the extreme right tail of X, and the extreme right tail
of Xp. (Of course, we can also consider the left tail of the distribution of X, and/or Xj.)

Note that marginal transformations of each variable do not affect this measure, since the quan-

X
o

tion has the same tail correlations Tail,(Xg, X3) as the multivariate Gaussian distribution (with the
same ). In contrast, an elliptical or transelliptical model can exhibit much higher tail correlations.

tiles gXe, ¢ take these transformations into account. In particular, the nonparanormal distribu-

Since real data often exhibits heavy tail dependence between variables, the flexible transelliptical
model may be a better fit in many applications.
We demonstrate this behavior with a simple example in Figure 1. Here we take

1 1/\/5)7

X = (X1, X3) ~ E(0,3,¢) with ¥ = < a1

(2.3)

where & ~ x2-v/d/xq for d € {0.1,1,5, 10, 0}, corresponding to a multivariate t-distribution with d
degrees of freedom (note that d = oo is equivalent to taking X ~ N(0,X)). Note that at a = 0.5, the
tail correlation Tail, (X1, X2) is equal to the Kendall’s tau coefficient 7(X1, Xs) = %arcsin(Zu) =
0.5. Figure 1 shows that, as o — 1, the tail correlation decreases towards zero for the normal
distribution (d = ) but grows for low values of d.

2.1 ROCKET: an asymptotically normal estimator

Suppose that our data points X; are drawn i.i.d. from a transelliptical distribution with covariance
matrix ¥.. We would like to perform inference on a particular entry of the precision matrix Q = X1,
specifically, we are interested in producing a confidence interval for €, where a # be {1,...,p} is
a prespecified node pair.
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Figure 1: Tail dependence for normal and elliptical distributions on R?. Data is generated as
in (2.3). The figure displays Tail, (X1, X2), estimated empirically from a sample size n = 20000.

To move towards constructing a confidence interval, we introduce a few definitions and calcu-
lations. First, let I = {1,...,p}\{a,b}, and observe that by block-wise matrix inversion, we can
calculate the {a, b} x {a,b} sub-block of Q as follows:

1

Qab,ab = (Zab,ab - z:ab,IZEIZI,ab)i (24)

Define ~, = ZI_IEM and vy, = ZI_IZM (in the Gaussian graphical model setting, these are the
regression coefficients when f,(X,) or f,(Xp) is regressed on {f;(X;) : j € I}). We then have

Sab 127 S = (Vo 1) Srab = 2L ap(Ya W) = (a W) S1(Ya W) -

We can therefore rewrite (2.4) as follows (this somewhat redundant formulation will allow for a
favorable cancellation of error terms later on):

0 := (Qab,ab)il = Eab,ab - (’Ya 'Yb)TEI,ab - E}—,ab(’)/a 'Yb) + (’Ya ’Yb)TEI('Ya 'Yb) . (2‘5)

We abuse notation and index the entries of ©® with the indices a and b, that is, we denote © as
lying in Ri®} 4@t} rather than R2*2.

Next, we define an oracle estimator of O, defined by plugging the true values of v, and -, and
the empirical estimate of ¥ (given in (2.2)) into (2.5) above:

0 = Suvab — (Ya 1) Srap — i;ab(% W)+ (Ya ) Sr(va W) - (2.6)

Later on (in Theorem 4.1), we will show that due to standard results on the theory of U-statistics,
this oracle estimator is asymptotically normal. If © were known, then, we would have achieved our



goal for inference in this model, as Qab = (C:)_l> , weakly converges to a Normal random variable
a

centered at €y, with variance Sgp/n.

Of course, in practice we do not know the true values of ~, and =3, and must instead use some
available estimators, denoted by ¥, and ¥, (we discuss how to obtain these preliminary estimates
later on). Given the estimators of the regression vectors, we then define our estimator of © as
follows:

0 = Suab — Fa 7o) "Srap — i;ab(% ) + (Fa ) 21 (Fa %) - (2.7)

Since we are interested in ), rather than in the matrix ©, as a final step we define our estimator
Qap = (é—l) . (2.8)
ab
In order to make inference about §2,,, we approximate the distribution of Svlab. Let

- Qup — Q2
Erryy = 2tab — *fab 7 (2.9)
Sab

be the studentized error, where the normalization term gab is defined below. First, define the
(random) kernel

3(X, X') = sign(X — X)7 ( 7T o cos (;TT>> sign(X — X') ,

where
Uq = 17ub = O,U[ = Y and Vg = O,Ub = 177)] == -

(Note that we have defined % and ¥ so that O, = ﬁTfhv).) Then define

2
- T 1 1
Sab = —— - —Z ( Z 9(Xi, Xir) — mean(§)> where mean(g) = —— Z (X, Xy)
det(©) ng\n-1Z (72L i<i!
We will see later on that ggb estimates the variance of (:)ab and that the expression above arises
naturally from the theory of U-statistics.

Our main result, Theorem 3.5 below, will prove that \/n - Erry, follows a distribution that is
approximately standard normal. Therefore, an approximate (1 — a)-confidence interval for g, is

given by

~

jﬁb , (2.10)

where z, /5 is the appropriate quantile of the normal distribution, that is, P {N (0,1) > z, /2} = /2.
In order to establish the asymptotic normality of y/n- Errgp, we will show that V|[0—=6|| = op(1)
and that §abS&)1 — 1‘ =op(1).

CQ

~

Qab * a2 "




Notation for fixed vs random quantities From this point on, as much as possible throughout
the main body of the paper, quantities that depend on the data and depend on the initial estimates
Ja»Yp are denoted with a “check” accent, for example, o. Quantities that depend on the data,
but do not depend on ¥,,7, are denoted with a “hat” accent, for example, 5. Any quantities
with neither a “hat” nor a “check” are population quantities, that is, they are not random. Two
important exceptions are the data itself, X1, ..., X,,, and the oracle estimator, (:j, which is of course
data-dependent (but does not depend on g, ).

3 Main results

In this section, we give a theoretical result showing that the confidence interval constructed in
(2.10) has asymptotically the correct coverage probability, as long as we have reasonably accurate
estimators of v, = EI_IE 1o and v, = ZI_IZ p- Our asymptotic result considers a problem whose
dimension p, = 2 grows with the sample size n. We also allow for the sparsity level in the true
inverse covariance matrix 2 € RP»*Pn to grow.! We use k,, to denote an approximate bound on the
sparsity in each column of Q (details given below).

We begin by stating several assumptions on the distribution of the data and on the initial
estimators 7y, and %,. All of the constants appearing in these assumptions should be interpreted as
values that do not depend on the dimensions (n, p,, ky,) of the problem.

Assumption 3.1. The data points X1,..., X, € RP are i.i.d. draws from a transelliptical distri-
bution,
id
X’i ’LL TE(E,&, f17 cecy fpn) 9
where fi,..., fp, are any monotone functions, & = 0 is any random variable with P{{ = 0} = 0,
and the covariance matriz ¥ € RP»*Pr s positive definite, with diag(X) = 1 and bounded condition
number,
Amax(2)
() =" < Ceoy
( ) )\mln(z) cov

for some constant Ceoy .

Assumption 3.2. The a-th and b-th columns of the true inverse covariance ), denoted by €2, and
Qyp, are approzimately k,-sparse, that is, they satisfy

HQGLHI 4 HQle < Csparse V kn

for some constant Csparse-

Assumption 3.3. For some constant Cest and for some 0, > 0, with probability at least 1 — oy,
the preliminary estimates ¥, and ¥y of the vectors v, and v satisfy

772 771 . .

[Fa = vall2 v 176 = wll2 < Cest and |[Ya =all1 v [ = 7|11 < Cest

"While 3, €, etc, all depend on the sample size n since the dimension of the problem grows, we abuse notation
and do not write ¥,, ., etc; the dependence on n is implicit.
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Assumption 3.4. Define the kernel
h(X,X') = sign(X — X') ®sign(X — X') € RV

and let
hi(X) = E[h(X,X’) | X] )

Define ¥, = Var(h(X, X")) and Xy, = Var(h1(X)), where X, X’ u TE(X,&; f1,..-, fp,). Then for
some constant Cyemel > 0,2
Chernel * 2p < Xpy < Bp .

Assumption 3.1 assumes that the smallest and largest eigenvalues of the correlation matrix %
are bounded away from zero and infinity, respectively. This assumption is commonly assumed in
the literature on learning structure of probabilistic graphical models (Ravikumar et al., 2011; Liu
et al., 2009, 2012a). Assumption 3.2 does not require that the precision matrix € be exactly sparse,
which is commonly assumed in the literature on exact graph recovery (see, for example, Ravikumar
et al., 2011), but only requires that rows §2, and €, have the ¢; norm that does not grow too fast.
Note that if €., for ¢ = a, b, is k,-sparse vector, then

||QcH1 < \/EHQCHQ < \/akmax(g) < Ccov\/?n

and we could then set Csparse = Ceoy. Assumption 3.3 is a high-level condition, which assumes
existence of initial estimators of v, and =, that converge at a fast enough rate. In the next section,
we will see that Assumption 3.1 together with a stronger version of Assumption 3.2 are sufficient
for Assumption 3.3 to be satisfied with a specific estimator that is efficient to compute. Finally,
Assumption 3.4 is imposed to allow for estimation of the asymptotic variance Qgp.

We now state our main result.

Theorem 3.5. Under Assumptions 3.1, 5.2, 3.8, and 3.4, there exists a constant Cconverge, de-
pending on Ceoy, Csparse; Cest; Ckernel but not on the dimensions (n,pp, ky) of the problem, such that

P{\/ﬁ.(zabg_ﬂabgt}_q)(t)

k2 log? 1
7 log (pn)+7+5n_
n Pn

<

sSup = CYconverge :

teR

We note that the result holds uniformly over a large class of data generating processes satisfying
Assumptions 3.1,3.2, 3.3, and 3.4, which are rather weak assumptions. We emphasize that the result
holds without requiring exact model selection or oracle properties, which hold only for restrictive
sequences of data generating processes. For example, we do not require the “beta-min” condition
(that is, a lower bound on |4| for all true edges) or any incoherence conditions (Bithlmann and
van de Geer, 2011), which may be implausible in practice. Instead of requiring perfect model
selection, we only require estimation consistency as given in Assumption 3.3.

As an immediate corollary, we see that the confidence interval constructed in (2.10) is asymp-
totically correct:

2Here we use the positive semidefinite ordering on matrices, that is, A > B if A — B > 0. Note that the second
part of the inequality, ¥, < ¥, is always true by the law of total variance.

11



Corollary 3.6. Under the assumptions and notation of Theorem 3.5, the (1—«)-confidence interval
constructed in (2.10) fails to cover the true parameter Qg with probability no higher than

k2 log? 1
ki log”(pn) + — 40,
n Pn

a+ 2 C’converge :
Again this result holds uniformly over a large class of data generating distributions.

Theorem 3.5 is striking as it shows that we can form an asymptotically normal estimator of
Qup under the transelliptical distribution family with the sample complexity n = (k‘,% log? (pn))
This sample size requirement was shown to be optimal for obtaining an asymptotically normal
estimator of an element in a precision matrix from multivariate normal data (Ren et al., 2013).

More precisely, let
Q= (Qab)a,be[p] ¢ INaXge(p] Zb;éa {Qqp # 0} < ki,
Go(M. kn) = { and M1 < Amin(2) < A () < M.

where M is a constant greater than one. Then Theorem 1 in Ren et al. (2013) states that

~

infinf sup IP’{ Qap — Qap

@b Oy, Go(M,kn)

> € <n_1kn log(pn) v n_1/2>} = €

and, therefore, our estimator is rate optimal.

At this point, it is also worth mentioning the result of Gu et al. (2015), who study inference
under Gaussian copula graphical models. They base their inference procedure on decorrelating a
pseudo score function for the parameter of interest and showing that it is normally distributed.
Their main result, stated in Theorem 4.10, requires the sample size to satisfy

3/2
KM (k)g?(lp ”)> + kgM?’logg’") —o(n72)

where M = maxge[y] Zbe[p] |Q45]. As M can be potentially as large as v/ky, it is immediately clear
that our result achieves much better scaling on the sample size.

3.1 Initial estimators

The validity of our inference method relies in part on the accuracy of the initial estimators %, and ¥,
which are assumed to satisfy error bounds with high probability as stated in Assumption 3.3—that
is, with high probability, we have

k2 log(pn)

and H’\}I/a _7a||1 Vv ||>}//b _'Yle < Cest T >

- - kn log(p
o e v 1 — 3l < Gy 2128 21)

where Cest is some constant. Below, we will prove that these required error rates can be obtained,
under an additional sparsity assumption, by the Lasso estimators

1

37 8 =2 S+ Alblh (32

Ve = argmin {
YeRT;||v][1 <Ceovv/2kn
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for each ¢ = a, b, when the penalty parameter A is chosen appropriately. In fact, these optimization
problems may not be convex, because S 7 will not necessarily be positive semidefinite. Loh and
Wainwright (2013) developed theory for this nonconvex high-dimensional setting, which can be
applied to our problem to show that Assumption 3.3 is guaranteed to hold with high probability.
In particular, any local minimizers of the two optimization problems will satisfy requirements of
Assumption 3.3 and, therefore, we only need to be able to run optimization algorithms that find
local minima.

We now turn to proving that any local minima for (3.2) for ¢ = a, b will satisfy the required error
rates of Assumption 3.3. To proceed, we will use the theoretical results of Loh and Wainwright
(2013), which gives a theory for local minimizers of nonconvex regularized objective functions. We
specialize their main result to our setting.

Theorem 3.7 (Adapted from Loh and Wainwright (2013, Theorem 1)). Consider any n,p > 1,
any A € RP*P and z € RP, and any k-sparse x* € R with ||z*||1 < R. Suppose that A satisfies
restricted strong convexity conditions

lo
0T Av > OCIHUH% _ TIHUH%‘ g(p) . (3.3)
If
. 16R%7 maX{(;laTl}IOg(p) (3.4)
aj
and
log(p) o2
A||Ax* — 4 <A< —= :
max{ [Az™ — 2|[c0, 40y n 6R (8:5)

then for any I that is a local minimum of the objective function %a:TAa? — 2"z + N|z||1 over the set
{zx e R : ||z||1 < R}, it holds that

1.5MWEk Mk
[ — 2l < LOAVE andHi—x*Hlsil.

We apply Theorem 3.7 to our problem of estimating v, and v, under a setting where the true
regression coefficient vectors 7, and =, are exactly sparse.

Corollary 3.8. Suppose that Assumption 3.1 holds. Assume additionally that the columns Qq, Qp
of the true inverse covariance Q = L~1 are k,-sparse. Then there exist constants Csample; Classo>
depending on Ceoy but not on (n,kn,pp), such that if n = Csampiekn log(pn) then, with probability
at least 1 — 2%", any local minimizer %y, of the objective function

1 -~ ~
§’YTZI’Y — "2+ Al

over the set {y € R : ||y]|1 < Ceovr/2kn} satisfies

Hﬁa - '7(1”2 < 3\/§Ccov)\ \V; kn and Hﬁa - '7(1”1 < 24C’cov)\ V ky .

where we choose A = Classo - %. The same result holds for estimating .

13



Using this corollary, we see that a local minimizer of (3.2), 7., satisfies Assumption 3.3 with ¢,, = p%
and Cest = 24CcovClasso-

To prove that this corollary follows from Loh and Wainwright (2013)’s result (Theorem 3.7), it is
sufficient to check that the restricted strong convexity condition (3.3) holds, with high probability
for the matrix i\][, and then compute the necessary values for A and the other parameters of
Theorem 3.7. The proof is technical and relies on novel results on concentration of the Kendall’s
tau correlation matrix. Details are given in Appendix C.

We have provided sufficient condition for a local minimizer of (3.2) to satisfy Assumption 3.3,
however, many other estimators can be used as initial estimators. For example, one could use
the Dantzig selector (Candés and Tao, 2007). Potential benefits of the Dantzig selector over the
optimization program in (3.2) are two fold. First, the optimization program is convex even when
) 7 is not positive semi-definite. Second, one does not need to know an upper bound R on the /1
norm of €2, for ¢ = a,b. Using the techniques similar to those used to prove Corollary 3.8, we can
also prove that Assumption 3.3 holds when the Dantzig selector is used as an initial estimator.

In practice, for ease of computation, we remove the constraint on ||v||; in each optimization
problem (3.2) for ¢ = a,b. Furthermore, we have found that in simulations, using the Lasso
for model selection, and then refitting without a penalty, leads to better empirical performance:
specifically, for each ¢ = a, b, we first fit

N 1 1 S 5
520 — axgmin { 13781 =S50 + M}
'yERI

(or, more precisely, find a local minimum of this nonconvex optimization problem). We then extract
the combined support of these two solution, J = supp(¥52°) usupp('?l';as”), and refit the coefficients

using least-squares:
~ \ 1A~
§c=<2j) Yy, forc=a,b.

Adapting the proof of Belloni and Chernozhukov (2013), we can also rigorously prove that the
refitted estimators also satisfy the Assumption 3.3.

4 Main technical tools

In this section, we outline the proof of Theorem 3.5 and state the key technical result that establishes
that sign-subgaussianity property of X that follows a transelliptical distribution. We also illustrate
an application of this technical result to establishing a bound on ¥ — X.

4.1 Sketch of proof for main result

The proof of Theorem 3.5 follows three steps:

e Step 1: prove that the distribution of (:)ab, the oracle estimator of ©,, is asymptotically
normal, with

~

Gab - eab

v Sqp det(0)

— N(0,1)
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where Sy is the asymptotic variance of Qab- (Explicit form of Sy is given in the proof of
Theorem 4.1.)

e Step 2: prove that the difference between the estimator and the oracle estimator, 6 — (:),
converges to zero at a fast rate, and that the variance estimator Sy, converges to S, at a fast
rate.

e Step 3: combining the two steps above, prove that of éab is an asymptotically normal esti-
mator of g4.

The detailed proofs for each step are found in Appendix B. Here, we outline the main results for
each step.
Step 1 establishes the Berry-Esseen type bound for the centered and normalized oracle estimator

Vi (Sap det(©)) ™ (B — O

We approximate the oracle estimator C:)ab by a linear function of the Kendall’s tau statistic JA’, which
is a U-statistic of the data. We prove that the variance of the linear approximation is bounded
away from zero and apply existing results on convergence of U-statistics. The following result is
proved in Appendix B.2.

Theorem 4.1. Suppose that Assumptions 3.1, 3.2, and 3.4 hold. Then there exist constants
Chormals Cvariance depending on Ceov, Csparsea Clernel but not on (n,pn, kn); such that

P{\/ﬁ.éab@m’gt}_@(t)

k;n IOg(pn) ]-
- - 7 _l’_
Sap - det(O)

N

where Sqp is defined in the proof and satisfies Sqp - det(©) = Clariance > 0.

sup < Cnormal :

teR

Step 2 contains the main challenge of this problem, since it requires strong results on the
concentration properties of the Kendall’s tau estimator S of the covariance matrix ¥. The main
ingredient for this step is a new result on “sign-subgaussianity”, that is, proving that the signs vector
sign(X; — Xy) is subgaussian for i.i.d. observations X;, X;;. Our results on sign-subgaussianity are
discussed in Section 4.2 and their application to concentration of S around ¥ is given in Section 4.3.
Using these tools, we are able to prove the following theorem (proved in Appendix B.3):

Theorem 4.2. Suppose that Assumptions 3.1, 3.2, and 3.3 hold. Then there exists a constant
Coracle; depending on Ceoy, Csparse, Cest but not on (n, pn, ky), such that, if3
n = 15k, log(pn)

then, with probability at least 1 — 2?%” — I,

<~ ky, log(pn,
H@ - @Hoo < C’oracle . w

n
and

~

Sap - Aet(®) — Sy - det(O)] < Corace - ki 10g(pn)

n

3Note that the additional condition n > 15k, log(pn) can be assumed to hold in our main result Theorem 3.5,
since if this inequality does not hold, then the claim in Theorem 3.5 is trivial.
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Finally, Step 3 simply involves tracking how the errors in O and in gab affect the final distribu-
tion, and proving that these errors have a neglible effect relative to the (approximately) standard
normal error of the oracle estimator. Details are given in Appendix B.4.

4.2 Sign-subgaussian random vectors

Recall the definition of a subgaussian random vector:

Definition 4.3. A random vector X € RP is C-subgaussian if, for any fized vector v € RP, it holds
that
E [evTX] < Clli3/2

For graphical models where the data points X; come from a subgaussian distribution, the sample
covariance matrix 1 > (X; — X)(X; — X)T, with X = 137 X,  is known to concentrate near the
population covariance, as measured by different norms. For example, elementwise convergence of
the sample covariance to the population covariance, that is, convergence in || - ||, is sufficient to
establish rates of convergence for the graphical Lasso, CLIME or graphical Dantzig selector for
estimating the sparse inverse covariance (Ravikumar et al., 2011; Cai et al., 2011; Yuan, 2010).
Similar results can be obtained also for the transelliptical family, since ||T — T||s < C1/log(p)/n
and hence || — 3|, < C+/log(p)/n, as was shown in Liu et al. (2012a) and Liu et al. (2012b).
However, in order to construct asymptotically normal estimators for the elements of the precision
matrix, stronger results are needed about the convergence of the sample covariance to the population
covariance (Ren et al., 2013). In particular, a result on convergence in spectral norm, uniformly over
all sparse submatrices, is required. One can relate the convergence in the elementwise £, norm to
(sparse( spectral norm convergence, however, this would lead to suboptimal sample size. One way
to obtain a tight bound on the (sparse) spectral norm convergence is by utilizing subgaussianity of
the data points X;. This is exactly what we proceed to establish.

Recall from (2.2) the Kendall’s tau estimator of the covariance,

& ~ ~ 1
Y = sin (gT) where T' = — Z sign(X; — X)) sign(X; — X)) " .

(g) i<t/

Therefore, it is crucial to determine whether the vector sign(X; — X/) is itself subgaussian, with
the variance proxy that depends on the ambient dimension p, only through C(X).* Using past
results on elliptical distributions, we can reduce to a simpler case using the arguments of Lindskog
et al. (2003) (proved in Appendix D.2):

Lemma 4.4. Let -

XX YUTES &y f)
Suppose that 3 is positive definite, and that £ > 0 with probability 1. Then sign(X — X') is equal
in distribution to sign(Z), where Z ~ N(0,%).

“Note that v’ sign(X; — X/) is obviously subgaussian as a sum of subgaussian random variables, however, its
variance proxy could grow linearly with p,.
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Previous work has shown that a Gaussian random vector Z ~ N(0,X) is “sign-subgaussian”, that
is, sign(Z) is subgaussian with variance proxy that depends on p, only through C(X), for special
cases when the covariance ¥ is identity or equicorrelation matrix (Han and Liu, 2013). However, a
result for general covariance structures was previously unknown.

In the following lemma, we resolve this question, proving that Gaussian vectors are sign-
subgaussian:

Lemma 4.5. Let Z ~ N(0,%) for some ¥ € RP*P. Then sign(Z) is C(X)-subgaussian.

This lemma is the primary tool for our main results in this paper—specifically, it is the key ingre-
dient to the proof of Theorem 4.2, which bounds the errors © — © and Sy, - det(©) — Sy - det(O).
Lemma 4.5 is proved in Appendix A. We also use this result in establishing results in the following
section.

4.3 Deterministic and probabilistic bounds on S

Lemma 4.5 is instrumental in obtaining probabilistic bounds on > — 3. Results given in this section
are crucial for establishing Theorem 4.2 and Corollary 3.8.
Let S be the set of k-sparse vectors in the unit ball,

S = {uc R : |ull2 < L,][ullo < &} .

The following lemma provides uniform deviation of w" T from u" Tu over Sk, with the proof given
in Appendix D.4.

Lemma 4.6. Suppose that k = 1 and § € (0,1) satisfy log(2/0) + klog(12p) < n. Then with
probability at least 1 — 0 it holds that

W (T — T)u‘ < 16(1 +V5)C(D) - \/log(2/5) + klos(12p)

n

sup
uESk

Next, we relate S to 7. First, for any k > 1, let By, be the set®

- p. 2 ||UH%
Br =< ueRP:A/||ull5+ - <1;p.
The intuition for this set is that it contains vectors bounded both in the ¢5 and ¢; norms; it is a
relaxation of k-sparsity. We have the following deterministic bound on the error of the covariance
estimator Y, which is proven in Appendix D.3:

Lemma 4.7. The following bound holds deterministically: for any k > 1,

k||T = T||5, + 27 sup

8 UESK 11

sup uw' (T —T)ul . (4.1)

u,vEB,

5 0|2
°Note that By is the unit ball for the norm given by ||ul|) = A/||u]|3 + %

ul (8- E)v‘ <

A~ ‘
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Lemma B.2, given in Appendix B.2, bounds ||T — T'||o, with high probability. Therefore, com-
bining it with Lemma 4.7 and 4.6, we immediately obtain the following corollary:

Corollary 4.8. Take any 61,02 € (0,1) and any k = 1 such that log(2/d2) + (k + 1) log(12p) < n.
Then, with probability at least 1 — d1 — 02, the following bound on ¥ — X holds:

W€ -y < T RO Ly By 2B (D os(12)

sup
u,veB

(4.2)

Results of Lemma 4.6 and Corollary 4.8 can be compared to Theorem 2 in Mitra and Zhang
(2014). When C(X) = O(1), we extend their result to the transelliptical copula model and provide
an alternative proof for the Gaussian copula model. We note that their result does not depend on
the condition number of the covariance matrix, but only on the maximum eigenvalue. However, in
the context of graphical models it is commonly assumed that the smallest eigenvalue is a constant.
Furthermore, our result can also be compared with Theorem 4.10 of Han and Liu (2013). We
rigorously establish the result for all well-conditioned covariance matrices, without explicitly making
the sign-subgaussian assumption.

5 Simulation studies

In this section, we illustrate finite sample properties of ROCKET described in Section 2. We
use ROCKET to construct confidence intervals for edge parameters and report empirical coverage
probabilities as well as the length of constructed intervals. For comparison, we also construct confi-
dence intervals using the procedure of Ren et al. (2013), which is based on the Pearson correlation
matrix, and a nonparanormal estimator of the correlation matrix proposed in Liu et al. (2009).
For these two methods, we use the plugin estimate of the correlation matrix together with (2.7) to
estimate {24,. Recall that Liu et al. (2009) estimate the correlation matrix based on the marginal
transformation of the observed data. Let

B b if Fy(x) < 6,
Fo(x) =< Fu(z) ifdé, < Fy(z)<1-9,
1—6, if Fy(z) >1—6,,

~ -1
where F,(z) = n~'Y, 1{X,, <z} is the empirical CDF of X, and 4, = <4n1/4 Wlog(n))

, is then estimated as f)ab — Corr (<I> (ﬁa(Xm)) , P (ﬁb(Xib)»
a

where ®(-) is a CDF of a standard normal distribution. Asymptotic variance of estimators of 4,

The correlation matrix % = (flab>

based on the Pearson or nonparanormal correlation matrix is obtained as Sgb =n! (Qaabe + sz) .

For all simulations, we set the tuning parameter A = 2.14/log(p,)/n, as suggested by our theory.
Note that the constant in front of the parameter is chosen large enough so that the penalty dom-
inates the variance of an element of the score. All computations for simulations and for the real
data experiment are carried out in Matlab (MATLAB, 2014).

Simulation 1. We generate data from the model

X ~ E(0,%,9), (5.1)
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ROCKET Pearson Nonparanormal

Coverage Width Coverage Width Coverage Width

(%) (%) (%)
w10,11 = 10.38 92.8 10.26 95.3 4.99 32.8 3.57
w1o,12 = 0 96.0 9.81 64.8 4.68 73.5 3.35
w10,20 = 0 96.1 11.08 64.8 4.92 76.7 3.50
@ w10,11 = 10.38 93.3 10.21 54.5 4.87 31.1 3.53
§ wip,12 = 0 96.0 9.75 63.5 4.62 73.2 3.33
o w10,20 = 0 96.3 11.02 63.6 4.86 77.0 3.47

Table 1: Empirical coverage and average length of 95% confidence intervals based on 1000 inde-
pendent simulation runs. Data generated from the model in (5.1) with chain graph structure.

where & follows a t-distribution with 5 degrees of freedom. The inverse covariance matrix €2 encodes
one of the following structures:

QO

e chain structure with QY 41 = 0.5, and

7.+l =

e a grid where each node is connected to its four nearest neighbors with the nonzero elements
of Q0 equal to w = 0.24.

Diagonal element of Q0 are equal to 1. Let (QO)_l =0 Then ¥ = diag_l/2 (EO) Zodiaug_l/2 (EO)
and Q = XL

First, we consider a chain graph and generate n = 400 samples from model in (5.1) with
p = 1000. Figures 2 and 3 show Q-Q plots based on 1000 independent realizations of the test statistic
defined in (2.9), \/ﬁlgr/rab, for the three methods together with the reference line showing quantiles
of the standard normal distribution. First row in the two figures illustrates actual performance of
the methods, while the second row illustrates performance of an oracle procedure that does not
need to solve a high-dimensional variable selection problem, but instead knows the sparsity pattern
of Q. From these two figures, we observe that the quantiles of the test statistic \/ﬁlgr/rab based on
ROCKET estimator are closest to quantiles of the standard normal random variable. We further
quantify these results in Table 1, which reports empirical coverage of the confidence intervals based
on \/ﬁEr/rab. From the table, we can observe that the coverage of the confidence intervals based on
ROCKET is close to nominal coverage of 95%.

Similar results are seen in Figure 4, which is based on n = 400 samples generated from the
model in (5.1) when Q encodes the 30 x 30 grid structure (p = 900). Table 2 reports empirical
coverage and length of the confidence intervals. These two examples are not surprising, since neither
the Pearson nor the nonparanormal correlation matrix consistently estimate the true ¥ under the
model in (5.1). However, using ROCKET we are able to construct a test statistic \/ﬁE\r/rab that
is asymptotically distributed as a standard normal random variable. The asymptotic distribution
provides a good approximation to the finite sample distribution of \/ﬁlgr/rab. We also observe that
ROCKET performs similarly to the oracle procedure that knows the sparsity structure of 2. Note
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Figure 2: Simulation 1. Q-Q plot of \/ﬁgrab with @ = 10 and b = 11 (edge) when data are
generated from the model in (5.1) with © encoding the chain structure.
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Figure 4: Simulation 1. Q-Q plot of \/ﬁEr/rab when data are generated from the model in (5.1) with
Q) encoding the grid structure. First row corresponds to an edge, second row to a close non-edge,
and third row to a far non-edge.

that the width of the confidence intervals obtained from ROCKET is larger due to imperfect model
selection.

Simulation 2. We illustrate performance of ROCKET when data are generated from a normal
and nonparanormal distribution. We consider §2 corresponding to a grid described in Simulation 1
and generate n = 400 samples from N(0,27!) and NPN(Q1; fl, ce f;,), where f] = fnod(j—1,5)+1
with fi(z) = =, f2(x) = sign(x)/|z], f3(z) = 23, fa(x) = ®(z), and f5(x) = exp(z). Here
mod(a, b) denotes the remainder after division of a by b.

Table 3 summarizes results from the simulation. We observe that when data are multivariate
normal all three methods perform well, with ROCKET having slightly wider intervals, but with
similar coverage. When data are generated from a nonparanormal distribution, using the Pearson
correlation in (2.7) results in confidence intervals that do not have nominal coverage due to the bias.
In this setting, nonparanormal estimator and ROCKET still have the correct nominal coverage.
Note however that when Kendall’s tau is equal to zero, Pearson correlation is also equal to zero.
See, for example, coverage for w(s 9) (33) and w2 2) (10,10)-

Similar results were obtained when data are generated from TE(Q2 7!, ¢; fl, ce f;,) with € ~ ¢4
or £ ~ t5. Due to space constraints, results are not shown.
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ROCKET Pearson Nonparanormal

Coverage Width Coverage Width Coverage Width

(%) (%) (%)
W) (23 = 041 92.8  0.54 66.6  0.49 797 0.34
W2.2)(33) =0 93.5  0.56 742 047 82.8  0.33
W(2,2),(10,10) = 0 93.8 057 748 048 85.3  0.33

Table 2: Simulation 1. Empirical coverage and average length of 95% confidence intervals based
on 1000 independent simulation runs. Data generated from the model in (5.1) with grid graph

structure.
ROCKET Pearson Nonparanormal
Coverage Width Coverage Width Coverage Width
(%) (%) (%)

g W2,2),(2,3) = 0.41 93.3 0.37 93.3 0.35 93.3 0.35
2 we2),e3 =0 94.7 0.38 94.1 0.34 93.9 0.34
(‘g W(2,2),(10,10) = 94.7 0.38 95.2 0.34 95.2 0.34
T o W22),23 =041 93.4 0.37 0.0 0.26 94.8 0.35
?% W(2,2),3,3) =0 94.9 0.38 89.4 0.29 95.5 0.34
Qg % W(2,2),(10,10) = 94.7 0.38 95.3 0.28 94.4 0.34
S0
=

Table 3: Simulation 2. Empirical coverage and average length of 95% confidence intervals based on
1000 independent simulation runs. €2 corresponds to a grid graph structure.

Simulation 3. In this simulation, we illustrate the power of a test based on \/ﬁlgr/rab to reject
the null hypothesis Hoqp : Q5 = 0. Samples are generated from the model in (5.1) with £ having
Xp» t5, and tq distribution and the covariance matrix is of the form ¥ = Ip+FE where E1p = Ez1 = p
with p = 1000 and n = 400. Note that { ~ X, implies that X is multivariate normal. We also
consider marginal transformation of X as described in Simulation 2. Figure 5 plots empirical power
curves based on 1000 independent simulation runs for different settings. When data are following
normal distribution all three methods have similar power. For other distributions, tests based on
Pearson and nonparanormal correlation do not have correct coverage and are shown for illustrative
purpose only.
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Figure 5: Simulation 3. Power plots for simulated data generated from a Gaussian distribution,
and from a multivariate t distribution with 5 degrees of freedom and with 1 degree of freedom.

6 Real data experiment

In this section, we evaluate the performance of the ROCKET method on a real data set, and
compare with the Gaussian graphical model based approach of Ren et al. (2013) (using Pear-
son correlation) and the nonparanormal estimator proposed in Liu et al. (2009) (details for these
methods are given in Section 5).

We use stock price closing data obtained via the R package huge (Zhao et al., 2014), which
was gathered from publicly available data from Yahoo Finance®. The data consists of daily closing
prices of 452 S&P 500 companies over 1258 days. We transform the data to consider the log-returns,

that is, we form a matrix X € R258%452 with entries

X 1 Closing price of stock j on day ¢ + 1
i =lo .
" Closing price of stock j on day @

While in practice there is dependence across time in this data set, we treat each row of X as
independent.

We perform two experiments on this data set. In Experiment 1, we test whether empirical results
agree with the asymptotic normality predicted by the theory for the three methods—we do this
by splittting the data into disjoint subsamples and comparing estimates across these subsamples.
In Experiment 2, we use the full sample size and compare the estimates and confidence intervals
produced by each of the three methods.

Shttp://ichart.finance.yahoo.com
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6.1 Experiment 1: checking asymptotic normality

In this real data example, there is no available “ground truth” to compare to—that is, we do not
know the true distribution of the data, and cannot compare our estimates to an exact true precision
matrix 2. However, we can still check whether the estimators produced by these methods exhibit
asymptotic normality (as claimed in the theory), by splitting the data into many subsamples and
considering the empirical distribution of the estimators across these subsamples.

We will split the data into L = 25 subsamples of size n = 50 each. Due to this small sample
size, we restrict our attention to companies in the categories Materials and Consumer Staples,
which consist of 29 and 35 companies, respectively, for a total of p = 64 companies. To construct
our subsampled data, we randomly select L = 25 disjoint sets of size n = 50 from {1,...,1257},
denoted as I,...,I;. For each £ =1,...,25, define the /th data set

X® = X, 5 e RVP

where S < {1,...,452} identifies the p = 64 stocks of interest.

Next, for each pair (a,b) of stocks, with 1 < a < b < p, and for each subsample ¢, we compute
(2((1? and §C(£) using the ROCKET method. Suppose that the true distribution of the data follows
the transelliptical model with precision matrix €. Recall that our main result, Theorem 3.5, implies

S0 _ -
that /n - % is approximately distributed as a standard normal. Since S((li) concentrates near
ab
Sap (the asymptotic variance calculated in Theorem 4.1), we see that we should have

5O Q,
20— n- b~ < b+ N(0,1).
Sab ab

Therefore, writing fiqp := v/n - Qap/Sap, we should have
W2 A 1+ N(0,1)

In particular, this implies that the sample variance of this vector should have expectation

L

SampIeVar(zab)Eﬁ Z (z((l? — 2ab>2 ~1,
/=1

where Zg, := %25 z((li).

In Figure 6, we show a histogram of the sample variances SampleVar(z,,) across all (72’) = 2016
pairs of variables. To compare to the Pearson and nonparanormal methods, we repeat this procedure
for the estimators (and estimated variances) produced by the other two methods as well, which
are also displayed in Figure 6. We see that ROCKET produces a mean sample variance ~ 0.98
(very near to 1), while the other two methods give mean sample variances of ~ 1.28 (Pearson)
and ~ 1.265 (nonparanormal), substantially higher than the theoretical value of 1. This indicates
that the normal approximation to the distribution of the estimator may be approximately valid for
ROCKET, but does not have the correct scale (that is, the scale predicted by the theory) for the
other two methods, on this data set.
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Figure 6: Sample variances of the rescaled estimator, 4/n - Kvlab/ gab, for each pair of variables (a, b),
using the subsampled stock data. The sample variances should be approximately 1 according to
the theory (see Section 6.1).

The vector (ZS)), cees zc(j)), in addition to having sample variance near 1, should also exhibit
Gaussian-like tails according to the theory. To check this, we calculate the proportion of values in
this vector lying near to the mean, specifically,

+# {E : ‘z((l? — Zab

< 16449 /1~ +}
L )

which should be approximately 90% according to the theory (since the standard normal distribution
has 90% of its mass between +1.6449). The results are:

Method ‘ Coverage (theory: 90%)

ROCKET 90.55%

Pearson 85.01%
Nonparanormal 85.18%

We see that only the ROCKET method achieves the appropriate coverage.

6.2 Experiment 2: estimating a graph

In the second experiment, we use the full sample size n = 1257 to estimate a sparse graph over
the p = 64 stocks selected for Experiment 1, using each of the three methods. To do this, for
each method we first produce a (approximate) p-value testing for the presence of an edge between
each pair (a,b) of variables. Recall that according to our main result, Theorem 3.5, if the pair of
variables (a, b) does not have an edge, then Q,, = 0 and so y/n Qb / §ab is approximately distributed
as a standard normal variable. Then, using a two-sided z-test, we calculate a p-value

In Figure 7, we show the resulting graphs when edge (a, b) is drawn whenever the p-value passes
the threshold pg, < 0.00001 or whenever p,p < 0.001. The number of edges selected for each method

is shown in the figures. Overall we see that ROCKET selects roughly the same number of edges
as the Pearson method but less than the nonparanormal method, on this data set. To further

DPab = 2-29 (’\/ﬁ . ﬁab/gab
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Figure 7: Estimated graph for the stock data, using the ROCKET, Pearson, and nonparanormal
methods (see Section 6.2). An edge is displayed for each pair of variables (a,b) with p-value
Pab < 0.00001 (top row) and pg < 0.001 (bottom row). Graphs were drawn using the igraph
package (Csardi and Nepusz, 2006) in R (R Core Team, 2012).

compare the methods, in Figure 8 we show the distribution of the p-values p,;, across all pairs of
variables (a,b), for each method. ROCKET produces slightly less low (strong) p-values than the
nonparanormal method, and slightly more low (strong) p-values than the Pearson method, on this
data set.

Since the Pearson and nonparanormal methods do not exhibit approximately normal behavior
across subsamples (Experiment 1), this should not be interpreted as a power comparison between
the methods; the additional edges selected by the nonparanormal method, for instance, may not be
as reliable since the p-value calculation is based on approximating the distribution of the estimator
using a theoretical scaling that does not appear to hold for this method.

7 Discussion

We have proposed a novel procedure ROCKET for inference on elements of the latent inverse
correlation matrix under high-dimensional elliptical copula models. Our paper has established a
surprising result, which states that ROCKET produces an asymptotically normal estimator for
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Figure 8: Distribution of p-values p,; across all pairs of variables (a,b) on the stock data, for the
ROCKET, Pearson, and nonparanormal methods (see Section 6.2).

an element of the inverse correlation matrix in an elliptical copula model with the same sample
complexity that is required to obtain an asymptotically normal estimator for an element in the
precision matrix under a multivariate normal distribution. Furthermore, this sample complexity is
optimal (Ren et al., 2013). The result is surprising as the family of elliptical copula models is much
larger than the family of multivariate normal distributions. For example, it contains distributions
with heavy tail dependence as discussed in Section 2. ROCKET achieves the optimal requirement on
the sample size without knowledge of the marginal transformation. Our result is also of significant
practical importance. Since normal distribution is only a convenient mathematical approximation to
data generating process, we recommend using ROCKET whenever making inference about inverse
correlation matrix, instead of methods that heavily rely on Normality. From simulation studies,
even when data are generated from a normal distribution, ROCKET does not lose power compared
to procedures that were specifically developed for inference under Normality.

The main technical tool developed in the paper establishes that the sign of normal random
vector, taken elementwise, is itself a sub-Gaussian random variable with the sub-Gaussian param-
eter depending on the condition number of the covariance matrix 3. Based on this result, we were
able to establish a tight tail bound on the deviation of sparse eigenvalues of the Kendall’s tau
matrix 7. This result is of independent interest and it would allow us to improve a number of
recent results on sparse principal component analysis, factor models and estimation of structured
covariance matrices (Mitra and Zhang, 2014; Han and Liu, 2013; Fan et al., 2014). The sharpest
result on the nonparametric estimation of correlation matrices in spectral norm under a Gaussian
copula model was established in (Mitra and Zhang, 2014). We extend its validity to the family of
elliptical copula models and provide an alternative proof. Previous work of Han and Liu (2013) and
Fan et al. (2014) has established sub-Guassianity of the sign vector for special cases of covariance
matrices (identity and equi-correlation matrix). Our work rigorously proves the result for the class
of well-conditioned covariance matrices.

27



Acknowledgments

This work is partially supported by an IBM Corporation Faculty Research Fund at the University
of Chicago Booth School of Business. This work was completed in part with resources provided by
the University of Chicago Research Computing Center.

References

R. G. Baraniuk, M. A. Davenport, , and M. B. Wakin. A simple proof of the restricted isometry
property for random matrices. Constructive Approzimation, 28(3):253-263, 2008.

A. Belloni and V. Chernozhukov. Least squares after model selection in high-dimensional sparse
models. Bernoulli‘, 19(2):521-547, 2013.

A. Belloni, V. Chernozhukov, and C. B. Hansen. Inference on treatment effects after selection
amongst high-dimensional controls. Rev. Econ. Stud., 81(2):608-650, 2013a.

A. Belloni, V. Chernozhukov, and K. Kato. Robust inference in high-dimensional approximately
sparse quantile regression models. arXiv preprint arXiv:1312.7186, 2013b.

A. Belloni, V. Chernozhukov, and K. Kato. Uniform post selection inference for lad regression
models. arXiv preprint arXiw:1304.0282, 2013c.

A. Belloni, V. Chernozhukov, and Y. Wei. Honest confidence regions for logistic regression with a
large number of controls. arXiv preprint arXiv:1304.3969, 2013d.

P. Bithlmann and S. A. van de Geer. Statistics for high-dimensional data. Springer Series in
Statistics. Springer, Heidelberg, 2011. Methods, theory and applications.

T. T. Cai, W. Liu, and X. Luo. A constrained ¢; minimization approach to sparse precision matrix
estimation. J. Am. Stat. Assoc., 106(494):594-607, 2011.

H. Callaert and P. Janssen. The Berry-Esseen theorem for U-statistics. Ann. Stat., 6(2):417-421,
1978.

E. J. Candés and T. Tao. The dantzig selector: Statistical estimation when p is much larger than
n. Ann. Stat., 35(6):2313-2351, 2007.

M. Chen, Z. Ren, H. Zhao, and H. H. Zhou. Asymptotically normal and efficient estimation of
covariate-adjusted gaussian graphical model. arXiv preprint arXiv:1309.5923, 2013.

J. Cheng, E. Levina, and J. Zhu. High-dimensional mixed graphical models. ArXiv e-prints,
arXiw:1304.2810, 2013.

G. Csardi and T. Nepusz. The igraph software package for complex network research. InterJournal,
Complex Systems:1695, 2006.

A. d’Aspremont, O. Banerjee, and L. El Ghaoui. First-order methods for sparse covariance selection.
SIAM J. Matriz Anal. Appl., 30(1):56-66, 2008.

28



V. de la Pena and E. Giné. Decoupling: from dependence to independence. Springer, 1999.

P. Embrechts, F. Lindskog, and A. McNeil. Modelling dependence with copulas and applications
to risk management. In S. T. Rachev, editor, Handbook of heavy tailed distributions in finance,
pages 329-384. Elsevier, 2003.

J. Fan, Y. Feng, and Y. Wu. Network exploration via the adaptive lasso and scad penalties. Ann.
Appl. Stat., 3(2):521-541, 2009.

J. Fan, F. Han, and H. Liu. Page: Robust pattern guided estimation of large covariance matrix.
Technical report, Technical report, Princeton University, 2014.

K. T. Fang, S. Kotz, and K. W. Ng. Symmetric multivariate and related distributions, volume 36
of Monographs on Statistics and Applied Probability. Chapman and Hall, Ltd., London, 1990.

M. H. Farrell. Robust inference on average treatment effects with possibly more covariates than
observations. arXiv preprint arXiv:1509.4686, 2013.

J. H. Friedman, T. J. Hastie, and R. J. Tibshirani. Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9(3):432-441, 2008.

Q. Gu, Y. Cao, Y. Ning, and H. Liu. Local and global inference for high dimensional gaussian
copula graphical models. ArXiv e-prints, arXiv:1502.02347, 2015.

J. Guo, E. Levina, G. Michailidis, and J. Zhu. Joint estimation of multiple graphical models.
Biometrika, 98(1):1-15, 2011a.

J. Guo, E. Levina, G. Michailidis, and J. Zhu. Asymptotic properties of the joint neighborhood
selection method for estimating categorical markov networks. Technical report, University of
Michigan, 2011b.

F. Han and H. Liu. Optimal rates of convergence for latent generalized correlation matrix estimation
in transelliptical distribution. ArXiv e-prints, arXiv:1305.6916, 2013.

H. Hofling and R. J. Tibshirani. Estimation of sparse binary pairwise markov networks using
pseudo-likelihoods. J. Mach. Learn. Res., 10:883-906, 2009.

A. Javanmard and A. Montanari. Nearly optimal sample size in hypothesis testing for high-
dimensional regression. arXiv preprint arXiv:1311.027/4, 2013.

A. Javanmard and A. Montanari. Confidence intervals and hypothesis testing for high-dimensional
regression. J. Mach. Learn. Res., 15(Oct):2869-2909, 2014.

C. Kliippelberg, G. Kuhn, and L. Peng. Semi-parametric models for the multivariate tail depen-
dence function—-the asymptotically dependent case. Scand. J. Stat., 35(4):701-718, 2008.

C. Lam and J. Fan. Sparsistency and rates of convergence in large covariance matrix estimation.

Ann. Stat., 37:4254-4278, 2009.

29



S. L. Lauritzen. Graphical Models, volume 17 of Ozford Statistical Science Series. The Clarendon
Press Oxford University Press, New York, 1996. Oxford Science Publications.

J. D. Lee and T. J. Hastie. Learning mixed graphical models. ArXiv e-prints, arXiv:1205.5012,
2012.

J. D. Lee, D. L. Sun, Y. Sun, and J. E. Taylor. Exact post-selection inference with the lasso. ArXiv
e-prints, arXiv:1511.6238, 2013.

F. Lindskog, A. McNeil, and U. Schmock. Kendall’s tau for elliptical distributions. Credit Risk,
pages 149-156, 2003.

H. Liu and L. Wang. Tiger: A tuning-insensitive approach for optimally estimating gaussian
graphical models. ArXiv e-prints, arXiv:1209.2437, 2012.

H. Liu, J. D. Lafferty, and L. A. Wasserman. The nonparanormal: Semiparametric estimation of
high dimensional undirected graphs. J. Mach. Learn. Res., 10:2295-2328, 2009.

H. Liu, F. Han, M. Yuan, J. D. Lafferty, and L. A. Wasserman. High-dimensional semiparametric
Gaussian copula graphical models. Ann. Stat., 40(4):2293-2326, 2012a.

H. Liu, F. Han, and C.-H. Zhang. Transelliptical graphical models. In P. Bartlett, F. Pereira,
C. Burges, L. Bottou, and K. Weinberger, editors, Proc. of NIPS, pages 809-817. 2012b.

W. Liu. Gaussian graphical model estimation with false discovery rate control. Ann. Stat., 41(6):
2948-2978, 2013.

R. Lockhart, J. E. Taylor, R. J. Tibshirani, and R. J. Tibshirani. A significance test for the lasso.
Ann. Stat., 42(2):413-468, 2014.

P.-L. Loh and M. J. Wainwright. Regularized m-estimators with nonconvexity: Statistical and
algorithmic theory for local optima. arXiv preprint arXiv:1305.2436, 2013.

P. Massart. Concentration inequalities and model selection, volume 1896 of Lecture Notes in Math-
ematics. Springer, Berlin, 2007. Lectures from the 33rd Summer School on Probability Theory
held in Saint-Flour, July 6-23, 2003, With a foreword by Jean Picard.

MATLAB. version 8.4.0 (R2014b). The MathWorks Inc., Natick, Massachusetts, 2014.

N. Meinshausen and P. Biihlmann. High dimensional graphs and variable selection with the lasso.
Ann. Stat., 34(3):1436-1462, 2006.

R. Mitra and C.-H. Zhang. Multivariate analysis of nonparametric estimates of large correlation
matrices. ArXiv e-prints, arXiv:1403.6195, 2014.

R. L. Oliveira. The lower tail of random quadratic forms, with applications to ordinary least squares
and restricted eigenvalue properties. ArXiv e-prints, arXiw:1312.2903, 2013.

30



T. Peel, S. Anthoine, and L. Ralaivola. Empirical bernstein inequalities for u-statistics. In J. Laf-
ferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Adv. Neural Inf. Process.
Syst. 23, pages 1903-1911. Curran Associates, Inc., 2010.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2012. ISBN 3-900051-07-0.

P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu. High-dimensional covariance estimation
by minimizing ¢;-penalized log-determinant divergence. FElectron. J. Stat., 5:935-980, 2011.

P. Ravikumar, M. J. Wainwright, and J. D. Lafferty. High-dimensional ising model selection using
{1-regularized logistic regression. Ann. Stat., 38(3):1287-1319, 2010.

Z. Ren, T. Sun, C.-H. Zhang, and H. H. Zhou. Asymptotic normality and optimalities in estimation
of large gaussian graphical model. arXiv preprint arXiv:1309.6024, 2013.

A. J. Rothman, P. J. Bickel, E. Levina, and J. Zhu. Sparse permutation invariant covariance
estimation. FElectron. J. Stat., 2:494-515, 2008.

N. Srebro and A. Shraibman. Rank, trace-norm and max-norm. In Learning theory, volume 3559
of Lecture Notes in Comput. Sci., pages 545-560. Springer, Berlin, 2005.

J. E. Taylor, R. Lockhart, R. J. Tibshirani, and R. J. Tibshirani. Post-selection adaptive inference
for least angle regression and the lasso. arXiv preprint arXiv:1401.53889, 2014.

S. A. van de Geer, P. Bithlmann, Y. Ritov, and R. Dezeure. On asymptotically optimal confidence
regions and tests for high-dimensional models. Ann. Stat., 42(3):1166-1202, 2014.

R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Y. C. Eldar
and G. Kutyniok, editors, Compressed Sensing: Theory and Applications. Cambridge University
Press, 2012.

M. Wegkamp and Y. Zhao. Adaptive estimation of the copula correlation matrix for semiparametric
elliptical copulas. ArXiv e-prints, arXiv:1305.6526, 2013.

L. Xue and H. Zou. Regularized rank-based estimation of high-dimensional nonparanormal graph-
ical models. Ann. Stat., 40(5):2541-2571, 2012.

L. Xue, H. Zou, and T. Ca. Nonconcave penalized composite conditional likelihood estimation of
sparse ising models. Ann. Stat., 40(3):1403-1429, 2012.

E. Yang, G. I. Allen, Z. Liu, and P. Ravikumar. Graphical models via generalized linear models. In
F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 1358-1366. Curran Associates, Inc., 2012.

E. Yang, P. Ravikumar, G. I. Allen, and Z. Liu. On graphical models via univariate exponential
family distributions. ArXiv e-prints, arXiv:1501.4183, 2013.

E. Yang, Y. Baker, P. Ravikumar, G. I. Allen, and Z. Liu. Mixed graphical models via exponential
families. In Proc. 17th Int. Conf, Artif. Intel. Stat., pages 1042-1050, 2014.

31



M. Yuan. High dimensional inverse covariance matrix estimation via linear programming. J. Mach.
Learn. Res., 11:2261-2286, 2010.

M. Yuan and Y. Lin. Model selection and estimation in the gaussian graphical model. Biometrika,
94(1):19-35, 2007.

C.-H. Zhang and S. S. Zhang. Confidence intervals for low dimensional parameters in high dimen-
sional linear models. J. R. Stat. Soc. B, 76(1):217-242, 2013.

T. Zhao and H. Liu. Calibrated precision matrix estimation for high dimensional elliptical distri-
butions. IEEE Trans. Inf. Theory, pages 1-1, 2014.

T. Zhao, H. Liu, K. Roeder, J. D. Lafferty, and L. A. Wasserman. huge: High-dimensional Undi-
rected Graph Estimation, 2014. R package version 1.2.6.

A Gaussian vectors and the sign-subgaussian property

In this section we prove Lemma 4.5, which shows that that a centered Gaussian vector z ~ N(0, %)
satisfies the sign-subgaussianity property, that is, the sign vector sign(z) is itself subgaussian.

Lemma 4.5. Let Z ~ N(0,%) for some ¥ € RP*P. Then sign(Z) is C(X)-subgaussian.
Proof of Lemma 4.5. Without loss of generality, rescale so that Apin(X) = 1 and then C(X) =
Amax(2). Write ¥ = AAT + 1, for some matrix A € R"*". Then we can write Z = X + AY, where

XY id N(0,1I,). Then, for any fixed vector v € RP,

E [evT sign(Z)] -E [E [evT sign(2) | YH -E [E [evT sign(X+AY) | Y]]

—F

HE [evi sign(Xi+(4Y):) | Y]

where the last step holds because, conditional on Y, each of the terms sign(X; + (AY);) depends
on X; only, and therefore these terms are conditionally independent. Next, observe that

E [sign(X; + (AY);) | Y] = E [sign (N(0,1) + (AY);) | Y] = ® ((AY);) =@ (—(AY);) = ¢ ((AY):) ,
where we define ¥ (z) = ®(z) — ®(—=z) for z € R. Then, for each i,

B [6 sign(Xi+(AY):) | Y] —F [em(sign(xi+<AY)»—¢((AY>¢)) |y] Ui ((AY)i) < gvi/2 | puinh((AY);)

)

where the inequality is proved by applying Hoeffding’s Lemma (see, for example, Massart (2007,
Lemma 2.6)) to the bounded mean-zero random variable [v; (sign(X; + (AY);) — ¥ ((AY);))]. Com-
bining the calculations so far, we have

E [e” sign(Z)] <olol32 g [eva(AY)]

)
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where ¥(AY") applies the function v (-) elementwise to the vector AY.

Next we show that y — v "1 (Ay) is Lipschitz over y € R". Note that x ~— 1)(z) is 1-Lipschitz
over x € R since the density of the standard normal distribution is bounded uniformly as ¢(z) <
\/% < % For any y,vy’ € R", we have

v Y (Ay) — v Y (AY')| < Z lvil - [ ((Ay)i) — o ((Ay'))| < Z lvil - |(Ay)i — (Ay')d]
<|lvll2 - [[A( = ¥)l2 < [v]l2 - vV Amax(E) = 1+ [ly = ¢||2 ,

where the last step is true because

A]lop = A/11Z = Lpllop = v/C(E) — 1.

Therefore, y — v ¢ (Ay) is (||v]|2 - \/]|E — L|op)-Lipschitz in Y. Furthermore, 9(z) = —¢(—x)
for all z € R, and so for any y € R",

VTP(Ay) = v T P(A- (—y) = E[Y(AY)] =0sinceY 2 -V .

We can now apply standard concentration results for Lipschitz functions of a Gaussian: by Massart
(2007, Proposition 3.5), E [e”Tw(AY)] < elllB(CEE®)-1)/2, Therefore,

E [evT sign<Z>] <E [euvua/2+vw<AY)] < ellPlB/2+RI3(C(E)-1)/2 _ llvl3-C()/2 |

B Proof of main result

B.1 Preliminaries

We first compute bounds on [|yc||2 and ||y¢||1 for each ¢ = a,b, which we will use many times in
the proofs below. First, for ¢ = a, b note that

elle = 17 Srell < NIZ7HT [1Zrellz < Panin(E)] 7 - Amax(E) < Coov (B.1)
by Assumption 3.1. Next,
el = 1= el

By matrix blockwise inversion,

= H - QI,ab@ab,cHl = Z ‘Qj,abeab,c| < Z HQj,aleHeab,cHoo-
jel jel

Since ||®||oo < )\max(e) = (Amin(Qab,ab))il < ()\min(Q))il = )\maX(E) < Ccow

< Ccovz ||Qj,ab‘|1 = Ceov (||Qa||1 + HQle)
jel

Applying Assumption 3.2,

< 2C"COVCWSPEH‘SG V kn . (BQ)
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B.2 Proof of Theorem 4.1: asymptotic normality of the oracle estimator

Theorem 4.1. Suppose that Assumptions 3.1, 3.2, and 3.4 hold. Then there exist constants
Onormal, Cvariance depending on Ccova Csparsea C’kernel but not on (nvpna kn); such that

éab - @ab kn 1Og(pn) 1
v {ﬁ Sur - det(0) t} 20 s g

where Sy, is defined in the proof and satisfies Sqp - det(©) = Clariance > 0.

sup < Cnormal :

teR

Proof of Theorem 4.1. We first show that the error Oup — Oup can be approximated by a linear
function of the Kendall’s tau estimator 7". Define vectors u, v € RP* with entries

Ug = Lyup = 0,u; = —y, and vy = 0,vp = 1,07 = —yp .
Then by definition, we have O = uTSv and O = u' Y, that is, the error is given by
(:)ab —Og = UT(i — 2)’[} .

Next, since S = sin (gf and ¥ = sin (ET), we take a second-order Taylor expansion of sin(+) to
[0,

2
see that, for some t € [0, 1],

™

S ., _ . T 7y
Ou — Ouw = u [2005(2T>0(T T)

%. (2)2-sin<g(t-T+(1—t)-f)>o(f—T)o(f—T)}v. (B.3)

Next, we rewrite this linear term. We have

L:=u" [cos <gT) o ]A"] v = % Z sign(X; — Xy) " (uvT o cos (gT)) sign(X; — Xy) ,

() =

which is a U-statistic of order 2 with respect to the data (X,...,X,). Note that

_ N il Pl o |T il Mo=u" | T P
L—-E[L]=u [2 cos <2T> oT] v—u [2 cos <2T> oE[T]] v=u [2 cos (2T> o (T T)] v.
Define the kernel g(X,X’) = sign(X — X')7 (uv' ocos (57)) sign(X — X’), and let ¢1(X) =
E[g(X,X') | X], where X, X' ™ TE(S,& fi,.... fy). Let 2, = Var(g1(X)) and 3 = E [|g(X, X")[*].
By Callaert and Janssen (1978, Section 2), we have

P{\WL_E[LD < t} - @(t)‘ < G M0 L (B.4)

sup
3 9
21/91 I/gl \/ﬁ

teR

3
for a universal constant Cysiat. Next we bound the ratio :T" in the following lemma, which is proved
91

in Appendix D.6.
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Lemma B.1. Suppose that Assumptions 3.1, 3.2 and 3.4 hold. Let g(X, X") and g1(X) be defined
as in the proof of Theorem 4.1. Then

variance

1
2 2
Vg, = Var(g1(X)) = ﬁC
and
Vi <y = E [l9(X, X)*] < Crioment
where Cyariance; Cmoment are constants depending only on Ceoy, Ckernel and not on (n, pp, kn).

In particular, this lemma implies that Sup := 7, (det(0)) ™! = Cyariance - (det(0)) 1.
Finally, the linear term L analysed here provides only an approximation to ©,, — O4p. Define

A=08u—Ouy— g(L —E[L]) .
Then we have the bound

IA| = |uT [;.(g)z.sm(g(t.Tﬂl—t)-:ﬁ))o(:F—T)o(:F_T)]v

1 /m\2 | /7 ~ ~ ~
<llllfollaliz - (5) -sin (5 T+@=-D) o (T =T)o (T =T)u
2
T ~
< Zllullllolhli? - 71,
m 2 ) 2
< e kr - (1 4+ 2CcoyCsparse)” - ||T — T'||5, (B.5)

where the last inequality holds by (B.2).
Finally, the next lemma is proved in de la Pena and Giné (1999).

Lemma B.2 ((de la Pena and Giné, 1999, Theorem 4.1.8)). For any 6 > 0, with probability at
least 1 — 9,

17— Tl < o 2B CLEO)
n

~ 3
Applying this lemma with § = 2?%71, we have ||T — T2, < 410g752p n) < 16107%@ n) with probability at
least 1 —

1
2pn °
To summarize the computations so far, we have Oy, — O4 = Z(L—=E[L]) + A, where (B.4)
gives an asymptotic normality result for the linear term (L — E[L]), while (B.5) gives a bound on
A. To prove therefore that (:)ab — O is asymptotically normal, we will use the following lemma
(proved in Appendix D.1):

Lemma B.3. Let A, B,C be random variables such that

sup|P{A<t}—®(t)| <ea and P{|B|<ép,|C|<dc}>=1—e€pc,
teR

where €4,€pc,0p,0c € (0,1). Then the variable (A + B) - (1 + C) converges to a standard normal
distribution with rate

sup [P{(A+ B)- (1+C) <t} —®(t)| < op +

+ €4+ €BC -
teR 1—50

35



We apply this lemma with A = 3 - \/n - % and B = 4/n - ﬁet@) and C' = 0. We have

Cmoment 1
sup]P’ Aét — ®(t SOU % ' —F—
R | { } ( )| stat (#CQ )1'5 \/ﬁ

variance

by (B.4) and Lemma B.1. Furthermore,

2

Lkn 1‘1'2C’covcfs arse2'1610g(pn) ~ 161 n 1
P{!B|<\/ﬁ~8 (L 2o Copmee) <P{||T—T|\3o<6"§@’}>1—2p

by (B.5) and Lemmas B.1 and B.2. Noting that +/n - é“fg%l?‘“’ = A+ B, and defining

27’[‘2(1 + QCCOVCsparse)2 Cmoment
+ Custat - 2—)15 )

C’variance (% .
72 ~variance

C’normal =

we have proved the desired result.
O

B.3 Proof of Theorem 4.2: gap between the estimator and the oracle estimator,
and estimation of the variance

The first part of Theorem 4.2, which bounds the distance between our estimator O of O and the
oracle estimator ©, is established using bounds on ¥ — ¥ in Section 4.3. Details are given in
Appendix B.3.1. The second part of Theorem 4.2, which bounds the error in estimating variance,

~ ~

Sap - det(0) — Sy - det(©)], is treated in Appendix B.3.2.

B.3.1 Bounds on © — ©

Next we use our bounds on the covariance error, S - Y., to derive a bound on the difference
between our empirical estimator © and the oracle estimator © of ©. The bounds we give here are
deterministic. Write

A. =%, — . forc=a,b.

Define the norm
2

X
Il = o/l + 21 (B

that is, || - [|(x) is the norm for which By is the unit ball.
The following lemma is proved in Appendix D.5:

Lemma B.4. The following bound holds deterministically:

16 — O < C(B) - max ||A]|3+
ce{a,b}

sup
u,VEB

T/ 2
T8 = |- (2 1l (2 s el ) + o 8 ) -
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From this point on, we combine Assumptions 3.1, 3.2, and 3.3 with Corollary 4.8 and Lemma B.4
to obtain our probabilistic bound on ||© — ||, (Theorem 4.2).
For ¢ = a, b, applying (B.1) and (B.2),

(2CVCr
|’70|| kn) \/Cgov < spa = \/ cov T 4CgovC52parse : (B‘7)

Next, for ¢ = a,b, by Assumption 3.3, with probability at least 1 — d,,

A?
1dllen) = \/||Ac||%+ [2<lh

2
9 C k3 g(m))
ke 10g(pn ( est n 2k log(pn
< <Cest Tgl(p )> + i = Cest ng(p ) . (B.8)

Next, we use Corollary 4.8. Setting §; = d9 = p , we see that by the assumption p,, > 2, k,,
and the assumption n > 15k, log(p,,) stated in Theorem 4 2, the conditions of Corollary 4.8 must
hold. Then, with probability at least 1 — d; — do = 1 —

Ea
sup uT(f]—E)v’
u,veBy,,
2 41 12p, (P log(12 1) log(12
\%’kn’ 8 ( pn(2))+27r 16(1 + v/5)C, Cov.\/og( Pn) + (kn 1 1) log(12pn)
n n

kn1
< C’cov ' C, : = Og(pn) ) (B9)
n
where we choose the universal constant ¢’ = 372 + 27 - 16(1 + 1/5)v/15 which guarantees that the
last inequality holds (using the assumptions n > kj log(p,) and p, > 2).
Fmally, applying the deterministic bound in Lemma B.4, we see that with probability at least
1— 3p , on the event that the bounds (3.1) in Assumption 3.3 hold,

H@ @H()o < Cgoy + max ||Ac||%+ sup
ce{a,b}

u,veBy,,

u' (S — E)v‘ :

2
(2 o 18l - (2 s el ) + o AR, )-

Applying Assumption 3.2 and calculations (B.7), (B.8), and (B.9) above,

kn log(pn kn log(pn
<C., C Os(p ) | Coos C' - Og(p )

est
2k, log(pn 2k, log(py)
<QCest\/7 (2 + \/ cov T 4Cgov052parse> CezstT

ken log ()

< B G2y o+ Ceon+ €'+ (22 Casp (21O, +4C2,Care) +2C2% )|

n
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knlog(pn) Mg(pn)(
n n

~

where the last step uses the fact that
Theorem 4.2). Defining Cyacle to be at least as large as the expression in square brackets above,
we have completed the proof of the first part of Theorem 4.2.

which is true by assumption in

B.3.2 Variance estimate

For the second part of the theorem, that is, bounding the error in the variance estimate §ab, we
state this bound as a lemma and defer the proof to Appendix D.9, since we need to develop some
additional technical results before treating this bound.

Lemma B.5. Under the assumptions and definitions of Theorem 4.2, with probability at least
1— Gp%n’ if n = k2log(py), on the event that the bounds (3.1) in Assumption 3.3 hold,

k2 log(pn)

S/ab . det((:)) —Sup - det(@)‘ < Coracle - n

Combining this lemma with the work above, and using Assumption 3.3, we have proved that
both bounds stated in Theorem 4.2 hold with probability at least 1 — pin — 0y, as desired.

B.4 Proof of Theorem 3.5: main result

We now prove our main result, Theorem 3.5.

Proof of Theorem 8.5. Recall that our goal is to prove that w converges to the N(0,1)

ab
distribution. Recalling that © = (Qab’ab)_l and using the formula for a 2 x 2 matrix inverse, we

separate this random variable into several terms:

- -9, -0, e det(©)
V(Qap — Qap) vn (det(éb) B det(é)) Vn <_@ab + Oap - det(@))

~ - ~ ~ ~

Sab Sab Sab det(@)
Vn <9ab - (:jab + éab - éab — Ouap - (1 - 3223;))

~ ~

S - det(®)
Vit (B = 0u) Vi (B —Bu) V- Q- (det(0) - det(6))

T | T TS det(©) T Sup-det(@) Sy - det(0)

Sap - det(©) — Sy - det(©)
1 .
X [ * TG

To show that w converges to the standard normal distribution, we will can apply Lemma B.3
ab

(stated in Appendix B.2). In order to apply this lemma and obtain the desired result, we assemble

the following pieces:

First, the variable A := —
as shown in Theorem 4.1.

\/ﬁ(éabfgab)

. knl n
5 der@)  Satisfies supicg IP{A <t} — ®(t)] < Chormal - ko log(pn) | L
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Vi(Ou—Oab) | V1 Qqp(det(©)—det(©)) and (' Sapdet(©)=S,;-det(©)

Second, we define variables B :=

Sap-det(O) Sap-det(O) Sap-det(©) )
and set ) )
5 = ky, log(pn) . (Coracle + 4C%\Coracle + 2C<3C>Vcoracle>
\/ﬁ Cvariance
and

Coracle ) k727, log (pn)
Clariance n

We now show that, by Theorem 4.2, with probability at least 1— 2%” — 0y, it holds that |B| < dp and

bc =

|C| < d¢. For the variable C| this is a trivial consequence of the bound on ‘gab - det(©) — Sy - det(O)

in Theorem 4.2 combined with the lower bound Sy, - det(©) = Clariance from Theorem 4.1.
Now we turn to the bound on B. To prove this bound, observe that ||© —0||, < Coracle %g(p")
by Theorem 4.2 (with the stated probability). We also have

\/E(:)ab_éab ~ ~ ~ ~
( ) L 168l < Y & =Bl .

Cvariance

< -
Sap - det(@) \/ﬁ Sap - det(@))
where the last step follows from Theorem 4.1. And,

’det(é) - det(@)’ = ‘(éaaébb - é§b> — (©aaOu — @ib)‘
< 4/[6/16 — Bl +2/|6 — O[5

and
|Qb] < Amax(2) = Amin(2)) ™! < Ceov -
Therefore,
V- Qap - (det(G) - det((:))) 0] 5 .
< B LA S 4 _ 2 _ 2
Sap - det(©) vn Sap - det(©) ( 18]l0]|© = B[ + 2[|© ®Hoo)
Ceov ~ -
<V 2 (4016~ Ol + 210 - OI12)
variance

where the last step follows from Theorem 4.1 along with the fact that
H@HOO < )\max((ﬂ)) = ()\min(Qab,ab))_l < ()\min(Q))_l = )\max(z) < Ccov .
Combining everything, we have

1

<~ Cloy
Bl < Vi e 116 = Bl + v 2

variance variance
k:TL 1 n

< ky, log(pn) Coracle + 4Cft:QovCOIrade + 2C’Covcgracle ) %

h Jn ’

If n < kylog(pn), then the main result in Theorem 3.5 holds trivially. Assuming then that n >
kn log(pn), we have proved the desired bound on |B].

(4Ceall® Ol + 216 - O] %)

C'variance
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Given these convergence results, we apply Lemma B.3 to obtain the following result:

~

P { V(@ — Q)

ab

sup <dp+

teR

+ €4 + €BC

< t} — D(t) : _060

_ knp 10g(pn) ] <Coracle + 4cgovcoracle =+ QC’cong,ade) I

\/ﬁ Cvariance
C'¢:>racle \/m
o knlo 1 1
C'varlance n + Cnormal . n g(pn) + + + 57’1 .
1— Coracle . k% IOg(pn) \/ﬁ 2pn 2pn
variance n

If Conscte ., /Ki long(p n) 5 3., then the result of Theorem 3.5 holds trivially, and so assuming that this

is not the case, we have

k2 1log?(p, 1
7"Og(p)+—+5n,
n Pn

< C1converge :

where

o Coracle + 4C'go\,coracle + 2Ccov002rac|e + 2Coracle

Cconverge = C C Cnormal .
variance variance

C Accuracy of the initial Lasso estimator

Proof of Corollary 3.8. Define
A:§I7 ZIiI(M w*:fYCH p:pn_27 k:kn

Now we apply Theorem 3.7 to this sparse recovery problem. In order to do so, we need to check that
the conditions (3.3), (3.4), and (3.5) hold, and that ~, is feasible under the condition ||v||; < R.
Once these conditions are satisfied, the result of Theorem 3.7 can be applied to this setting.

Feasibility of 7,. Define R = Ceoyv/2k,. As proved in (B.1), ||7all2 < Ceov, and furthermore
allo < 11Qllo + [|]lo < 2k, (this is true because v, = —Q74Oapa by (B.2)). Therefore,
|‘7a‘|1 < Ccov\/m = R.

Condition (3.4) (restricted strong convexity). Now we need to check that the restricted
strong convexity conditions (3.3) hold for our matrix A = S 1. By Corollary 4.8, there exists a
constant Crsc depending only on Cpy, such that if n > 16log(p,), then with probability at least
1-— 8?%”, for all v € RP~,

~ 1
.
2—2) ’s
‘” (I )OS 200,

n

CRrsc log(py,
(Hvuzmu%-w) .
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(To see this, apply Corollary 4.8 with ng(pn) in place of kj,; the assumption n > 16log(py)
ensures that we can choose Crsc so that the condition of Corollary 4.8 is satisfied.) Then, if this

event holds, for all v € RY we have

vaIIUZUTEIU—’vT (21—21) ’ Ol HvH%—’vT (iI—Z[)U‘

1 Crsc  log(pn)
> lolf5 - : = |llf
2Ccov Ceov n

Therefore, with probability at least 1 — 8}%, the restricted strong convexity condition (3.3) holds
with

a1 = ! and 71 = Crsc
2C’COV C1C0V
Condition (3.5) (penalty parameter). Below, we will prove that, with probability at least
1— -3
8pn?

. o o m lo lo 1.5v/37124/1 + C2
||AI‘ *Z||oo = ||ZI’7€L - EIa||oo < QCfeasible\/ gépn) +\/ g(pn) . [ < 9 (Cl)

n \V Csample

for a constant Cheasiple depending only on Ceoy, as long as we set

2
Csample = [16(1 + \/E)CCOVM]

Given that this is true, we now require that condition (3.5) holds, that is,

1
max{élHAx* — 2|]o0, vy og(@} <agd
n

6R
T N 1.5v/3724/1 + CZ, 2
o Ufeasi ) )
2 easible \/m Ccov

Plugging in the bound (C.1), we see that the lower bound on A is satisfied for A = C| 4ss0 %.
To check the upper bound, we only need

Define

Classo = max {4

log(pn) aq 1
A = Classo < = =
) 6R 2C'COV v
Assuming that
nz= 80835500210\, Ky log(pn) » (C.2)

then this follows directly. Therefore, (3.5) is satisfied with probability at least 1 — 8%”.

Condition (3.4) (sample size). To satisfy (3.4), by plugging in the definitions of R, aq, and 7
above, we see that it is sufficient to require

n = 64C2,Crsc max{1,2Crsc} - k, log(pn) - (C.3)
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Conclusion. Combining all of our work above, we see that the conditions (3.3), (3.4), and (3.5),
and the feasibility of ~,, are all satisfied with probability at least 1 — ﬁ as long as

n = C(samplekn IOg(pn)

for
2
Csample := Max {16, [16(1 +15)Ceov/1 + Cgov] ,8CE O 64C2 ,Crsc max{1, 2CR5C}} )

Therefore, applying Theorem 3.7, if these high probability events hold, then then for any 7, that
is a local minimizer of

1 —~ ~
L(z) = §7T2ry — v S + A

over the set {ye R’ : ||y||; < 2CcovCsparseV'kn }, it holds that

- 15X\ - \/2k, - 6\ - 2k,
"7(1 - ’YaHQ < T = 3\/iocov)\\/ kn and |’7a - 7aH1 < o = 24Ccov)\ V kn .

By the same arguments, the same results hold for estimating .

Proving (C.1) Now we consider the term |[|Az* — z||on = Hf];’ya - iIaHOO- Since v, = ZI_IZIQ,
we have
187~ Sl = 187~ B0~ Gt — Bl = 18~ Sl
where u € RP» is the fixed vector with
Ug = Lup =0,ur = =74 .
By the Taylor expansion of & — X (calculated as in (B.3)), we have
1259 = Stalleo = |~ Deloo = max fe] (£ — Syul

el (n (37) o F-1) o (7= 1)) w

N

T max ‘eT <cos (gT) o (T — T)) u‘ +

o X |C 8 %
2
< fmax‘eT (cos (fT) o (T - T)) u‘ + Tl 1T =T - (C.4)
2 4 |7 2 8

Next we bound each term in this final expression (C.4) separately. Beginning with the second

term, by (B.1), we know that [|u||1 < +/||ullo]|ullz < V1 + 2k, - /14 CZ, < VE,-+/3(1+ C2,),

where to bound ||u||op we use the calculation ||y4|lo < 2k, from before. Furthermore, by Lemma B.2,
1

with probability at least 1 — o

Tl < \/1210i(8pn) - \/48105(1%) 7

using p,, = 2. Therefore, the second term in (C.4) is bounded as

2 2 2
Tl [P =TI2 < Do/l /301 + €2 231080) _ [loglpn) | 6VSTV/1 + Co,
8 8 n n \ C’sample
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where we use the assumption 7 = Csample 10g(pn)-
Next we turn to the first term in (C.4). In order to bound this term, we begin by stating two
lemmas (proved in Appendix D.7):

Lemma C.1. There exist vectors aj,az,... and by, by, ... with ||ay||w,||brllec < 1 for allrT =1
and a sequence ti,ta,--- =0 with Y, t, = 4, such that cos (ET) = D=1 traph, .

)

Lemma C.2. For fized u,v with ||u||2, ||v||2 < 1, for any |t| < W,

E [exp (t (T - T)v)] < exp <[4(1 i \/5)] e CCQOV) .

n

By Lemma C.1, we can write

cos( ) Ztr arr,

where t, > 0, > t, = 4, and ||a,||x, ||br||cc < 1. Then

~ ~

ejT (COS <gT) o(T— T)) u= <cos (gT) o ejuT,f - T> = ZtT (aroe;) (T —T)(byou).

Note that

llar o ejlla < [lar|lo - [lejll2 <

and, by (B.1),

[1br 0 ull2 < {[br[loo - [Julle < /1 + C&, -

1+W)Ccov\/1+cgov’

o -] (o (57) o 7 1)} - £ x| St 1000 10, 0] |

By convexity of the function z — €%,

Then for any |¢]| <

:ZZT [exp{ [ (aroej)’ (T = T)(b, ou)]}]

By Lemma C.2,

-y b ([4(1 +VB)]2 1612 - C2, (1 + Cfov)>
4

n

([4(1 +VB)]2 1662 - C2, (1 + cgov))

n
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Observe that we can set ¢t = +4/nlog(pn), which satisfies |t| < as long as we

n
16(14+/5)Ceovy/1+C2,

2
set Csample = [16(1 4+ V5)Ceovr/1 + Cgov] , due to the assumption n > Csample l0g(pr). Then, we
see that for any C' > 0,

P{‘e; (Cos (gT) o(f—T)) u‘ . 10gip,ﬁ}

< E [em-e; (cos(%T)o(ffT))uf nlog(pn).C\/W]
+ E [e_m‘e;(cos(gT)o(f—T))u— nlog(pn).C\/@}

2
< 2exp ([4(1 + \/5)] 16(1/nlog(pn))* - C&,, (1 + Cgov)) . exp {_m' c 10%(]%)}

n n

- Cf[4(1+\/5)]2'16030v(1+oc:20v) —
<2pn( ):2pn5<£w7

n

where we set C' = Cheasible := D + [4(1 + \/5)]2 -16C2%,(1 + C2,,). Therefore,

P {mjax )ejT (cos <gT) o (j; — T)) u‘ > Cheasible logipn)} < 4]1% . (C.6)

Combining (C.5) and (C.6), and returning to (C.4), we have

o N m lo lo 1.5v/372,4/1 + C2
||EI’7a - EIa||oo < 2Cfeasible\/ g,r(Lpn) +\/ g(pn) . [ £

n Csample

with probability at least 1 — 8%". This proves (C.1). O

D Proofs of lemmas

D.1 Proof of the normal convergence lemma

Lemma B.3. Let A, B,C be random variables such that

sup|P{A<t} —P(t)| <ea and P{|B|<ép,|C|<dc}>=1—¢€pc,
teR

where €4, €pc,0p,0c € [0,1). Then the variable (A + B) - (1 + C) converges to a standard normal
distribution with rate

sup [P{(A+ B) - (1 +C) <t} — ®(t)] < o5 +
teR 1—d¢

Proof of Lemma B.3. First, define truncated versions of B and C:

B = sign(B) - min{|B|,é5}, C' = sign(C) - min{|C|, d¢} .
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Then, for any t € R,

~

IP’{(A+B)-(1+C)<t}—IP’{(A+J§)-(1+C)<t}‘g[P’{B;ééorC#é}<eBC.

Note that |B| < 65 and |C| < 8¢ with probability 1.

Next, fix any t > 0 and suppose that A < ﬁ —6p. Then

(A+B)-(1+0) < <<1+t50

—5B)+5B)-(1+(5C)—t,

and so

P{(A+§)-(1+5)<t}>1@{,4< ! —53}

t t t
=®(t) —-P — N(0,1 —P N(0,1 — .
(t) {1+5C op < N(0, )<1+5C} {1+5C< (0, )<t} €A

Since the density of the normal distribution is bounded by \/% <1,

t
1+ dc

><I>(t)—5B—JP’{ <N(0,1)<t}—eA.

Applying Lemma D.1 (stated below),
> ®(t) —0p —0c —€4a .
To prove the reverse bound, suppose that (A + B) - (1 + C') < t. Then

LA+

= < +6p .
1+C 1—o6c  °

Therefore,

P{(A+§)‘(1+C~*)<t}<IP{A< ! +5B}

t
<o
(1_504—(53)4-6,4

=¢(t)+IP>{

< N(0,1) <

1-4d¢

+dpp + Pt < N(0,1) < t + €4 .
1—9o¢ 1—-9d¢

Since the density of the normal distribution is bounded by \/% <1,

<B(t)+ 65 +PLt < N(O0,1) < —— b ey
1—4d¢
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Applying Lemma D.1 (stated below),

1
<<I>(t)+53+< —1>+€A.
1-4¢c

Therefore, for all t > 0,

~

‘P{(A+B)-(1+C~‘)<t}—¢>(t)‘ <op+

C
+ €4 .
1—o0c
By identical arguments, we can prove the same for ¢ < 0. O

Lemma D.1. For any 0 < a < b,

P{a<N(0,1)<b}<(Z—1>- ! <(b—1> .

vV 2me a
Proof.
P{a < N(0,1) < b} Pl ey,
a , = —c
t=a V2T
1 2
<(b—a)- e /2
(b—a) —=
b 1 2
= —_ — 1 . -a e_a /2
(a1) v
“(a)
" \a 2me
where the last step holds because sup,q{t - e */2} = - O

Ve

D.2 Sign vector of a transelliptical distribution

Lemma 4.4. Let
id
CTES, & fre 0 fp) -
Suppose that X is positive definite, and that & > 0 with probability 1. Then sign(X — X') is equal
in distribution to sign(Z), where Z ~ N(0,%).

X, X'

Proof of Lemma 4.4. First, since the f;’s are strictly monotone, we see that sign(X — X’) has the
same distribution regardless of the choice of the f;’s (assuming without loss of generality that the
fj’s are increasing). Therefore it suffices to consider the case that the f;’s are each the identity
function, and so X, X’ ud E(0,3,¢), that is, a zero-mean elliptical distribution. In this case,
by Lindskog et al. (2003, Lemma 1), X — X’ ~ E(0, X, () where the distribution of the random

variable { > 0 obeys p¢(t) = ¢£(t)2, where ¢ and ¢ are the characteristic functions of ¢ and ¢,
respectively. Note that for two independent copies &1, &9 id &, we have @¢, 1¢, = Q¢ e, = 4,0% = ¢,
and therefore, ¢ D &1+ &. Since & > 0 with probability 1, this proves that ¢ > 0 with probability 1.
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Next take Z ~ N(0,3). Then % is uniformly distributed on the unit sphere, and so

n-l2z

2= 2
CET ),

~ E(07 E? C) Y
which is the distribution of X — X’. Using the fact that ¢ > 0 with probability 1, we see that
sign(X — X') is equal in distribution to

w2y

sign (g Lyl ||2?1/2le2> = sign($Y? . 27127) = sign(Z2) ,

as desired. ]

D.3 Proof of Lemma 4.7

Lemma 4.7. The following bound holds deterministically: for any k =1,

2

uT(f]—E)v’ < KT —=T|3% + 27 sup

s
8 UESK 11

sup uT(YA’ - T)u’ .

u,vEB

Proof of Lemma 4.7. To prove this theorem, we first state the Transfer Principle of Oliveira (2013):

Lemma D.2 (Lemma 5.1 of Oliveira (2013)). Suppose that B,C € RP*P are matrices with non-
negative diagonals, satisfying

v'Bv=v"Cv-(1—n) for all (k+ 1)-sparse v € RP.

Let d; = B;; — (1 —n)Ci; = 0. Then

_ |ldiag{v/d} - o[}
k

v'Bv =0 Cv-(1-1n) L for allveRP .

Now we turn to proving the theorem. By Taylor’s theorem,

2
z=2+3cos<fT)o(T—T)—lsm(ff)o@—T)o(T—T)
2 2 8 2

where T has entries T,y = (1 — tap)Tap + tavTap, With te € [0, 1] for each a,b. Taking any u,v € By,
then,

S T 7r ~ w2 . (T = ~ ~
‘uT(E - E)v‘ < 5 ‘uT [cos (§T> o (T—T)] v‘ g ‘uT [sm <§T) o (T—T) o (T—T)] v‘ .

First, to bound the sin(-) matrix term, note that

[ (1)< (1) (2 1)]

. (T S - -~
<Ifulhlfolh [sin (57) o (T =) o (F=7)| < llulhllolhliT = 712 .

47



where the last step holds since the sin(-) function lies in [—1,1]. Furthermore, ||ul|1, ||v]]1 < vk
for all u,v € By by definition.
Next, we bound the cos(-) matrix term. By Lemma C.1, we can express cos (ET ) as a convex

2
T
cos <§T> = Ztr . aqnbrT ,

where a,, b, € RP satisfy ||ar||w, ||br||o < 1 for all r, and t, > 0 satisfy » ¢, = 4. Furthermore, for
u,v € By and for each r, note that u o a,,v o b, € By, due to the bound on ||a,||sw, ||br||e. Then

‘uT [cos <gT) o (f— T)] v’ < Zrltr u’ [aTbI o <1A“—T)] v‘
:Zt’”

Finally, to reduce to the sparse set Sk 1, we use Oliviera’s Transfer Principle (Lemma D.2). Define
B=1—(T—-T)and C =1, and let

combination,

u'T(f —T)'

(woa,)" (f - T) (vob)

<4 sup
u! w'eBy

n= sup uT(f—T)u' .

u€5k+1
Then, for all (k + 1)-sparse vectors z, by considering the rescaled vector u = x/||x||2, we see that
2" Br = ||z|ff —a"(T ~T)e > (1 —n)|lzl[3 = (1 —n) 2" Cz.

Furthermore, for each ¢ = 1,...,p, we have C;; = 1 trivially and B;; = 1 — ﬁl + T;; = 1, which is
true because T;; = Tj; = 1 by definition. Then in the notation of Lemma D.2, for each i = 1,...,p
we set d; = Bj; — (1 —n)Cj; = n. Applying Lemma D.2, then, for all x € RP,

T _ T, |’33||%
x'Bx>=(1—-n)x Cx—n e

and plugging in our definitions of B and C, we get

TiA 5, ]}
' (T—-T)x<n|llz|5+ k: )

By symmetry, we can instead set B = I+ (IA“—T) to obtain the same upper bound on —xT(f—T)x.
To conclude, take any u,v € Bi. Then, setting x = “2¥ and y = “;¥, observe that =,y € By

2 2
also, and that

which proves that

sup uT(YA’ - T)v‘ <n= sup uT(f —T)u| ,
u,VEB uESK 11
and thus we obtain the desired result. O
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D.4 Proof of Lemma 4.6

Lemma 4.6. Suppose that k > 1 and § € (0,1) satisfy log(2/0) + klog(12p) < n. Then with
probability at least 1 — 0 it holds that

u' (T - T)u‘ < 16(1 +v5)C(X) - \/log(2/5) + klog(12p)

n

sup
ueSk

Proof of Lemma 4.6. This lemma is a straightforward combination of Lemma C.2 (stated in Ap-
pendix C) together with the following result:

Lemma D.3 (Adapted from Lemma 5.1 and Theorem 5.2 of Baraniuk et al. (2008)). Let A be a
random matriz satisfying

exp {t-u' Au} < exp{c } for all |t| < con and all unit vectors u € RP (D.1)

for some constants co,c1. Then for any k =1 and any § € (0,1) satisfying
log(2/6) + klog(12p) < nciey

with probability at least 1 — § it holds that

1
lu' Au| < \/ ber (log(2/0) + klog(12p)) for all k-sparse unit vectors u € RP. (D.2)

Combined, Lemmas D.3 and C.2 immediately yield Lemma 4.6, as desired. O
We next turn to the proof of Lemma D.3.

Proof of Lemma D.3. (Adapted from Lemma 5.1 and Theorem 5.2 of Baraniuk et al. (2008).) First

fix any S < [p] with |S| = k. Let e = \/% (log(2/6) + klog(12p)). Following the same arguments

as in Baraniuk et al. (2008, Lemma 5.1), we can take a set & < R® of unit vectors, with || < 12F,

such that

sup ’uTAu| < 28up|ﬂTAﬁ’ .
unit ueRS uel

Furthermore, for any fixed @ € U, for any 0 <t < ¢gn,

P{a'Au >¢/2} <E[t-u'Au—t ¢/2]

t2
<exp(c—t /2>
n€2
=exp | —
P\ 7 16¢, )

2
- B ne
P{u' At < —¢/2} < exp( 1601) .

Setting t = 4— < ¢on,

and similarly,
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Therefore,

2
P {sup ‘ﬂTAzﬂ > 6/2} <2-12F . exp <— e ) ,
ueld 16¢;

T k ne?
P sup ‘u Au’ >ep<2-12% - exp | — .
unit ueRS 16¢4

and so

Finally, taking all (i) < p* choices for S, we see that

2
IP‘{ sup {uTAu} < e} >1—2(12p)F - exp (— 1726 > .

k-sparse unit u,v € RP

D.5 Proof of Lemma B.4

Lemma B.4. The following bound holds deterministically:

16 — 6] < C(T) - max ||A]|3+
ce{a,b}

T(S _ . 2
T8 = Zyof- (2 ma 8l (2+ g el ) + mo. Ay )

sup
u,VEB

ce{a,b
(The definition of the norm || - | is given in (B.6).)

Proof of Lemma B. 4 Choose any c¢,d € {a,b}; we will bound the (¢, d)th entry of the error, that

is, @cd — @ A, — 7, for each ¢ = a,b. We have

@cd - @cd

5 s

= (ch — 3814 — 2] Fa + ﬁjzﬁd) — (ch — v Bra— 2lva + %TEI’M)‘

= 3 S — Ve Erva — AL Sa — E}FCACZ‘

= ATE[’M + e Z]Ad + ATZ]AC[ - ATE[d }—CAd’
< ‘AZE[’M + 7. E[Ad + Ac YAy — AIEM — E};Ad| (D.3)
+ )Az(i[ — 2])"}/6[ + ’Y;r(i[ — EI)Ad + AZ(i] — EI)Ad — Az(ijd — E]d) — (i[c — EIC)TAd .

Now we bound each of these terms. To bound the first term on the right-hand side of (D.3), we
have

Al Sva + 7 SrAg + AlSiA; — Al S — 1A

= |AISIE IS+ L IS A+ AL A — Al S g — BA
= |AIZA]

< [[Acll2 - [|Adll2 - [[Zllop

< [[Acll2 - [|Adll2 - C(2) ,
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where the last step holds because
2] < IZI] = Amin(E) - C(2)

and we must have A\pin(2) < 1 because diag(X) = 1.
Finally, to bound the second term on the right-hand side of (D.3), we have

’AI(E[ — E[)’yd + ’}/;r(i][ — E[)Ad + A;I—(i[ — E[)Ad — A;r(f][d — E]d) — (f][c — E[C)TAd‘

<|AlEr - EI)’Yd‘ + e (1 - E17)Ad’ + ‘ACT@J — X)) Ag| + 'AZ(ild - Ya)| + ‘(ilc — EIC)TAd‘
< sup |u! (8- Z)v‘ .
u,VEB

(A oy vall ey + Nvell syl 2all gy + ANy 1A k) + ANy 1€l iy + Neell g 1Adll )

where e. and ey are the cth and dth basis vectors in R?. Since ||ec||x) = ||ea||x) < 2, the desired
result of the lemma follows trivially from these bounds. O

D.6 Proof of Lemma B.1

Lemma B.1. Suppose that Assumptions 3.1, 3.2 and 3.4 hold. Let g(X,X’) and ¢g1(X) be defined
as in the proof of Theorem 4.1. Then

1
1/31 := Var(¢1(X)) = ﬁCQ

variance

and
vd <= E[|g(X, X")*] < Cmoment

where Cyariances Cmoment are constants depending only on Ceoy, Ckernel and not on (n,pp, k).

Proof of Lemma B.1. First, we have
91(X) =E [sign(X —xHT (uvT o Cos (gT)) sign(X — X') | X]
=FE [(sign(X — X") ®sign(X — X/))Tvec (uvT 0 COoS (gT)) | X]
= E[(sign(X — X') ® sign(X — X")) | X]T vec (uvT o cos (gT))
— hy(X)Tvec <uvT o cos (gT)) )
where h1(X) is defined in Assumption 3.4, and has variance X . Therefore,

vg, = Var(g1(X))

-
= vec (uvT o cos (gT)) - X, - vec (uvT o cos (gT)) .
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By Assumption 3.4,

= Clernel - VEC (uvT 0 co8 (gT))T - Xp - vec (uvT 0 co8 (gT))
= Chernel - Var <vec <uvT 0 CcoS (gT))T h(X, X'))

= Clernel * Var (sign(X — X’)T (uvT 0 coS (gT)) sign(X — X’)) .
For Z ~ N(0,X), applying Lemma 4.4, sign(X — X’) has the same distribution as sign(72),

= Ckernel - Var (Sign(Z)T (uvT o cos (gT» sign(Z))
2
= Ciernel * Csigns * <uvT 0 CoS (zT)> ,
2 ab
where the last step applies the following lemma (proved in Appendix D.8).

Lemma D.4. Take any positive definite X € RP*P | any distinct a,b € {1,...,p}, and any matriz
M e RP*P qwith M, = 0 for all j. Let Z ~ N(0,%). Then there exists a constant Csigns depending
on C(X) only, such that

Var (sign(Z)" M sign(Z)) = Csigns - M2, .

Finally, we have

2 2
<uvT 0 coS (gT)) )= uZvf cos <gTab> > (Ceov) ™2,

a

where the last step holds because u, = v, = 1 and

m (T 2 / 2 -1
CoS (ETab) =4/1—sin <§Tab) =4/1=%5,21—=%u4 = Auin (Zapap) = (Ceov) ™ -

To summarize, we have

V2 > CkerneICsigns o 1
g1 = 2 T2
Ccov T

02

variance *

: 2.
Next, we give an upper bound on v :

vg, = Var(g1(X))

= vec (UUT O COS (

-
T)) - X, - vec (uvT 0 cos (gT))

-
T T)) - 2p, - vec (uvT 0 Ccos (gT)) .

< vec (uv O COS (

[N O

As for the lower bound,

= Var <sign(X - xNHT (uvT o cos (gT ) sign(X — XI))

= Var (g(X. X)) < E[lg(X. X)?] < E[Jg(x, X)F]" = 2.
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Finally, we compute an upper bound on 7]3 = E[|g(X, X")]*]. By Lemma C.1, there exists a

decomposition
cos (gT) = Ztrarbj
T
where t, > 0, > t, <4, and ||a; ||, ||br||cc < 1. Note that, by (B.1),

lulla = A/ 1+ [[7all3 < v1+C&,
and similarly ||v||2 < 4/1 + C2,,. Then for each r,

llwoarlla v |lvobla <A/1+CZ2, .

Then we have

E[lg(X, X)[*] = E “sign(X —x)T (uvT o cos (gT» sign(X — X') 3]
-
—E

ity sign(X — X)T (w0 a,b]) sign(X — X)
T

< ZtT -E [|Sign(X —x)HT (uvT o arbj) sign(X — X')lg]

<4 maxE [\sign(X — X)T (" 0 a,b] ) sign(X — X')||
T n

=4 -maxE [‘sign(X — X" (uo a,r)‘3 - |sign(X — XN (vo br)‘g]

=4- max \/IE [|Sign(X — XN T(uo aT)\G] : \/E [\Sign(X —X)T(vo br)\G]

<Alluocal3-|[vobf3- max E [‘sign(X — X/)Twﬂ
wlle=1

<4(1+C3)3- ||II|1|aX1E [’sign(X - X’)Twlﬁ]
w||o=

< 4(1 + Cgov)3 : C’gov - 6! 2\/E =: Cmoment )

where the last step holds because sign(X — X') is Coy-subgaussian by Lemmas 4.4 and 4.5. 0

D.7 Proofs of lemmas for the initial estimators

Lemma C.1. There exist vectors aj,as, ... and by, ba, ... with ||a;||s, ||brlle < 1 for all r > 1,
and a sequence ty,ts,--- = 0 with Y, t, = 4, such that cos (gT) = D> traph,) .

Proof of Lemma C.1. We will use the matrix max norm, defined for a matrix M € R%4*9% a5

||M|maxzmin{ max |[Ag)ll2 - max [|B)ll2 : r>1,Ae R"" BeR®2*T gt. M:A.BT} ,

1<i<dy 1<j<d2

where A(;) and B(;) denote the ith row of A and the jth row of B, respectively. The matrix max
norm satisfies several key properties that we will use here (Srebro and Shraibman, 2005): first,

W>=0 = ||W||max < max Wy; ; (D4)
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second,

W {lmax <1 = g € ConvexHull {abT lalloos [16]]o0 < 1} : (D.5)
and finally,
[[W o (uv")|]s < ||W||max for all unit vectors u,v and all matrices W, (D.6)
where recall that || - ||« is the matrix nuclear norm (the sum of the singular values).

For our matrix cos (57'), Wegkamp and Zhao (2013) show that

1/2
cos (gT) = Z < / >(—1)’"Z 09, 2, and X o9, X > 0 for all 7,

r=0 r

where ¥ o9, ¥ is the matrix with entries given by elementwise powers of 3, that is, (3 o2, X)ji =
(Z;1)%. Then for each r > 0, applying (D.4),

HZ O9p EHmax < mlaX(Z 09y Z)n = m?X(Zii)QT =1 s

since X is a correlation matrix. Then

H COS ( > ’max - H Z (1/2> E O2r Z:Hmax
r=0
)

r=0

1/2
(7] 1o Sl < 5

r=0

(-

where the last identity comes from Wegkamp and Zhao (2013). Finally, by (D.5), we have

cos (gT)

A € ConvexHull {abT llal]oos 6] o0 < 1}

and so cos (gT) can be expressed as a convex combination as stated in the lemma. ]

Lemma C.2. For fized u,v with ||ul|2,||v||2 < 1, for any |t| < W

E [exp (t (T - T)v)] < exp <[4(1 - \/5)] r Og"") .

Proof of Lemma C.2. We start with a simple observation that

=0 (F = T)(u =),

~ 1 ~
T(T—T)UZ “(u40) (T =T)(u+v) —
4
which gives us (via Cauchy-Schwartz)
E [exp <t (T — T)v)]

_E [exp (t- im )T —T)(u+v) —t- %m )T (F - T)(u— v))]

< \/]E {exp (t ) T(F =T+ m)] - \/IE {exp <—t =)~ T)u m)] .

LY




Note that 13(u+v)|]2 v ||3(uw—v)|]2 < 1. Therefore, it will be sufficient to show that for any
|t| < g4 and any unit vector w,

E [exp (2t cw (T — T)w)] < exp <[4(1 Al \/gr)z] r CCQOV) : (D.7)

We will prove (D.7) using the Chernoff bounding technique. To that end, denote S,, the group of
permutations of [n], and for any i, let X (i) denote the i-th row of X. For a fixed w € R? and o € S,
define

Zoi=w" (sign (X0 = X(o(i4n/2) (X (o)) = X(o(itny2y) ) = T) w .

Observe that
(T T) w = TL' Z Z Zo‘z’ (D8)

O’ESn i€[n/2]

and that for any fixed o € Sy, the Z,;’s are i.i.d. for i = 1,...,n/2, and are identically distributed
as

Z =w" (sign (X — Xins2) (X)) — Xigmyr) ") = T) w .
Using Lemma 4.4 and Lemma 4.5, for any fixed unit vector w € RP, w” sign (X(i) — X(i+n/2)) is a
Ceov-subgaussian random variable, and

Z = (" sign (X = Xnp2))” —E [ (0" sign (X) = X)) -

Applying Lemma D.5 (stated below), for any |t| <

E [exp (tZ)] < exp (%) <

Then, referring back to (D.8), for 0 < t <

1+xf)Ccov

2
1-

2t2 2
p <?’C°> < exp (8(1 + \/S)QtQCfov) :
4(1+\7/15)Ccov’

E [exp (th (f — T) w)] =E | exp 2 Z Lo

! UESn i€[n/2]

By Jensen’s inequality,

‘ZE exp %Z Lo

" yes, i€[n/2]
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Since for any fixed o, the Z,;’s are i.i.d., and are each equal to Z in distribution,

2 ()
()

< (exp (81 + VB (2t/m)C))
<[4(1+\/5)] £ 030v> _

n/2

= exp

Lemma D.5. Suppose Z is C-subgaussian, that is, E[exp (tZ)] < eCt/2 for allt e R. Then

E [exp {t( E[Zz])}] S 6Xp (%)

forall |t| < 3.

We remark that it is well known that the square of a subgaussian random variable satisfies sub-
gaussian tails near to its mean (see, for example, Lemmas 5.5, 5.14, 5.15 in Vershynin, 2012), but
here we obtain small explicit constants.

Proof. The first part of this proof follows the arguments in Vershynin (2012, Lemma 5.5). First,
we bound E [Z2k] for all integers k = 1. We have

k 2k k
E[Z%]—(i)kﬂi ( 2lez> <(2(;;)kE[(2k)!-exp{ 20]62}]
2

k k ek:
< Ck(2k:)!‘exp ( %> -C)2 =C((22:))k!

Then, for any ¢t > 0,

k
E|e”| =1+E[27] + ZE[ )]<1+tE[Z2]+Ztkaek.W.

k=2

Using Stirling’s approximation to give upper and lower bounds on (2k)! and k!, respectively, for
each k > 2

Z thCkek ¢ (2k)2k+1/2 e 2k
& CRF  ar kR ek

=1+tE|[ Z2+—Z (2tC)"
k>2

e 4t2C?

=14+ tE[Z%] + — -

+E] ]+ﬁ 1—2tC"’

<1+tE[Z2°] +
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as long as 2tC' < 1. Next, trivially, for any k > 2, |E [(22 — IE[ZQ])k” < 2FE [Z2k]. Then we have,

for [t] < 45,

E[exp (¢(2° —E[Z°]))] = 1+ )] B [(Z2 - E[Zz])k] <1+ ) % ‘E [(Z2 —E[Z2])k]’

Applying the work above, and using the fact T < 2,

22 22
<1+2[E[Z2?] + 13?70 —2[t|E[Z2?%] < exp{m} :

4t|C 1 —4jt|C
[
D.8 Lower bounds on variance for signs of a Gaussian
Lemma D.4. Take any positive definite ¥ € RP*P any distinct a,b € {1,...,p}, and any matrix

M e RP*P with M, = 0 for all j. Let Z ~ N(0,%). Then there exists a constant Csigns depending
on C(X) only, such that
Var (sign(Z)TM sign(Z)) = Csigns - M2,

Proof of Lemma D./. By the law of total variance,
Var (sign(Z)TM sign(Z)) = E [Var (sign(Z)TM sign(2) | Z(_a))] -

Let (—a) denote the set [p]\{a}. Let M;_,) € RP~! denote the jth row of M with its ath entry
removed, written as a column vector. Then, recalling that M;, = 0 for all j, we have

Var (sign(Z)TM sign(2) | Z(_q))

= Var (sign(Z ) - MT( o) sign(Z_q)) + Z sign(Z .( o) Sign(Z(—a)) | Z(_a)> .
j#a

Since every term except sign(Z,) is a function of Z(_),

. T . 2
= Var (s1gn(Za) | Z(_a)) . (Ma,(_a) 51gn(Z(_a)))

Slnce the distribution of Z, conditional on Z_, is given by Z Ba + N(0,v2) where 8, =

T
X E( a),a and I/a = Eaa — E(—a)a (— a)Z( a),a

(= a)
2
= Var (sign(Zga)ﬁa + N(0, yg))) : (M(I(fa) sign(Z(,a))>

_ (1 ) [sign(Z(T,a)Ba + N(0, vﬁ))r) : (sz,(fa) Sign(Z(*@))Q

AN A 2
1-19 <H> : <M(;,|:(fa) Sigﬂ(Z(fa))) ,



where ¢(z) = &(z) — &(—=x) € (—1,1).

Now we will give a lower bound on the expectation of this quantity. First consider the term

Z"  Ba
P <(_y‘;)6> Note that

T T
Z_aq)Pa N (0 @I&@&) N <O Y aya— a)z( a),a )
b 2 b T
Va Ya E‘m_z(fa)a (— a)z( a),a

and this variance is bounded by C(X). Then, for any c € (0, 1),
Z[ B
Py | S22 )| <y
Va

Next, note that M(I(_a) sign(Z(_q)) is (|[My,(—o)ll5 - C(X))-subgaussian by Lemma 4.5, and

T

(«/C(Z) (1 - C/Q))} - P{|Z(‘V“)B“ <A/CE) o (1 - 0/2)}

>P{|N(0,C(z))| < C(z).q>—1(1_c/2)}=1_c. (D.9)

B | (3] oy senZea)) | = 100l AuiaD).

where T' = E [sign(Z) sign(Z) "] (recall that & = sin (37')). Furthermore, by Wegkamp and Zhao
(2013, Section 4.3), we have
-
- Dlgk)T o,
k=1

where g(k) = 0 are nonnegative scalars, g(1) = 1, and X o X is the k-fold Hadamard product, that
is, (Y og X)ij = (X45)F. Wegkamp and Zhao (2013, Section 4.3) show also that ¥ o, ¥ > 0 for all k.
Therefore,
2
fz+ Z )oY > =%,
T k=2 T

and 50 Amin(T) = 2Anin(E) = 2(C(X))~!. Applying Lemma D.6 (stated below),

2 1
T . 2
P { (Ma,(—a) Slgn(Z(—a))) = HMa,(—a)HQ ’ )‘min( )/2} 162CE)Amin(T)

and so,

2 1 1
T -
P { (Ma’(fa) sign(Z(_q) )) 1Mo (—ayll3 - C(Z)} Z 16D

Now set ¢ = ——~—— in (D.9). Then, we see that with probability at least

1
32encm)? 32emC(2)2 7

Z—I—_a Ba 2 2
11— ((V)> . (MJ(—a) sign(Z(,a))> >

(1—w (vem) o (1- 641@)») Mool s -

o8



Therefore, combining everything,

| ) 1 2\ Mo —al3
V ien(Z) M sign(Z)) > ———— - |1 — N1 —— TTema)llz
ar (Slgn( ) sign( )) > 39070 ( P (m ( 64€7TC(E)2>> ) 7C(X)

Noting that [|M, _q)l|3 = M2

ab’

1 -1 1 i 1

this proves the desired result, where we define

Lemma D.6. Suppose that W € R is a random variable with E[W] = 0, E[W?] = Cy, and
E[ef"] < e“1/2 for all t € R. Then

1

2

Proof of Lemma D.6.

Co/2 < E[W?] — Cy/2
=E[W? - T{W? > Cy/2}] + E[W? - T{W? < Cy/2}] — Cp/2
<SEW? L{W? > Cy/2}].

Since t? < el + et for all t e R,

< CoE[(VVG 4 e WNC) {2 > Cy/2}]
= C()E[@VV/\/?0 | {W2 = 00/2}] + CoE[e_W/\/CT) . ]I{W2 = 00/2}]

< Co\/E[(eWV0Y2] - E[T{W? > Co/2§] + Cor/ El(e-WNO)2] - E[T{W? > Cy/2}]

— Co\[E[eWIVEO] . B2 > Co/2} + Cor/ B[e-WVTT] - B{W?2 > Co/2)

< CorJeCr /22 B(IV2 3 Co/2} + ConfeCr/C 22 B2 > Co 2}

and rearranging terms we have proved the lemma. O

D.9 Bounding the error in estimating the variance (Lemma B.5)

Lemma B.5. Under the assumptions and definitions of Theorem 4.2, with probability at least
- 6%”, if n = k2 log(py), on the event that the bounds (3.1) in Assumption 3.3 hold,
k7, log (pn)

S - det(©) — Sap - det(@)‘ < Coracle - =
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Proof of Lemma B.5. Recall from the proof of Theorem 4.1 that we have defined
g(X, X') = sign(X — X/) T (uvT o cos (gT)) sign(X — X') |
and ¢1(X) = E[g(X, X’) | X], where
Ug = l,up = 0,ur = —y, and vy = 0,vp = 1, v = —y .
Recall from the proof of Lemma B.1, given in Appendix D.6, that we have
1/31 = Var(g1(X)) = vec (uvT o cos (gT))T - %p,, - vec (uvT o cos (gT)) ,
where ¥, = Var(h1(X)) for
hi(X) = E [sign(X — X') @sign(X — X) | X] € R”" .
To estimate this variance, define vectors @ and v with entries
Ug = 1,0, = 0,07 = —J, and U, = 0,0, = 1,07 = —% ,
and define .
~ 1 ~ 1 «n ~ IR
Sh, = nZ (hl(Xi) — n;hl(xi») <h1<Xi> - an(Xa)) :
where abusing notation, we write

~ 1 1
hi(X;) = 1 Z h(X;, X)) = 1 Z sign(X; — Xy) ® sign(X; — Xy) .

n J—
V' #1 e

We then define

~A\N\ T A~ ~
1731 = vec <ﬂ5T o cos (gT)) - Xp, - vec (zVuV;T 0 CoS (gT)) .
Writing

T = vec <uvT 0 CoS (gT)) and I = vec (ﬁﬁT 0 Cos <gf)) )

we then have

V2

T ~2 TS v
o =% Xpyxand Uy =T Xp, T .

Define also -
T = vec (ﬁTJT 0 COoS <§T>) )

The following lemma, proved in Appendix D.10, carries out some elementary calculations on the
norms of these vectors z, 7T, .
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Lemma D.7. Define x,Z,% as in the proof of Lemma B.5, and assume n > k2 log(p,). With
probability at least 1— ﬁ, if the bounds (3.1) in Assumption 3.3 hold then the following inequalities
all hold for constants Cop, C1,Cs, Cs that depend only on Ceoyv, Csparse, Cest

z|[1 < Cokn ,
2
IF -7 < C1 Lg(m)’
n
k3 log(pn)
¥ — aly < Cop| 28]
|7 —z[1 < C2 -
k21
Imat(F )l e, < Oy L)

where mat(-) reshapes a vector in RP» into a Pn X pp, matriz, and where we define the matrix {1/l
norm as My, g, := >3; ||Mj|2, where Mj is the jth column of M.

We now continue bounding error in estimating v4,. We have:
72— 2 | = ‘fTEhlf - :thlx] < ‘:J(zhl - Zhl)x' + ‘szhlf — 2 S| . (D.10)

We bound each term separately. For the first term in (D.10), we apply the following lemma (proved
in Appendix D.10 below):

Lemma D.8. Under the same assumptions and notation as Lemmas B.1 and B.5, for a universal
constant Cstudentized s

S kTQL log(pn) 1
P {‘x—r(zm - Z:hl)x < Cstudentized T = 1— 36pn .

For the second term in (D.10), since ihl >0 and so y — yTihly is a norm and must satisfy
the triangle inequality,

‘ETE;ME — zTEhlx‘ = )\/EETE;MJ? — \/ﬂ:TEhlx : ‘\/ETEME + \/xTEhlx
A A~ 2 A A~
< )\/ETZhlf—\/xTEhlx + '\/ETZhli—\/mTEhlx

2
< '\/fTZhli - \/xTEhllE + ’\/iTEhI% - \/Z‘Tzhlx

To bound the difference term )\/%Tf]hlf — \/ﬂ:TEA]hIJ:

20/ x Y @

-2\/56T2h19:+ ’ﬂ(ihl ~ %)z . (D.11)

which appears twice in the expression above,
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we have

‘\/.\f—rihl.\f — \/wTihlx
<\JF—2)TS, (F o) + \/‘(f—x)T(ihl —)(F - 2)
<A/ = ) T2 (& — @) + /18 — Sy o - 1 — a2
< \J@E -T2, @ —7) + /@ )20 @ — ) + 190, — Syl - [ — a2
thl ol =712 + /(@ — ) TS0, — @) + A/ 8 — Sy oo - 7 — 2

k2 log(pn k3 log(pn
Cyy | Fnlog(en) /@ = 2) TS, (@ — ) + 418, — Sl - Cog 2P %8Pa) (p 19

Next, we state two lemmas, which are proved in Appendix D.10.

<AJGE—2)TS, (5 —2)

Lemma D.9. With probability at least 1 — 9;:%71’

18, — S, |0 < 100

log(pn)
p—

Lemma D.10. Let ¥, be defined as in Assumption 3.4. For every z € RP%,
2T 502 < Amax(E) - [[mat(2)[[7, /g, +

where |[mat(2)|, /e, is defined as in the statement of Lemma D.7.

From this point on, we assume that the bounds derived in Lemmas D.7 and D.9 all hold (which the
lemmas have shown to be true with probability at least 1 — p , on the event that the bounds (3.1)
of Assumption 3.3 hold.) By Lemmas D.10 and D.7,

n

2
2
(T —2) 3h, (T~ 2) < Ceov - (03 ’Wg(pn))

Applying this bound, along with the high probability events of Lemmas D.8 and D.9, we return
o (D.12) and obtain

‘\/\fTihl.\f - \/xTihlx
2
/k21 " k21 " 1 n k3 log(pn
Cl Og p + Ccov ‘ n Oj(p )> + 100 Og p C\/ n Og p
k21 k21 n k21 "
_ [ Fnlo8\Pn) og(p (ClJng,/ Ceoy + 100, \/"OS@))S\/”OS@)'CAL,

<
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where for the last step we define Cy = C1 4 C34/Ccov + 10C5 and use the assumption n > kQ log(py).
Next, returning to (D.11),

‘fTZhli — xTEhlm

2
< ‘\/%Tzhlf - \/xTEhlx n W%Tzhlf — \/xTEhlx - 2\/xTEhlx n ‘xT(zhl - Eh1)$’

k2 log D) k2 log Pn) 2/3 k2 log(p
< CZ “ 2 m/oment + Cstudentized nn(n) ;

where the last step applies the high probability event of Lemma D.8, and uses the fact that
'Y = 12 < C’i/sment by Lemma B.1. Defining C5 = C% + Cy - 2\/02/3 Cstudentized

g1 moment +
and using the assumption n > k?log(p,), we have

k2 log(pn)
e

‘ETZhlf - xTEhll' < Cs

Finally, returning to (D.10) and applying Lemma D.9, we see that

v k3 log(p k2 log(p
| 31 21| < Cstudentized * \/m +C5 ni(n) .
n n
v —vE| 7R - : K2 log(pn)
— ‘Vgl — Vgl < ‘l/ - Vgl < (CStudentlzed + C5)\/T

Vg, — Vg, | =
91 91 ~ = = 1 ’
Vg1 + Vg1 Vg1 ;Cvariance

Next, we have

where for the denominator we apply Lemma B.1. Finally, since we know that Su, = 7y, -(det(0)) ™1

and Sy = g, - (det(©))!, and then we have

S O C ud nized+05 w
Sabdet(("))—sabdet(@) :7T'|\V/g1_]/gl|<7'(‘-( student )\h

;Cvarlance

Defining

Cstudentized + CS
Coracle = T - )

1o .
g variance

we see that
k2 log(pn)

S/ab . det(é) — Sap det(@)‘ < Coracle * n

D.10 Calculations for the variance estimate (Lemma B.5)

Proof of Lemma D.7. We calculate

™ ™
el = lluvTocos (ZT) [l < fuv"fli-llcos (5T ko < lfullal[olls < kn(1+2CeorCoparse)® =: Cokn
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where for the last inequality we apply (B.2).
Next,

|| —Z||1 = |Jav" o (cos <gT) — cos (gf)) 1
~ ~ s T~
< (el + 11 = wlly) - (el + 1[5 = vlla) - [ cos (5T) = cos (5T I1

Applying (B.2) and Assumption 3.3, and the fact that cos(-) is 1-Lipschitz, if the bounds in As-
sumption 3.3 hold,

2
k2 lo T
< <\//€n(1 + 20 Cpre) + Cos f“”) P\~ Tl
Applying Lemma B.2, with probability at least 1 — 36p )

2
kilog(pn) | ™ [12log(36pn)
n 2 n

< <‘\/ kn(l + 26'covcfsparse) + Cest

Since 121og(36p,,) < 108log(p,) < 4n, where the last step holds by assumption in Theorem 4.2,

| k2 log(pn,
g p + 2Ccovc’sparse) + Cest) .
k2 log(pn,
- CM/% for C1 i= (1 + 2CeoyCiparse) + Cest)® *

17 — x|y < |7 =7l + |[7 — =[x

Next,

<O

k2 log(pp .
”S@)Jr]\x—xh

k2 log(pn o
e k7 log(pn) + 1|5 = uvT) o cos (ZT> B
n 2
k21 " - o
<y nos(p)-l-Hu(U—v)TOCOS(;T)Hl-F|(’U,—U)UTOCOS(;TT>||1

k2 log(p “il 11w a0 . m
< O/ B8P i 15— ol eos (5T 1 + 11— ullalol o cos () 1

Applying (B.2), if the bounds (3.1) in Assumption 3.3 hold,

k2 log (pn b Log (pr b los(rn
<c "°§(“+(mlwccwcspamewest g(“)c e

+ \V kn(l + 2CcovC'sparse) : C'est

k3 log(pn)

k2 log(pn)
n
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where Cy = C1 + 2(1 + 2CcoyCsparse) - Cest + C2, and we use the assumption n > k2 log(p).
Finally, noting that  — z = vec (40" —uv') o cos (37T')), we calculate the ¢1/¢, norm of this
matrix:

— ~~ 7'l'
Imat(z = a)l|ey e, = 157 = uvT) o cos (T Il
:Zyy[aﬁT—uvT)ocos,(fT)] 12

2 /1
vv T
ZH 5T — w2 llcos (57) Ilo
Zuu 0p)llz + 1@ =) - vjl]2
—ZI!qu = vl + |1 = ulle - o]
15— ol + 1~ sl

Applying (B.1), if the bounds (3.1) in Assumption 3.3 hold,

|k log(pn /k210 n kn log(pn
<\/1+CCOV+Cest gp ) Cest - gp Cest - gp ‘A kn /1 4+ Ceoy

2
< C3 kn log(pn) ,
n

where we define C3 = 24/1 + C2,, - Cest + C%, and use the assumption that n > k2 log(py,). O

Proof of Lemma D.8. By definition, we have ¥, = Var(hi(X)) for
hi(X) = E [sign(X — X') @sign(X — X') | X] € RP"
Therefore, since x is fixed,
2%y, ¢ =z Var(hy(X))z = Var(z " hy (X)) = Var(g1(X)) = Vgl ,

where we recall that ¢1(X) = E[g(X, X’) | X] where we define the kernel
9(X, X') = sign(X — X)7 (uvT o cos (gT» sign(X — X') = 2 h(X, X') .

Define

9(X, X")g(X, X") + g(X", X)g(X', X") + g(X", X)g(X", X")

(X, X', X") = 3

Note that « is a U-statistic of order 3, with
ke i=_sup (XX X")] < sup lg(X. X < [Jal sup |IACY. X

X, X, X" X, X
= ||z|[} < k2 (1 + 2CcovCsparse)*
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(See proof of Lemma D.7 for this bound on ||z||;.) And,

Var(y) := Var(y(X, X', X")) < Var(g(X, X')g(X, X")) < E[|g(X, X")"]
<E [|9(X7 X/)|3] ’ kn ’ (1 + 2CfcovOsparse)2 < Cmoment : kn : (1 + 2C’covcsparse)2 )

where we use Lemma B.1 for the last bound.
Next, we have

E [’y(X, X/,X”)] =E [g(X, X’)g(X, X”)] =E [E [g(X, X')g(X, X”)]X]]
~ E[E[g(X. X)X E [g(X. X")|X]] = E [0:(X)?] .

Therefore,
2 Spz =2 = Var(g1(X)) = E[v(X, X", X")] —E[q1(X)]* = E [+(X, X", X")] - E [g(X, X’)]2 .

Next, examining the definition of f]hl, we obtain

2

S 1

xTEhlx = m [ Z V(XiinHXi”) + Z g(XZ,Xz/)Ql _ ((n) 2 g(X’L;Xz’)> .
i1 £ i1 2/ q<i!

Therefore, using the fact that |g(X, X’)| < ky, - (1 + 2CcovCsparse) always,

v Y (X, X, Xo) — E[y(X, X, X")]
(3) a<i!<i

2
k?z (1 + 26’cost arse 4 1
+ ( — parse) <(n) Z Q(Xz',Xz")) —E[g(X, X")]?
2

<

xTEhlx - J:TEhla:

i<t

Now, using Bernstein’s inequality for U-statistics (Peel et al. (2010, Theorem 2)), for any § > 0,
2V log(2/0 2 log(2/0
P{ D) (X X, Xir) — B[ (X, X, X)) > \/ arl) log(2/6) , 2l log(2/ >} <5

(g) i<il<il (n/3) 3(n/3)
Therefore, with probability at least 1 — ﬁ,

1
Y (X Xy, Xpr) — E[y(X, X, X)) <
(3) i</ <i
2Cmoment * kn (1 + 2C'costpalrse)Q IOg(Q : 72pn> Qk% : (1 + 2Ccovc(sparse)zl 108;(2 : 72pn)
+
(n/3) 3(n/3)
< kl?b log(pn) . C/ ,
n
where

C" = 1 /6Crmoment * (1 + 2CcoyCaparse) 2(2 + 1085(72)) + 2+ (1 + 2Ccoy Caparse) (2 + logy(72))
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and we use the assumption n > k2 log(p,) and p, > 2. And, again using Bernstein’s inequality for
U-statistics, and using the fact that [g(X, X’)| < Ky - (1 + 2CcoyCsparse)? always, with probability at
least 1 — ﬁ,

@) Z 9(X;, Xy) —E[g(X, X")]| <
2/ j<i

2#2 - (1 + 2CeoCsparse) ' 10g(2 - 72pn) |, 2kn - (1 + 2CeoCisparse)” log(2 - 72pn)
(n/2) 3(n/2)

ki log(Pn)
n

<

)

where

o 2+ (1 + 2CcovCsparse)* (2 + log, (72)) N 2+ (1 + 2CcoyCsparse)*(2 + logy(72))
(1/2) 3/2 ’

and we use the assumption n > k2 log(p,) and p, = 2. Therefore,

2
+

(,11) D 9(Xi, Xi) — E[g(X, X')]

2/ q<i

<(nl) Zg(Xi,Xi’)> ~E[g(X, X)]?| <

2) g<i

2
fE[g(X, X)]| < ¢y | Fn1o8(Pn)
n

i

(i) S (X, Xy) — E[g(X, X")]

2/ i<i’

where we set

1/3
o — C//2 +20". Cm/oment

and again use n > k2 log(p,), and apply Lemma B.1 to bound |E[¢g(X,X’)]|. Combining every-
thing, this proves that, with probability at least 1 — ﬁ,
M o k‘% (14 QCcostparse)4 Lo M

<
= n n—1 n

LD N LD

Setting
Cstudentized = Cl + C”/ + 2<1 + 2Ccostparse)4

and using the fact that n > 2 and n > k2 log(p,), we have

k2 log(pn)
e

TH T
x E}“SU - Ehll' < Cstudentized

Proof of Lemma D.9. From our definitions, we see that

Shy, = Var(hi(X)) = E [k (X)hi(X) "] = E[hy (X)]E[h1 (X)] T,
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and -
Sh, = EZhl(Xi)hl(Xi) — (nZhl(Xi)> (nZhl(Xi)> .
First, we bound || 3 2y (X;)h1(X;)T — E [h1(X)h1(X)T]||s. We have
1« n ~
HEZhl(Xi)hl(Xi)T —E [h1(X)h1(X) ] ||oo <
IR ~ 1
- Xi)ha(X3)" = = Xi)ha(X)"
Iy S5 (X0 (K0T = S (XK () o+
1
HﬁZhl(Xz‘)hl(Xz‘)T —E[m(X)(X) ]|l . (D.13)

We handle these two terms separately. First, we bound || 3, ﬁl(Xi)’lil (X)) T=1 3 h (Xi)ha (X3) T oo

For convenience we define A := %Ziﬁl(Xi)?Ll(Xi)T and B := 1% h(X;)h(X;)". Since A and
B are both positive semidefinite matrices with ones on the diagonal, we have

1 T
14— Bl = 5 max [£5(4 = B)fjl (D.14)
where f;, € RP» is the vector with (fir); = 1, (fjr)r = —1, and zeros elsewhere. Next we have

A= BYfil = W IR ATw = A ELB | - (\ FASik + /[ B 1)

< 4|/ £ AL =\ £ B | = jﬁ \/Z(?u O \/Z(hl(Xi)Tfjk)Z

< \;%\/Z ((EI(XZ') - hl(Xi))Tfjk)2 ,

where the first inequality follows from the fact that ||fjx||1 < 2 while ||A||w, ||B||e < 1, and the
second inequality follows from the triangle inequality. Next, for each ¢ and each j, k, observe that

~ 1 . .
h(Xi)" fix = — > (sign(X; — Xy) ®sign(X; — Xi)) " fin
" )
which after conditioning on Xj, is a mean of (n — 1) i.i.d. variables, each taking values in [—2, 2]
since ||fjx|l1 < 2. Furthermore, conditioning on X;, we have E[h(X;)] = hi(X;). Therefore,
applying Hoeffding’s lemma (see, for example, Lemma 2.6 in Massart, 2007), for each 1, j, k, for
any t € R,

B [exp {i- (a0~ () ] < e { 255 ] (D.15)

n—1

Applying Lemma D.11 (stated below), then,

P {12 ((ﬁl(Xi) - hl(Xi))Tfjk:)2 > % 1+ log(27p2))} <

n <
7

27p,
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Taking a union bound over all j, k € [p2], and returning to (D.14), we then have
IR ~ 80 1
P<L|= ) hi(X; —— > hy( > 24 [ —— - (1 + log(27p3 < .
{Hn; R0 = ST (X (X0 > Vs (1 ou pn»} T
Next we turn to the second term in (D.13). Since ||h1(X)||le < 1 always, we see that for each

J: k € [pal,
(iZhl(Xi)hl(Xi)T>
% jk

is a mean of n i.i.d. terms, each taking values in [—1,1]. Applying Hoeffding’s inequality, for each
J,k,

P <7i Z hl(Xi)hl(Xi)T _ E[h(X)h(X)T]> >\« 9p—112/2

for any ¢ > 0. Setting t = 4/ %‘Mp%), and taking a union bound, we see that

2105";(5479%)} < sz.e*"<\/@> 21

n 27pn .

P {Hi Z P (X)h (X)) T = E[R(X)R(X) ]| =

Returning to (D.13), then, with probability at least 1 — 27p ,

123 X0 ()T B [ (X ()T e < 220 (0 toggorpy) 42000

n
(D.16)
Next, to complete the proof, we bound

i
(2 3he) (e - e

We have
1 1 !
(nZEl(Xi)> (nZ?u(Xi)) —E[h(X)]E [h(X)]"
T
= (;ZM&) (izﬁl(&) —E[h1(X)]> - (iz%l(xi) —E[hl(X)]> E [h1(X)]"

2

and, since ||1 Zl’ﬁl(Xz)Hw, [|E[h1(X)]||leo < 1, we therefore have

)
||<jlzﬁ1<xi>> (iZf?l(Xi)) —E [ (X)]E [ ()] [l < 2Hf2h1 m(X)] o -

i
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For each sign s € {+1}, for each j € [p2], writing e; to denote the jth basis vector in Rp%, we have

E[exp{t s-el < Zhl (X)])}] EE[exp{t seef (hn(xi) —E[m(X)])}]

where the first inequality follows from the convexity of  — e®, while the second applies Hoeffding’s
lemma, as in (D.15) above. Then,

~ 21log(27p3) 1
el ) — n <
]P’{s e, (hl(Xz) E[hl(X)]) AT S g
and therefore taking a union bound over each s € {1} and each j € [p2],
P SV () — E [ ()] [l > 4| 2BEP) L 1
o ! © n—1 = 27,

Therefore, combining this with (D.16), with probability at least 1 — W’

$ 80 2log(54p3 21og(27p3 log(py,
1S = Sl < 20/ - (1 + log(27p3) \/ﬁ TM<100W7

where the last step uses the fact that n,p, > 2.

Proof of Lemma D.10. Since the statement is deterministic, we can treat M € RP»*P» ag fixed.
Then

vec(M) "), vec(M ) = Var (vec(M)Thl(X))
= Var (vec(M) E[h X1)
= Var (E[vec(M )Th X, X") | X))

By the law of total variance,

< Var (vec(M)Th(X, X))

< E [(vec(M)Th(X, X"))?]

=E [(vec(M)" (sign(X — X') ®@sign(X — X')))?]
— B (sign(X — X")TM sign(X — X'))’]
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Writing M as the jth column of M,

2
=E (Z sign(X — X’) T M; - sign(X; — X;))
J

<E (Z |sign(X — X’)TMj’>

J

= ) E[|sign(X — X') " M;] - [sign(X — X") T My|]

ik
i — X 121 sign(X — X’ 2
< %:\/IE [|81gn(X X T M| ] \/E [| gn(X — X')T M| ]

= Z \/M]T E [sign(X — X’) sign(X — X')T] M; - \/ M E [sign(X — X’) sign(X — X/)T] My,
gk

-3 \/M].TTMJ- - \/M,;FTMk
gk

< S VUM N T) A/ 1M - Aunae(T)
ik

= )\maX<T> : <2 ‘M]H2> .

J

Finally, by Wegkamp and Zhao (2013, Theorem 2.3), Amax(7) < Amax(2). O

Lemma D.11. Let v € RP be a fized vector and let Z1,...,Z, € [—1,1]P be random vectors, not

necessarily independent, such that v' (Z; — E[Z;]) is C-subgaussian for each i, that is,
E[exp{tv' (Z; — E[Z:])}] < exp(Ct?/2).

Then for any 6 € (0, 1), with probability at least 1 — 6,

% N (07 (2 — E[Z:]))” < 200(1 + log(1/5)) .

Proof of Lemma D.11. For each i, by assumption,
2

E [exp {t : \/161)T(Zi — E[Zi])}] < exp {2} :

By Vershynin (2012, Lemma 5.5) (and tracking constants carefully in this Lemma), for each i,

E [exp {230 (T (Zi - E[Zi]))2H <e.

By the convexity of x — e”, then,
E | exp L-121(11T(Z-—IEJ[Z-]))2 <EZE exp L-(UT(Z-—IEJ[Z']))2 <e
20C n < ’ ‘ Tns 20C ' ‘ o
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Therefore, we have

P {12 (v7(Z - E[Z])" > t} <E [eXP {2010” ’ (v'(Z; — E[Z1]))

n <=
1

Setting t = 20C(1 + log(1/6)), then, we have proved the desired result.
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