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Abstract

Understanding complex relationships between random variables is of fundamental impor-

tance in high-dimensional statistics, with numerous applications in biological and social sci-

ences. Undirected graphical models are often used to represent dependencies between random

variables, where an edge between to random variables is drawn if they are conditionally de-

pendent given all the other measured variables. A large body of literature exists on methods

that estimate the structure of an undirected graphical model, however, little is known about the

distributional properties of the estimators beyond the Gaussian setting. In this paper, we focus

on inference for edge parameters in a high-dimensional transelliptical model, which generalizes

Gaussian and nonparanormal graphical models. We propose ROCKET, a novel procedure for

estimating parameters in the latent inverse covariance matrix. We establish asymptotic nor-

mality of ROCKET in ultra high-dimensional setting under mild assumptions, without relying

on oracle model selection results. ROCKET requires the same number of samples that are

known to be necessary for obtaining a
?
n consistent estimator of an element in the precision

matrix under a Gaussian model. Hence, it is an optimal estimator under a much larger family

of distributions. The result hinges on a tight control of the spectral norm of the non-parametric

estimator of the correlation matrix, which is of independent interest. Empirically, ROCKET

outperforms the nonparanormal and Gaussian models in terms of achieving accurate inference

on simulated data. We also compare the three methods on real data (daily stock returns), and

find that the ROCKET estimator is the only method whose behavior across subsamples agrees

with the distribution predicted by the theory.

Keywords: Graphical model selection; Transelliptical graphical models; Covariance selection;

Uniformly valid inference; Post-model selection inference; Rank-based estimation
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1 Introduction

Probabilistic graphical models (Lauritzen, 1996) have been widely used to explore complex system

and aid scientific discovery in areas ranging from biology and neuroscience to financial modeling

and social media analysis. An undirected graphical model consists of a graph G “ pV,Eq, where

V “ t1, . . . , pu is the set of vertices and E is the set of edges, and a p-dimensional random vector

X “ pX1, . . . , XpqT that is Markov with respect to G. In particular, we have that Xa and Xb are

conditionally independent given the remaining variables tXc | c P t1, . . . , puzta, buu if and only if

ta, bu R E. One of the central questions in high-dimensional statistics is estimation of the undirected

graph G given n independent realizations of X, as well as quantifying uncertainty of the estimator.

In this paper we focus on (asymptotic) inference for elements in the latent inverse covariance

matrix under the semiparametric elliptical copula model (Embrechts et al., 2003; Klüppelberg et al.,

2008), also known as the transelliptical model (Liu et al., 2012b). Let X1, . . . , Xn be n independent

copies of the random vector X that follows a transelliptical distribution,

X „ TEpΣ, ξ; f1, . . . , fpq, (1.1)

where Σ P Rp is a correlation matrix (that is, Σjj “ 1 for j “ 1, . . . , p), ξ P R is a nonnegative ran-

dom variable with Ptξ “ 0u “ 0, and f1, . . . , fp are univariate, strictly increasing functions. Recall

that X follows a transelliptical distribution if the marginal transformation pf1pX1q, . . . , fppXpqq of

X follows a (centered) elliptically contoured distribution with covariance matrix Σ (Fang et al.,

1990). Let Ω “ Σ´1 be the inverse covariance matrix, also known as the precision matrix; under

a Gaussian model, nonzero elements in Ω correspond to pairs of variables that are conditionally

dependent, i.e. form an edge in the graph G. Under the model in (1.1), we construct an estimator

for a fixed element of the precision matrix, Ωab, that is asymptotically normal. Furthermore, we

construct a confidence interval for the unknown parameter Ωab that is valid and robust to model

selection mistakes. Finally, we construct a uniformly valid hypothesis test for the presence of an

edge in the graphical model.

Our main theoretical result establishes that given initial estimates of the regression coefficients

for pfapXaq, fbpXbq on pfjpXjqqj‰a,b, one can obtain a
?
n-consistent and asymptotically normal

estimator for Ωab. These initial estimators need to converge at a sufficiently fast rate (see Section 3).

In particular, we note that we do not require strict sparsity in these regressions, and allow for an

error rate that is achievable by known methods such as a nonconvex Lasso (Loh and Wainwright,

2013) (see Section 3.1). To achieve
?
n-consistent rate, our estimator requires the same scaling for

sample size n as in the Gaussian case, which is minimax optimal (Ren et al., 2013).

Given accurate initial estimates, in order to construct the asymptotically normal estimator, we

prove a key result: that the vector signpXi ´Xi1q is subgaussian at the scale CpΣq (the condition

number of Σ), with dependence on the dimension p coming only through Σ. This result allows

us to construct an asymptotically normal estimator by combining the initial regression coefficient

estimates with the Kendall’s tau rank correlation matrix. In particular, the subgaussianity result

allows us to establish a new concentration result on the operator norm of the Kendall’s tau cor-

relation matrix that hold with exponentially high probability. This result allows us to uniformly

control deviations of quadratic forms involving the Kendall’s tau correlation matrix over approxi-

mately sparse vectors. These results are of independent interest and could be used to improve recent
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results of Mitra and Zhang (2014), Wegkamp and Zhao (2013) and Han and Liu (2013). Further-

more, subgaussianity of signpXi´Xi1q allows us to study properties of penalized rank regression in

high-dimensions.

We base our confidence intervals and hypothesis tests on the asymptotically normal estimator

of the element Ωab (see Section 2). We point out that our results hold under milder conditions than

those required in Ren et al. (2013), which treats the special case of Gaussian graphical models. Most

notably, we give a
?
n-consistent estimator for elements in the precision matrix without requiring

strong parametric assumptions.

1.1 Relationship To Literature

Our work contributes to several areas. First, we contribute to the growing literature on graphical

model selection in high dimensions. There is extensive literature on the Gaussian graphical model,

where it is assumed that X „ Np0,Σq, in which case the edge set E of the graph G is encoded by

the non-zero elements of the precision matrix Ω (Meinshausen and Bühlmann, 2006; Yuan and Lin,

2007; Rothman et al., 2008; Friedman et al., 2008; d’Aspremont et al., 2008; Fan et al., 2009; Lam

and Fan, 2009; Yuan, 2010; Cai et al., 2011; Liu and Wang, 2012; Zhao and Liu, 2014). Learning

structure of the Ising model based on the penalized pseudo-likelihood was studied in Höfling and

Tibshirani (2009), Ravikumar et al. (2010) and Xue et al. (2012). More recently, Yang et al.

(2013) studied estimation of graphical models under the assumption that each node’s conditional

distribution belongs to an exponential family distribution. See also Guo et al. (2011a), Guo et al.

(2011b), Lee and Hastie (2012), Cheng et al. (2013), Yang et al. (2012) and Yang et al. (2014) who

studied mixed graphical models, where node’s conditional distributions are not necessarily all from

the same family (for instance, there may be continuous-valued nodes as well as discrete-valued

nodes). The parametric Gaussian assumption was relaxed in Liu et al. (2009), where graphic

estimation was studied under a Gaussian copula model. More recently, Liu et al. (2012a), Xue

and Zou (2012) and Liu et al. (2012b) show that the graph can be recovered in the Gaussian and

elliptical semiparametric model class under the same conditions on the sample size n, number of

nodes p and the maximum node degree in the graph s as if the estimation was done under the

Gaussian assumption. In our paper, we construct a novel
?
n-consistent estimator of an element in

the precision matrix without requiring oracle model selection properties.

Second, we contribute to the literature on high-dimensional inference. Recently, there has been

much interest on performing valid statistical inference in the high-dimensional setting. Zhang and

Zhang (2013), Belloni et al. (2013a), Belloni et al. (2013d), van de Geer et al. (2014), Javanmard

and Montanari (2014), Javanmard and Montanari (2013), and Farrell (2013) developed methods for

construction of confidence intervals for low dimensional parameters in high-dimensional linear and

generalized linear models, as well as hypothesis tests. These methods construct honest, uniformly

valid confidence intervals and hypothesis test based on the `1-penalized estimator in the first stage.

Similar results were obtained in the context of the `1-penalized least absolute deviation and quantile

regression (Belloni et al., 2013c,b). Lockhart et al. (2014) study significance of the input variables

that enter the model along the lasso path. Lee et al. (2013) and Taylor et al. (2014) perform

post-selection inference conditional on the selected model. Liu (2013), Ren et al. (2013) and Chen

et al. (2013) construct
?
n-consistent estimators for elements of the precision matrix Ω under a

Gaussian assumption. We extend these result to perform valid inference under semiparametric
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ellitical copula models. In a recent independent work, Gu et al. (2015) propose a procedure for

inference under a nonparanormal model. We will provide a detailed comparison in Section 3.

1.2 Notation

Let rns denote the set t1, . . . , nu and let 1It¨u denote the indicator function. For a vector a P Rd, we

let supppaq “ tj : aj ‰ 0u be the support set, and let ||a||q, for q P r1,8q, be the `q-norm defined

as ||a||q “ přiPrns |ai|qq1{q with the usual extensions for q P t0,8u, that is, ||a||0 “ |supppaq| and

||a||8 “ maxiPrns |ai|.
For a matrix A P Rn1ˆn2 , for sets S Ă rn1s and T Ă rn2s, we write AST to denote the |S| ˆ |T |

submatrix of A obtained by extracting the appropriate rows and columns. The sets S and/or T

can be replaced by single indices, for example, for S Ă rn1s and j P rn2s, ASj is a |S|-length vector.

If A P Rnˆn is a square matrix, for any T Ă rns we may write AT to denote the square submatrix

ATT .

For a matrix A P Rn1ˆn2 , we use the notation vecpAq to denote the vector in Rn1n2 formed

by stacking the columns of A. We denote the Frobenius norm of A by ||A||2F “
ř
iPrn1s,jPrn2sA

2
ij ,

and the operator norm (spectral norm) by ||A||op, that is, the largest singular value of A. The

norms ||A||1 and ||A||8 are applied entrywise, with ||A||1 “ ř
ij |Aij | and ||A||8 “ maxij |Aij |. We

write CpAq to denote the condition number of A, that is, the ratio between the largest and smallest

singular values. For two matrices A P Rnˆm and B P Rrˆs, AbB P Rnrˆms denotes the Kronecker

product, with pAbBqik,jl “ AijBkl. For two matrices of the same size, A,B P Rnˆm, A˝B P Rnˆm
denotes the Hadamard product (that is, the entrywise product), with pA˝Bqij “ AijBij . Kronecker

products and Hadamard products are defined also for vectors, by treating a vector as a matrix with

one column.

Throughout, Φp¨q denotes the cumulative distribution function of the standard normal distri-

bution, that is, Φptq “ PtNp0, 1q ď tu.

1.3 Organization of the paper

In Section 2 we introduce Gaussian graphical models and their nonparametric extensions: nonpara-

normal and transelliptical graphical models. It is illustrated that transelliptical graphical models

are useful for modeling dependent tail events, which cannot be modeled with Gaussian and nonpara-

normal graphical models. We further introduce our asymptotically normal estimator, ROCKET,

for edge parameters in a transelliptical model. Our main theoretical result, which establishes dis-

tributional properties of the ROCKET estimator, is given in Section 3 together with technical

assumptions. Section 3.1 discusses choices of initial estimators. It is shown that the non-convex

Lasso estimator can be used under the same conditions used to study the Gaussian case. Section 4

provides an outline of the proof for the main result and the key technical result. Section 5 provides

illustrative simulations. An application to S&P 500 stock price closing data is given in Section 6.

We conclude the paper with a discussion. Technical proofs are relegated to Appendix.
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2 Preliminaries and method

Before introducing our method, we begin with some preliminary definitions and properties of the

transelliptical distribution, and related models.

Gaussian and nonparanormal graphical models Suppose that X “ pX1, . . . , Xpq follows a

multivariate normal distribution,

X „ Npµ,Σq .
A Gaussian graphical model represents the structure of the covariance matrix Σ with a graph,

where an edge between nodes a and b indicates that Ωab ‰ 0, where Ω “ Σ´1 is the precision

(inverse covariance) matrix. This model can be generalized by allowing for arbitrary marginal

transformations on the variables X1, . . . , Xp. Liu et al. (2009) study the resulting distribution, the

nonparanormal model (also known as a Gaussian copula), where we write

X „ NPNpΣ; f1, . . . , fpq,
if the marginally transformed vector pf1pX1q, . . . , fppXpqq follows a (centered) multivariate normal

distribution,

pf1pX1q, . . . , fppXpqq „ Np0,Σq .
The sparse structure of the underlying graphical model, representing the sparsity pattern in Ω “
Σ´1, can then be recovered using similar methods as in the Gaussian case. Note that the Gaussian

model is a special case of the nonparanormal model (by setting f1, . . . , fp each to be the identity

function).

Elliptical and transelliptical graphical models The elliptical model is a generalization of

the Gaussian graphical model that allows for heavier-tailed dependence between variables. The

random vector X “ pX1, . . . , Xpq follows an elliptical distribution with the mean vector µ P Rp,
covariance matrix Σ P Rpˆp, and a random variable (the “radius”) ξ ě 0, denoted by

X „ Epµ,Σ, ξq ,
if we can write X “ µ ` ξ ¨ A ¨ U , where AAJ “ Σ is a Cholesky decomposition of Σ, and where

U P Rp is a unit vector drawn uniformly at random (independently from the radius ξ). Note that

the level sets of this distribution are given by ellipses, centered at µ and with shape determined by

Σ. The Gaussian model is a special case of the elliptical model (by taking ξ „ χp).

The transelliptical model (also known as an elliptical copula) combines the elliptical distri-

bution with marginal transformations, much as the nonparanormal distribution applies marginal

transformations to a multivariate Gaussian. For a random vector X P Rp we write

X „ TEpΣ, ξ; f1, . . . , fpq
to denote that the marginally transformed vector pf1pX1q, . . . , fppXpqq follows a centered elliptical

distribution, specifically,

pf1pX1q, . . . , fppXpqq „ Ep0,Σ, ξq .
Here the marginal transformation functions f1, . . . , fp are assumed to be strictly increasing. Note

that the Gaussian, nonparanormal, and elliptical models are each special cases of this model.
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Pearson’s rho and Kendall’s tau From this point on, we assume for each distribution that

µ “ 0 and that Σ is a correlation matrix (that is, diagonal elements are equal to one, Σaa “ 1).

In the case of the Gaussian distribution X „ Np0,Σq, the entries of Σ are the (population-level)

Pearson’s correlation coefficients for each pair of variables, which in this case we can also write as

Σab “ ErXaXbs. In this setting, we can estimate Σ with the sample covariance.

In the nonparanormal setting, X „ NPNpΣ; f1, . . . , fpq, it is no longer the case that Σab is equal

to the (population-level) correlation CorrpXa, Xbq, due to the marginal transformations. However,

we can estimate f1, . . . , fp by performing marginal empirical transformations of each Xa to the stan-

dard normal distribution. After taking these empirical transformations, Σ can again be estimated

via the empirical covariances. Similarly, for the elliptical model X „ Ep0,Σ, ξq, after rescaling so

that Erξ2s “ p we also have Σab “ ErXaXbs. We can therefore again estimate Σ via the empirical

covariance.

For the transelliptical distribution, in contrast, this is no longer possible. Taking scaling Erξ2s “
p for simplicity, we generalize the calculations above to have

Σab “ ErfapXaqfbpXbqs .

Therefore, if we can estimate the marginal transformations f1, . . . , fp, then we can estimate Σ

using the empirical covariance of the transformed data. However, unlike the nonparanormal model,

estimating f1, . . . , fp is not straightforward. The reason is that, for the elliptical distribution

Ep0,Σ, ξq, the marginal distributions are not known unless the distribution of the radius ξ is known.

Therefore, marginally for each Xa, we cannot estimate fa because we do not know what should be

the marginal distribution after transformation, that is, what should be the marginal distribution

of fapXaq. (In contrast, in the nonparanormal model, we know that fapXaq is marginally normal.)

As an alternative, Liu et al. (2012b) use the Kendall rank correlation coefficient (Kendall’s tau).

At the population level, Kendall’s tau is given by

τab :“ τpXa, Xbq “ E
“
signpXa ´X 1aq ¨ signpXb ´X 1bq

‰
,

where X 1 is an i.i.d. copy of X. Unlike Pearson’s rho, the Kendall’s tau coefficient is invariant to

marginal transformations: since fa, fb are strictly increasing functions, we see that

signpfapXaq ´ fapX 1aqq ¨ signpfbpXbq ´ fbpX 1bqq “ signpXa ´X 1aq ¨ signpXb ´X 1bq .

At the sample level, Kendall’s tau can be estimated by taking a U-statistic comparing each pair of

distinct observations:

pτab “ 1`
n
2

˘
ÿ

1ďiăi1ďn
signpXia ´Xi1aq ¨ signpXib ´Xi1bq . (2.1)

When X follows an elliptical distribution, Therorem 2 of Lindskog et al. (2003) gives us the fol-

lowing relationship between Kendall’s tau and the Pearson’s rho coefficients given by the covariance

matrix Σ:

Σab “ sin
´π

2
τab

¯
for each a, b P rps .
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Since Kendall’s tau is invariant to marginal transformations, this identity holds for the transellip-

tical family as well. For this reason, Liu et al. (2012b) estimate the covariance matrix Σ by

pΣab “ sin
´π

2
pτab

¯
. (2.2)

Note, however, that pΣ is not necessarily positive semidefinite.

For the remainder of this paper, pΣ denotes the estimate given here in (2.2). The matrix of

the Kendall’s tau coefficients is denoted as T , that is, Tab :“ τab, and its empirical estimate (with

entries defined as in (2.1)) is denoted as pT .

Comparing models: tail dependence It is clear that, compared to a Gaussian graphical

model, the nonparanormal model allows for data that may be extremely heavy-tailed (in the

marginal distributions). A more subtle consideration is the question of tail dependence between

two or more of the variables. In particular, the nonparanormal model does not allow for tail depen-

dence between two variables to be any stronger than in the Gaussian distribution itself. Specifically,

consider pairwise α-tail dependence between Xa and Xb, given by

TailαpXa, Xbq :“ Corr
`
1I
 
Xa ě qXaα

(
, 1I

 
Xb ě qXbα

(˘
,

where qXaα is the α-quantile of the marginal distribution of Xa, and same for Xb. Taking α Ñ 1,

this is a measure of the correlation between the extreme right tail of Xa and the extreme right tail

of Xb. (Of course, we can also consider the left tail of the distribution of Xa and/or Xb.)

Note that marginal transformations of each variable do not affect this measure, since the quan-

tiles qXaα , qXbα take these transformations into account. In particular, the nonparanormal distribu-

tion has the same tail correlations TailαpXa, Xbq as the multivariate Gaussian distribution (with the

same Σ). In contrast, an elliptical or transelliptical model can exhibit much higher tail correlations.

Since real data often exhibits heavy tail dependence between variables, the flexible transelliptical

model may be a better fit in many applications.

We demonstrate this behavior with a simple example in Figure 1. Here we take

X “ pX1, X2q „ Ep0,Σ, ξq with Σ “
ˆ

1 1{?2

1{?2 1

˙
, (2.3)

where ξ „ χ2 ¨
?
d{χd for d P t0.1, 1, 5, 10,8u, corresponding to a multivariate t-distribution with d

degrees of freedom (note that d “ 8 is equivalent to taking X „ Np0,Σq). Note that at α “ 0.5, the

tail correlation TailαpX1, X2q is equal to the Kendall’s tau coefficient τpX1, X2q “ 2
π arcsinpΣ12q “

0.5. Figure 1 shows that, as α Ñ 1, the tail correlation decreases towards zero for the normal

distribution (d “ 8) but grows for low values of d.

2.1 ROCKET: an asymptotically normal estimator

Suppose that our data points Xi are drawn i.i.d. from a transelliptical distribution with covariance

matrix Σ. We would like to perform inference on a particular entry of the precision matrix Ω “ Σ´1,

specifically, we are interested in producing a confidence interval for Ωab where a ‰ b P t1, . . . , pu is

a prespecified node pair.
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Figure 1: Tail dependence for normal and elliptical distributions on R2. Data is generated as

in (2.3). The figure displays TailαpX1, X2q, estimated empirically from a sample size n “ 20000.

To move towards constructing a confidence interval, we introduce a few definitions and calcu-

lations. First, let I “ t1, . . . , puzta, bu, and observe that by block-wise matrix inversion, we can

calculate the ta, bu ˆ ta, bu sub-block of Ω as follows:

Ωab,ab “
`
Σab,ab ´ Σab,IΣ

´1
I ΣI,ab

˘´1
. (2.4)

Define γa “ Σ´1
I ΣIa and γb “ Σ´1

I ΣIb (in the Gaussian graphical model setting, these are the

regression coefficients when fapXaq or fbpXbq is regressed on tfjpXjq : j P Iu). We then have

Σab,IΣ
´1
I ΣI,ab “ pγa γbqJΣI,ab “ ΣJI,abpγa γbq “ pγa γbqJΣIpγa γbq .

We can therefore rewrite (2.4) as follows (this somewhat redundant formulation will allow for a

favorable cancellation of error terms later on):

Θ :“ pΩab,abq´1 “ Σab,ab ´ pγa γbqJΣI,ab ´ ΣJI,abpγa γbq ` pγa γbqJΣIpγa γbq . (2.5)

We abuse notation and index the entries of Θ with the indices a and b, that is, we denote Θ as

lying in Rta,buˆta,bu rather than R2ˆ2.

Next, we define an oracle estimator of Θ, defined by plugging the true values of γa and γb and

the empirical estimate of Σ (given in (2.2)) into (2.5) above:

rΘ “ pΣab,ab ´ pγa γbqJpΣI,ab ´ pΣJI,abpγa γbq ` pγa γbqJpΣIpγa γbq . (2.6)

Later on (in Theorem 4.1), we will show that due to standard results on the theory of U-statistics,

this oracle estimator is asymptotically normal. If rΘ were known, then, we would have achieved our
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goal for inference in this model, as Ω̃ab “
´

Θ̃´1
¯
ab

weakly converges to a Normal random variable

centered at Ωab with variance Sab{n.

Of course, in practice we do not know the true values of γa and γb, and must instead use some

available estimators, denoted by qγa and qγb (we discuss how to obtain these preliminary estimates

later on). Given the estimators of the regression vectors, we then define our estimator of Θ as

follows:
qΘ “ pΣab,ab ´ pqγa qγbqJpΣI,ab ´ pΣJI,abpqγa qγbq ` pqγa qγbqJpΣIpqγa qγbq . (2.7)

Since we are interested in Ωab rather than in the matrix Θ, as a final step we define our estimator

qΩab “
´
qΘ´1

¯
ab
. (2.8)

In order to make inference about Ωab, we approximate the distribution of qΩab. Let

|Errab “
qΩab ´ Ωab

qSab
, (2.9)

be the studentized error, where the normalization term qSab is defined below. First, define the

(random) kernel

qgpX,X 1q “ signpX ´X 1qJ
´
quqvJ ˝ cos

´π
2
pT
¯¯

signpX ´X 1q ,

where

qua “ 1, qub “ 0, quI “ ´qγa and qva “ 0, qvb “ 1, qvI “ ´qγb .
(Note that we have defined qu and qv so that qΘab “ quJpΣqv.) Then define

qSab “ π

detpqΘq ¨
gffe 1

n

ÿ

i

˜
1

n´ 1

ÿ

i1‰i
qgpXi, Xi1q ´meanpqgq

¸2

where meanpqgq “ 1`
n
2

˘
ÿ

iăi1
qgpXi, Xi1q .

We will see later on that qS2
ab estimates the variance of qΘab and that the expression above arises

naturally from the theory of U-statistics.

Our main result, Theorem 3.5 below, will prove that
?
n ¨ |Errab follows a distribution that is

approximately standard normal. Therefore, an approximate p1 ´ α)-confidence interval for Ωab is

given by

qΩab ˘ zα{2 ¨
qSab?
n
, (2.10)

where zα{2 is the appropriate quantile of the normal distribution, that is, P
 
Np0, 1q ą zα{2

( “ α{2.

In order to establish the asymptotic normality of
?
n¨|Errab, we will show that

?
n||qΘ´Θ̃||8 “ oP p1q

and that
ˇ̌
ˇ qSabS´1

ab ´ 1
ˇ̌
ˇ “ oP p1q.
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Notation for fixed vs random quantities From this point on, as much as possible throughout

the main body of the paper, quantities that depend on the data and depend on the initial estimates

qγa, qγb are denoted with a “check” accent, for example, qΘ. Quantities that depend on the data,

but do not depend on qγa, qγb, are denoted with a “hat” accent, for example, pΣ. Any quantities

with neither a “hat” nor a “check” are population quantities, that is, they are not random. Two

important exceptions are the data itself, X1, . . . , Xn, and the oracle estimator, rΘ, which is of course

data-dependent (but does not depend on qγa, qγb).

3 Main results

In this section, we give a theoretical result showing that the confidence interval constructed in

(2.10) has asymptotically the correct coverage probability, as long as we have reasonably accurate

estimators of γa “ Σ´1
I ΣIa and γb “ Σ´1

I ΣIb. Our asymptotic result considers a problem whose

dimension pn ě 2 grows with the sample size n. We also allow for the sparsity level in the true

inverse covariance matrix Ω P Rpnˆpn to grow.1 We use kn to denote an approximate bound on the

sparsity in each column of Ω (details given below).

We begin by stating several assumptions on the distribution of the data and on the initial

estimators qγa and qγb. All of the constants appearing in these assumptions should be interpreted as

values that do not depend on the dimensions pn, pn, knq of the problem.

Assumption 3.1. The data points X1, . . . , Xn P Rpn are i.i.d. draws from a transelliptical distri-

bution,

Xi
iid„ TEpΣ, ξ; f1, . . . , fpnq ,

where f1, . . . , fpn are any monotone functions, ξ ě 0 is any random variable with Ptξ “ 0u “ 0,

and the covariance matrix Σ P Rpnˆpn is positive definite, with diagpΣq “ 1 and bounded condition

number,

CpΣq “ λmaxpΣq
λminpΣq ď Ccov ,

for some constant Ccov.

Assumption 3.2. The a-th and b-th columns of the true inverse covariance Ω, denoted by Ωa and

Ωb, are approximately kn-sparse, that is, they satisfy

||Ωa||1 _ ||Ωb||1 ď Csparse

a
kn ,

for some constant Csparse.

Assumption 3.3. For some constant Cest and for some δn ą 0, with probability at least 1 ´ δn,

the preliminary estimates qγa and qγb of the vectors γa and γb satisfy

||qγa´γa||2_||qγb´γb||2 ď Cest

c
kn logppnq

n
and ||qγa´γa||1_||qγb´γb||1 ď Cest

c
k2
n logppnq

n
. (3.1)

1While Σ, Ω, etc, all depend on the sample size n since the dimension of the problem grows, we abuse notation

and do not write Σn, Ωn, etc; the dependence on n is implicit.
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Assumption 3.4. Define the kernel

hpX,X 1q “ signpX ´X 1q b signpX ´X 1q P Rp2
n

and let

h1pXq “ E
“
hpX,X 1q | X‰

.

Define Σh “ VarphpX,X 1qq and Σh1 “ Varph1pXqq, where X,X 1 iid„ TEpΣ, ξ; f1, . . . , fpnq. Then for

some constant Ckernel ą 0,2

Ckernel ¨ Σh ĺ Σh1 ĺ Σh .

Assumption 3.1 assumes that the smallest and largest eigenvalues of the correlation matrix Σ

are bounded away from zero and infinity, respectively. This assumption is commonly assumed in

the literature on learning structure of probabilistic graphical models (Ravikumar et al., 2011; Liu

et al., 2009, 2012a). Assumption 3.2 does not require that the precision matrix Ω be exactly sparse,

which is commonly assumed in the literature on exact graph recovery (see, for example, Ravikumar

et al., 2011), but only requires that rows Ωa and Ωb have the `1 norm that does not grow too fast.

Note that if Ωc, for c “ a, b, is kn-sparse vector, then

||Ωc||1 ď
a
kn||Ωc||2 ď

a
knλmaxpΩq ď Ccov

a
kn

and we could then set Csparse “ Ccov. Assumption 3.3 is a high-level condition, which assumes

existence of initial estimators of γa and γb that converge at a fast enough rate. In the next section,

we will see that Assumption 3.1 together with a stronger version of Assumption 3.2 are sufficient

for Assumption 3.3 to be satisfied with a specific estimator that is efficient to compute. Finally,

Assumption 3.4 is imposed to allow for estimation of the asymptotic variance Ω̌ab.

We now state our main result.

Theorem 3.5. Under Assumptions 3.1, 3.2, 3.3, and 3.4, there exists a constant Cconverge, de-

pending on Ccov, Csparse, Cest, Ckernel but not on the dimensions pn, pn, knq of the problem, such that

sup
tPR

ˇ̌
ˇ̌
ˇP

#
?
n ¨

qΩab ´ Ωab

qSab
ď t

+
´ Φptq

ˇ̌
ˇ̌
ˇ ď Cconverge ¨

d
k2
n log2ppnq

n
` 1

pn
` δn .

We note that the result holds uniformly over a large class of data generating processes satisfying

Assumptions 3.1,3.2, 3.3, and 3.4, which are rather weak assumptions. We emphasize that the result

holds without requiring exact model selection or oracle properties, which hold only for restrictive

sequences of data generating processes. For example, we do not require the “beta-min” condition

(that is, a lower bound on |Ωab| for all true edges) or any incoherence conditions (Bühlmann and

van de Geer, 2011), which may be implausible in practice. Instead of requiring perfect model

selection, we only require estimation consistency as given in Assumption 3.3.

As an immediate corollary, we see that the confidence interval constructed in (2.10) is asymp-

totically correct:

2Here we use the positive semidefinite ordering on matrices, that is, A ľ B if A ´ B ľ 0. Note that the second

part of the inequality, Σh1 ĺ Σh, is always true by the law of total variance.
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Corollary 3.6. Under the assumptions and notation of Theorem 3.5, the p1´αq-confidence interval

constructed in (2.10) fails to cover the true parameter Ωab with probability no higher than

α` 2

»
–Cconverge ¨

d
k2
n log2ppnq

n
` 1

pn
` δn

fi
fl .

Again this result holds uniformly over a large class of data generating distributions.

Theorem 3.5 is striking as it shows that we can form an asymptotically normal estimator of

Ωab under the transelliptical distribution family with the sample complexity n “ Ω
`
k2
n log2ppnq

˘
.

This sample size requirement was shown to be optimal for obtaining an asymptotically normal

estimator of an element in a precision matrix from multivariate normal data (Ren et al., 2013).

More precisely, let

G0pM,knq “
"

Ω “ pΩabqa,bPrps : maxaPrps
ř
b‰a 1ItΩab ‰ 0u ď kn,

and M´1 ď λminpΩq ď λmaxpΩq ďM.

*

where M is a constant greater than one. Then Theorem 1 in Ren et al. (2013) states that

inf
a,b

inf
qΩab

sup
G0pM,knq

P
!ˇ̌
ˇqΩab ´ Ωab

ˇ̌
ˇ ě ε0

´
n´1kn logppnq _ n´1{2

¯)
ě ε0

and, therefore, our estimator is rate optimal.

At this point, it is also worth mentioning the result of Gu et al. (2015), who study inference

under Gaussian copula graphical models. They base their inference procedure on decorrelating a

pseudo score function for the parameter of interest and showing that it is normally distributed.

Their main result, stated in Theorem 4.10, requires the sample size to satisfy

k3
nM

6

ˆ
logppnq
n

˙3{2
` k2

nM
3 logppnq

n
“ o

´
n´1{2

¯

where M “ maxaPrps
ř
bPrps |Ωab|. As M can be potentially as large as

?
kn, it is immediately clear

that our result achieves much better scaling on the sample size.

3.1 Initial estimators

The validity of our inference method relies in part on the accuracy of the initial estimators qγa and qγb,
which are assumed to satisfy error bounds with high probability as stated in Assumption 3.3—that

is, with high probability, we have

||qγa ´ γa||2 _ ||qγb ´ γb||2 ď Cest

c
kn logppnq

n
and ||qγa ´ γa||1 _ ||qγb ´ γb||1 ď Cest

c
k2
n logppnq

n
,

where Cest is some constant. Below, we will prove that these required error rates can be obtained,

under an additional sparsity assumption, by the Lasso estimators

qγc “ argmin
γPRI ;||γ||1ďCcov

?
2kn

"
1

2
γJpΣIγ ´ γJpΣIc ` λ||γ||1

*
(3.2)
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for each c “ a, b, when the penalty parameter λ is chosen appropriately. In fact, these optimization

problems may not be convex, because pΣI will not necessarily be positive semidefinite. Loh and

Wainwright (2013) developed theory for this nonconvex high-dimensional setting, which can be

applied to our problem to show that Assumption 3.3 is guaranteed to hold with high probability.

In particular, any local minimizers of the two optimization problems will satisfy requirements of

Assumption 3.3 and, therefore, we only need to be able to run optimization algorithms that find

local minima.

We now turn to proving that any local minima for (3.2) for c “ a, b will satisfy the required error

rates of Assumption 3.3. To proceed, we will use the theoretical results of Loh and Wainwright

(2013), which gives a theory for local minimizers of nonconvex regularized objective functions. We

specialize their main result to our setting.

Theorem 3.7 (Adapted from Loh and Wainwright (2013, Theorem 1)). Consider any n, p ě 1,

any A P Rpˆp and z P Rp, and any k-sparse x‹ P Rd with ||x‹||1 ď R. Suppose that A satisfies

restricted strong convexity conditions

vJAv ě α1||v||22 ´ τ1||v||21 ¨
logppq
n

. (3.3)

If

n ě 16R2τ1 maxtα1, τ1u logppq
α2

1

(3.4)

and

max

#
4||Ax‹ ´ z||8, 4α1

c
logppq
n

+
ď λ ď α1

6R
(3.5)

then for any qx that is a local minimum of the objective function 1
2x
JAx´xJz`λ||x||1 over the set

tx P Rd : ||x||1 ď Ru, it holds that

||qx´ x‹||2 ď 1.5λ
?
k

α1
and ||qx´ x‹||1 ď 6λk

α1
.

We apply Theorem 3.7 to our problem of estimating γa and γb under a setting where the true

regression coefficient vectors γa and γb are exactly sparse.

Corollary 3.8. Suppose that Assumption 3.1 holds. Assume additionally that the columns Ωa,Ωb

of the true inverse covariance Ω “ Σ´1 are kn-sparse. Then there exist constants Csample, CLasso,

depending on Ccov but not on pn, kn, pnq, such that if n ě Csamplekn logppnq then, with probability

at least 1´ 1
2pn

, any local minimizer qγa of the objective function

1

2
γJpΣIγ ´ γJpΣIa ` λ||γ||1

over the set tγ P RI : ||γ||1 ď Ccov

?
2knu satisfies

||qγa ´ γa||2 ď 3
?

2Ccovλ
a
kn and ||qγa ´ γa||1 ď 24Ccovλ

a
kn .

where we choose λ “ CLasso ¨
b

logppnq
n . The same result holds for estimating γb.
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Using this corollary, we see that a local minimizer of (3.2), γ̌c, satisfies Assumption 3.3 with δn “ 1
pn

and Cest “ 24CcovCLasso.

To prove that this corollary follows from Loh and Wainwright (2013)’s result (Theorem 3.7), it is

sufficient to check that the restricted strong convexity condition (3.3) holds, with high probability

for the matrix pΣI , and then compute the necessary values for λ and the other parameters of

Theorem 3.7. The proof is technical and relies on novel results on concentration of the Kendall’s

tau correlation matrix. Details are given in Appendix C.

We have provided sufficient condition for a local minimizer of (3.2) to satisfy Assumption 3.3,

however, many other estimators can be used as initial estimators. For example, one could use

the Dantzig selector (Candés and Tao, 2007). Potential benefits of the Dantzig selector over the

optimization program in (3.2) are two fold. First, the optimization program is convex even when

Σ̂I is not positive semi-definite. Second, one does not need to know an upper bound R on the `1
norm of Ωc for c “ a, b. Using the techniques similar to those used to prove Corollary 3.8, we can

also prove that Assumption 3.3 holds when the Dantzig selector is used as an initial estimator.

In practice, for ease of computation, we remove the constraint on ||γ||1 in each optimization

problem (3.2) for c “ a, b. Furthermore, we have found that in simulations, using the Lasso

for model selection, and then refitting without a penalty, leads to better empirical performance:

specifically, for each c “ a, b, we first fit

qγLassoc “ argmin
γPRI

"
1

2
γJpΣIγ ´ γJpΣIa ` λ||γ||1

*

(or, more precisely, find a local minimum of this nonconvex optimization problem). We then extract

the combined support of these two solution, qJ “ supppqγLassoa qYsupppqγLassob q, and refit the coefficients

using least-squares:

qγc “
´
pΣ qJ

¯´1 pΣ qJc for c “ a, b .

Adapting the proof of Belloni and Chernozhukov (2013), we can also rigorously prove that the

refitted estimators also satisfy the Assumption 3.3.

4 Main technical tools

In this section, we outline the proof of Theorem 3.5 and state the key technical result that establishes

that sign-subgaussianity property of X that follows a transelliptical distribution. We also illustrate

an application of this technical result to establishing a bound on Σ̂´ Σ.

4.1 Sketch of proof for main result

The proof of Theorem 3.5 follows three steps:

• Step 1: prove that the distribution of rΘab, the oracle estimator of Θab, is asymptotically

normal, with
?
n ¨

rΘab ´Θab

Sab detpΘq Ñ Np0, 1q

14



where Sab is the asymptotic variance of Ω̃ab. (Explicit form of Sab is given in the proof of

Theorem 4.1.)

• Step 2: prove that the difference between the estimator and the oracle estimator, qΘ ´ rΘ,

converges to zero at a fast rate, and that the variance estimator qSab converges to Sab at a fast

rate.

• Step 3: combining the two steps above, prove that of qΩab is an asymptotically normal esti-

mator of Ωab.

The detailed proofs for each step are found in Appendix B. Here, we outline the main results for

each step.

Step 1 establishes the Berry-Esseen type bound for the centered and normalized oracle estimator

?
n pSab detpΘqq´1

´
rΘab ´Θab

¯
.

We approximate the oracle estimator rΘab by a linear function of the Kendall’s tau statistic pT , which

is a U-statistic of the data. We prove that the variance of the linear approximation is bounded

away from zero and apply existing results on convergence of U-statistics. The following result is

proved in Appendix B.2.

Theorem 4.1. Suppose that Assumptions 3.1, 3.2, and 3.4 hold. Then there exist constants

Cnormal, Cvariance depending on Ccov, Csparse, Ckernel but not on pn, pn, knq, such that

sup
tPR

ˇ̌
ˇ̌
ˇP

#
?
n ¨

rΘab ´Θab

Sab ¨ detpΘq ď t

+
´ Φptq

ˇ̌
ˇ̌
ˇ ď Cnormal ¨ kn logppnq?

n
` 1

2pn
,

where Sab is defined in the proof and satisfies Sab ¨ detpΘq ě Cvariance ą 0.

Step 2 contains the main challenge of this problem, since it requires strong results on the

concentration properties of the Kendall’s tau estimator pΣ of the covariance matrix Σ. The main

ingredient for this step is a new result on “sign-subgaussianity”, that is, proving that the signs vector

signpXi ´Xi1q is subgaussian for i.i.d. observations Xi, Xi1 . Our results on sign-subgaussianity are

discussed in Section 4.2 and their application to concentration of Σ̂ around Σ is given in Section 4.3.

Using these tools, we are able to prove the following theorem (proved in Appendix B.3):

Theorem 4.2. Suppose that Assumptions 3.1, 3.2, and 3.3 hold. Then there exists a constant

Coracle, depending on Ccov, Csparse, Cest but not on pn, pn, knq, such that, if 3

n ě 15kn logppnq
then, with probability at least 1´ 1

2pn
´ δn,

||qΘ´ rΘ||8 ď Coracle ¨ kn logppnq
n

and ˇ̌
ˇ qSab ¨ detpqΘq ´ Sab ¨ detpΘq

ˇ̌
ˇ ď Coracle ¨

c
k2
n logppnq

n
.

3Note that the additional condition n ě 15kn logppnq can be assumed to hold in our main result Theorem 3.5,

since if this inequality does not hold, then the claim in Theorem 3.5 is trivial.
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Finally, Step 3 simply involves tracking how the errors in qΘ and in qSab affect the final distribu-

tion, and proving that these errors have a neglible effect relative to the (approximately) standard

normal error of the oracle estimator. Details are given in Appendix B.4.

4.2 Sign-subgaussian random vectors

Recall the definition of a subgaussian random vector:

Definition 4.3. A random vector X P Rp is C-subgaussian if, for any fixed vector v P Rp, it holds

that

E
”
ev
JX

ı
ď eC¨||v||22{2 .

For graphical models where the data points Xi come from a subgaussian distribution, the sample

covariance matrix 1
n

ř
ipXi ´XqpXi ´XqJ, with X “ 1

n

ř
iXi, is known to concentrate near the

population covariance, as measured by different norms. For example, elementwise convergence of

the sample covariance to the population covariance, that is, convergence in || ¨ ||8, is sufficient to

establish rates of convergence for the graphical Lasso, CLIME or graphical Dantzig selector for

estimating the sparse inverse covariance (Ravikumar et al., 2011; Cai et al., 2011; Yuan, 2010).

Similar results can be obtained also for the transelliptical family, since ||T̂ ´ T ||8 ď C
a

logppq{n
and hence ||Σ̂ ´ Σ||8 ď C

a
logppq{n, as was shown in Liu et al. (2012a) and Liu et al. (2012b).

However, in order to construct asymptotically normal estimators for the elements of the precision

matrix, stronger results are needed about the convergence of the sample covariance to the population

covariance (Ren et al., 2013). In particular, a result on convergence in spectral norm, uniformly over

all sparse submatrices, is required. One can relate the convergence in the elementwise `8 norm to

(sparse( spectral norm convergence, however, this would lead to suboptimal sample size. One way

to obtain a tight bound on the (sparse) spectral norm convergence is by utilizing subgaussianity of

the data points Xi. This is exactly what we proceed to establish.

Recall from (2.2) the Kendall’s tau estimator of the covariance,

pΣ “ sin
´π

2
pT
¯

where pT “ 1`
n
2

˘
ÿ

iăi1
signpXi ´Xi1q signpXi ´Xi1qJ .

Therefore, it is crucial to determine whether the vector signpXi ´ Xi1q is itself subgaussian, with

the variance proxy that depends on the ambient dimension pn only through CpΣq.4 Using past

results on elliptical distributions, we can reduce to a simpler case using the arguments of Lindskog

et al. (2003) (proved in Appendix D.2):

Lemma 4.4. Let

X,X 1 iid„ TEpΣ, ξ; f1, . . . , fpq .
Suppose that Σ is positive definite, and that ξ ą 0 with probability 1. Then signpX ´X 1q is equal

in distribution to signpZq, where Z „ Np0,Σq.
4Note that vJ signpXi ´ Xi1q is obviously subgaussian as a sum of subgaussian random variables, however, its

variance proxy could grow linearly with pn.
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Previous work has shown that a Gaussian random vector Z „ Np0,Σq is “sign-subgaussian”, that

is, signpZq is subgaussian with variance proxy that depends on pn only through CpΣq, for special

cases when the covariance Σ is identity or equicorrelation matrix (Han and Liu, 2013). However, a

result for general covariance structures was previously unknown.

In the following lemma, we resolve this question, proving that Gaussian vectors are sign-

subgaussian:

Lemma 4.5. Let Z „ Np0,Σq for some Σ P Rpˆp. Then signpZq is CpΣq-subgaussian.

This lemma is the primary tool for our main results in this paper—specifically, it is the key ingre-

dient to the proof of Theorem 4.2, which bounds the errors qΘ´ rΘ and qSab ¨ detpqΘq ´ Sab ¨ detpΘq.
Lemma 4.5 is proved in Appendix A. We also use this result in establishing results in the following

section.

4.3 Deterministic and probabilistic bounds on pΣ ´ Σ.

Lemma 4.5 is instrumental in obtaining probabilistic bounds on pΣ´Σ. Results given in this section

are crucial for establishing Theorem 4.2 and Corollary 3.8.

Let Sk be the set of k-sparse vectors in the unit ball,

Sk “ tu P Rp : ||u||2 ď 1, ||u||0 ď ku .

The following lemma provides uniform deviation of uJT̂ u from uJTu over Sk, with the proof given

in Appendix D.4.

Lemma 4.6. Suppose that k ě 1 and δ P p0, 1q satisfy logp2{δq ` k logp12pq ď n. Then with

probability at least 1´ δ it holds that

sup
uPSk

ˇ̌
ˇuJp pT ´ T qu

ˇ̌
ˇ ď 16p1`?5qCpΣq ¨

c
logp2{δq ` k logp12pq

n
.

Next, we relate Σ̂ to T̂ . First, for any k ě 1, let Bk be the set5

Bk “
#
u P Rp :

c
||u||22 `

||u||21
k

ď 1

+
.

The intuition for this set is that it contains vectors bounded both in the `2 and `1 norms; it is a

relaxation of k-sparsity. We have the following deterministic bound on the error of the covariance

estimator pΣ, which is proven in Appendix D.3:

Lemma 4.7. The following bound holds deterministically: for any k ě 1,

sup
u,vPBk

ˇ̌
ˇuJppΣ´ Σqv

ˇ̌
ˇ ď π2

8
¨ k|| pT ´ T ||28 ` 2π sup

uPSk`1

ˇ̌
ˇuJp pT ´ T qu

ˇ̌
ˇ . (4.1)

5Note that Bk is the unit ball for the norm given by ||u||pkq :“
b
||u||22 ` ||u||21

k
.
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Lemma B.2, given in Appendix B.2, bounds || pT ´ T ||8 with high probability. Therefore, com-

bining it with Lemma 4.7 and 4.6, we immediately obtain the following corollary:

Corollary 4.8. Take any δ1, δ2 P p0, 1q and any k ě 1 such that logp2{δ2q ` pk ` 1q logp12pq ď n.

Then, with probability at least 1´ δ1 ´ δ2, the following bound on pΣ´ Σ holds:

sup
u,vPBk

ˇ̌
ˇuJppΣ´ Σqv

ˇ̌
ˇ ď π2

8
¨k ¨ 4 log

`
2
`
p
2

˘{δ1

˘

n
`2π ¨16p1`?5qCpΣq ¨

c
logp2{δ2q ` pk ` 1q logp12pq

n
.

(4.2)

Results of Lemma 4.6 and Corollary 4.8 can be compared to Theorem 2 in Mitra and Zhang

(2014). When CpΣq “ Op1q, we extend their result to the transelliptical copula model and provide

an alternative proof for the Gaussian copula model. We note that their result does not depend on

the condition number of the covariance matrix, but only on the maximum eigenvalue. However, in

the context of graphical models it is commonly assumed that the smallest eigenvalue is a constant.

Furthermore, our result can also be compared with Theorem 4.10 of Han and Liu (2013). We

rigorously establish the result for all well-conditioned covariance matrices, without explicitly making

the sign-subgaussian assumption.

5 Simulation studies

In this section, we illustrate finite sample properties of ROCKET described in Section 2. We

use ROCKET to construct confidence intervals for edge parameters and report empirical coverage

probabilities as well as the length of constructed intervals. For comparison, we also construct confi-

dence intervals using the procedure of Ren et al. (2013), which is based on the Pearson correlation

matrix, and a nonparanormal estimator of the correlation matrix proposed in Liu et al. (2009).

For these two methods, we use the plugin estimate of the correlation matrix together with (2.7) to

estimate Ωab. Recall that Liu et al. (2009) estimate the correlation matrix based on the marginal

transformation of the observed data. Let

F̃apxq “

$
’&
’%

δn if F̂apxq ă δn
F̂apxq if δn ď F̂apxq ď 1´ δn
1´ δn if F̂apxq ą 1´ δn,

where F̂apxq “ n´1
ř
i 1I tXia ă xu is the empirical CDF of Xa and δn “

´
4n1{4aπ logpnq

¯´1
.

The correlation matrix Σ̂ “
´

Σ̂ab

¯
ab

is then estimated as Σ̂ab “ zCorr
´

Φ
´
F̃apXiaq

¯
,Φ

´
F̃bpXibq

¯¯

where Φp¨q is a CDF of a standard normal distribution. Asymptotic variance of estimators of Ωab

based on the Pearson or nonparanormal correlation matrix is obtained as qS2
ab “ n´1

´
qΩaa

qΩbb ` qΩ2
ab

¯
.

For all simulations, we set the tuning parameter λ “ 2.1
a

logppnq{n, as suggested by our theory.

Note that the constant in front of the parameter is chosen large enough so that the penalty dom-

inates the variance of an element of the score. All computations for simulations and for the real

data experiment are carried out in Matlab (MATLAB, 2014).

Simulation 1. We generate data from the model

X „ Ep0,Σ, ξq, (5.1)
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ROCKET Pearson Nonparanormal

Coverage Width Coverage Width Coverage Width

p%q p%q p%q

ω10,11 “ 10.38 92.8 10.26 55.3 4.99 32.8 3.57

ω10,12 “ 0 96.0 9.81 64.8 4.68 73.5 3.35

ω10,20 “ 0 96.1 11.08 64.8 4.92 76.7 3.50

O
ra

cl
e ω10,11 “ 10.38 93.3 10.21 54.5 4.87 31.1 3.53

ω10,12 “ 0 96.0 9.75 63.5 4.62 73.2 3.33

ω10,20 “ 0 96.3 11.02 63.6 4.86 77.0 3.47

Table 1: Empirical coverage and average length of 95% confidence intervals based on 1000 inde-

pendent simulation runs. Data generated from the model in (5.1) with chain graph structure.

where ξ follows a t-distribution with 5 degrees of freedom. The inverse covariance matrix Ω encodes

one of the following structures:

• chain structure with Ω0
j,j`1 “ Ω0

j`1,j “ 0.5, and

• a grid where each node is connected to its four nearest neighbors with the nonzero elements

of Ω0 equal to ω “ 0.24.

Diagonal element of Ω0 are equal to 1. Let
`
Ω0

˘´1 “ Σ0. Then Σ “ diag´1{2 `Σ0
˘

Σ0diag´1{2 `Σ0
˘

and Ω “ Σ´1.

First, we consider a chain graph and generate n “ 400 samples from model in (5.1) with

p “ 1000. Figures 2 and 3 show Q-Q plots based on 1000 independent realizations of the test statistic

defined in (2.9),
?
n|Errab, for the three methods together with the reference line showing quantiles

of the standard normal distribution. First row in the two figures illustrates actual performance of

the methods, while the second row illustrates performance of an oracle procedure that does not

need to solve a high-dimensional variable selection problem, but instead knows the sparsity pattern

of Ω. From these two figures, we observe that the quantiles of the test statistic
?
n|Errab based on

ROCKET estimator are closest to quantiles of the standard normal random variable. We further

quantify these results in Table 1, which reports empirical coverage of the confidence intervals based

on
?
n|Errab. From the table, we can observe that the coverage of the confidence intervals based on

ROCKET is close to nominal coverage of 95%.

Similar results are seen in Figure 4, which is based on n “ 400 samples generated from the

model in (5.1) when Ω encodes the 30 ˆ 30 grid structure (p “ 900). Table 2 reports empirical

coverage and length of the confidence intervals. These two examples are not surprising, since neither

the Pearson nor the nonparanormal correlation matrix consistently estimate the true Σ under the

model in (5.1). However, using ROCKET we are able to construct a test statistic
?
n|Errab that

is asymptotically distributed as a standard normal random variable. The asymptotic distribution

provides a good approximation to the finite sample distribution of
?
n|Errab. We also observe that

ROCKET performs similarly to the oracle procedure that knows the sparsity structure of Ω. Note
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Figure 2: Simulation 1. Q-Q plot of
?
n|Errab with a “ 10 and b “ 11 (edge) when data are

generated from the model in (5.1) with Ω encoding the chain structure.
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Figure 3: Simulation 1. Q-Q plot of
?
n|Errab with a “ 10 and b “ 12 (non-edge close to an edge)

when data are generated from the model in (5.1) with Ω encoding the chain structure.
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Figure 4: Simulation 1. Q-Q plot of
?
n|Errab when data are generated from the model in (5.1) with

Ω encoding the grid structure. First row corresponds to an edge, second row to a close non-edge,

and third row to a far non-edge.

that the width of the confidence intervals obtained from ROCKET is larger due to imperfect model

selection.

Simulation 2. We illustrate performance of ROCKET when data are generated from a normal

and nonparanormal distribution. We consider Ω corresponding to a grid described in Simulation 1

and generate n “ 400 samples from Np0,Ω´1q and NPNpΩ´1; f̃1, . . . , f̃pq, where f̃j “ fmodpj´1,5q`1

with f1pxq “ x, f2pxq “ signpxqa|x|, f3pxq “ x3, f4pxq “ Φpxq, and f5pxq “ exppxq. Here

modpa, bq denotes the remainder after division of a by b.

Table 3 summarizes results from the simulation. We observe that when data are multivariate

normal all three methods perform well, with ROCKET having slightly wider intervals, but with

similar coverage. When data are generated from a nonparanormal distribution, using the Pearson

correlation in (2.7) results in confidence intervals that do not have nominal coverage due to the bias.

In this setting, nonparanormal estimator and ROCKET still have the correct nominal coverage.

Note however that when Kendall’s tau is equal to zero, Pearson correlation is also equal to zero.

See, for example, coverage for ωp2,2q,p3,3q and ωp2,2q,p10,10q.
Similar results were obtained when data are generated from TEpΩ´1, ξ; f̃1, . . . , f̃pq with ξ „ t1

or ξ „ t5. Due to space constraints, results are not shown.
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ROCKET Pearson Nonparanormal

Coverage Width Coverage Width Coverage Width

p%q p%q p%q

ωp2,2q,p2,3q “ 0.41 92.8 0.54 66.6 0.49 79.7 0.34

ωp2,2q,p3,3q “ 0 93.5 0.56 74.2 0.47 82.8 0.33

ωp2,2q,p10,10q “ 0 93.8 0.57 74.8 0.48 85.3 0.33

Table 2: Simulation 1. Empirical coverage and average length of 95% confidence intervals based

on 1000 independent simulation runs. Data generated from the model in (5.1) with grid graph

structure.

ROCKET Pearson Nonparanormal

Coverage Width Coverage Width Coverage Width

p%q p%q p%q

G
au

ss
ia

n ωp2,2q,p2,3q “ 0.41 93.3 0.37 93.3 0.35 93.3 0.35

ωp2,2q,p3,3q “ 0 94.7 0.38 94.1 0.34 93.9 0.34

ωp2,2q,p10,10q “ 0 94.7 0.38 95.2 0.34 95.2 0.34

T
ra

n
sf

or
m

ed
G

au
ss

ia
n ωp2,2q,p2,3q “ 0.41 93.4 0.37 0.0 0.26 94.8 0.35

ωp2,2q,p3,3q “ 0 94.9 0.38 89.4 0.29 95.5 0.34

ωp2,2q,p10,10q “ 0 94.7 0.38 95.3 0.28 94.4 0.34

Table 3: Simulation 2. Empirical coverage and average length of 95% confidence intervals based on

1000 independent simulation runs. Ω corresponds to a grid graph structure.

Simulation 3. In this simulation, we illustrate the power of a test based on
?
n|Errab to reject

the null hypothesis H0,ab : Ωab “ 0. Samples are generated from the model in (5.1) with ξ having

χp, t5, and t1 distribution and the covariance matrix is of the form Σ “ IP`E where E12 “ E21 “ ρ

with p “ 1000 and n “ 400. Note that ξ „ χp implies that X is multivariate normal. We also

consider marginal transformation of X as described in Simulation 2. Figure 5 plots empirical power

curves based on 1000 independent simulation runs for different settings. When data are following

normal distribution all three methods have similar power. For other distributions, tests based on

Pearson and nonparanormal correlation do not have correct coverage and are shown for illustrative

purpose only.
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Figure 5: Simulation 3. Power plots for simulated data generated from a Gaussian distribution,

and from a multivariate t distribution with 5 degrees of freedom and with 1 degree of freedom.

6 Real data experiment

In this section, we evaluate the performance of the ROCKET method on a real data set, and

compare with the Gaussian graphical model based approach of Ren et al. (2013) (using Pear-

son correlation) and the nonparanormal estimator proposed in Liu et al. (2009) (details for these

methods are given in Section 5).

We use stock price closing data obtained via the R package huge (Zhao et al., 2014), which

was gathered from publicly available data from Yahoo Finance6. The data consists of daily closing

prices of 452 S&P 500 companies over 1258 days. We transform the data to consider the log-returns,

that is, we form a matrix X P R1258ˆ452 with entries

Xij “ log

ˆ
Closing price of stock j on day i` 1

Closing price of stock j on day i

˙
.

While in practice there is dependence across time in this data set, we treat each row of X as

independent.

We perform two experiments on this data set. In Experiment 1, we test whether empirical results

agree with the asymptotic normality predicted by the theory for the three methods—we do this

by splittting the data into disjoint subsamples and comparing estimates across these subsamples.

In Experiment 2, we use the full sample size and compare the estimates and confidence intervals

produced by each of the three methods.

6http://ichart.finance.yahoo.com
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6.1 Experiment 1: checking asymptotic normality

In this real data example, there is no available “ground truth” to compare to—that is, we do not

know the true distribution of the data, and cannot compare our estimates to an exact true precision

matrix Ω. However, we can still check whether the estimators produced by these methods exhibit

asymptotic normality (as claimed in the theory), by splitting the data into many subsamples and

considering the empirical distribution of the estimators across these subsamples.

We will split the data into L “ 25 subsamples of size n “ 50 each. Due to this small sample

size, we restrict our attention to companies in the categories Materials and Consumer Staples,

which consist of 29 and 35 companies, respectively, for a total of p “ 64 companies. To construct

our subsampled data, we randomly select L “ 25 disjoint sets of size n “ 50 from t1, . . . , 1257u,
denoted as I1, . . . , IL. For each ` “ 1, . . . , 25, define the `th data set

Xp`q “ XI`,S P Rnˆp ,

where S Ă t1, . . . , 452u identifies the p “ 64 stocks of interest.

Next, for each pair pa, bq of stocks, with 1 ď a ă b ď p, and for each subsample `, we compute
qΩp`qab and qSp`qab using the ROCKET method. Suppose that the true distribution of the data follows

the transelliptical model with precision matrix Ω. Recall that our main result, Theorem 3.5, implies

that
?
n ¨ qΩ

p`q
ab ´Ωab
qSp`qab

is approximately distributed as a standard normal. Since qSp`qab concentrates near

Sab (the asymptotic variance calculated in Theorem 4.1), we see that we should have

z
p`q
ab :“ ?n ¨

qΩp`qab
qSp`qab

« ?n ¨ Ωab

Sab
`Np0, 1q .

Therefore, writing µab :“ ?n ¨ Ωab{Sab, we should have

pzp1qab , . . . , zpLqab q « µ ¨ 1L `Np0, ILq .

In particular, this implies that the sample variance of this vector should have expectation

SampleVarpzabqE 1

L´ 1

Lÿ

`“1

´
z
p`q
ab ´ zab

¯2 « 1 ,

where zab :“ 1
L

ř
` z
p`q
ab .

In Figure 6, we show a histogram of the sample variances SampleVarpzabq across all
`
p
2

˘ “ 2016

pairs of variables. To compare to the Pearson and nonparanormal methods, we repeat this procedure

for the estimators (and estimated variances) produced by the other two methods as well, which

are also displayed in Figure 6. We see that ROCKET produces a mean sample variance « 0.98

(very near to 1), while the other two methods give mean sample variances of « 1.28 (Pearson)

and « 1.265 (nonparanormal), substantially higher than the theoretical value of 1. This indicates

that the normal approximation to the distribution of the estimator may be approximately valid for

ROCKET, but does not have the correct scale (that is, the scale predicted by the theory) for the

other two methods, on this data set.
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Figure 6: Sample variances of the rescaled estimator,
?
n ¨ qΩab{qSab, for each pair of variables pa, bq,

using the subsampled stock data. The sample variances should be approximately 1 according to

the theory (see Section 6.1).

The vector pzp1qab , . . . , zpLqab q, in addition to having sample variance near 1, should also exhibit

Gaussian-like tails according to the theory. To check this, we calculate the proportion of values in

this vector lying near to the mean, specifically,

#
!
` :

ˇ̌
ˇzp`qab ´ zab

ˇ̌
ˇ ď 1.6449

b
1´ 1

L

)

L
,

which should be approximately 90% according to the theory (since the standard normal distribution

has 90% of its mass between ˘1.6449). The results are:

Method Coverage (theory: 90%)

ROCKET 90.55%

Pearson 85.01%

Nonparanormal 85.18%

We see that only the ROCKET method achieves the appropriate coverage.

6.2 Experiment 2: estimating a graph

In the second experiment, we use the full sample size n “ 1257 to estimate a sparse graph over

the p “ 64 stocks selected for Experiment 1, using each of the three methods. To do this, for

each method we first produce a (approximate) p-value testing for the presence of an edge between

each pair pa, bq of variables. Recall that according to our main result, Theorem 3.5, if the pair of

variables pa, bq does not have an edge, then Ωab “ 0 and so
?
n¨qΩab{qSab is approximately distributed

as a standard normal variable. Then, using a two-sided z-test, we calculate a p-value

pab “ 2´ 2Φ
´ˇ̌
ˇ
?
n ¨ qΩab{qSab

ˇ̌
ˇ
¯
.

In Figure 7, we show the resulting graphs when edge pa, bq is drawn whenever the p-value passes

the threshold pab ă 0.00001 or whenever pab ă 0.001. The number of edges selected for each method

is shown in the figures. Overall we see that ROCKET selects roughly the same number of edges

as the Pearson method but less than the nonparanormal method, on this data set. To further
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Figure 7: Estimated graph for the stock data, using the ROCKET, Pearson, and nonparanormal

methods (see Section 6.2). An edge is displayed for each pair of variables pa, bq with p-value

pab ă 0.00001 (top row) and pab ă 0.001 (bottom row). Graphs were drawn using the igraph

package (Csardi and Nepusz, 2006) in R (R Core Team, 2012).

compare the methods, in Figure 8 we show the distribution of the p-values pab across all pairs of

variables pa, bq, for each method. ROCKET produces slightly less low (strong) p-values than the

nonparanormal method, and slightly more low (strong) p-values than the Pearson method, on this

data set.

Since the Pearson and nonparanormal methods do not exhibit approximately normal behavior

across subsamples (Experiment 1), this should not be interpreted as a power comparison between

the methods; the additional edges selected by the nonparanormal method, for instance, may not be

as reliable since the p-value calculation is based on approximating the distribution of the estimator

using a theoretical scaling that does not appear to hold for this method.

7 Discussion

We have proposed a novel procedure ROCKET for inference on elements of the latent inverse

correlation matrix under high-dimensional elliptical copula models. Our paper has established a

surprising result, which states that ROCKET produces an asymptotically normal estimator for
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Figure 8: Distribution of p-values pab across all pairs of variables pa, bq on the stock data, for the

ROCKET, Pearson, and nonparanormal methods (see Section 6.2).

an element of the inverse correlation matrix in an elliptical copula model with the same sample

complexity that is required to obtain an asymptotically normal estimator for an element in the

precision matrix under a multivariate normal distribution. Furthermore, this sample complexity is

optimal (Ren et al., 2013). The result is surprising as the family of elliptical copula models is much

larger than the family of multivariate normal distributions. For example, it contains distributions

with heavy tail dependence as discussed in Section 2. ROCKET achieves the optimal requirement on

the sample size without knowledge of the marginal transformation. Our result is also of significant

practical importance. Since normal distribution is only a convenient mathematical approximation to

data generating process, we recommend using ROCKET whenever making inference about inverse

correlation matrix, instead of methods that heavily rely on Normality. From simulation studies,

even when data are generated from a normal distribution, ROCKET does not lose power compared

to procedures that were specifically developed for inference under Normality.

The main technical tool developed in the paper establishes that the sign of normal random

vector, taken elementwise, is itself a sub-Gaussian random variable with the sub-Gaussian param-

eter depending on the condition number of the covariance matrix Σ. Based on this result, we were

able to establish a tight tail bound on the deviation of sparse eigenvalues of the Kendall’s tau

matrix T̂ . This result is of independent interest and it would allow us to improve a number of

recent results on sparse principal component analysis, factor models and estimation of structured

covariance matrices (Mitra and Zhang, 2014; Han and Liu, 2013; Fan et al., 2014). The sharpest

result on the nonparametric estimation of correlation matrices in spectral norm under a Gaussian

copula model was established in (Mitra and Zhang, 2014). We extend its validity to the family of

elliptical copula models and provide an alternative proof. Previous work of Han and Liu (2013) and

Fan et al. (2014) has established sub-Guassianity of the sign vector for special cases of covariance

matrices (identity and equi-correlation matrix). Our work rigorously proves the result for the class

of well-conditioned covariance matrices.
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A Gaussian vectors and the sign-subgaussian property

In this section we prove Lemma 4.5, which shows that that a centered Gaussian vector z „ Np0,Σq
satisfies the sign-subgaussianity property, that is, the sign vector signpzq is itself subgaussian.

Lemma 4.5. Let Z „ Np0,Σq for some Σ P Rpˆp. Then signpZq is CpΣq-subgaussian.

Proof of Lemma 4.5. Without loss of generality, rescale so that λminpΣq “ 1 and then CpΣq “
λmaxpΣq. Write Σ “ AAJ` Ip for some matrix A P Rnˆn. Then we can write Z “ X `AY , where

X,Y
iid„ Np0, Ipq. Then, for any fixed vector v P Rp,

E
”
ev
J signpZq

ı
“ E

”
E
”
ev
J signpZq | Y

ıı
“ E

”
E
”
ev
J signpX`AY q | Y

ıı

“ E

«ź

i

E
”
evi signpXi`pAY qiq | Y

ıff
,

where the last step holds because, conditional on Y , each of the terms signpXi ` pAY qiq depends

on Xi only, and therefore these terms are conditionally independent. Next, observe that

E rsignpXi ` pAY qiq | Y s “ E
“
sign

`
Np0, 1q ` pAY qi

˘ | Y ‰ “ Φ ppAY qiq´Φ p´pAY qiq “ ψ ppAY qiq ,

where we define ψpzq “ Φpzq ´ Φp´zq for z P R. Then, for each i,

E
”
evi signpXi`pAY qiq | Y

ı
“ E

”
evipsignpXi`pAY qiq´ψppAY qiqq | Y

ı
¨ eviψppAY qiq ď ev

2
i {2 ¨ eviψppAY qiq ,

where the inequality is proved by applying Hoeffding’s Lemma (see, for example, Massart (2007,

Lemma 2.6)) to the bounded mean-zero random variable rvi psignpXi ` pAY qiq ´ ψ ppAY qiqqs. Com-

bining the calculations so far, we have

E
”
ev
J signpZq

ı
ď e||v||22{2 ¨ E

”
ev
JψpAY q

ı
,
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where ψpAY q applies the function ψp¨q elementwise to the vector AY .

Next we show that y ÞÑ vJψpAyq is Lipschitz over y P Rn. Note that x ÞÑ ψpxq is 1-Lipschitz

over x P R since the density of the standard normal distribution is bounded uniformly as φpxq ď
1?
2π
ď 1

2 . For any y, y1 P Rn, we have

ˇ̌
vJψpAyq ´ vJψpAy1qˇ̌ ď

ÿ

i

|vi| ¨
ˇ̌
ψ ppAyqiq ´ ψ

`pAy1qi
˘ˇ̌ ď

ÿ

i

|vi| ¨
ˇ̌pAyqi ´ pAy1qi

ˇ̌

ď ||v||2 ¨ ||Apy ´ y1q||2 ď ||v||2 ¨
a
λmaxpΣq ´ 1 ¨ ||y ´ y1||2 ,

where the last step is true because

||A||op “
b
||Σ´ Ip||op “

a
CpΣq ´ 1 .

Therefore, y ÞÑ vJψpAyq is
`||v||2 ¨

a||Σ´ Ip||op
˘
-Lipschitz in Y . Furthermore, ψpxq “ ´ψp´xq

for all x P R, and so for any y P Rn,

vJψpAyq “ ´vJψpA ¨ p´yqq ñ E rψpAY qs “ 0 since Y
D“ ´Y .

We can now apply standard concentration results for Lipschitz functions of a Gaussian: by Massart

(2007, Proposition 3.5), E
”
ev
JψpAY q

ı
ď e||v||22pCpΣq´1q{2. Therefore,

E
”
ev
J signpZq

ı
ď E

”
e||v||22{2`vJψpAY q

ı
ď e||v||22{2`||v||22pCpΣq´1q{2 “ e||v||22¨CpΣq{2 .

B Proof of main result

B.1 Preliminaries

We first compute bounds on ||γc||2 and ||γc||1 for each c “ a, b, which we will use many times in

the proofs below. First, for c “ a, b note that

||γc||2 “ ||Σ´1
I ΣIc||2 ď ||Σ´1

I || ¨ ||ΣIc||2 ď rλminpΣqs´1 ¨ λmaxpΣq ď Ccov (B.1)

by Assumption 3.1. Next,

||γc||1 “ ||Σ´1
I ΣIc||1.

By matrix blockwise inversion,

“ || ´ ΩI,abΘab,c||1 “
ÿ

jPI
|Ωj,abΘab,c| ď

ÿ

jPI
||Ωj,ab||1||Θab,c||8.

Since ||Θ||8 ď λmaxpΘq “ pλminpΩab,abqq´1 ď pλminpΩqq´1 “ λmaxpΣq ď Ccov,

ď Ccov

ÿ

jPI
||Ωj,ab||1 “ Ccov p||Ωa||1 ` ||Ωb||1q .

Applying Assumption 3.2,

ď 2CcovCsparse

a
kn . (B.2)
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B.2 Proof of Theorem 4.1: asymptotic normality of the oracle estimator

Theorem 4.1. Suppose that Assumptions 3.1, 3.2, and 3.4 hold. Then there exist constants

Cnormal, Cvariance depending on Ccov, Csparse, Ckernel but not on pn, pn, knq, such that

sup
tPR

ˇ̌
ˇ̌
ˇP

#
?
n ¨

rΘab ´Θab

Sab ¨ detpΘq ď t

+
´ Φptq

ˇ̌
ˇ̌
ˇ ď Cnormal ¨ kn logppnq?

n
` 1

2pn
,

where Sab is defined in the proof and satisfies Sab ¨ detpΘq ě Cvariance ą 0.

Proof of Theorem 4.1. We first show that the error rΘab ´ Θab can be approximated by a linear

function of the Kendall’s tau estimator pT . Define vectors u, v P Rpn with entries

ua “ 1, ub “ 0, uI “ ´γa and va “ 0, vb “ 1, vI “ ´γb .

Then by definition, we have rΘab “ uJpΣv and Θab “ uJΣv, that is, the error is given by

rΘab ´Θab “ uJppΣ´ Σqv .

Next, since pΣ “ sin
´
π
2
pT
¯

and Σ “ sin
`
π
2T

˘
, we take a second-order Taylor expansion of sinp¨q to

see that, for some t P r0, 1s,

rΘab ´Θab “ uJ
„
π

2
cos

´π
2
T
¯
˝ p pT ´ T q´

1

2
¨
´π

2

¯2 ¨ sin
´π

2
pt ¨ T ` p1´ tq ¨ pT q

¯
˝ p pT ´ T q ˝ p pT ´ T q


v . (B.3)

Next, we rewrite this linear term. We have

L :“ uJ
”
cos

´π
2
T
¯
˝ pT

ı
v “ 1`

n
2

˘
ÿ

iăi1
signpXi ´Xi1qJ

´
uvJ ˝ cos

´π
2
T
¯¯

signpXi ´Xi1q ,

which is a U-statistic of order 2 with respect to the data pX1, . . . , Xnq. Note that

L´ ErLs “ uJ
”π

2
cos

´π
2
T
¯
˝ pT

ı
v ´ uJ

”π
2

cos
´π

2
T
¯
˝ Er pT s

ı
v “ uJ

”π
2

cos
´π

2
T
¯
˝ p pT ´ T q

ı
v .

Define the kernel gpX,X 1q “ signpX ´ X 1qJ `uvJ ˝ cos
`
π
2T

˘˘
signpX ´ X 1q, and let g1pXq “

E rgpX,X 1q | Xs, whereX,X 1 iid„ TEpΣ, ξ; f1, . . . , fpq. Let ν2
g1
“ Varpg1pXqq and η3

g “ E
“|gpX,X 1q|3‰.

By Callaert and Janssen (1978, Section 2), we have

sup
tPR

ˇ̌
ˇ̌P

"?
npL´ ErLsq

2νg1

ď t

*
´ Φptq

ˇ̌
ˇ̌ ď CUstat ¨

η3
g

ν3
g1

¨ 1?
n
, (B.4)

for a universal constant CUstat. Next we bound the ratio
η3
g

ν3
g1

in the following lemma, which is proved

in Appendix D.6.
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Lemma B.1. Suppose that Assumptions 3.1, 3.2 and 3.4 hold. Let gpX,X 1q and g1pXq be defined

as in the proof of Theorem 4.1. Then

ν2
g1

:“ Varpg1pXqq ě 1

π2
C2
variance

and

ν3
g1
ď η3

g :“ E
“|gpX,X 1q|3‰ ď Cmoment

where Cvariance, Cmoment are constants depending only on Ccov, Ckernel and not on pn, pn, knq.
In particular, this lemma implies that Sab :“ πνg1pdetpΘqq´1 ě Cvariance ¨ pdetpΘqq´1.

Finally, the linear term L analysed here provides only an approximation to rΘab ´Θab. Define

∆ “ rΘab ´Θab ´ π

2
pL´ ErLsq .

Then we have the bound

|∆| “
ˇ̌
ˇ̌uJ

„
1

2
¨
´π

2

¯2 ¨ sin
´π

2
pt ¨ T ` p1´ tq ¨ pT q

¯
˝ p pT ´ T q ˝ p pT ´ T q


v

ˇ̌
ˇ̌

ď ||u||1||v||1||1
2
¨
´π

2

¯2 ¨ sin
´π

2
pt ¨ T ` p1´ tq ¨ pT q

¯
˝ p pT ´ T q ˝ p pT ´ T q||8

ď π2

8
||u||1||v||1|| pT ´ T ||28

ď π2

8
¨ kn ¨ p1` 2CcovCsparseq2 ¨ || pT ´ T ||28 , (B.5)

where the last inequality holds by (B.2).

Finally, the next lemma is proved in de la Pena and Giné (1999).

Lemma B.2 ((de la Pena and Giné, 1999, Theorem 4.1.8)). For any δ ą 0, with probability at

least 1´ δ,

|| pT ´ T ||8 ď
d

4 log
`
2
`
pn
2

˘{δ˘
n

.

Applying this lemma with δ “ 1
2pn

, we have || pT ´ T ||28 ď 4 logp2p3
nq

n ď 16 logppnq
n with probability at

least 1´ 1
2pn

.

To summarize the computations so far, we have rΘab ´ Θab “ π
2 pL´ ErLsq ` ∆, where (B.4)

gives an asymptotic normality result for the linear term pL´ ErLsq, while (B.5) gives a bound on

∆. To prove therefore that rΘab ´ Θab is asymptotically normal, we will use the following lemma

(proved in Appendix D.1):

Lemma B.3. Let A,B,C be random variables such that

sup
tPR
|P tA ď tu ´ Φptq| ď εA and P t|B| ď δB, |C| ď δCu ě 1´ εBC ,

where εA, εBC , δB, δC P p0, 1q. Then the variable pA`Bq ¨ p1` Cq converges to a standard normal

distribution with rate

sup
tPR
|P tpA`Bq ¨ p1` Cq ď tu ´ Φptq| ď δB ` δC

1´ δC ` εA ` εBC .
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We apply this lemma with A “ π
2 ¨
?
n ¨ L´ErLs

Sab¨detpΘq and B “ ?n ¨ ∆
Sab¨detpΘq and C “ 0. We have

sup
tPR
|P tA ď tu ´ Φptq| ď CUstat ¨ Cmoment`

1
π2C

2
variance

˘1.5 ¨
1?
n

by (B.4) and Lemma B.1. Furthermore,

P

#
|B| ď ?n ¨

π2

8 ¨ kn ¨ p1` 2CcovCsparseq2 ¨ 16 logppnq
n

Cvariance

+
ď P

"
|| pT ´ T ||28 ď

16 logppnq
n

*
ě 1´ 1

2pn

by (B.5) and Lemmas B.1 and B.2. Noting that
?
n ¨ rΘab´Θab

Sab
“ A`B, and defining

Cnormal “ 2π2p1` 2CcovCsparseq2
Cvariance

` CUstat ¨ Cmoment`
1
π2C

2
variance

˘1.5 ,

we have proved the desired result.

B.3 Proof of Theorem 4.2: gap between the estimator and the oracle estimator,
and estimation of the variance

The first part of Theorem 4.2, which bounds the distance between our estimator qΘ of Θ and the

oracle estimator rΘ, is established using bounds on Σ̂ ´ Σ in Section 4.3. Details are given in

Appendix B.3.1. The second part of Theorem 4.2, which bounds the error in estimating variance,ˇ̌
ˇ qSab ¨ detpqΘq ´ Sab ¨ detpΘq

ˇ̌
ˇ, is treated in Appendix B.3.2.

B.3.1 Bounds on qΘ´ rΘ

Next we use our bounds on the covariance error, pΣ ´ Σ, to derive a bound on the difference

between our empirical estimator qΘ and the oracle estimator rΘ of Θ. The bounds we give here are

deterministic. Write

∆c “ qγc ´ γc for c “ a, b .

Define the norm

||x||pkq :“
c
||x||22 `

||x||21
k

, (B.6)

that is, || ¨ ||pkq is the norm for which Bk is the unit ball.

The following lemma is proved in Appendix D.5:

Lemma B.4. The following bound holds deterministically:

||qΘ´ rΘ||8 ď CpΣq ¨ max
cPta,bu

||∆c||22`

sup
u,vPBk

ˇ̌
ˇuJppΣ´ Σqv

ˇ̌
ˇ ¨
ˆ

2 max
cPta,bu

||∆c||pkq ¨
ˆ

2` max
cPta,bu

||γc||pkq
˙
` max
cPta,bu

||∆c||2pkq
˙
.
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From this point on, we combine Assumptions 3.1, 3.2, and 3.3 with Corollary 4.8 and Lemma B.4

to obtain our probabilistic bound on ||qΘ´ rΘ||8 (Theorem 4.2).

For c “ a, b, applying (B.1) and (B.2),

||γc||pknq ď
d
C2
cov `

p2CcovCsparse

?
knq2

kn
“

b
C2
cov ` 4C2

covC
2
sparse . (B.7)

Next, for c “ a, b, by Assumption 3.3, with probability at least 1´ δn,

||∆c||pknq “
d
||∆c||22 `

||∆c||21
kn

ď

gffffe
˜
Cest

c
kn logppnq

n

¸2

`

ˆ
Cest

b
k2
n logppnq

n

˙2

kn
“ Cest

c
2kn logppnq

n
. (B.8)

Next, we use Corollary 4.8. Setting δ1 “ δ2 “ 1
6pn

, we see that by the assumption pn ě 2, kn ě 1

and the assumption n ě 15kn logppnq stated in Theorem 4.2, the conditions of Corollary 4.8 must

hold. Then, with probability at least 1´ δ1 ´ δ2 “ 1´ 1
3pn

,

sup
u,vPBkn

ˇ̌
ˇuJppΣ´ Σqv

ˇ̌
ˇ

ď π2

8
¨ kn ¨ 4 log

`
12pn

`
pn
2

˘˘

n
` 2π ¨ 16p1`?5qCcov ¨

c
logp12pnq ` pkn ` 1q logp12pnq

n

ď Ccov ¨ C 1 ¨
c
kn logppnq

n
, (B.9)

where we choose the universal constant C 1 “ 3π2 ` 2π ¨ 16p1`?5q?15 which guarantees that the

last inequality holds (using the assumptions n ě kn logppnq and pn ě 2).

Finally, applying the deterministic bound in Lemma B.4, we see that with probability at least

1´ 1
3pn

, on the event that the bounds (3.1) in Assumption 3.3 hold,

||qΘ´ rΘ||8 ď Ccov ¨ max
cPta,bu

||∆c||22 ` sup
u,vPBkn

ˇ̌
ˇuJppΣ´ Σqv

ˇ̌
ˇ ¨

ˆ
2 max
cPta,bu

||∆c||pknq ¨
ˆ

2` max
cPta,bu

||γc||pknq
˙
` max
cPta,bu

||∆c||2pknq
˙
.

Applying Assumption 3.2 and calculations (B.7), (B.8), and (B.9) above,

ď Ccov ¨ C2
est

kn logppnq
n

` Ccov ¨ C 1 ¨
c
kn logppnq

n
¨

˜
2Cest

c
2kn logppnq

n
¨
´

2`
b
C2
cov ` 4C2

covC
2
sparse

¯
` C2

est

2kn logppnq
n

¸

ď kn logppnq
n

¨
”
CcovC

2
est ` Ccov ¨ C 1 ¨

´
2
?

2 ¨ Cest ¨
´

2`
b
C2
cov ` 4C2

covC
2
sparse

¯
` 2C2

est

¯ı
,
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where the last step uses the fact that kn logppnq
n ď

b
kn logppnq

n (which is true by assumption in

Theorem 4.2). Defining Coracle to be at least as large as the expression in square brackets above,

we have completed the proof of the first part of Theorem 4.2.

B.3.2 Variance estimate

For the second part of the theorem, that is, bounding the error in the variance estimate qSab, we

state this bound as a lemma and defer the proof to Appendix D.9, since we need to develop some

additional technical results before treating this bound.

Lemma B.5. Under the assumptions and definitions of Theorem 4.2, with probability at least

1´ 1
6pn

, if n ě k2
n logppnq, on the event that the bounds (3.1) in Assumption 3.3 hold,

ˇ̌
ˇ qSab ¨ detpqΘq ´ Sab ¨ detpΘq

ˇ̌
ˇ ď Coracle ¨

c
k2
n logppnq

n
.

Combining this lemma with the work above, and using Assumption 3.3, we have proved that

both bounds stated in Theorem 4.2 hold with probability at least 1´ 1
pn
´ δn, as desired.

B.4 Proof of Theorem 3.5: main result

We now prove our main result, Theorem 3.5.

Proof of Theorem 3.5. Recall that our goal is to prove that
?
npqΩab´Ωabq

qSab
converges to the Np0, 1q

distribution. Recalling that Θ “ pΩab,abq´1 and using the formula for a 2 ˆ 2 matrix inverse, we

separate this random variable into several terms:

?
npqΩab ´ Ωabq

qSab
“
?
n
´ ´qΘab

detpqΘq ´
´Θab
detpΘq

¯

qSab
“
?
n
´
´qΘab `Θab ¨ detpqΘq

detpΘq
¯

qSab ¨ detpqΘq

“
?
n
´

Θab ´ rΘab ` rΘab ´ qΘab ´Θab ¨
´

1´ detpqΘq
detpΘq

¯¯

qSab ¨ detpqΘq

“
»
–´

?
n
´
rΘab ´Θab

¯

Sab ¨ detpΘq `
?
n
´
rΘab ´ qΘab

¯

Sab ¨ detpΘq `
?
n ¨ Ωab ¨

´
detpΘq ´ detpqΘq

¯

Sab ¨ detpΘq

fi
fl

ˆ
«

1`
qSab ¨ detpqΘq ´ Sab ¨ detpΘq

Sab ¨ detpΘq

ff
.

To show that
?
npqΩab´Ωabq

qSab
converges to the standard normal distribution, we will can apply Lemma B.3

(stated in Appendix B.2). In order to apply this lemma and obtain the desired result, we assemble

the following pieces:

First, the variable A :“ ´
?
nprΘab´Θabq
Sab¨detpΘq satisfies suptPR |P tA ď tu ´ Φptq| ď Cnormal ¨ kn logppnq?

n
` 1

2pn
,

as shown in Theorem 4.1.
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Second, we define variables B :“
?
nprΘab´qΘabq
Sab¨detpΘq `

?
n¨Ωab¨pdetpΘq´detpqΘqq

Sab¨detpΘq and C :“ qSab¨detpqΘq´Sab¨detpΘq
Sab¨detpΘq ,

and set

δB “ kn logppnq?
n

¨
ˆ
Coracle ` 4C2

covCoracle ` 2CcovC
2
oracle

Cvariance

˙

and

δC “ Coracle

Cvariance
¨
c
k2
n logppnq

n
.

We now show that, by Theorem 4.2, with probability at least 1´ 1
2pn
´δn it holds that |B| ď δB and

|C| ď δC . For the variable C, this is a trivial consequence of the bound on
ˇ̌
ˇ qSab ¨ detpqΘq ´ Sab ¨ detpΘq

ˇ̌
ˇ

in Theorem 4.2 combined with the lower bound Sab ¨ detpΘq ě Cvariance from Theorem 4.1.

Now we turn to the bound on B. To prove this bound, observe that ||qΘ´rΘ||8 ď Coracle ¨ kn logppnq
n

by Theorem 4.2 (with the stated probability). We also have

ˇ̌
ˇ̌
ˇ̌

?
n
´
rΘab ´ qΘab

¯

Sab ¨ detpΘq

ˇ̌
ˇ̌
ˇ̌ ď

?
n ¨ 1

Sab ¨ detpΘq ¨ ||
qΘ´ rΘ||8 ď

?
n

Cvariance
¨ ||qΘ´ rΘ||8 ,

where the last step follows from Theorem 4.1. And,
ˇ̌
ˇdetpqΘq ´ detpΘq

ˇ̌
ˇ “

ˇ̌
ˇ
´
qΘaa

qΘbb ´ qΘ2
ab

¯
´ `

ΘaaΘbb ´Θ2
ab

˘ˇ̌
ˇ

ď 4||Θ||8||qΘ´Θ||8 ` 2||qΘ´Θ||28
and

|Ωab| ď λmaxpΩq “ pλminpΣqq´1 ď Ccov .

Therefore,

ˇ̌
ˇ̌
ˇ̌

?
n ¨ Ωab ¨

´
detpΘq ´ detpqΘq

¯

Sab ¨ detpΘq

ˇ̌
ˇ̌
ˇ̌ ď

?
n ¨ |Ωab|

Sab ¨ detpΘq ¨
´

4||Θ||8||qΘ´Θ||8 ` 2||qΘ´Θ||28
¯

ď ?n ¨ Ccov

Cvariance
¨
´

4Ccov||qΘ´Θ||8 ` 2||qΘ´Θ||28
¯
,

where the last step follows from Theorem 4.1 along with the fact that

||Θ||8 ď λmaxpΘq “ pλminpΩab,abqq´1 ď pλminpΩqq´1 “ λmaxpΣq ď Ccov .

Combining everything, we have

|B| ď ?n ¨ 1

Cvariance
¨ ||qΘ´ rΘ||8 `

?
n ¨ Ccov

Cvariance
¨
´

4Ccov||qΘ´Θ||8 ` 2||qΘ´Θ||28
¯

ď kn logppnq?
n

«
Coracle ` 4C2

covCoracle ` 2CcovC
2
oracle ¨ kn logppnq

n

Cvariance

ff
.

If n ă kn logppnq, then the main result in Theorem 3.5 holds trivially. Assuming then that n ě
kn logppnq, we have proved the desired bound on |B|.
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Given these convergence results, we apply Lemma B.3 to obtain the following result:

sup
tPR

ˇ̌
ˇ̌
ˇP

#?
npqΩab ´ Ωabq

qSab
ď t

+
´ Φptq

ˇ̌
ˇ̌
ˇ ď δB ` δC

1´ δC ` εA ` εBC

“ kn logppnq?
n

¨
ˆ
Coracle ` 4C2

covCoracle ` 2CcovC
2
oracle

Cvariance

˙
`

Coracle
Cvariance

¨
b

k2
n logppnq

n

1´ Coracle
Cvariance

¨
b

k2
n logppnq

n

` Cnormal ¨ kn logppnq?
n

` 1

2pn
` 1

2pn
` δn .

If Coracle
Cvariance

¨
b

k2
n logppnq

n ą 1
2 ,, then the result of Theorem 3.5 holds trivially, and so assuming that this

is not the case, we have

sup
tPR

ˇ̌
ˇ̌
ˇP

#?
npqΩab ´ Ωabq

qSab
ď t

+
´ Φptq

ˇ̌
ˇ̌
ˇ ď Cconverge ¨

d
k2
n log2ppnq

n
` 1

pn
` δn ,

where

Cconverge :“ Coracle ` 4C2
covCoracle ` 2CcovC

2
oracle

Cvariance
` 2Coracle

Cvariance
` Cnormal .

C Accuracy of the initial Lasso estimator

Proof of Corollary 3.8. Define

A “ pΣI , z “ pΣIa, x
‹ “ γa, p “ pn ´ 2, k “ kn .

Now we apply Theorem 3.7 to this sparse recovery problem. In order to do so, we need to check that

the conditions (3.3), (3.4), and (3.5) hold, and that γa is feasible under the condition ||γ||1 ď R.

Once these conditions are satisfied, the result of Theorem 3.7 can be applied to this setting.

Feasibility of γa. Define R “ Ccov

?
2kn. As proved in (B.1), ||γa||2 ď Ccov, and furthermore

||γa||0 ď ||Ωa||0 ` ||Ωb||0 ď 2kn (this is true because γa “ ´ΩI,abΘab,a by (B.2)). Therefore,

||γa||1 ď Ccov

?
2kn “ R.

Condition (3.4) (restricted strong convexity). Now we need to check that the restricted

strong convexity conditions (3.3) hold for our matrix A “ pΣI . By Corollary 4.8, there exists a

constant CRSC depending only on Ccov, such that if n ě 16 logppnq, then with probability at least

1´ 1
8pn

, for all v P Rpn ,

ˇ̌
ˇvJ

´
pΣI ´ ΣI

¯
v
ˇ̌
ˇ ď 1

2Ccov

ˆ
||v||22 ` ||v||21 ¨

CRSC logppnq
n

˙
.
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(To see this, apply Corollary 4.8 with n
CRSC logppnq in place of kn; the assumption n ě 16 logppnq

ensures that we can choose CRSC so that the condition of Corollary 4.8 is satisfied.) Then, if this

event holds, for all v P RI we have

vJpΣIv ě vJΣIv ´
ˇ̌
ˇvJ

´
pΣI ´ ΣI

¯
v
ˇ̌
ˇ ě C´1

cov ¨ ||v||22 ´
ˇ̌
ˇvJ

´
pΣI ´ ΣI

¯
v
ˇ̌
ˇ

ě 1

2Ccov
¨ ||v||22 ´

CRSC

Ccov
¨ logppnq

n
¨ ||v||21 .

Therefore, with probability at least 1 ´ 1
8pn

, the restricted strong convexity condition (3.3) holds

with

α1 “ 1

2Ccov
and τ1 “ CRSC

Ccov
.

Condition (3.5) (penalty parameter). Below, we will prove that, with probability at least

1´ 3
8pn

,

||Ax‹ ´ z||8 “ ||pΣIγa ´ pΣIa||8 ď π

2
Cfeasible

c
logppnq
n

`
c

logppnq
n

¨
«

1.5
?

3π2
a

1` C2
cova

Csample

ff
, (C.1)

for a constant Cfeasible depending only on Ccov, as long as we set

Csample ě
”
16p1`?5qCcov

a
1` C2

cov

ı2
.

Given that this is true, we now require that condition (3.5) holds, that is,

max

#
4||Ax‹ ´ z||8, 4α1

c
logppq
n

+
ď λ ď α1

6R
.

Define

CLasso “ max

#
4

«
π

2
Cfeasible ` 1.5

?
3π2

a
1` C2

cova
Csample

ff
,

2

Ccov

+
,

Plugging in the bound (C.1), we see that the lower bound on λ is satisfied for λ “ CLasso

b
logppnq
n .

To check the upper bound, we only need

λ “ CLasso

c
logppnq
n

ď α1

6R
“ 1

2C2
cov

?
2kn

.

Assuming that

n ě 8C2
LassoC

4
cov ¨ kn logppnq , (C.2)

then this follows directly. Therefore, (3.5) is satisfied with probability at least 1´ 3
8pn

.

Condition (3.4) (sample size). To satisfy (3.4), by plugging in the definitions of R, α1, and τ1

above, we see that it is sufficient to require

n ě 64C2
covCRSC maxt1, 2CRSCu ¨ kn logppnq . (C.3)
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Conclusion. Combining all of our work above, we see that the conditions (3.3), (3.4), and (3.5),

and the feasibility of γa, are all satisfied with probability at least 1´ 1
2pn

, as long as

n ě Csamplekn logppnq
for

Csample :“ max

"
16,

”
16p1`?5qCcov

a
1` C2

cov

ı2
, 8C2

LassoC
4
cov, 64C2

covCRSC maxt1, 2CRSCu
*
.

Therefore, applying Theorem 3.7, if these high probability events hold, then then for any qγa that

is a local minimizer of

Lpxq “ 1

2
γJpΣIγ ´ γJpΣIa ` λ||γ||1

over the set tγ P RI : ||γ||1 ď 2CcovCsparse

?
knu, it holds that

||qγa ´ γa||2 ď 1.5λ ¨ ?2kn
α1

“ 3
?

2Ccovλ
a
kn and ||qγa ´ γa||1 ď 6λ ¨ 2kn

α1
“ 24Ccovλ

a
kn .

By the same arguments, the same results hold for estimating γb.

Proving (C.1) Now we consider the term ||Ax‹ ´ z||8 “ ||pΣIγa ´ pΣIa||8. Since γa “ Σ´1
I ΣIa,

we have

||pΣIγa ´ pΣIa||8 “ ||ppΣI ´ ΣIqγa ´ ppΣIa ´ ΣIaq||8 “ ||ppΣ´ Σqu||8 ,

where u P Rpn is the fixed vector with

ua “ 1, ub “ 0, uI “ ´γa .
By the Taylor expansion of pΣ´ Σ (calculated as in (B.3)), we have

||pΣIγa ´ pΣIa||8 “ ||ppΣ´ Σqu||8 “ max
j

ˇ̌
ˇeJj ppΣ´ Σqu

ˇ̌
ˇ

ď π

2
max
j

ˇ̌
ˇeJj

´
cos

´π
2
T
¯
˝ p pT ´ T q

¯
u
ˇ̌
ˇ`

ˇ̌
ˇ̌π

2

8
eJj

´
sin

´π
2
T
¯
˝ p pT ´ T q ˝ p pT ´ T q

¯
u

ˇ̌
ˇ̌

ď π

2
max
j

ˇ̌
ˇeJj

´
cos

´π
2
T
¯
˝ p pT ´ T q

¯
u
ˇ̌
ˇ` π2

8
||u||1|| pT ´ T ||28 . (C.4)

Next we bound each term in this final expression (C.4) separately. Beginning with the second

term, by (B.1), we know that ||u||1 ď
a||u||0||u||2 ď

?
1` 2kn ¨

a
1` C2

cov ď
?
kn ¨

a
3p1` C2

covq,
where to bound ||u||0 we use the calculation ||γa||0 ď 2kn from before. Furthermore, by Lemma B.2,

with probability at least 1´ 1
8pn

,

|| pT ´ T ||8 ď
c

12 logp8pnq
n

ď
c

48 logppnq
n

,

using pn ě 2. Therefore, the second term in (C.4) is bounded as

π2

8
||u||1|| pT ´T ||28 ď

π2

8

a
kn ¨

a
3p1` C2

covq
48 logppnq

n
ď

c
logppnq
n

¨
«

6
?

3π2
a

1` C2
cova

Csample

ff
, (C.5)
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where we use the assumption n ě Csample logppnq.
Next we turn to the first term in (C.4). In order to bound this term, we begin by stating two

lemmas (proved in Appendix D.7):

Lemma C.1. There exist vectors a1, a2, . . . and b1, b2, . . . with ||ar||8, ||br||8 ď 1 for all r ě 1,

and a sequence t1, t2, ¨ ¨ ¨ ě 0 with
ř
r tr “ 4, such that cos

`
π
2T

˘ “ ř
rě1 trarb

J
r .

Lemma C.2. For fixed u, v with ||u||2, ||v||2 ď 1, for any |t| ď n
4p1`?5qCcov

,

E
”
exp

´
t ¨ uJp pT ´ T qv

¯ı
ď exp

˜“
4p1`?5q‰2

t2 ¨ C2
cov

n

¸
.

By Lemma C.1, we can write

cos
´π

2
T
¯
“

ÿ

r

tr ¨ arbJr ,

where tr ě 0,
ř
r tr “ 4, and ||ar||8, ||br||8 ď 1. Then

eJj
´

cos
´π

2
T
¯
˝ p pT ´ T q

¯
u “

A
cos

´π
2
T
¯
˝ eju

J, pT ´ T
E
“

ÿ

r

tr ¨ par ˝ ejqJp pT ´ T qpbr ˝ uq .

Note that

||ar ˝ ej ||2 ď ||ar||8 ¨ ||ej ||2 ď 1

and, by (B.1),

||br ˝ u||2 ď ||br||8 ¨ ||u||2 ď
a

1` C2
cov .

Then for any |t| ď n

16p1`?5qCcov

?
1`C2

cov

,

E
”
exp

!
t ¨ eJj

´
cos

´π
2
T
¯
˝ p pT ´ T q

¯
u
)ı
“ E

«
exp

#ÿ

r

tr

”
t ¨ par ˝ ejqJp pT ´ T qpbr ˝ uq

ı+ff
.

By convexity of the function x ÞÑ ex,

“
ÿ

r

tr
4
E
”
exp

!
4
”
t ¨ par ˝ ejqJp pT ´ T qpbr ˝ uq

ı)ı
.

By Lemma C.2,

ď
ÿ

r

tr
4

exp

˜“
4p1`?5q‰2

16t2 ¨ C2
covp1` C2

covq
n

¸

“ exp

˜“
4p1`?5q‰2

16t2 ¨ C2
covp1` C2

covq
n

¸
.
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Observe that we can set t “ ˘an logppnq, which satisfies |t| ď n

16p1`?5qCcov

?
1`C2

cov

as long as we

set Csample ě
”
16p1`?5qCcov

a
1` C2

cov

ı2
, due to the assumption n ě Csample logppnq. Then, we

see that for any C ą 0,

P

#ˇ̌
ˇeJj

´
cos

´π
2
T
¯
˝ p pT ´ T q

¯
u
ˇ̌
ˇ ą C

c
logppnq
n

+

ď E
„
e
?
n logppnq¨eJj pcospπ2 Tq˝p pT´T qqu´

?
n logppnq¨C

b
logppnq

n



` E
„
e´
?
n logppnq¨eJj pcospπ2 Tq˝p pT´T qqu´

?
n logppnq¨C

b
logppnq

n



ď 2 exp

˜“
4p1`?5q‰2

16pan logppnqq2 ¨ C2
covp1` C2

covq
n

¸
¨ exp

#
´an logppnq ¨ C

c
logppnq
n

+

ď 2p
´
´
C´r4p1`?5qs2¨16C2

covp1`C2
covq

¯

n “ 2p´5
n ď 1

4p2
n

,

where we set C “ Cfeasible :“ 5` “
4p1`?5q‰2 ¨ 16C2

covp1` C2
covq. Therefore,

P

#
max
j

ˇ̌
ˇeJj

´
cos

´π
2
T
¯
˝ p pT ´ T q

¯
u
ˇ̌
ˇ ą Cfeasible

c
logppnq
n

+
ď 1

4pn
. (C.6)

Combining (C.5) and (C.6), and returning to (C.4), we have

||pΣIγa ´ pΣIa||8 ď π

2
Cfeasible

c
logppnq
n

`
c

logppnq
n

¨
«

1.5
?

3π2
a

1` C2
cova

Csample

ff
,

with probability at least 1´ 3
8pn

. This proves (C.1).

D Proofs of lemmas

D.1 Proof of the normal convergence lemma

Lemma B.3. Let A,B,C be random variables such that

sup
tPR
|P tA ď tu ´ Φptq| ď εA and P t|B| ď δB, |C| ď δCu ě 1´ εBC ,

where εA, εBC , δB, δC P r0, 1q. Then the variable pA` Bq ¨ p1` Cq converges to a standard normal

distribution with rate

sup
tPR
|P tpA`Bq ¨ p1` Cq ď tu ´ Φptq| ď δB ` δC

1´ δC ` εA ` εBC .

Proof of Lemma B.3. First, define truncated versions of B and C:

rB “ signpBq ¨mint|B|, δBu, rC “ signpCq ¨mint|C|, δCu .
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Then, for any t P R,
ˇ̌
ˇP tpA`Bq ¨ p1` Cq ď tu ´ P

!
pA` rBq ¨ p1` rCq ď t

)ˇ̌
ˇ ď P

!
B ‰ rB or C ‰ rC

)
ď εBC .

Note that | rB| ď δB and | rC| ď δC with probability 1.

Next, fix any t ě 0 and suppose that A ď t
1`δC ´ δB. Then

pA` rBq ¨ p1` rCq ď
ˆˆ

t

1` δC ´ δB
˙
` δB

˙
¨ p1` δCq “ t ,

and so

P
!
pA` rBq ¨ p1` rCq ď t

)
ě P

"
A ď t

1` δC ´ δB
*

ě Φ

ˆ
t

1` δC ´ δB
˙
´ εA

“ Φptq ´ P
"

t

1` δC ´ δB ă Np0, 1q ă t

1` δC
*
´ P

"
t

1` δC ă Np0, 1q ă t

*
´ εA .

Since the density of the normal distribution is bounded by 1?
2π
ď 1,

ě Φptq ´ δB ´ P
"

t

1` δC ă Np0, 1q ă t

*
´ εA.

Applying Lemma D.1 (stated below),

ě Φptq ´ δB ´ δC ´ εA .

To prove the reverse bound, suppose that pA` rBq ¨ p1` rCq ď t. Then

A “ pA`
rBq ¨ p1` rCq
1` rC

´ rB ď t

1´ δC ` δB .

Therefore,

P
!
pA` rBq ¨ p1` rCq ď t

)
ď P

"
A ď t

1´ δC ` δB
*

ď Φ

ˆ
t

1´ δC ` δB
˙
` εA

“ Φptq ` P
"

t

1´ δC ă Np0, 1q ă t

1´ δC ` δB
*
` P

"
t ă Np0, 1q ă t

1´ δC
*
` εA .

Since the density of the normal distribution is bounded by 1?
2π
ď 1,

ď Φptq ` δB ` P
"
t ă Np0, 1q ă t

1´ δC
*
` εA .
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Applying Lemma D.1 (stated below),

ď Φptq ` δB `
ˆ

1

1´ δC ´ 1

˙
` εA .

Therefore, for all t ě 0,

ˇ̌
ˇP

!
pA` rBq ¨ p1` rCq ď t

)
´ Φptq

ˇ̌
ˇ ď δB ` δC

1´ δC ` εA .

By identical arguments, we can prove the same for t ď 0.

Lemma D.1. For any 0 ď a ď b,

P ta ă Np0, 1q ă bu ď
ˆ
b

a
´ 1

˙
¨ 1?

2πe
ď

ˆ
b

a
´ 1

˙
.

Proof.

P ta ă Np0, 1q ă bu “
ż b

t“a
1?
2π
e´t2{2 dt

ď pb´ aq ¨ 1?
2π
e´a2{2

“
ˆ
b

a
´ 1

˙
¨ 1?

2π
¨ a ¨ e´a2{2

ď
ˆ
b

a
´ 1

˙
¨ 1?

2πe
,

where the last step holds because suptą0tt ¨ e´t2{2u “ 1?
e
.

D.2 Sign vector of a transelliptical distribution

Lemma 4.4. Let

X,X 1 iid„ TEpΣ, ξ; f1, . . . , fpq .
Suppose that Σ is positive definite, and that ξ ą 0 with probability 1. Then signpX ´X 1q is equal

in distribution to signpZq, where Z „ Np0,Σq.
Proof of Lemma 4.4. First, since the fj ’s are strictly monotone, we see that signpX ´X 1q has the

same distribution regardless of the choice of the fj ’s (assuming without loss of generality that the

fj ’s are increasing). Therefore it suffices to consider the case that the fj ’s are each the identity

function, and so X,X 1 iid„ Ep0,Σ, ξq, that is, a zero-mean elliptical distribution. In this case,

by Lindskog et al. (2003, Lemma 1), X ´ X 1 „ Ep0,Σ, ζq where the distribution of the random

variable ζ ě 0 obeys ϕζptq “ ϕξptq2, where ϕζ and ϕξ are the characteristic functions of ζ and ξ,

respectively. Note that for two independent copies ξ1, ξ2
iid„ ξ, we have ϕξ1`ξ2 “ ϕξ1 ¨ϕξ2 “ ϕ2

ξ “ ϕζ ,

and therefore, ζ
D“ ξ1`ξ2. Since ξ ą 0 with probability 1, this proves that ζ ą 0 with probability 1.
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Next take Z „ Np0,Σq. Then Σ´1{2Z
||Σ´1{2Z||2 is uniformly distributed on the unit sphere, and so

ζ ¨ Σ1{2 ¨ Σ´1{2Z
||Σ´1{2Z||2 „ Ep0,Σ, ζq ,

which is the distribution of X ´ X 1. Using the fact that ζ ą 0 with probability 1, we see that

signpX ´X 1q is equal in distribution to

sign

˜
ζ ¨ Σ1{2 ¨ Σ´1{2Z

||Σ´1{2Z||2

¸
“ signpΣ1{2 ¨ Σ´1{2Zq “ signpZq ,

as desired.

D.3 Proof of Lemma 4.7

Lemma 4.7. The following bound holds deterministically: for any k ě 1,

sup
u,vPBk

ˇ̌
ˇuJppΣ´ Σqv

ˇ̌
ˇ ď π2

8
¨ k|| pT ´ T ||28 ` 2π sup

uPSk`1

ˇ̌
ˇuJp pT ´ T qu

ˇ̌
ˇ .

Proof of Lemma 4.7. To prove this theorem, we first state the Transfer Principle of Oliveira (2013):

Lemma D.2 (Lemma 5.1 of Oliveira (2013)). Suppose that B,C P Rpˆp are matrices with non-

negative diagonals, satisfying

vJBv ě vJCv ¨ p1´ ηq for all pk ` 1q-sparse v P Rp.

Let di “ Bii ´ p1´ ηqCii ě 0. Then

vJBv ě vJCv ¨ p1´ ηq ´ ||diagt?du ¨ v||21
k

for all v P Rp .

Now we turn to proving the theorem. By Taylor’s theorem,

pΣ “ Σ` π

2
cos

´π
2
T
¯
˝
´
pT ´ T

¯
´ π2

8
sin

´π
2
T̄
¯
˝
´
pT ´ T

¯
˝
´
pT ´ T

¯

where T̄ has entries τ̄ab “ p1´ tabqτab ` tabpτab, with tab P r0, 1s for each a, b. Taking any u, v P Bk,
then,

ˇ̌
ˇuJppΣ´ Σqv

ˇ̌
ˇ ď π

2

ˇ̌
ˇuJ

”
cos

´π
2
T
¯
˝
´
pT ´ T

¯ı
v
ˇ̌
ˇ` π2

8

ˇ̌
ˇuJ

”
sin

´π
2
T̄
¯
˝
´
pT ´ T

¯
˝
´
pT ´ T

¯ı
v
ˇ̌
ˇ .

First, to bound the sinp¨q matrix term, note that

ˇ̌
ˇuJ

”
sin

´π
2
T̄
¯
˝
´
pT ´ T

¯
˝
´
pT ´ T

¯ı
v
ˇ̌
ˇ

ď ||u||1||v||1
›››sin

´π
2
T̄
¯
˝
´
pT ´ T

¯
˝
´
pT ´ T

¯›››8 ď ||u||1||v||1||
pT ´ T ||28 ,
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where the last step holds since the sinp¨q function lies in r´1, 1s. Furthermore, ||u||1, ||v||1 ď
?
k

for all u, v P Bk by definition.

Next, we bound the cosp¨q matrix term. By Lemma C.1, we can express cos
`
π
2T

˘
as a convex

combination,

cos
´π

2
T
¯
“

ÿ

r

tr ¨ arbJr ,

where ar, br P Rp satisfy ||ar||8, ||br||8 ď 1 for all r, and tr ě 0 satisfy
ř
r tr “ 4. Furthermore, for

u, v P Bk and for each r, note that u ˝ ar, v ˝ br P Bk due to the bound on ||ar||8, ||br||8. Then

ˇ̌
ˇuJ

”
cos

´π
2
T
¯
˝
´
pT ´ T

¯ı
v
ˇ̌
ˇ ď

ÿ

r

tr

ˇ̌
ˇuJ

”
arb

J
r ˝

´
pT ´ T

¯ı
v
ˇ̌
ˇ

“
ÿ

r

tr

ˇ̌
ˇpu ˝ arqJ

´
pT ´ T

¯
pv ˝ brq

ˇ̌
ˇ ď 4 sup

u1,v1PBk

ˇ̌
ˇu1Jp pT ´ T qv1

ˇ̌
ˇ .

Finally, to reduce to the sparse set Sk`1, we use Oliviera’s Transfer Principle (Lemma D.2). Define

B “ I´ p pT ´ T q and C “ I, and let

η “ sup
uPSk`1

ˇ̌
ˇuJp pT ´ T qu

ˇ̌
ˇ .

Then, for all pk ` 1q-sparse vectors x, by considering the rescaled vector u “ x{||x||2, we see that

xJBx “ ||x||22 ´ xJp pT ´ T qx ě p1´ ηq||x||22 “ p1´ ηq ¨ xJCx .

Furthermore, for each i “ 1, . . . , p, we have Cii “ 1 trivially and Bii “ 1 ´ pTii ` Tii “ 1, which is

true because pTii “ Tii “ 1 by definition. Then in the notation of Lemma D.2, for each i “ 1, . . . , p

we set di “ Bii ´ p1´ ηqCii “ η. Applying Lemma D.2, then, for all x P Rp,

xJBx ě p1´ ηqxJCx´ η ||x||
2
1

k
,

and plugging in our definitions of B and C, we get

xJp pT ´ T qx ď η

ˆ
||x||22 `

||x||21
k

˙
.

By symmetry, we can instead set B “ I`p pT ´T q to obtain the same upper bound on ´xJp pT ´T qx.

To conclude, take any u, v P Bk. Then, setting x “ u`v
2 and y “ u´v

2 , observe that x, y P Bk
also, and that ˇ̌

ˇuJp pT ´ T qv
ˇ̌
ˇ “ 1

2

ˇ̌
ˇxJp pT ´ T qx´ yJp pT ´ T qy

ˇ̌
ˇ ď η ,

which proves that

sup
u,vPBk

ˇ̌
ˇuJp pT ´ T qv

ˇ̌
ˇ ď η “ sup

uPSk`1

ˇ̌
ˇuJp pT ´ T qu

ˇ̌
ˇ ,

and thus we obtain the desired result.
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D.4 Proof of Lemma 4.6

Lemma 4.6. Suppose that k ě 1 and δ P p0, 1q satisfy logp2{δq ` k logp12pq ď n. Then with

probability at least 1´ δ it holds that

sup
uPSk

ˇ̌
ˇuJp pT ´ T qu

ˇ̌
ˇ ď 16p1`?5qCpΣq ¨

c
logp2{δq ` k logp12pq

n
.

Proof of Lemma 4.6. This lemma is a straightforward combination of Lemma C.2 (stated in Ap-

pendix C) together with the following result:

Lemma D.3 (Adapted from Lemma 5.1 and Theorem 5.2 of Baraniuk et al. (2008)). Let A be a

random matrix satisfying

exp
 
t ¨ uJAu( ď exp

"
c1t

2

n

*
for all |t| ď c0n and all unit vectors u P Rp (D.1)

for some constants c0, c1. Then for any k ě 1 and any δ P p0, 1q satisfying

logp2{δq ` k logp12pq ď nc2
0c1 ,

with probability at least 1´ δ it holds that

|uJAu| ď
c

16c1

n
plogp2{δq ` k logp12pqq for all k-sparse unit vectors u P Rp. (D.2)

Combined, Lemmas D.3 and C.2 immediately yield Lemma 4.6, as desired.

We next turn to the proof of Lemma D.3.

Proof of Lemma D.3. (Adapted from Lemma 5.1 and Theorem 5.2 of Baraniuk et al. (2008).) First

fix any S Ă rps with |S| “ k. Let ε “
b

16c1
n plogp2{δq ` k logp12pqq. Following the same arguments

as in Baraniuk et al. (2008, Lemma 5.1), we can take a set U Ă RS of unit vectors, with |U | ď 12k,

such that

sup
unit uPRS

ˇ̌
uJAu

ˇ̌ ď 2 sup
ruPU

ˇ̌
ruJAru

ˇ̌
.

Furthermore, for any fixed ru P U , for any 0 ă t ď c0n,

P
 
ruJAru ą ε{2( ď E

“
t ¨ ruJAru´ t ¨ ε{2‰

ď exp

ˆ
c1t

2

n
´ t ¨ ε{2

˙
.

Setting t “ nε
4c1
ď c0n,

“ exp

ˆ
´ nε2

16c1

˙
,

and similarly,

P
 
ruJAru ă ´ε{2( ď exp

ˆ
´ nε2

16c1

˙
.
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Therefore,

P
"

sup
ruPU

ˇ̌
ruJAru

ˇ̌ ą ε{2
*
ď 2 ¨ 12k ¨ exp

ˆ
´ nε2

16c1

˙
,

and so

P
"

sup
unit uPRS

ˇ̌
uJAu

ˇ̌ ą ε

*
ď 2 ¨ 12k ¨ exp

ˆ
´ nε2

16c1

˙
.

Finally, taking all
`
p
k

˘ ď pk choices for S, we see that

P

#
sup

k-sparse unit u, v P Rp

 
uJAu

( ď ε

+
ě 1´ 2p12pqk ¨ exp

ˆ
´ nε2

16c1

˙
.

D.5 Proof of Lemma B.4

Lemma B.4. The following bound holds deterministically:

||qΘ´ rΘ||8 ď CpΣq ¨ max
cPta,bu

||∆c||22`

sup
u,vPBk

ˇ̌
ˇuJppΣ´ Σqv

ˇ̌
ˇ ¨
ˆ

2 max
cPta,bu

||∆c||pkq ¨
ˆ

2` max
cPta,bu

||γc||pkq
˙
` max
cPta,bu

||∆c||2pkq
˙
.

(The definition of the norm || ¨ ||pkq is given in (B.6).)

Proof of Lemma B.4. Choose any c, d P ta, bu; we will bound the pc, dqth entry of the error, that

is,
ˇ̌
ˇqΘcd ´ rΘcd

ˇ̌
ˇ. Write ∆c “ qγc ´ γc for each c “ a, b. We have

ˇ̌
ˇqΘcd ´ rΘcd

ˇ̌
ˇ

“
ˇ̌
ˇ
´
pΣcd ´ qγJc pΣId ´ pΣJIcqγd ` qγJc pΣIqγd

¯
´
´
pΣcd ´ γJc pΣId ´ pΣJIcγd ` γJc pΣIγd

¯ˇ̌
ˇ

“
ˇ̌
ˇqγJc pΣIqγd ´ γJc pΣIγd ´∆J

c
pΣId ´ pΣJIc∆d

ˇ̌
ˇ

“
ˇ̌
ˇ∆J

c
pΣIγd ` γJc pΣI∆d `∆J

c
pΣI∆d ´∆J

c
pΣId ´ pΣJIc∆d

ˇ̌
ˇ

ď ˇ̌
∆J
c ΣIγd ` γJc ΣI∆d `∆J

c ΣI∆d ´∆J
c ΣId ´ ΣJIc∆d

ˇ̌
(D.3)

`
ˇ̌
ˇ∆J

c ppΣI ´ ΣIqγd ` γJc ppΣI ´ ΣIq∆d `∆J
c ppΣI ´ ΣIq∆d ´∆J

c ppΣId ´ ΣIdq ´ ppΣIc ´ ΣIcqJ∆d

ˇ̌
ˇ .

Now we bound each of these terms. To bound the first term on the right-hand side of (D.3), we

have
ˇ̌
∆J
c ΣIγd ` γJc ΣI∆d `∆J

c ΣI∆d ´∆J
c ΣId ´ ΣJIc∆d

ˇ̌

“ ˇ̌
∆J
c ΣIΣ

´1
I ΣId ` ΣJIcΣ´1

I ΣI∆d `∆J
c ΣI∆d ´∆J

c ΣId ´ ΣJIc∆d

ˇ̌

“ ˇ̌
∆J
c ΣI∆d

ˇ̌

ď ||∆c||2 ¨ ||∆d||2 ¨ ||Σ||op
ď ||∆c||2 ¨ ||∆d||2 ¨ CpΣq ,
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where the last step holds because

||ΣI || ď ||Σ|| “ λminpΣq ¨ CpΣq ,

and we must have λminpΣq ď 1 because diagpΣq “ 1.

Finally, to bound the second term on the right-hand side of (D.3), we have

ˇ̌
ˇ∆J

c ppΣI ´ ΣIqγd ` γJc ppΣI ´ ΣIq∆d `∆J
c ppΣI ´ ΣIq∆d ´∆J

c ppΣId ´ ΣIdq ´ ppΣIc ´ ΣIcqJ∆d

ˇ̌
ˇ

ď
ˇ̌
ˇ∆J

c ppΣI ´ ΣIqγd
ˇ̌
ˇ`

ˇ̌
ˇγJc ppΣI ´ ΣIq∆d

ˇ̌
ˇ`

ˇ̌
ˇ∆J

c ppΣI ´ ΣIq∆d

ˇ̌
ˇ`

ˇ̌
ˇ∆J

c ppΣId ´ ΣIdq
ˇ̌
ˇ`

ˇ̌
ˇppΣIc ´ ΣIcqJ∆d

ˇ̌
ˇ

ď sup
u,vPBk

ˇ̌
ˇuJppΣ´ Σqv

ˇ̌
ˇ ¨

`||∆c||pkq||γd||pkq ` ||γc||pkq||∆d||pkq ` ||∆c||pkq||∆d||pkq ` ||∆c||pkq||ed||pkq ` ||ec||pkq||∆d||pkq
˘
,

where ec and ed are the cth and dth basis vectors in Rp. Since ||ec||pkq “ ||ed||pkq ď 2, the desired

result of the lemma follows trivially from these bounds.

D.6 Proof of Lemma B.1

Lemma B.1. Suppose that Assumptions 3.1, 3.2 and 3.4 hold. Let gpX,X 1q and g1pXq be defined

as in the proof of Theorem 4.1. Then

ν2
g1

:“ Varpg1pXqq ě 1

π2
C2
variance

and

ν3
g1
ď η3

g :“ E
“|gpX,X 1q|3‰ ď Cmoment

where Cvariance, Cmoment are constants depending only on Ccov, Ckernel and not on pn, pn, knq.
Proof of Lemma B.1. First, we have

g1pXq “E
”
signpX ´X 1qJ

´
uvJ ˝ cos

´π
2
T
¯¯

signpX ´X 1q | X
ı

“ E
”`

signpX ´X 1q b signpX ´X 1q˘J vec
´
uvJ ˝ cos

´π
2
T
¯¯
| X

ı

“ E
“`

signpX ´X 1q b signpX ´X 1q˘ | X‰J
vec

´
uvJ ˝ cos

´π
2
T
¯¯

“ h1pXqJvec
´
uvJ ˝ cos

´π
2
T
¯¯

,

where h1pXq is defined in Assumption 3.4, and has variance ΣH . Therefore,

ν2
g1
“ Varpg1pXqq
“ vec

´
uvJ ˝ cos

´π
2
T
¯¯J ¨ Σh1 ¨ vec

´
uvJ ˝ cos

´π
2
T
¯¯

.
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By Assumption 3.4,

ě Ckernel ¨ vec
´
uvJ ˝ cos

´π
2
T
¯¯J ¨ Σh ¨ vec

´
uvJ ˝ cos

´π
2
T
¯¯

“ Ckernel ¨ Var
ˆ
vec

´
uvJ ˝ cos

´π
2
T
¯¯J

hpX,X 1q
˙

“ Ckernel ¨ Var
´

signpX ´X 1qJ
´
uvJ ˝ cos

´π
2
T
¯¯

signpX ´X 1q
¯
.

For Z „ Np0,Σq, applying Lemma 4.4, signpX ´X 1q has the same distribution as signpZq,

“ Ckernel ¨ Var
´

signpZqJ
´
uvJ ˝ cos

´π
2
T
¯¯

signpZq
¯

ě Ckernel ¨ Csigns ¨
´
uvJ ˝ cos

´π
2
T
¯¯2

ab
,

where the last step applies the following lemma (proved in Appendix D.8).

Lemma D.4. Take any positive definite Σ P Rpˆp, any distinct a, b P t1, . . . , pu, and any matrix

M P Rpˆp with Mja “ 0 for all j. Let Z „ Np0,Σq. Then there exists a constant Csigns depending

on CpΣq only, such that

Var
`
signpZqJM signpZq˘ ě Csigns ¨M2

ab .

Finally, we have

´
uvJ ˝ cos

´π
2
T
¯¯2

ab
“ u2

av
2
b cos

´π
2
Tab

¯2 ě pCcovq´2 ,

where the last step holds because ua “ vb “ 1 and

cos
´π

2
Tab

¯
“

c
1´ sin

´π
2
Tab

¯2 “
b

1´ Σ2
ab ě 1´ Σab “ λmin pΣab,abq ě pCcovq´1 .

To summarize, we have

ν2
g1
ě CkernelCsigns

C2
cov

“:
1

π2
C2
variance .

Next, we give an upper bound on ν2
g1

:

ν2
g1
“ Varpg1pXqq
“ vec

´
uvJ ˝ cos

´π
2
T
¯¯J ¨ Σh1 ¨ vec

´
uvJ ˝ cos

´π
2
T
¯¯

ď vec
´
uvJ ˝ cos

´π
2
T
¯¯J ¨ Σh ¨ vec

´
uvJ ˝ cos

´π
2
T
¯¯

.

As for the lower bound,

“ Var
´

signpX ´X 1qJ
´
uvJ ˝ cos

´π
2
T
¯¯

signpX ´X 1q
¯

“ Var
`
gpX,X 1q˘ ď E

“|gpX,X 1q|2‰ ď E
“|gpX,X 1q|3‰2{3 “ η2

g .
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Finally, we compute an upper bound on η3
g “ E

“|gpX,X 1q|3‰. By Lemma C.1, there exists a

decomposition

cos
´π

2
T
¯
“

ÿ

r

trarb
J
r

where tr ě 0,
ř
r tr ď 4, and ||ar||8, ||br||8 ď 1. Note that, by (B.1),

||u||2 “
b

1` ||γa||22 ď
a

1` C2
cov

and similarly ||v||2 ď
a

1` C2
cov. Then for each r,

||u ˝ ar||2 _ ||v ˝ br||2 ď
a

1` C2
cov .

Then we have

E
“|gpX,X 1q|3‰ “ E

„ˇ̌
ˇsignpX ´X 1qJ

´
uvJ ˝ cos

´π
2
T
¯¯

signpX ´X 1q
ˇ̌
ˇ
3


“ E

»
–
ˇ̌
ˇ̌
ˇ
ÿ

r

tr ¨ signpX ´X 1qJ `uvJ ˝ arbJr
˘

signpX ´X 1q
ˇ̌
ˇ̌
ˇ

3
fi
fl

ď
ÿ

r

tr ¨ E
”ˇ̌

signpX ´X 1qJ `uvJ ˝ arbJr
˘

signpX ´X 1qˇ̌3
ı

ď 4 ¨max
r

E
”ˇ̌

signpX ´X 1qJ `uvJ ˝ arbJr
˘

signpX ´X 1qˇ̌3
ı

“ 4 ¨max
r

E
”ˇ̌

signpX ´X 1qJpu ˝ arq
ˇ̌3 ¨ ˇ̌signpX ´X 1qJpv ˝ brq

ˇ̌3ı

“ 4 ¨max
r

c
E
”
|signpX ´X 1qJpu ˝ arq|6

ı
¨
c
E
”
|signpX ´X 1qJpv ˝ brq|6

ı

ď 4||u ˝ ar||32 ¨ ||v ˝ br||32 ¨ max
||w||2“1

E
”ˇ̌

signpX ´X 1qJwˇ̌6
ı

ď 4p1` C2
covq3 ¨ max

||w||2“1
E
”ˇ̌

signpX ´X 1qJwˇ̌6
ı

ď 4p1` C2
covq3 ¨ C3

cov ¨ 6! ¨ 2?e “: Cmoment ,

where the last step holds because signpX ´X 1q is Ccov-subgaussian by Lemmas 4.4 and 4.5.

D.7 Proofs of lemmas for the initial estimators

Lemma C.1. There exist vectors a1, a2, . . . and b1, b2, . . . with ||ar||8, ||br||8 ď 1 for all r ě 1,

and a sequence t1, t2, ¨ ¨ ¨ ě 0 with
ř
r tr “ 4, such that cos

`
π
2T

˘ “ ř
rě1 trarb

J
r .

Proof of Lemma C.1. We will use the matrix max norm, defined for a matrix M P Rd1ˆd2 as

||M ||max “ min

"
max

1ďiďd1

||Apiq||2 ¨ max
1ďjďd2

||Bpjq||2 : r ě 1, A P Rd1ˆr, B P Rd2ˆr s.t. M “ A ¨BJ
*
,

where Apiq and Bpjq denote the ith row of A and the jth row of B, respectively. The matrix max

norm satisfies several key properties that we will use here (Srebro and Shraibman, 2005): first,

W ľ 0 ñ ||W ||max ď max
i
Wii ; (D.4)
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second,

||W ||max ď 1 ñ W

2
P ConvexHull  abJ : ||a||8, ||b||8 ď 1

(
; (D.5)

and finally,

||W ˝ puvJq||˚ ď ||W ||max for all unit vectors u, v and all matrices W , (D.6)

where recall that || ¨ ||˚ is the matrix nuclear norm (the sum of the singular values).

For our matrix cos
`
π
2T

˘
, Wegkamp and Zhao (2013) show that

cos
´π

2
T
¯
“

ÿ

rě0

ˆ
1{2
r

˙
p´1qrΣ ˝2r Σ, and Σ ˝2r Σ ľ 0 for all r ,

where Σ ˝2r Σ is the matrix with entries given by elementwise powers of Σ, that is, pΣ ˝2r Σqjk “
pΣjkq2r. Then for each r ě 0, applying (D.4),

||Σ ˝2r Σ||max ď max
i
pΣ ˝2r Σqii “ max

i
pΣiiq2r “ 1 ,

since Σ is a correlation matrix. Then

|| cos
´π

2
T
¯
||max “ ||

ÿ

rě0

ˆ
1{2
r

˙
p´1qrΣ ˝2r Σ||max

ď
ÿ

rě0

ˇ̌
ˇ̌
ˆ

1{2
r

˙ˇ̌
ˇ̌ ¨ ||Σ ˝2r Σ||max ď

ÿ

rě0

ˇ̌
ˇ̌
ˆ

1{2
r

˙ˇ̌
ˇ̌ “ 2 ,

where the last identity comes from Wegkamp and Zhao (2013). Finally, by (D.5), we have

cos
`
π
2T

˘

4
P ConvexHull  abJ : ||a||8, ||b||8 ď 1

(

and so cos
`
π
2T

˘
can be expressed as a convex combination as stated in the lemma.

Lemma C.2. For fixed u, v with ||u||2, ||v||2 ď 1, for any |t| ď n
4p1`?5qCcov

,

E
”
exp

´
t ¨ uJp pT ´ T qv

¯ı
ď exp

˜“
4p1`?5q‰2

t2 ¨ C2
cov

n

¸
.

Proof of Lemma C.2. We start with a simple observation that

uT
´
pT ´ T

¯
v “ 1

4
pu` vqJp pT ´ T qpu` vq ´ 1

4
pu´ vqJp pT ´ T qpu´ vq,

which gives us (via Cauchy-Schwartz)

E
”
exp

´
t ¨ uJp pT ´ T qv

¯ı

“ E
„
exp

ˆ
t ¨ 1

4
pu` vqJp pT ´ T qpu` vq ´ t ¨ 1

4
pu´ vqJp pT ´ T qpu´ vq

˙

ď
d
E
„
exp

ˆ
t ¨ 1

2
pu` vqJp pT ´ T qpu` vq

˙
¨
d
E
„
exp

ˆ
´t ¨ 1

2
pu´ vqJp pT ´ T qpu´ vq

˙
.
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Note that ||12pu ` vq||2 _ ||12pu ´ vq||2 ď 1. Therefore, it will be sufficient to show that for any

|t| ď n
8Ccov

and any unit vector w,

E
”
exp

´
2t ¨ wJp pT ´ T qw

¯ı
ď exp

˜“
4p1`?5q‰2

t2 ¨ C2
cov

n

¸
. (D.7)

We will prove (D.7) using the Chernoff bounding technique. To that end, denote Sn the group of

permutations of rns, and for any i, let Xpiq denote the i-th row of X. For a fixed w P Rp and σ P Sn,

define

Zσ,i “ wJ
`
sign

`pXpσpiqq ´Xpσpi`n{2qqqpXpσpiqq ´Xpσpi`n{2qqqJ
˘´ T ˘w .

Observe that

wT
´
pT ´ T

¯
w “ 1

n!

ÿ

σPSn

2

n

ÿ

iPrn{2s
Zσ,i, (D.8)

and that for any fixed σ P Sn, the Zσ,i’s are i.i.d. for i “ 1, . . . , n{2, and are identically distributed

as
rZ “ wJ

`
sign

`pXpiq ´Xpi`n{2qqpXpiq ´Xpi`n{2qqJ
˘´ T ˘w .

Using Lemma 4.4 and Lemma 4.5, for any fixed unit vector w P Rp, wT sign
`
Xpiq ´Xpi`n{2q

˘
is a

Ccov-subgaussian random variable, and

rZ “ `
wT sign

`
Xpiq ´Xpi`n{2q

˘˘2 ´ E
”`
wT sign

`
Xpiq ´Xpi`n{2q

˘˘2
ı
.

Applying Lemma D.5 (stated below), for any |t| ď 1
2p1`?5qCcov

,

E
”
exp

´
t rZ

¯ı
ď exp

ˆ
32t2C2

cov

1´ 4tCcov

˙
ď exp

˜
32t2C2

cov

1´ 2
1`?5

¸
ď exp

´
8p1`?5q2t2C2

cov

¯
.

Then, referring back to (D.8), for 0 ă t ď n
4p1`?5qCcov

,

E
”
exp

´
twT

´
pT ´ T

¯
w
¯ı
“ E

»
–exp

¨
˝ t

n!

ÿ

σPSn

2

n

ÿ

iPrn{2s
Zσ,i

˛
‚
fi
fl .

By Jensen’s inequality,

ď 1

n!

ÿ

σPSn
E

»
–exp

¨
˝2t

n

ÿ

iPrn{2s
Zσ,i

˛
‚
fi
fl .
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Since for any fixed σ, the Zσ,i’s are i.i.d., and are each equal to rZ in distribution,

“ 1

n!

ÿ

σPSn

ˆ
E
„
exp

ˆ
2t

n
rZ
˙˙n{2

“
ˆ
E
„
exp

ˆ
2t

n
rZ
˙˙n{2

ď
´

exp
´

8p1`?5q2p2t{nq2C2
cov

¯¯n{2

“ exp

˜“
4p1`?5q‰2

t2 ¨ C2
cov

n

¸
.

Lemma D.5. Suppose Z is C-subgaussian, that is, E rexp ptZqs ď eCt
2{2 for all t P R. Then

E
“
exp

 
tpZ2 ´ ErZ2sq(‰ ď exp

ˆ
32t2C2

1´ 4|t|C
˙

for all |t| ă 1
4C .

We remark that it is well known that the square of a subgaussian random variable satisfies sub-

gaussian tails near to its mean (see, for example, Lemmas 5.5, 5.14, 5.15 in Vershynin, 2012), but

here we obtain small explicit constants.

Proof. The first part of this proof follows the arguments in Vershynin (2012, Lemma 5.5). First,

we bound E
“
Z2k

‰
for all integers k ě 1. We have

E
”
Z2k

ı
“ Ck

p2kqkE
»
–
˜c

2k

C
¨ Z

¸2k
fi
fl ď Ck

p2kqkE
«
p2kq! ¨ exp

#c
2k

C
¨ Z

+ff

ď Ck

p2kqk p2kq! ¨ exp

$
&
%

˜c
2k

C

¸2

¨ C{2
,
.
- “ Ckp2kq!ek

p2kqk .

Then, for any t ą 0,

E
”
etZ

2
ı
“ 1` tE “

Z2
‰`

ÿ

kě2

E

«`
tZ2

˘k

k!

ff
ď 1` tE “

Z2
‰`

ÿ

kě2

tkCkek

p2kqk ¨ p2kq!
k!

.

Using Stirling’s approximation to give upper and lower bounds on p2kq! and k!, respectively, for

each k ě 2,

ď 1` tE “
Z2

‰`
ÿ

kě2

tkCkek

p2kqk ¨ e ¨ p2kq
2k`1{2 ¨ e´2k

?
2π ¨ kk`1{2 ¨ e´k

“ 1` tE “
Z2

‰` e?
π

ÿ

kě2

p2tCqk

“ 1` tE “
Z2

‰` e?
π
¨ 4t2C2

1´ 2tC
,
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as long as 2tC ă 1. Next, trivially, for any k ě 2,
ˇ̌
ˇE

”`
Z2 ´ ErZ2s˘k

ıˇ̌
ˇ ď 2kE

“
Z2k

‰
. Then we have,

for |t| ă 1
4C ,

E
“
exp

`
tpZ2 ´ ErZ2sq˘‰ “ 1`

ÿ

kě2

tk

k!
E
”`
Z2 ´ ErZ2s˘k

ı
ď 1`

ÿ

kě2

|t|k
k!

ˇ̌
ˇE

”`
Z2 ´ ErZ2s˘k

ıˇ̌
ˇ

ď 1`
ÿ

kě2

2k|t|k
k!

E
”
Z2k

ı
“ E

“
exp

`
2|t|Z2

˘´ 2|t|Z2
‰
.

Applying the work above, and using the fact e?
π
ď 2,

ď 1` 2|t|E “
Z2

‰` 32t2C2

1´ 4|t|C ´ 2|t|E “
Z2

‰ ď exp

"
32t2C2

1´ 4|t|C
*
.

D.8 Lower bounds on variance for signs of a Gaussian

Lemma D.4. Take any positive definite Σ P Rpˆp, any distinct a, b P t1, . . . , pu, and any matrix

M P Rpˆp with Mja “ 0 for all j. Let Z „ Np0,Σq. Then there exists a constant Csigns depending

on CpΣq only, such that

Var
`
signpZqJM signpZq˘ ě Csigns ¨M2

ab .

Proof of Lemma D.4. By the law of total variance,

Var
`
signpZqJM signpZq˘ ě E

“
Var

`
signpZqJM signpZq | Zp´aq

˘‰
.

Let p´aq denote the set rpsztau. Let Mj,p´aq P Rp´1 denote the jth row of M with its ath entry

removed, written as a column vector. Then, recalling that Mja “ 0 for all j, we have

Var
`
signpZqJM signpZq | Zp´aq

˘

“ Var

˜
signpZaq ¨MJ

a,p´aq signpZp´aqq `
ÿ

j‰a
signpZjq ¨MJ

j,p´aq signpZp´aqq | Zp´aq
¸
.

Since every term except signpZaq is a function of Zp´aq,

“ Var
`
signpZaq | Zp´aq

˘ ¨
´
MJ
a,p´aq signpZp´aqq

¯2

Since the distribution of Za conditional on Zp´aq is given by ZJp´aqβa ` Np0, ν2
aq where βa “

Σ´1
p´aqΣp´aq,a and ν2

a “ Σaa ´ ΣJp´aq,aΣ
´1
p´aqΣp´aq,a,

“ Var
´

signpZJp´aqβa `Np0, ν2
aqq

¯
¨
´
MJ
a,p´aq signpZp´aqq

¯2

“
ˆ

1´ E
”
signpZJp´aqβa `Np0, ν2

aqq
ı2
˙
¨
´
MJ
a,p´aq signpZp´aqq

¯2

“
¨
˝1´ ψ

˜
ZJp´aqβa
νa

¸2
˛
‚¨

´
MJ
a,p´aq signpZp´aqq

¯2
,
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where ψpxq “ Φpxq ´ Φp´xq P p´1, 1q.
Now we will give a lower bound on the expectation of this quantity. First consider the term

ψ

ˆ
ZJp´aqβa

νa

˙
. Note that

ZJp´aqβa
νa

„ N

˜
0,
βJa Σp´aqβa

ν2
a

¸
“ N

˜
0,

ΣJp´aq,aΣ
´1
p´aqΣp´aq,a

Σaa ´ ΣJp´aq,aΣ
´1
p´aqΣp´aq,a

¸

and this variance is bounded by CpΣq. Then, for any c P p0, 1q,

P

#ˇ̌
ˇ̌
ˇψ

˜
ZJp´aqβa
νa

¸ˇ̌
ˇ̌
ˇ ď ψ

´a
CpΣq ¨ Φ´1 p1´ c{2q

¯+
“ P

#ˇ̌
ˇ̌
ˇ
ZJp´aqβa
νa

ˇ̌
ˇ̌
ˇ ď

a
CpΣq ¨ Φ´1 p1´ c{2q

+

ě P
!
|Np0,CpΣqq| ďa

CpΣq ¨ Φ´1 p1´ c{2q
)
“ 1´ c . (D.9)

Next, note that MJ
a,p´aq signpZp´aqq is

`||Ma,p´aq||22 ¨ CpΣq
˘
-subgaussian by Lemma 4.5, and

E
„´
MJ
a,p´aq signpZp´aqq

¯2

ě ||Ma,p´aq||22 ¨ λminpT q ,

where T “ E
“
signpZq signpZqJ‰ (recall that Σ “ sin

`
π
2T

˘
). Furthermore, by Wegkamp and Zhao

(2013, Section 4.3), we have

T “ 2

π

ÿ

kě1

gpkqΣ ˝k Σ ,

where gpkq ě 0 are nonnegative scalars, gp1q “ 1, and Σ ˝k Σ is the k-fold Hadamard product, that

is, pΣ ˝k Σqij “ pΣijqk. Wegkamp and Zhao (2013, Section 4.3) show also that Σ ˝k Σ ľ 0 for all k.

Therefore,

T “ 2

π
Σ` 2

π

ÿ

kě2

gpkqΣ ˝k Σ ľ
2

π
Σ ,

and so λminpT q ě 2
πλminpΣq ě 2

π pCpΣqq´1. Applying Lemma D.6 (stated below),

P
"´
MJ
a,p´aq signpZp´aqq

¯2 ě ||Ma,p´aq||22 ¨ λminpT q{2
*
ě 1

16e2CpΣq{λminpT q ,

and so,

P
"´
MJ
a,p´aq signpZp´aqq

¯2 ě ||Ma,p´aq||22 ¨
1

πCpΣq
*
ě 1

16eπCpΣq2
.

Now set c “ 1

32eπCpΣq2
in (D.9). Then, we see that with probability at least 1

32eπCpΣq2
,

¨
˝1´ ψ

˜
ZJp´aqβa
νa

¸2
˛
‚¨

´
MJ
a,p´aq signpZp´aqq

¯2 ě
˜

1´ ψ
ˆa

CpΣq ¨ Φ´1

ˆ
1´ 1

64eπCpΣq2
˙˙2

¸
¨ ||Ma,p´aq||22 ¨

1

πCpΣq .
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Therefore, combining everything,

Var
`
signpZqJM signpZq˘ ě 1

32eπCpΣq2
¨
˜

1´ ψ
ˆa

CpΣq ¨ Φ´1

ˆ
1´ 1

64eπCpΣq2
˙˙2

¸
¨ ||Ma,p´aq||22

πCpΣq .

Noting that ||Ma,p´aq||22 ěM2
ab, this proves the desired result, where we define

Csigns “ 1

32eπCpΣq2
¨
˜

1´ ψ
ˆa

CpΣq ¨ Φ´1

ˆ
1´ 1

64eπCpΣq2
˙˙2

¸
¨ 1

πCpΣq .

Lemma D.6. Suppose that W P R is a random variable with ErW s “ 0, ErW 2s ě C0, and

EretW s ď eC1t2{2 for all t P R. Then

P
 
W 2 ě C0{2

( ě 1

16e2C1{C0
.

Proof of Lemma D.6.

C0{2 ď ErW 2s ´ C0{2
“ ErW 2 ¨ 1I  W 2 ě C0{2

(s ` ErW 2 ¨ 1I  W 2 ă C0{2
(s ´ C0{2

ď ErW 2 ¨ 1I  W 2 ě C0{2
(s .

Since t2 ď et ` e´t for all t P R,

ď C0ErpeW {
?
C0 ` e´W {

?
C0q ¨ 1I  W 2 ě C0{2

(s
“ C0EreW {

?
C0 ¨ 1I  W 2 ě C0{2

(s ` C0Ere´W {
?
C0 ¨ 1I  W 2 ě C0{2

(s
ď C0

b
ErpeW {?C0q2s ¨ Er1I tW 2 ě C0{2u2s ` C0

b
Erpe´W {?C0q2s ¨ Er1I tW 2 ě C0{2u2s

“ C0

b
Ere2W {?C0s ¨ PtW 2 ě C0{2u ` C0

b
Ere´2W {?C0s ¨ PtW 2 ě C0{2u

ď C0

b
eC1{C0¨22{2 ¨ PtW 2 ě C0{2u ` C0

b
eC1{C0¨22{2 ¨ PtW 2 ě C0{2u ,

and rearranging terms we have proved the lemma.

D.9 Bounding the error in estimating the variance (Lemma B.5)

Lemma B.5. Under the assumptions and definitions of Theorem 4.2, with probability at least

1´ 1
6pn

, if n ě k2
n logppnq, on the event that the bounds (3.1) in Assumption 3.3 hold,

ˇ̌
ˇ qSab ¨ detpqΘq ´ Sab ¨ detpΘq

ˇ̌
ˇ ď Coracle ¨

c
k2
n logppnq

n
.
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Proof of Lemma B.5. Recall from the proof of Theorem 4.1 that we have defined

gpX,X 1q “ signpX ´X 1qJ
´
uvJ ˝ cos

´π
2
T
¯¯

signpX ´X 1q ,

and g1pXq “ E rgpX,X 1q | Xs, where

ua “ 1, ub “ 0, uI “ ´γa and va “ 0, vb “ 1, vI “ ´γb .

Recall from the proof of Lemma B.1, given in Appendix D.6, that we have

ν2
g1
“ Varpg1pXqq “ vec

´
uvJ ˝ cos

´π
2
T
¯¯J ¨ Σh1 ¨ vec

´
uvJ ˝ cos

´π
2
T
¯¯

,

where Σh1 “ Varph1pXqq for

h1pXq “ E
“
signpX ´X 1q b signpX ´X 1q | X‰ P Rp2

n .

To estimate this variance, define vectors qu and qv with entries

qua “ 1, qub “ 0, quI “ ´qγa and qva “ 0, qvb “ 1, qvI “ ´qγb ,

and define

pΣh1 “
1

n

ÿ

i

˜
ph1pXiq ´ 1

n

ÿ

i1
ph1pXi1q

¸˜
ph1pXiq ´ 1

n

ÿ

i1
ph1pXi1q

¸J
,

where abusing notation, we write

ph1pXiq “ 1

n´ 1

ÿ

i1‰i
hpXi, X

1
iq “

1

n´ 1

ÿ

i1‰i
signpXi ´Xi1q b signpXi ´Xi1q .

We then define

qν2
g1
“ vec

´
quqvJ ˝ cos

´π
2
pT
¯¯J ¨ pΣh1 ¨ vec

´
quqvJ ˝ cos

´π
2
pT
¯¯

.

Writing

x “ vec
´
uvJ ˝ cos

´π
2
T
¯¯

and qx “ vec
´
quqvJ ˝ cos

´π
2
pT
¯¯

,

we then have

ν2
g1
“ xJΣh1x and qν2

g1
“ qxJpΣh1qx .

Define also

x “ vec
´
quqvJ ˝ cos

´π
2
T
¯¯

.

The following lemma, proved in Appendix D.10, carries out some elementary calculations on the

norms of these vectors x, x, qx.
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Lemma D.7. Define x, x, qx as in the proof of Lemma B.5, and assume n ě k2
n logppnq. With

probability at least 1´ 1
36pn

, if the bounds (3.1) in Assumption 3.3 hold then the following inequalities

all hold for constants C0, C1, C2, C3 that depend only on Ccov, Csparse, Cest:

||x||1 ď C0kn ,

||qx´ x||1 ď C1

c
k2
n logppnq

n
,

||qx´ x||1 ď C2

c
k3
n logppnq

n
,

||matpx´ xq||`1{`2 ď C3

c
k2
n logppnq

n
,

where matp¨q reshapes a vector in Rp2
n into a pn ˆ pn matrix, and where we define the matrix `1{`2

norm as M`1{`2 :“ ř
j ||Mj ||2, where Mj is the jth column of M .

We now continue bounding error in estimating νg1 . We have:

ˇ̌
qν2
g1
´ ν2

g1

ˇ̌ “
ˇ̌
ˇqxJpΣh1qx´ xJΣh1x

ˇ̌
ˇ ď

ˇ̌
ˇxJppΣh1 ´ Σh1qx

ˇ̌
ˇ`

ˇ̌
ˇqxJpΣh1qx´ xJpΣh1x

ˇ̌
ˇ . (D.10)

We bound each term separately. For the first term in (D.10), we apply the following lemma (proved

in Appendix D.10 below):

Lemma D.8. Under the same assumptions and notation as Lemmas B.1 and B.5, for a universal

constant Cstudentized,

P

#ˇ̌
ˇxJppΣh1 ´ Σh1qx

ˇ̌
ˇ ď Cstudentized

c
k2
n logppnq

n

+
ě 1´ 1

36pn
.

For the second term in (D.10), since pΣh1 ľ 0 and so y ÞÑ
b
yJpΣh1y is a norm and must satisfy

the triangle inequality,

ˇ̌
ˇqxJpΣh1qx´ xJpΣh1x

ˇ̌
ˇ “

ˇ̌
ˇ̌
b
qxJpΣh1qx´

b
xJpΣh1x

ˇ̌
ˇ̌ ¨
ˇ̌
ˇ̌
b
qxJpΣh1qx`

b
xJpΣh1x

ˇ̌
ˇ̌

ď
ˇ̌
ˇ̌
b
qxJpΣh1qx´

b
xJpΣh1x

ˇ̌
ˇ̌
2

`
ˇ̌
ˇ̌
b
qxJpΣh1qx´

b
xJpΣh1x

ˇ̌
ˇ̌ ¨ 2

b
xJpΣh1x

ď
ˇ̌
ˇ̌
b
qxJpΣh1qx´

b
xJpΣh1x

ˇ̌
ˇ̌
2

`
ˇ̌
ˇ̌
b
qxJpΣh1qx´

b
xJpΣh1x

ˇ̌
ˇ̌ ¨ 2

c
xJΣh1x`

ˇ̌
ˇxJppΣh1 ´ Σh1qx

ˇ̌
ˇ . (D.11)

To bound the difference term

ˇ̌
ˇ̌
b
qxJpΣh1qx´

b
xJpΣh1x

ˇ̌
ˇ̌ which appears twice in the expression above,

61



we have

ˇ̌
ˇ̌
b
qxJpΣh1qx´

b
xJpΣh1x

ˇ̌
ˇ̌ ď

b
pqx´ xqJpΣh1pqx´ xq

ď
b
pqx´ xqJΣh1pqx´ xq `

cˇ̌
ˇpqx´ xqJppΣh1 ´ Σh1qpqx´ xq

ˇ̌
ˇ

ď
b
pqx´ xqJΣh1pqx´ xq `

b
||pΣh1 ´ Σh1 ||8 ¨ ||qx´ x||21

ď
b
pqx´ xqJΣh1pqx´ xq `

b
px´ xqJΣh1px´ xq `

b
||pΣh1 ´ Σh1 ||8 ¨ ||qx´ x||21

ď
b
||Σh1 ||8||qx´ x||21 `

b
px´ xqJΣh1px´ xq `

b
||pΣh1 ´ Σh1 ||8 ¨ ||qx´ x||21

ď C1

c
k2
n logppnq

n
`
b
px´ xqJΣh1px´ xq `

b
||pΣh1 ´ Σh1 ||8 ¨ C2

c
k3
n logppnq

n
. (D.12)

Next, we state two lemmas, which are proved in Appendix D.10.

Lemma D.9. With probability at least 1´ 1
9pn

,

||pΣh1 ´ Σh1 ||8 ď 100

c
logppnq
n

.

Lemma D.10. Let Σh1 be defined as in Assumption 3.4. For every z P Rp2
n,

zJΣh1z ď λmaxpΣq ¨ ||matpzq||2`1{`2 ,

where ||matpzq||`1{`2 is defined as in the statement of Lemma D.7.

From this point on, we assume that the bounds derived in Lemmas D.7 and D.9 all hold (which the

lemmas have shown to be true with probability at least 1´ 1
6pn

, on the event that the bounds (3.1)

of Assumption 3.3 hold.) By Lemmas D.10 and D.7,

px´ xqJΣh1px´ xq ď Ccov ¨
˜
C3

c
k2
n logppnq

n

¸2

.

Applying this bound, along with the high probability events of Lemmas D.8 and D.9, we return

to (D.12) and obtain

ˇ̌
ˇ̌
b
qxJpΣh1qx´

b
xJpΣh1x

ˇ̌
ˇ̌ ď

C1

c
k2
n logppnq

n
`
gffeCcov ¨

˜
C3

c
k2
n logppnq

n

¸2

`
d

100

c
logppnq
n

¨ C2

c
k3
n logppnq

n

“
c
k2
n logppnq

n
¨
˜
C1 ` C3

a
Ccov ` 10C2

4

c
k2
n logppnq

n

¸
ď

c
k2
n logppnq

n
¨ C4 ,
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where for the last step we define C4 “ C1`C3

?
Ccov`10C2 and use the assumption n ě k2

n logppnq.
Next, returning to (D.11),

ˇ̌
ˇqxJpΣh1qx´ xJpΣh1x

ˇ̌
ˇ

ď
ˇ̌
ˇ̌
b
qxJpΣh1qx´

b
xJpΣh1x

ˇ̌
ˇ̌
2

`
ˇ̌
ˇ̌
b
qxJpΣh1qx´

b
xJpΣh1x

ˇ̌
ˇ̌ ¨ 2

c
xJΣh1x`

ˇ̌
ˇxJppΣh1 ´ Σh1qx

ˇ̌
ˇ

ď C2
4 ¨

k2
n logppnq

n
` C4

c
k2
n logppnq

n
¨ 2
d

C
2{3
moment ` Cstudentized

c
k2
n logppnq

n
,

where the last step applies the high probability event of Lemma D.8, and uses the fact that

xJΣh1x “ ν2
g1
ď C

2{3
moment by Lemma B.1. Defining C5 “ C2

4 ` C4 ¨ 2

b
C

2{3
moment ` Cstudentized,

and using the assumption n ě k2 logppnq, we have

ˇ̌
ˇqxJpΣh1qx´ xJpΣh1x

ˇ̌
ˇ ď C5

c
k2
n logppnq

n
.

Finally, returning to (D.10) and applying Lemma D.9, we see that

ˇ̌
qν2
g1
´ ν2

g1

ˇ̌ ď Cstudentized ¨
c
k2
n logppnq

n
` C5

c
k2
n logppnq

n
.

Next, we have

|qνg1 ´ νg1 | “
ˇ̌
qν2
g1
´ ν2

g1

ˇ̌

qνg1 ` νg1

ď
ˇ̌
qν2
g1
´ ν2

g1

ˇ̌

νg1

ď pCstudentized ` C5q
b

k2
n logppnq

n
1
πCvariance

,

where for the denominator we apply Lemma B.1. Finally, since we know that Sab “ πνg1 ¨pdetpΘqq´1

and qSab “ πqνg1 ¨ pdetpqΘqq´1, and then we have

ˇ̌
ˇ qSab ¨ detpqΘq ´ Sab ¨ detpΘq

ˇ̌
ˇ “ π ¨ |qνg1 ´ νg1 | ď π ¨ pCstudentized ` C5q

b
k2
n logppnq

n
1
πCvariance

.

Defining

Coracle ě π ¨ Cstudentized ` C5
1
πCvariance

,

we see that ˇ̌
ˇ qSab ¨ detpqΘq ´ Sab ¨ detpΘq

ˇ̌
ˇ ď Coracle ¨

c
k2
n logppnq

n
.

D.10 Calculations for the variance estimate (Lemma B.5)

Proof of Lemma D.7. We calculate

||x||1 “ ||uvJ˝cos
´π

2
T
¯
||1 ď ||uvJ||1¨|| cos

´π
2
T
¯
||8 ď ||u||1||v||1 ď knp1`2CcovCsparseq2 “: C0kn ,

63



where for the last inequality we apply (B.2).

Next,

||qx´ x||1 “ ||quqvJ ˝
´

cos
´π

2
T
¯
´ cos

´π
2
pT
¯¯
||1

ď p||u||1 ` ||qu´ u||1q ¨ p||v||1 ` ||qv ´ v||1q ¨ || cos
´π

2
T
¯
´ cos

´π
2
pT
¯
||8

Applying (B.2) and Assumption 3.3, and the fact that cosp¨q is 1-Lipschitz, if the bounds in As-

sumption 3.3 hold,

ď
˜
a
knp1` 2CcovCsparseq ` Cest

c
k2
n logppnq

n

¸2

¨ π
2
|| pT ´ T ||8

Applying Lemma B.2, with probability at least 1´ 1
36pn

,

ď
˜
a
knp1` 2CcovCsparseq ` Cest

c
k2
n logppnq

n

¸2

¨ π
2

c
12 logp36pnq

n

Since 12 logp36pnq ď 108 logppnq ď 4n, where the last step holds by assumption in Theorem 4.2,

ď
c
k2
n logppnq

n
¨ pp1` 2CcovCsparseq ` Cestq2 ¨ π

“ C1

c
k2
n logppnq

n
for C1 :“ pp1` 2CcovCsparseq ` Cestq2 ¨ π .

Next,

||qx´ x||1 ď ||qx´ x||1 ` ||x´ x||1

ď C1

c
k2
n logppnq

n
` ||x´ x||1

“ C1

c
k2
n logppnq

n
` ||pquqvJ ´ uvJq ˝ cos

´π
2
T
¯
||1

ď C1

c
k2
n logppnq

n
` ||qupqv ´ vqJ ˝ cos

´π
2
T
¯
||1 ` ||pqu´ uqvJ ˝ cos

´π
2
T
¯
||1

ď C1

c
k2
n logppnq

n
` ||qu||1||qv ´ v||1|| cos

´π
2
T
¯
||8 ` ||qu´ u||1||v||1|| cos

´π
2
T
¯
||8

Applying (B.2), if the bounds (3.1) in Assumption 3.3 hold,

ď C1

c
k2
n logppnq

n
`
˜
a
knp1` 2CcovCsparseq ` Cest

c
k2
n logppnq

n

¸
¨ Cest

c
k2
n logppnq

n

`
a
knp1` 2CcovCsparseq ¨ Cest

c
k2
n logppnq

n

ď C2

c
k3
n logppnq

n
,
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where C2 “ C1 ` 2p1` 2CcovCsparseq ¨ Cest ` C2
est and we use the assumption n ě k2

n logppq.
Finally, noting that x ´ x “ vec

`pquqvJ ´ uvJq ˝ cos
`
π
2T

˘˘
, we calculate the `1{`2 norm of this

matrix:

||matpx´ xq||`1{`2 “ ||pquqvJ ´ uvJq ˝ cos
´π

2
T
¯
||`1{`2

“
ÿ

j

||
”
pquqvJ ´ uvJq ˝ cos

´π
2
T
¯ı

j
||2

ď
ÿ

j

|| “quqvJ ´ uvJ‰
j
||2 ¨ || cos

´π
2
T
¯
||8

ď
ÿ

j

||qu ¨ pqvj ´ vjq||2 ` ||pqu´ uq ¨ vj ||2

“
ÿ

j

||qu||2 ¨ |qvj ´ vj | ` ||qu´ u||2 ¨ |vj |

“ ||qu||2||qv ´ v||1 ` ||qu´ u||2||v||1 .

Applying (B.1), if the bounds (3.1) in Assumption 3.3 hold,

ď
˜
a

1` C2
cov ` Cest

c
kn logppnq

n

¸
¨ Cest ¨

c
k2
n logppnq

n
` Cest ¨

c
kn logppnq

n
¨
a
kn
a

1` Ccov

ď C3

c
k2
n logppnq

n
,

where we define C3 “ 2
a

1` C2
cov ¨ Cest ` C2

est and use the assumption that n ě k2
n logppnq.

Proof of Lemma D.8. By definition, we have Σh1 “ Varph1pXqq for

h1pXq “ E
“
signpX ´X 1q b signpX ´X 1q | X‰ P Rp2

n .

Therefore, since x is fixed,

xJΣh1x “ xJVarph1pXqqx “ VarpxJh1pXqq “ Varpg1pXqq “ ν2
g1
,

where we recall that g1pXq “ E rgpX,X 1q | Xs where we define the kernel

gpX,X 1q “ signpX ´X 1qJ
´
uvJ ˝ cos

´π
2
T
¯¯

signpX ´X 1q “ xJhpX,X 1q .

Define

γpX,X 1, X2q “ gpX,X 1qgpX,X2q ` gpX 1, XqgpX 1, X2q ` gpX2, XqgpX2, X 1q
3

.

Note that γ is a U-statistic of order 3, with

||γ||8 :“ sup
X,X 1,X2

|γpX,X 1, X2q| ď sup
X,X 1

|gpX,X 1q|2 ď ||x||21 sup
X,X 1

||hpX,X 1q||28
“ ||x||21 ď k2

n ¨ p1` 2CcovCsparseq4 .
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(See proof of Lemma D.7 for this bound on ||x||1.) And,

Varpγq :“ VarpγpX,X 1, X2qq ď VarpgpX,X 1qgpX,X2qq ď E
“|gpX,X 1q|4‰

ď E
“|gpX,X 1q|3‰ ¨ kn ¨ p1` 2CcovCsparseq2 ď Cmoment ¨ kn ¨ p1` 2CcovCsparseq2 ,

where we use Lemma B.1 for the last bound.

Next, we have

E
“
γpX,X 1, X2q‰ “ E

“
gpX,X 1qgpX,X2q‰ “ E

“
E
“
gpX,X 1qgpX,X2q|X‰‰

“ E
“
E
“
gpX,X 1q|X‰

E
“
gpX,X2q|X‰‰ “ E

“
g1pXq2

‰
.

Therefore,

xJΣh1x “ ν2
g1
“ Varpg1pXqq “ E

“
γpX,X 1, X2q‰´ E rg1pXqs2 “ E

“
γpX,X 1, X2q‰´ E

“
gpX,X 1q‰2

.

Next, examining the definition of pΣh1 , we obtain

xJpΣh1x “
1

npn´ 1q2
« ÿ

i‰i1‰i2
γpXi, Xi1 , Xi2q `

ÿ

i‰i1
gpXi, Xi1q2

ff
´
˜

1`
n
2

˘
ÿ

iăi1
gpXi, Xi1q

¸2

.

Therefore, using the fact that |gpX,X 1q| ď kn ¨ p1` 2CcovCsparseq2 always,

ˇ̌
ˇxJpΣh1x´ xJΣh1x

ˇ̌
ˇ ď

ˇ̌
ˇ̌
ˇ

1`
n
3

˘
ÿ

iăi1ăi2
γpXi, Xi1 , Xi2q ´ ErγpX,X 1, X2qs

ˇ̌
ˇ̌
ˇ

` k2
n ¨ p1` 2CcovCsparseq4

n´ 1
`
ˇ̌
ˇ̌
ˇ̌

˜
1`
n
2

˘
ÿ

iăi1
gpXi, Xi1q

¸2

´ ErgpX,X 1qs2
ˇ̌
ˇ̌
ˇ̌ .

Now, using Bernstein’s inequality for U-statistics (Peel et al. (2010, Theorem 2)), for any δ ą 0,

P

#ˇ̌
ˇ̌
ˇ

1`
n
3

˘
ÿ

iăi1ăi2
γpXi, Xi1 , Xi2q ´ ErγpX,X 1, X2qs

ˇ̌
ˇ̌
ˇ ą

d
2Varpγq logp2{δq

pn{3q ` 2||γ||8 logp2{δq
3pn{3q

+
ď δ .

Therefore, with probability at least 1´ 1
72pn

,

ˇ̌
ˇ̌
ˇ

1`
n
3

˘
ÿ

iăi1ăi2
γpXi, Xi1 , Xi2q ´ ErγpX,X 1, X2qs

ˇ̌
ˇ̌
ˇ ď

d
2Cmoment ¨ kn ¨ p1` 2CcovCsparseq2 logp2 ¨ 72pnq

pn{3q ` 2k2
n ¨ p1` 2CcovCsparseq4 logp2 ¨ 72pnq

3pn{3q

ď
c
k2
n logppnq

n
¨ C 1 ,

where

C 1 “
b

6Cmoment ¨ p1` 2CcovCsparseq2p2` log2p72qq ` 2 ¨ p1` 2CcovCsparseq4p2` log2p72qq ,
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and we use the assumption n ě k2
n logppnq and pn ě 2. And, again using Bernstein’s inequality for

U-statistics, and using the fact that |gpX,X 1q| ď kn ¨ p1` 2CcovCsparseq2 always, with probability at

least 1´ 1
72pn

,

ˇ̌
ˇ̌
ˇ

1`
n
2

˘
ÿ

iăi1
gpXi, Xi1q ´ ErgpX,X 1qs

ˇ̌
ˇ̌
ˇ ď

d
2k2

n ¨ p1` 2CcovCsparseq4 logp2 ¨ 72pnq
pn{2q ` 2kn ¨ p1` 2CcovCsparseq2 logp2 ¨ 72pnq

3pn{2q

ď
c
k2
n logppnq

n
¨ C2 ,

where

C2 “
d

2 ¨ p1` 2CcovCsparseq4p2` log2p72qq
p1{2q ` 2 ¨ p1` 2CcovCsparseq2p2` log2p72qq

3{2 ,

and we use the assumption n ě k2
n logppnq and pn ě 2. Therefore,

ˇ̌
ˇ̌
ˇ̌

˜
1`
n
2

˘
ÿ

iăi1
gpXi, Xi1q

¸2

´ ErgpX,X 1qs2
ˇ̌
ˇ̌
ˇ̌ ď

ˇ̌
ˇ̌
ˇ

1`
n
2

˘
ÿ

iăi1
gpXi, Xi1q ´ ErgpX,X 1qs

ˇ̌
ˇ̌
ˇ

2

`
ˇ̌
ˇ̌
ˇ

1`
n
2

˘
ÿ

iăi1
gpXi, Xi1q ´ ErgpX,X 1qs

ˇ̌
ˇ̌
ˇ ¨ 2|ErgpX,X

1qs| ď C3
c
k2
n logppnq

n
,

where we set

C3 “ C22 ` 2C2 ¨ C1{3
moment

and again use n ě k2
n logppnq, and apply Lemma B.1 to bound |E rgpX,X 1qs |. Combining every-

thing, this proves that, with probability at least 1´ 1
36pn

,

ˇ̌
ˇxJpΣh1x´ xJΣh1x

ˇ̌
ˇ ď

c
k2
n logppnq

n
¨ C 1 ` k2

n ¨ p1` 2CcovCsparseq4
n´ 1

` C3
c
k2
n logppnq

n
.

Setting

Cstudentized “ C 1 ` C3 ` 2p1` 2CcovCsparseq4

and using the fact that n ě 2 and n ě k2
n logppnq, we have

ˇ̌
ˇxJpΣh1x´ xJΣh1x

ˇ̌
ˇ ď Cstudentized

c
k2
n logppnq

n
.

Proof of Lemma D.9. From our definitions, we see that

Σh1 “ Varph1pXqq “ E
“
h1pXqh1pXqJ

‰´ Erh1pXqsErh1pXqsJ ,
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and

pΣh1 “
1

n

ÿ

i

ph1pXiqph1pXiqJ ´
˜

1

n

ÿ

i

ph1pXiq
¸˜

1

n

ÿ

i

ph1pXiq
¸J

.

First, we bound || 1n
ř
i
ph1pXiqph1pXiqJ ´ E

“
h1pXqh1pXqJ

‰ ||8. We have

|| 1
n

ÿ

i

ph1pXiqph1pXiqJ ´ E
“
h1pXqh1pXqJ

‰ ||8 ď

|| 1
n

ÿ

i

ph1pXiqph1pXiqJ ´ 1

n

ÿ

i

h1pXiqh1pXiqJ||8`

|| 1
n

ÿ

i

h1pXiqh1pXiqJ ´ E
“
h1pXqh1pXqJ

‰ ||8 . (D.13)

We handle these two terms separately. First, we bound || 1n
ř
i
ph1pXiqph1pXiqJ´ 1

n

ř
i h1pXiqh1pXiqJ||8.

For convenience we define A :“ 1
n

ř
i
ph1pXiqph1pXiqJ and B :“ 1

n

ř
i h1pXiqh1pXiqJ. Since A and

B are both positive semidefinite matrices with ones on the diagonal, we have

||A´B||8 “ 1

2
max
j,kPrp2

ns
ˇ̌
fJjkpA´Bqfjk

ˇ̌
, (D.14)

where fjk P Rp2
n is the vector with pfjkqj “ 1, pfjkqk “ ´1, and zeros elsewhere. Next we have

ˇ̌
fJjkpA´Bqfjk

ˇ̌ “
ˇ̌
ˇ
b
fJjkAfjk ´

b
fJjkBfjk

ˇ̌
ˇ ¨
´b

fJjkAfjk `
b
fJjkBfjk

¯

ď 4
ˇ̌
ˇ
b
fJjkAfjk ´

b
fJjkBfjk

ˇ̌
ˇ “ 4?

n

ˇ̌
ˇ̌
ˇ̌
dÿ

i

pph1pXiqJfjkq2 ´
dÿ

i

ph1pXiqJfjkq2
ˇ̌
ˇ̌
ˇ̌

ď 4?
n

dÿ

i

´
pph1pXiq ´ h1pXiqqJfjk

¯2
,

where the first inequality follows from the fact that ||fjk||1 ď 2 while ||A||8, ||B||8 ď 1, and the

second inequality follows from the triangle inequality. Next, for each i and each j, k, observe that

ph1pXiqJfjk “ 1

n´ 1

ÿ

i1‰i
psignpXi ´Xi1q b signpXi ´Xi1qqJ fjk ,

which after conditioning on Xi, is a mean of pn ´ 1q i.i.d. variables, each taking values in r´2, 2s
since ||fjk||1 ď 2. Furthermore, conditioning on Xi, we have Erph1pXiqs “ h1pXiq. Therefore,

applying Hoeffding’s lemma (see, for example, Lemma 2.6 in Massart, 2007), for each i, j, k, for

any t P R,

E
”
exp

!
t ¨ pph1pXiq ´ h1pXiqqJfjk

)ı
ď exp

"
2t2

n´ 1

*
. (D.15)

Applying Lemma D.11 (stated below), then,

P

#
1

n

ÿ

i

´
pph1pXiq ´ h1pXiqqJfjk

¯2 ą 80

n´ 1
¨ p1` logp27p5

nqq
+
ď 1

27p5
n

.
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Taking a union bound over all j, k P rp2
ns, and returning to (D.14), we then have

P

#
|| 1
n

ÿ

i

ph1pXiqph1pXiqJ ´ 1

n

ÿ

i

h1pXiqh1pXiqJ||8 ą 2

c
80

n´ 1
¨ p1` logp27p5

nqq
+
ď 1

27pn
.

Next we turn to the second term in (D.13). Since ||h1pXq||8 ď 1 always, we see that for each

j, k P rpns, ˜
1

n

ÿ

i

h1pXiqh1pXiqJ
¸

jk

is a mean of n i.i.d. terms, each taking values in r´1, 1s. Applying Hoeffding’s inequality, for each

j, k,

P

$
&
%

ˇ̌
ˇ̌
ˇ̌

˜
1

n

ÿ

i

h1pXiqh1pXiqJ ´ ErhpXqhpXqJs
¸

jk

ˇ̌
ˇ̌
ˇ̌ ě t

,
.
- ď 2e´nt2{2

for any t ě 0. Setting t “
b

2 logp54p3
nq

n , and taking a union bound, we see that

P

#
|| 1
n

ÿ

i

h1pXiqh1pXiqJ ´ ErhpXqhpXqJs||8 ě
c

2 logp54p3
nq

n

+
ď 2p2

n¨e
´n

ˆb
54 logpp3nq

n

˙2

{2 “ 1

27pn
.

Returning to (D.13), then, with probability at least 1´ 2
27pn

,

|| 1
n

ÿ

i

ph1pXiqph1pXiqJ ´ E
“
h1pXqh1pXqJ

‰ ||8 ď 2

c
80

n´ 1
¨ p1` logp27p3

nqq `
c

2 logp54p3
nq

n
.

(D.16)

Next, to complete the proof, we bound

||
˜

1

n

ÿ

i

ph1pXiq
¸˜

1

n

ÿ

i

ph1pXiq
¸J

´ E rh1pXqsE rh1pXqsJ ||8 .

We have

˜
1

n

ÿ

i

ph1pXiq
¸˜

1

n

ÿ

i

ph1pXiq
¸J

´ E rh1pXqsE rh1pXqsJ

“
˜

1

n

ÿ

i

ph1pXiq
¸˜

1

n

ÿ

i

ph1pXiq ´ E rh1pXqs
¸J

´
˜

1

n

ÿ

i

ph1pXiq ´ E rh1pXqs
¸
E rh1pXqsJ

and, since || 1n
ř
i
ph1pXiq||8, ||E rh1pXqs ||8 ď 1, we therefore have

||
˜

1

n

ÿ

i

ph1pXiq
¸˜

1

n

ÿ

i

ph1pXiq
¸J

´ E rh1pXqsE rh1pXqsJ ||8 ď 2|| 1
n

ÿ

i

ph1pXiq ´ E rh1pXqs ||8 .
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For each sign s P t˘1u, for each j P rp2
ns, writing ej to denote the jth basis vector in Rp2

n , we have

E

«
exp

#
t ¨ s ¨ eJj

˜
1

n

ÿ

i

ph1pXiq ´ E rh1pXqs
¸+ff

ď 1

n

ÿ

i

E
”
exp

!
t ¨ s ¨ eJj

´
ph1pXiq ´ E rh1pXqs

¯)ı

ď exp

"
t2

2pn´ 1q
*
,

where the first inequality follows from the convexity of x ÞÑ ex, while the second applies Hoeffding’s

lemma, as in (D.15) above. Then,

P

#
s ¨ eJj

´
ph1pXiq ´ E rh1pXqs

¯
ą

c
2 logp27p3

nq
n´ 1

+
ď 1

27p3
,

and therefore taking a union bound over each s P t˘1u and each j P rp2
ns,

P

#
|| 1
n

ÿ

i

ph1pXiq ´ E rh1pXqs ||8 ą
c

2 logp27p3
nq

n´ 1

+
ď 1

27pn
.

Therefore, combining this with (D.16), with probability at least 1´ 1
9pn

,

||pΣh1 ´ Σh1 ||8 ď 2

c
80

n´ 1
¨ p1` logp27p3

nqq `
c

2 logp54p3
nq

n
` 2

c
2 logp27p3

nq
n´ 1

ď 100

c
logppnq
n

,

where the last step uses the fact that n, pn ě 2.

Proof of Lemma D.10. Since the statement is deterministic, we can treat M P Rpnˆpn as fixed.

Then

vecpMqJΣh1vecpMq “ Var
`
vecpMqJh1pXq

˘

“ Var
`
vecpMqJErhpX,X 1q | Xs˘

“ Var
`
ErvecpMqJhpX,X 1q | Xs˘

By the law of total variance,

ď Var
`
vecpMqJhpX,X 1q˘

ď E
“pvecpMqJhpX,X 1qq2‰

“ E
“pvecpMqJ `signpX ´X 1q b signpX ´X 1q˘q2‰

“ E
”`

signpX ´X 1qJM signpX ´X 1q˘2
ı
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Writing Mj as the jth column of M ,

“ E

»
–
˜ÿ

j

signpX ´X 1qJMj ¨ signpXj ´X 1jq
¸2

fi
fl

ď E

»
–
˜ÿ

j

ˇ̌
signpX ´X 1qJMj

ˇ̌
¸2

fi
fl

“
ÿ

jk

E
“ˇ̌

signpX ´X 1qJMj

ˇ̌ ¨ ˇ̌signpX ´X 1qJMk

ˇ̌‰

ď
ÿ

jk

c
E
”
|signpX ´X 1qJMj |2

ı
¨
c
E
”
|signpX ´X 1qJMk|2

ı

“
ÿ

jk

b
MJ
j E rsignpX ´X 1q signpX ´X 1qJsMj ¨

b
MJ
k E rsignpX ´X 1q signpX ´X 1qJsMk

“
ÿ

jk

b
MJ
j TMj ¨

b
MJ
k TMk

ď
ÿ

jk

b
||Mj ||22 ¨ λmaxpT q ¨

b
||Mk||22 ¨ λmaxpT q

“ λmaxpT q ¨
˜ÿ

j

||Mj ||2
¸2

.

Finally, by Wegkamp and Zhao (2013, Theorem 2.3), λmaxpT q ď λmaxpΣq.
Lemma D.11. Let v P Rp be a fixed vector and let Z1, . . . , Zn P r´1, 1sp be random vectors, not

necessarily independent, such that vJpZi ´ E rZisq is C-subgaussian for each i, that is,

ErexpttvJpZi ´ E rZisqus ď exppCt2{2q.
Then for any δ P p0, 1q, with probability at least 1´ δ,

1

n

ÿ

i

`
vJpZi ´ ErZisq

˘2 ď 20Cp1` logp1{δqq .

Proof of Lemma D.11. For each i, by assumption,

E
„
exp

"
t ¨ 1?

C
vJpZi ´ ErZisq

*
ď exp

"
t2

2

*
.

By Vershynin (2012, Lemma 5.5) (and tracking constants carefully in this Lemma), for each i,

E
„
exp

"
1

20C
¨ `vJpZi ´ ErZisq

˘2
*
ď e .

By the convexity of x ÞÑ ex, then,

E

«
exp

#
1

20C
¨ 1

n

ÿ

i

`
vJpZi ´ ErZisq

˘2

+ff
ď 1

n

ÿ

i

E
„
exp

"
1

20C
¨ `vJpZi ´ ErZisq

˘2
*
ď e .
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Therefore, we have

P

#
1

n

ÿ

i

`
vJpZi ´ ErZisq

˘2 ą t

+
ď E

«
exp

#
1

20C

1

n

ÿ

i

`
vJpZi ´ ErZisq

˘2 ´ 1

20C
t

+ff

ď exp

"
1´ 1

20C
t

*
.

Setting t “ 20Cp1` logp1{δqq, then, we have proved the desired result.
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