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Consider d dependent change point tests, each based on a CUSUM-
statistic. We provide an asymptotic theory that allows to deal with
the maximum over all test statistics as both the sample size n and
d tend to infinity. We achieve this either by a consistent bootstrap
or an appropriate limit distribution. This allows for the construction
of simultaneous confidence bands for dependent change point tests,
and explicitly allows to determine the location of the change both
in time and coordinates in high-dimensional time series. If the un-
derlying data has sample size greater or equal n for each test, our
conditions explicitly allow for the large d small n situation, i.e; where
n/d — 0. The setup for the high dimensional time series is based on
a general weak dependence concept. The conditions are very flexible
and include many popular multivariate linear and non-linear mod-
els from the literature, such as ARMA, GARCH and related models.
The construction of the tests is completely nonparametric, difficul-
ties associated with parametric model selection, model fitting and
parameter estimation are avoided. Among other things, the limit dis-
tribution for maxi<np<d SUpg<s<i ‘Wt,h — th,h} is established, where
{Wt‘h}l <1,<q denotes a sequence of dependent Brownian motions. As
an application, we analyze all S&P 500 companies over a period of
one year.

1. Introduction. Modeling high-dimensional time series is a necessity
in many different fields, ranging from meterological and agricultural prob-
lems to biology, genetics, financial engineering and risk management. Par-
ticularly within the financial regulation framework, banks and insurance un-
dertakings are required to asses and incorporate hundreds of different factors
and risks. Regarding financial time series, it is well known that large panels
of asset returns routinely display break points and other nonstationarities
(cf. [25]). In this context, structural stability is a very important issue, since
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even changes in few parameters can lead to misspecified risk measures and
wrong conclusions (cf. [24, 49]). The issue of structural stability also arises
in many other fields, such as Climatology, Genetics and Medicine. Hence,
given a d-dimensional time series X = (Xk,h . Xkyd)—r, there is a high in-
terest in procedures that consistently partition the coordinates of {Xk} eZ
into the two sets

Sy = {1 <h<d: {Xk,h}kGZ is stable}
(1.1) S§={1<h<d: {Xgp}rez is unstable},

such that we have the relation
{1, e d} =S, 4S8y

The sample included in S; may then be used for further inference, while the
part contained in &j requires subsequent treatment. Often, one is addition-
ally interested in the actual time of change in each coordinate, and tests
based on cumulative sums are efficient in this context. Let us denote such
tests with Bg ps 1 < h < d for further reference, see (1.2) below for a precise
definition.

In the univariate case, tests for structural stability in time series are widely
available (cf. [4, 5, 7, 19, 20, 44] and the many references there), the multi-
variate setup, and especially the high-dimensional case are less often consid-
ered. Apart from functional data approaches (cf. [6, 27, 31]) the literature
in the latter case is rather sparse compared to the univariate theory. Let us
briefly mention some recent contributions in this area. In [32], the stability of
panel data is considered. Using a threshold-aggregation approach, [15] study
the detection of global changes (see also [28, 43]), whereas in [34], the topic
of possible gain or loss in power in higher dimension is discussed. Changes
in the covariance structure in a multivariate setup are addressed in [3], and
an interesting connection between Dos-attacks and change point detection
is explored in [41] (see also [50], [53] and therein for changes in multi chan-
nel systems). However, to the best of my knowledge, a (thorough) treatment
regarding the consistent estimation of S, particularly in a time series frame-
work, is lacking in the literature so far. Compared to the univariate case,
handling the multivariate situation is much more complicated since breaks
may or may not be present at different times in different coordinates h. Since
it is usually unknown which coordinates h have anomalies and which ones
have not, determining S (resp. Sy) is particularly hard if the dimension d
is large. The vast majority of high-dimensional change point procedures use
aggregation or PCA based techniques, and are therefore inappropriate for
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determining S§. In this context, a natural way to measure possible devia-
tions is to employ the statistic 77 = maxi<p<q By ;, with coordinate-wise
CUSUM-statistics

(1.2) ;U;h = (Gin)"Y? max =1,...,d.

1<k<n

ZXJL_*ZXM

Here, 3,% is an appropriate estimator for the long-run variance, which will be
more fully explained below. Control of T g readily allows to make inference
for every single coordinate h. In this paper, we provide theoretic tools that
allows one to handle 7. If the random variables Xy, 5, and Xp, 5, become
less dependent if either quantity |k; — k2| or |hy — ha| becomes large, we will
show that

(1.3) 1ml?§d ed(BA — fa) =V as both n,d — o,

for appropriate normalizing sequences eq, fq, where V is an extreme value
distribution of Gumbel type. A general explicit connection between n and
d = d, is given such that (1.3) is valid for n,d — oo, allowing for n/d — 0,
but also for the converse where d/n — C' > 0. On the other hand, we show
that the time series { X}, 1, } rez may have properties such that a pivotal limit
theorem like in (1.3) cannot exist. For this case, we provide bootstrap ap-
proximations, which of course work in both cases.

Studying the joint limit as d,n — oo is a much more realistic setup than
considering its sequential analogue (i.e; limg_, o limy, o0 -, cf. Remark 2.1
in [3] or [28]), but is also considerably harder from a mathematical point of
view. In order to allow for a high flexibility in (1.3), we use a generalization
of known weak dependence concepts from the univariate (multivariate) case
to the high-dimensional setup, which allows for dependencies in time and
space. This leads to fairly general, yet easily verifiable conditions that are
valid for a large number of popular time series from the literature, including
multivariate ARMA and GARCH models. Even though we only consider
breaks in the mean vector, it is clear that our results are also applicable for
assessing the stability of the variance or second order structure (possibly
cross-wise) up to a certain extent.

An outline of the paper can be given as follows. In Section 2 we introduce
and discuss our assumptions and the main results. The aspect of concise
estimation of &7 and the actual time of change within §j is discussed in 3.
Bootstrap procedures and their consistency are explored in Section 4. Section
5 contains a number of popular time series examples that are included in our



4 M. JIRAK

framework. Section 6 deals with practical aspects and investigates the finite
sample behavior. As a real data application, we simultaneously analyze all
S&P 500 companies over the time horizon of one year. Detailed proofs are
given in the Supplement.

2. Methodology and main results. Throughout this paper, we use
<, 2, (~) to denote (two-sided) inequalities involving a multiplicative con-

stant. C' denotes an arbitrary, absolute constant that may vary from line to
line. Let || - ||, denote the ILP-norm E[(-)P]'/P for p > 1, and given a set S, we

write |S| to symbolize its cardinality. We write 2 for equality in distribution.
In the sequel, we often deal with arrays (Ch)1 <p<gr Where d — oo and ¢,
may depend on d. We then use the abbreviations

E3
k
2.1 inf ¢, = liminf min ¢ sup ¢, = limsup max cj,.
(2.1) pfen = liminf min cp,  sup e, = lim sup max e

Let {Xk}keZ with X, = (Xk’l, - X;€7Cl)—r be a sequence of d-dimensional

random vectors where E[Xk] =y, = (,uk’l,...,uk’d)T. The aim of this
paper is to provide a simultaneous test for structural stability in g, based
on the observations X4, ..., X,,. To do so, we consider the coordinate-wise
null-hypothesis

(2.2) Hon: pip = . = pnp, h=1,..4d,

which indicates structural stability in the mean over time. Under this notion
of stability, we get that Sy = {1 < h<d: Hopis true}, i.e; Sy denotes
the set of all coordinates where H, j, holds. We say that Hy is true, if Sg =
{1, ...,d}. As alternative hypothesis, we specify the scenario which allows
for at most one change in each coordinate of p;. More precisely, we assume
that there exists a (usually unknown) time lag kj, such that

(2.3)
Han: ip=... = 7 #* Pk +1,h = - = Hn by for some h =1, ...,d.

We say that the alternative H 4 holds, if at least one H 4 3 is true, and the
null hypothesis Hg 5 hold in all the remaining unaffected coordinates. This
means there is at least one break in one coordinate h. Generalizations to
multiple change point detection are possible, but will not be addressed here.
We make the following convention. The Type I error refers to a 'false alarm’,
i.e; a break detection where there is none, and the Type II error is attributed
to an unreported break. In this spirit, we then obtain S5 = {1 <h<d:
Hanis true}, i.e; the set which consists of all coordinates where a change
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has occurred. In order to identify SS, we propose to use the coordinate-wise
CUSUM statistic BY ; defined in (1.2). We denote the whole vector of such

statistics with Bg 4= (Bg,p e gd)—r. Let
(2.4) Bh = sup Wt,h - th,h y h = 1, veuy d7
0<t<1

where W, 4 = (Wt,h e Wt,d)—r is a d-dimensional Brownian motion, with
correlations p; ; = E [WMWt,j]. If the dimension d is fixed and n — oo, it is
known that under quite general conditions we have weak convergence, i.e;

i w
B,ro;’d — Bd,

where B; = (15’1, e Bd)T, with associated correlation matrix 3; = (pi’j)1<i i<d’
Given some mild regularity conditions for X4, we will show in Theorem A.2
in the Supplement that

(2.5) 1I£1ha%<d ed(Bh — fd) —V, asd— oo,

for appropriate sequences eg, fg, where V is an extreme value distribution of
Gumbel type. Result (2.5) is one of the key ingredients in our proof for (1.3),
and may be of independent interest. Limit theorems involving the maximum
of partial sums have played a fundamental role in statistic and probability
theory for a long time (cf. [48]). Particularly the seminal contribution in [23]
has stimulated much research in this area, see for instance [19, 20] for an
account on further developments and applications, and [21] for some sharp
results and a brief historic review. Related research can also be found in [39],
see also the references therein.

Based on an asymptotic result like (2.5), simultaneous confidence regions
can readily be constructed, we refer to (2.12) for more details. However,
non-Gaussianity is often the rule rather than the exception. It is therefore
of considerable interest to formulate our results in a more general manner. In
the univariate case, a highly accepted model in the literature is to assume
the structure X = g(ek,ek_l, ) for a process {X’f}kez’ where {Ek}keZ
is a sequence of IID random variables in some space S of possible infinite
dimension. Let {e;c} ez be an independent copy of {ek } heZ: Then many well
known weak-dependence measures and concepts are based on quantifying the
difference (for p > 1)

(2.6) ak(p) = Hg(ek,ek,l, ...,60,6_1,...) —g(ek,ek,l, ...,66,6_1, )Hp
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For example, the dependence concept in [51] is based on ag(p). In related
cases, the whole past is replaced with copies, see [8, 45] and [3] for a mul-
tivariate version. We will see in Section 5 that many well known univariate
and multivariate time series such as ARMA and GARCH-models are within
this framework. As is outlined for example in [3], such conditions have sev-
eral advantages over certain mixing competitors. For instance, mixing con-
ditions are sometimes hard to verify and may require additional smoothness
assumptions (cf. [1]). A more profound discussion is given in [51]. Another
advantage is that these dependence measures have a natural spatial exten-
sion which includes the univariate (multivariate) case as special example, see
for instance [42], [14]. More precisely, for {Xk}keZ with X = {Xkﬁ}he]N
we have the structure condition

(2.7) Xk:,h = gh(ek,ek_l, .. .), keZ,helN,

where g, are measurable functions. The coordinate processes Xy j can be
viewed as projections from S to R. In analogy to (2.6), for p > 1 we put
(recall sup; in (2.1))

(2.8) ax(p) = snggh(ek, €h1y -y €05 €_1, ) — gh(ek, €1y ens €0y €1, ) Hp.
Note that ag(p) is a temporal dependence measure, i.e; it only measures
dependence in time, and essentially doesn’t impose any spatial dependence
restrictions. As extreme possibly examples just consider the cases where
Xin = Xk nt1 are identical or where {kah}1<h<d is an independent se-
quence for each k € Z. In fact, this setup is very general and contains a
huge variety of popular linear and nonlinear time series models, see Section
5 for more details.

Allowing for weak dependence in (multivariate) time series inevitably results
in dealing with the long run covariances +; ;, which we formally introduce
as

n n
(2.9) Vij = lm HIELZ lz:(Xk,z‘ = pe,i) (X1 j — pg) |-
=11=1

We shall see (cf. the Supplement) that Assumption 2.1 below implies that
the above limit exists and ~;; are thus well defined. Moreover, in case of

d .
O'}QL e “Yn,n, We have the usual representation 0,21 = > pez Ok,hy Where ¢y =
Cov[Xon, Xinl] If 05,05 > 0, we also have p; ; = ’yi,j/(o'iaj). Our main
temporal assumption is now as follows.



UNIFORM CHANGE POINT TESTS 7

AssumMPTION 2.1 (Temporal assumptions). Given representation (2.7)
for {Xx }kez, assume that for p > 4 and absolute constant o~ > 0

(T1) ar(p) S k=9, with a > 5/2,
(T2) inf} op >0~ > 0.

Let us briefly discuss these assumptions. (T1) is a global, polynomial de-
cay assumption on the temporal dependence. In the univariate case a > 1 is
possible and essentially optimal. Here we require the slightly stronger con-
dition a > 5/2, which enables us to operate in a high dimensional context.
Assumption (T2) is a non-degeneracy assumption that we require since we
often normalize with o} in the sequel, see however Remark 2.6. Note that
we require Assumption 2.1 throughout the remainder of this paper.

Since o7 is usually unknown, we need to estimate it. The literature (cf. [11])
provides many potential candidates to estimate 0121. A popular estimator is
Bartlett’s estimator, or more general, estimators of the form

(2.10) Gt =" w(k/b)rn, b — o0,
k] <bn

with weight function w(x), where

n

ah‘vj = (n— j)_l Z (Xk,h - Yh)()(k;_jﬁ — Yh),
k=j+1

and Xp, = n 1Y 7| Xy p. Setting w(x) = 1, we obtain the plain estimate
(cf. [46]). For the sake of simplicity, we just consider the plain estimate
for our theoretical analysis, but the results remain equally valid for other
weight functions. Conditions on the possible size of the bandwidth b,, ~ n°,
0 < b <1 in terms of b are given below in Assumption 2.2.

In order to establish a limit theory, we also require some spatial dependence
conditions. A very general way that leads to easily verifiable conditions is
in terms of decay assumptions for the underlying covariance structure. This
is a common approach in the literature, see for instance [12], [40], [52]. In
our context, it is thus natural to impose conditions on the correlations p; ;.
As stated in the introduction, we consider the situation where we allow that
both n and d jointly tend to infinity. For a more formal description, we
model the dimension d as d ~ n°, 0 > 0 throughout the remainder of this
paper. The necessary connection between b, and the underlying moments
p is now additionally collected in our spatial assumptions.
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ASSUMPTION 2.2 (Spatial assumptions). Assume that 9, b, (pz,J)1<z G<d?
p > 4 satisfy the conditions below, uniformly in d for absolute constants
pt,C,pd > 0:

(S1) 0 <0 <min{p/2—2,(1—b)p/2 -1},
(S2) SUD; jifi—j|>1 Pig < pt <1,
(S3) |pijl < Cplog(li — j|+2)727°

REMARK 2.3. Assumptions (S2), (S3) are only needed for establishing
the asymptotic distribution in Theorem 2.5 below. Also note that the poly-
nomial growth rate of the dimension d = d,, and the polynomial decay rate
of ai(p) are intimately connected. In this spirit, one may show that analogue
results as presented below are valid for an exponentially growing dimension
d, by imposing exponential decay rates on ax(p). Such results would require
in addition that supZ]E[eSOX’fvh] < oo for some sy > 0.

REMARK 2.4. For ease of exposition, we distinctly asked for @ > 0 in
(S1) to ensure that d — oo as n — oo, which results in a minimal polynomial
growth rate. However, we point out that we actually only require that d < n°
and d — 0o as n — oo, which is slightly more general.

Assumption 2.2 only imposes mild conditions, essentially allowing for any
polynomial growth rate of the dimension d ~ n° given sufficiently many
moments. Note that high moment assumptions are common in such a con-
text, we refer to [12, 33, 35, 52], where sometimes up to 30 moments and
more are required. Also note that we only need a logarithmic decay for the
correlations p; ; that is close to the best known results in the literature in a
different context (cf. [39]). We are now ready to state our first main result,
which establishes the asymptotic limit distribution.

THEOREM 2.5.  Assume that Ho and Assumptions 2.1 and 2.2 hold. Then

lim P < max B 1< ug(e ””)) =exp(—e ?),

n—00 1<h<d

where ug(e™®) = x/eq+ fq, with eq = \/21log(2d), fa = eq/2—1og(3log(2d))/eq.

REMARK 2.6. Conditions (S2), (S3) are needed to exclude any patholo-
gies. However, as is known in the literature (cf. [21, 22]), condition o5 > 0
can be removed to some extent by more detailed arguments due to the self-
normalization in B"h Moreover, let Z; C {1 d} be any sequence of
subsets with cardinality |Z4|/d — 0. It is then shown in the Supplement
that it actually suffices to have (S2), (S3) only for i,j € {1,...,d} \ Zs.
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In Section 6, we give a brief account on the implications and relevance of
the necessary assumptions for real data sets. A problem that can appear in
practical applications is the rate of convergence to extreme value distribu-
tions, see Section 6 for details. One way out are bootstrap methods. We first
present a (comparatively) fast and easy to implement method for a para-
metric bootstrap. To this end, let {Z’f’h}kez,heﬂ\l be a standard Gaussian
IID sequence. Denote with

n
z _ L :
Bln= = llgggn Z Zjh Z; Zjhl,
‘]:
.1 == =
(2.11) and T?Z lrg’?de ' and recall T max Bmh

Next, we introduce the exact quantile uZ(z), defined as

P(BZ), <uf(z)=1- 2.

It then comes as no surprise that we have the following result.
PROPOSITION 2.7.  Grant the assumptions of Theorem 2.5. Then

P(TdZ < ug(ex)) _ p<Tg < ug(ex)>' — o(1) as n— oo,

sup
zeR

We thus obtain a very simple bootstrap method, which just requires the
generation of IID Gaussian random variables. Note that unlike to wug(z2),
the quantiles ug (z) are highly nonlinear, which seems to make them less
attractive. In practice though, it turns out that ug (z) often yields much
better results than ug4(z), also for dependent time series. For more details
and empirical results, see Section 6. Based on Theorem 2.5 and Proposition

2.7, we can construct asymptotic honest 1 — a confidence regions gd(a) and
SZ(a) via

Sil@)={1<h<d: B, <zafeq+ fa}, xa=—Ilog(—log(l—a)),

(2.12)
Sf(a)={1<h<d: B], <uf(za)}, za=d(1-(1-a)/?).

Let us now turn to the important question when we have less spatial
structure. As is demonstrated in Example 5.6, a pivotal limit result like in
Theorem 2.5 cannot exist if we drop condition (S3). Fortunately, things do
not go totally wrong. Our next result essentially implies that the 'rate’ (resp.
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normalization) ud(-) in Theorem 2.5 acts as an upper bound, even under
considerably less assumptions. This is important for statistical applications,
since we remain in control of the Type I error.

THEOREM 2.8. Assume that Ho, Assumption 2.1 and (S1) hold. Then

lim P max B%, <wuy(e®) ) >1—¢e"
din P (g B2 < wale) ) 21— e

where ud() s as in Theorem 2.5.

A useful implication of Theorem 2.8 is that under less assumptions, Sy(a)
and S7(a) can be modified to also supply (asymptotic) honest confidence
sets. Indeed, using the power series of log(1 — «), we obtain that

2
l—aZ1—exp(—za):1—a—%+(9(a3).

In particular, if we select a = 1 — exp(—«), then we can construct the
confidence sets Sy(a), S7 (a), which according to Theorem 2.8 at least have
nominal level o, since we have (with z, = —log(—log(1 — a)))

1 —exp(—zq) =1+1og(l—a)=1-a.

Hence the resulting confidence regions might be too large, but never too
small, which implies that the Type I error of the null-hypothesis Hy remains
controlled. Note however that such a modification is more conservative, and
thus results in a loss in power. Some further properties of gd(a), ‘SA'dZ (cr) and
their behavior under the alternative hypothesis H 4 are the topic of Section
3. Another option to construct confidence regions if Theorem 2.5 fails to
hold is bootstrapping. In the context of dependent data, blockwise bootstrap
procedures are a possible way out. This topic is more fully explored in Section
4.

3. Estimating the location of change and general consistency of
long run variance estimation. We first make the following convention.
We say that an estimator S, is consistent, if

lim P(|Sy A Sq| =0) =1,

where gd A Sy stands for the symmetric difference of the sets gd and Sy.
Note that trivially any consistent estimator Sy gives a consistent estimator
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gfl for the complement set. For further analysis, we assume that under H 4
the times of change depend on n. This is a common assumption in the
literature, and one way to guarantee this is by demanding that k} = |7,n]
for 7, € (0, 1). If there is no change in coordinate h, we set 7, = 1. Another
important quantity is the actual minimal size of the change, which we denote
with

(3.1) Ap = }rlrelgl App, where App = ‘,uk*,h — uk;LJrl,h‘.
d

We assume throughout that Ay is a monotone decreasing sequence, and

(Ap)

express the direct connection to H 4 through the notation H . This means

that under ’Hz(qA“ ), the minimal size of change is Ap. Suppose now that
h € §;. Then elementary calculations show that

(3.2) BZ, > 65 A (1 — ) (1 - o(1)) - B, .
where
—=0
(3.3) Bpp= ah\/ﬁ max. Z Ujh — Z Ujn|s  Ujn = Xjn —E[X;n].

iO' ~
Due to Theorem 2.5, we can control maxi<p<q Bn’h as long as o, behaves

(Ap)

'reasonably’ under H . If this is indeed the case, then we can expect from
(3.2) that B ;, becomes large and thus detect a change in coordinate h using

the confidence sets g‘d(a) or §dZ (c) in (2.12). Unfortunately though, o5 may
not at all behave reasonably and can cause the problem of 'none monotone
power’ (i.e; the power can decrease when the alternative gets farther away
from the null), see for instance [18]. One way to overcome this problem is
to use self-normalization, as proposed in [47]|. Here, we propose a different
method that will lead to no loss in power. To this end, we first discuss the
estimation of the possible time of change 75, for each affected coordinate.
For this, we propose the following estimates. Pick any fixed 0 < t < 1/2,
preferably small, and consider
), h=1,...d.

(3.4)
Note that o}, is not included in the above definition. Of course, one would
like to select t such that

[nt]

ZX7 ZXM

7j=1

—-1/2

Th(t) = argmaxye ¢ 1— t)(

3.5 t< inf i, <suprmp<1-—t
(3:5) hesg " hegh
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In the sequel, we put 7, = 7,(t) to lighten the notation if the dependence
on t is of no relevance. Bounds for uniform deviation probabilities for 7} (t)
follow from the next result.

THEOREM 3.1. Assume that HAA“) s valid and Assumption 2.1 holds.
If we have in addition (3.5) for some 0 < t<1/2, then

P <max

~ —p/242
mex Th(t) — 7| > x) < | 8| (znlogn) P/2F ,

log n

where we require that x > C‘lm’ Cy, > 0 sufficiently large.

REMARK 3.2. The above constant C, depends on t and the sequence
(aj (p))jE]N, and thus also implicitly on the long run variances (ah) L<h<d"
Assumption t > 0 and (T1) ensure that C, < oo, uniformly in d. o

Since |S§| < d, we get the following uniform consistency result.

COROLLARY 3.3. Grant the assumptions of Theorem 3.1. If in addition

logn
lim su =0 and d<p/2-—2,
M (A o/
then
() — 7| = 0p(1).
1}3&%)5 Th(t) Th| Op( )

Armed with Corollary 3.3, we construct the following simple estimators
oy, for oy,
e Choose a constant 0 < B, < 1, and use the estimator 7,(t) in every
coordinate to split the sample into 7, = {k < B.7(t)n} and 7," =
{n — BT(l — ?h(t))n <k< n}
e Use the usual estimator oy, to construct the estimators 7, and 3;{
based on the samples 7,” and 7;L+. The final estimator o} is then
obtained by the convex combination

@3 =m0 (@,)? + (1 =7u(9) (@))% 1<h<d
REMARK 3.4. As was pointed out by a reviewer, possible alternatives
are
3,rlmn = min{&\}:,(/f}f}7 op = max{ag,?f;[}
and (67 = ((5,)? + (5)?) /2.
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Another alternative is 65 = 5, if |[T7~| > |T | and 5 = 7; otherwise. Note
that we have the relation

~min ~*% SO ~Imean ~— Amax
o' <oy, o, 0, 0y, ,ah <o

As follows from the result below, all estimators are consistent, both under

Ho and H%A“ ), and thus yield the correct limit distribution. From a practi-
cal perspective though, 8,‘;11“ leads to a more liberal test with more power,

whereas U}Tax leads to a more conservative test.

The following result establishes the desired properties of the above vari-
ance estimators.

PROPOSITION 3.5. Theorems 2.5 and 2.8 remain valid if we replace oy,

with either O'}Tm or,0p,0" 0, , o, or op*. Moreover, if Corollary 3.3

holds, these estimates are consistent under ”HAA“).

Now that we have settled the problem of the long run variance estimation,
we may return to our original problem of determining Sy, which is now an
easy task. In fact, combining Proposition 3.5 with the lower bound in (3.2)
and Corollary 3.3, we immediately get the following result.

PROPOSITION 3.6. Let a = a,, — 0 such that o, > n~'. Assume in
addition that (3.5) holds for some 0 < ty < 1/2, and that

Clogd

(3.6) (Ap)? > m, C>1, and d2<p/2-2,

where o3 = supj, o?. Then Sy(an) and hence also §§(an) are consistent if

we either use a,”lnm oy, 0p,0", T, ah or o'

Note that Proposition 3.6 is only valid if we use estimators 73, (t) with
t < t9. Combining Corollary 3.3 with Proposition 3.6 we obtain the following
corollary, which marks the final result of this section.

COROLLARY 3.7. Grant the conditions of Proposition 3.6. Then

max ‘Th(f) — Th‘ = Op(l).
heS( n)
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4. Bootstrap under H 4. As was mentioned before, another option to
construct confidence regions if Theorem 2.5 fails to hold is bootstrapping. In
the context of dependent data, blockwise bootstrap procedures are proposed
in the literature. One of the main problems we face here in this context is
the possibility of change points, and thus a 'naive’ block bootstrap can go
severely wrong. In the univariate or multivariate case, possible way outs can
be found in [2] and [37]. Here, we employ a different approach that uses the
same idea as in Section 3, which resulted in consistent long run variance
estimators under both Hy and H 4. This is outlined in detail in the next
section below. In Section 4.2, we show how this approach can be modified
and simplified. In particular, as a somewhat surprising result, we end up
having a simple 'naive’ block bootstrap that is consistent.

4.1. Bootstrap I. Introduce the following notation. For a probability mea-
sure P and a o-algebra G, we denote with Pjg the conditional probability
with respect to G. Moreover, we denote with X = J(Xl, . ,Xn) the o-
algebra generated by the underlying sample. Pick 0 < t < 1/2, recall that

Uin=Xjn— E[Xjﬁ] and in analogy to Egh denote with

—o*

Bn,h (t) = sup

Tr/M <i<1—t

[nt] A ~

Snn(t) =Y Ujn, Tq () = max By ,(1).
=1

§n,h(t) - Mnﬂsn,h(l)'a 1 < h < d7

1<h<d
The objective of this section is to obtain an approximation in the sense of

sup
zeR

P|X<ij(t) < m> - P<T§*(t) < x)‘ =0p(n %), C>0,

where T dg () is an appropriately bootstrapped version. To this end, let K, L
such that n = KL. In the sequel, K will denote the size of the blocks, and
correspondingly L the number of blocks. For simplicity, we always assume
that K, L € IN, which has no impact on the results. Consider the following
block bounds

Eg =sup{l € N: IK + K/2 < 7,()n},
(4.1) Li =inf{le N: IK — K/2>7,()n},

where 73, (t) is as in (3.4). These estimated limits will allow us to 'filter’ the
contaminated blocks, and thus allow for a consistent bootstrap procedure.
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For the actual construction, consider the mean estimates

>
s

I

>

M5

e
ky

I

% > %
T g
K(L=L)

and introduce the random variables
Xjn—Xp, ifj <KLy,

(4.2) Xin= 0, if KL, <j <KL},
Xjn—X; ifj> KL,

and the block variables

IK
43)  Viak)= Y. Xul(G<k), 1<I<L1<h<d
j=(-1)K+1

Note the presence of the indicator function 1(j < k) in ﬁ,h(k), which will
allow us to take the maximum within the individual blocks, see below.

Based on \A/l,h(-), we now have several options for the construction of a
bootstrap, which are among others

(i) : Multiplier bootstrap,
(i) : Sampling with replacement,
(iii) : Sampling with no replacement,
(iv) : Mixed versions: (i)+(ii) or (i)4(iii).
In the sequel, we establish results for (i) and (iv). For 1 <[ < L, consider
the random variables 7(l) which take values in the set £ = {1, e ,L},
and denote with @ = o(m(1),...,m(L)) the corresponding o-algebra. The
random variables 7(l) select the blocks ‘A/lh() Depending on the desired
choice of bootstrap, we have that
(M) n(l) =1 for | € L (deterministic, multiplier bootstrap),
(SR) (1) are IID and uniformly distributed over £
(sampling with replacement),
(SNR) 7(1),...,m(L) results from a permutation of £
(sampling with no replacement).

Let &1,...,& be a sequence of IID standard Gaussian random variables. We
then consider the overall statistic T} ; (t), defined as
(4.4)
~5 MmMax|nt| <k<n—|nt|
1<h<d  BpxaV/n

Z &V ]:L Z &V n(n)
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where

denotes the conditional long run variance estimator, which acts as a re-
placement for (7;)%. Note that one may also set & = 1 in the definition
of é\i‘ v+ Also note in particular that the maximum (in time) is taken over

Int] <k <n-—|nt|in fgL(t). Subject to a specific sample, our bootstrap
procedure is now the following.

ALGORITHM 4.1 (Bootstrap algorithm I).

Step 1 : Pick 0 < t < 1/2, preferably small, compute 7,(t) for 1 < h < d
and select either (M), (SR) or (SNR). Set m = 1.

Step 2 : Generate {w(l)}KKL according to Step 1.

Step 3 : Generate IID &;,...,¢& L with standard Gaussmn distribution.

Step 4 : Calculate the value of Td . (t) and set T;,, = Td 1 (0).

Step 5 : Go to Step 2 and set m =m + 1.

REMARK 4.2. As was noted by a reviewer, the definition of fdg () in
(4.4) implies that both (M) and (SNR) give an identical procedure.

Stopping Algorithm 4.1 at m = M, we have obtained a Monte-Carlo
vector Ty = (Tl, e ,TM)T. For stating consistency results of quantile es-
timates based on Ty, it is convenient to parameterize the number of blocks
L as L = L, ~ n', where 0 < [ < 1. Note that this implies K ~ n'=".
The required connection between a,0, [ and p is stated in our main assump-
tion below, which can be considered as mirror conditions for the spatial
Assumptions 2.2.

AssuMPTION 4.3 (Bootstrap assumptions). Assume that a,9,[ and p >
8 satisfy

(B1) o <min{p(1 —)(2a —1)(a —1)/a — 81,2((p — 4) } /8,
(B2) for some absolute constant C' > 0

SéI[ Klogn <n~ and limsu =0.
| d|< g ) < msup L

We are now ready to state the main result of this section, which enables
us to establish consistency of the above bootstrap procedure.
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THEOREM 4.4. Grant Assumptions 2.1, 4.3, and one of (M), (SR) or
(SNR). Assume in addition that (3.5) holds for some 0 < ty < 1/2, and
that (S1) is valid. Then for any 0 <t <t

sup
z€R

PX<f§L(t) < a:) —P(Tg*(t) < x)’ —0p(n~9), C>o0.

Let us briefly elaborate on the underling conditions. Assumption 2.1 is
our usual temporal and non degeneracy condition. (B1) and (S1) provide
the necessary relation between a,b,9,[ and the moments p. Finally, (B2)
and (3.5) are necessary to control possible change points. Overall, these are
rather mild assumptions. A special point is condition t > 0. It is a purely
technical condition that is required for the proof. One may argue heuristi-
cally that in fact one can also set t = 0 in Theorem 4.4, a rigorous argument
appears to be rather technical and lengthy though, and was therefore not
pursued. In the simulations in Section 6.3.1 we set t = 0, and this does not
seem to cause any trouble.

Based on Theorem 4.4, standard empirical process theory (cf. [48]) now
implies that we are able to consistently estimate virtually any quantile of

Tg* (t) based on T for large enough M = My,. More precisely, denote with
Za,1,(t, M) the (estimated) 1 — o quantile of T7; ; (t). Then it follows that

(4.6)

G - 1 _
’PM; (Tf, (t) < Zar(t, M)> ~(1-a)| S —=+0,(n9), C>0,

~ VM

where TZ’G* (t) is a copy of TZ\* (t), independent of X'. In analogy to §dZ (o),
the following bootstrapped confidence set Sy(«, L, t, M) can be constructed

via
(4.7) Sila, L, M) = {1 <h<d: B, (t) < Z,0(t, M)}
Corresponding empirical examples are given in Section 6.3.2.

4.2. Bootstrap II. Let us step back for a moment to reconsider our orig-
inal testing resp. estimation problem, i.e; construct an estimator for the
stable set Sy. We now make the following observation. Recall that from the
discussion in Section 3 we can expect that

}ILniSn B, > Cy/logd asn — oo,
S ’
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for C' > 0 large enough, if the change in mean is sufﬁ/c\iently strong. Hence in
order to control the error of estimation for S;(«) or Sy(e, L, t), we only need
to control maxyes, Bg*h. This has interesting consequences for a bootstrap
method, as we will now explain. Recall from Section 3 that we needed to
modify &, to o} to avoid the problem of inconsistent variance estimation.
Here, we will actually exploit this problem to our advantage. More precisely,
we construct (conditional) variance estimators sy that explode for h € S§
sufficiently fast, i.e; we have

(4.8) Splx 2 \/EA/LhTh(l —Th) asn — oo,

where Apuy, is given in (3.1). Consequently, we can expect that

L
> aVin(k) - = Zﬁle r(n
=1

(see (4.13) below for T\j 1.(t)). From Theorem 4.4 we then essentially get that

T3, (6) = ma "k<n-lng

heSy gh‘)(\/ﬁ +0P( )

(4.9) 751 (0) £ max B, + op(1).
’ heSy ’

In other words, T L(t) automatically adapts to the number of unaffected
coordinates, and therefore allows for a better control of the Type I and II
errors. Note however that this will only have a significant impact if

(4.10) Sa|/|S5| — 0 asd— oo.

Implementation of this idea will lead to the bootstrap procedure Algorithm
4.5. However, even more is possible. Exploiting the explosions another time,
we will see that one may entirely skip estimation of 7j(t), by using a 'naive’
bootstrap method. This will lead to Algorithm 4.7.

To simplify the following exposition, we only concentrate on multiplier boot-

strap procedures in the remainder of this section. Consider the overall mean
estimator X, and the ’centered’ random variables X

(4.11) ZXM’ Xjn=Xjn— Xn,
and the block variables

Vin(k) = Z Xjpl(j<k), 1<I<L1<h<d
j=(I—1)K+1
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We then construct the (conditional) long run variance estimator EJ}ZL‘ y as

L
1 ~
=2 2772
where &1, ...,&r is a sequence of IID standard Gaussian random variables.

Next, pick any 0 < t < 1/2. In analogy to fjAL(t), we then consider the
overall statistic fdg (1), defined as

L
=5 MaX| pt| <k<n—|nt| k =
4.13) T;;(t) = m V - = Vi
( ) d,L() 13}?%{(1 Shpmf E EVin(k ";1 &Vin(n)

Note that in comparison to fjA (1), we have replaced 3, x » with 5. Sub-
ject to a specific sample, our bootstrap procedure is now the following.

ALGORITHM 4.5 (Bootstrap algorithm II).

Step 1 : Pick 0 < t < 1/2, preferably small, compute 7,(t) for 1 < h < d
and gmx. Set m = 1.

Step 2 : Generate IID &;,...,¢& ,_with standard Gau551an distribution.

Step 3 : Calculate the value of Td . (t) and set T}, = Td (Y.

Step 4 : Go to Step 2 and set m = m + 1.

By the discussion after Theorem 4.4, the following result allows to estab-
lish the consistency of the bootstrap procedure in Algorithm 4.5.

THEOREM 4.6.  Grant Assumptions 2.1, 4.3. Assume that (3.5) holds for
some 0 < tg < 1/2, and that (S1) is valid. Then for any 0 < t < tg

sup
zeR

PX(TdL()<x> —P(maXB " ()<x>‘ =op(1).

heSy

As a next step, we now show how one can entirely remove the estimation
of 73,(t). The central idea is that one can show

1 g kxm ,
> &Vin(k) - lz;m,h(m

max ——— max
heS§ Sp|xy/N [nt] <k<n—|nt] P

=0p(1).
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Thus, roughly speaking, the ’explosions’ in both 5, and &1717;1() cancel.
Hence we automatically obtain the desired relation

L L

— 1 ~ k ~

T3 (1) = S aVink) — =S &V,
ar(t) = max Same I Jnax 2 & Vin(k) P &Vin(n)

+ Op(l)

d Sk
= max By + Op (1),

_ 1
T3, (t) =
art) = 113i?<d SplaV/n LntJ<k<n—LntJ

Zflvlh - *Zfl‘/zh

Note that in comparison to T\dgL(t), we have replaced 1757;1(-) with ‘N/l,h(-).
Subject to a specific sample, our bootstrap procedure is now the following.

ALGORITHM 4.7 (Bootstrap algorithm III).

Step 1 : Pick 0 < t < 1/2, preferably small, compute 5 x and set m = 1.
Step 2 : Generate IID i, ..., &y with standard Gaussian distribution.
Step 3 : Calculate the value of TjL( ) and set ), = Td (0.

Step 4 : Go to Step 2 and set m = m + 1.

As before in Theorems 4.4 and 4.6, the following result allows to conclude
consistency of the above bootstrap procedure.

THEOREM 4.8.  Grant Assumptions 2.1, 4.3. Assume that (3.5) holds for
some 0 < tg < 1/2, and that (S1) is valid. If in addition we have

(4.14) max By j,(to) — oo as d increases,
heSy

then for any 0 < t < tgy

sup

zeR heSy

X<TdL< ) < :c) P<maxB (0 <x>‘ — op(1).

REMARK 4.9. Assumption (4.14) is a mild non degeneracy condition,
and is only violated in the extreme case where limg o maxpes, Bg’h(to) =

Op(l).
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4.3. Discussion of bootstrap procedures. In the previous sections, we have
seen that all three bootstrap Algorithms 4.1, 4.5 and 4.7 are consistent
alternatives to Theorem 2.5 and Proposition 2.7. In particular, they do not
require any assumptions on the spatial dependence structure. On the other
hand, there are also some deficits that we will briefly outline.

Computational cost : Particularly if d gets larger, the computational
costs and time become a relevant issue.

Homogeneity : All bootstrap procedures require global blocks in order to
reflect the underlying dependence structure. This in turn requires a
certain homogeneity of temporal dependence of the data.

Sensitivity : As simulations reveal, the number and thus size of the blocks
may have a huge impact, and in some cases the results appear to be
rather sensitive in this respect, and there is also an interplay with the
required homogeneity, mentioned above. This problem of blocklength
selection is already well known in the literature in the univariate or
multivariate case, see for instance [38]. A simple problematic example
is given in Section 6.3.2, Table 8.

Large d small n : If d is rather large compared to n, one should take L
as large as possible to avoid or at least weaken some of the above
problems. In particular, one should keep in mind that one multiplies
and thus 'models’ the time series with only L IID Gaussian random
variables. However, a large L results in a small K, and thus a possible
failure in capturing the temporal dependence via the blocks.

From these considerations, a bootstrap procedure is only recommended
if the dimension d is not too large compared to the sample size n (d < n
appears to still yield good results), and if the vast majority of the data can
be expected to be homogenous (a few outliers don’t hurt). Otherwise, the
parametric bootstrap depicted in Proposition 2.7 is recommended.

5. Examples. In this section, we discuss some prominent and leading
examples from the literature that fit into our framework. To keep the ex-
position at a reasonable length, our main focus lies on ARMA(p,q) and
GARCH(p, q) models, but our setup also contains many more non-linear
time series, as will be briefly discussed. We mainly focus on examples that
fulfill Assumptions 2.1 and 2.2. Of course, this implies that these are also
valid examples for the bootstrap procedures. An important example are Fac-
tor Models in 5.6, which highlight the usefulness of bootstrap procedures.

In the setting of Theorem 2.5, the spatial decay condition (S3) plays a key
role. The (multivariate) time series literature contains a huge variety of pro-
cess that meet (T1). Especially for nonlinear time series such as GARCH-
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models, iterated random functions and the like, we refer to [26, 30, 45]
and the many references there. We thus concentrate on giving examples for
{X\ ez, where (S3) holds. More precisely, we give examples for two pa-
rameter processes { X, kvh}k,h ¢z Where the key conditions (T1) and (S3) are
valid.

We recall the following convention. Throughout this section, 0 < C' < oo
denotes an arbitrary, absolute constant that may vary from line to line.

EXAMPLE 5.1 (Linear processes). A common way to model multivariate
linear models with finite dimension d is by

o
(5.1) Xk = ZRle—h
1=0
where {Rl}z oy 1S a sequence of d x d matrices, and {Zk} ez 1S @ sequence

of d-dimensional vectors, usually IID. However, describing (weak) spatial
dependence in this model when d is large is not at all straightforward, even
if one assumes a simple spatial structure for Zj, e.g. a linear process. In
addition, using high-dimensional matrices for modelling purposes is only
advisable if the matrices are sparse. The problem of transferring multivari-
ate linear models, in particular the autoregressive multivariate setup to a
high-dimensional setting is currently a very active field of research, partic-
ularly in connection with panel data or factor models. For example, in [16],
various sparsity constraints are discussed to introduce the IVAR (infinite-
dimensional vector-autoregression). Other approaches are offered in [13, 15].
Here, we will first follow the approach taken in the latter, before coming
back to (5.1). Let {ek,h}k7h€Z be a sequence such that ¢, = {ekvh}heZ is IID
for k € Z. We then introduce the high dimensional MA (co,e) process as

oo
Xk,h = Z Qi h€k—i h) for k,h € Z and Q;p € R.
i=0
Naturally, we require some conditions on the numbers «; j to guarantee its

existence. We do this in one sweep, by stating conditions such that Assump-
tions (T1) and (S3) are valid in addition.

PROPOSITION 5.2.  Suppose that "ﬁj‘ = |E[ex,ier,;]| < Clog(li—j|) 270
for|i—j| >2 and § > 0. If (T2) holds and also

sip‘ai7h‘ <Y with u > 5/2,

then {Xkah}k,hez meets Assumptions (T1) and (S3).
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As a special case, we may now consider ARMA(p, q, €) processes, which
we introduce as

Xk,h = O‘T,hekah + ...+ oz;hek_pﬁ + ﬁith—l,h + ...+ 5;,th—q,ha

oy h,..,a;h,ﬁfh,...,ﬁa‘h € R. As in the univariate case, we consider the
polynomials

p q
(5.2) An(z) =) a5z, Balz) =) 87,
j=0 J=0

where Ap(z) and By(z) are assumed to be relative prime. Then following
for instance [11], one readily verifies the following result.

PROPOSITION 5.3.  If the associated polynomials Cp(z) = Ay (2)B; ! (2)
satisfy inf,’fL‘Ch(z)‘ > 0 for|z| <1, then X} p, admits a causal representation

[e.e]

Xppp = Zai,hek—i,ha where SLEp lagn] S ¢° foro<qg<1.
i=0

It is now easy to see that we may choose a > 5/2 arbitrarily large, hence
Assumption (T1) holds. The validity of (S3) can be obtained as in Propo-
sition 5.2. Next, we demonstrate how model (5.1) fits into our framework.
Recall that Z; = {Zk’h} heZ: We impose the following conditions.

ASSUMPTION 5.4. The sequence {Zk}keZ is IID, and for p > 4

(i) 77 =E[ZkiZr;] < Clog(li — jl+2)77°,6 >0,

.. l . ! il _

(i) Ry = (r)) ., oy with [r{)]| < CU+1)79(i = j[ +1)7P, q,p > 2.
Condition (ii) is mild, allowing for a large variety of matrix sequences R;.

We have the following result.

PROPOSITION 5.5.  Assume that Assumptions 5.4 and (T2) hold. Then
{kah}kheZ meets Assumptions (T1) and (S3).

Based on the above proposition, one can derive a related result for mul-
tivariate ARMA processes, we omit the details.

EXAMPLE 5.6 (Factor models). In econometric theory, it is often be-
lieved that the dynamics of a multivariate or high dimensional time series
X}, can be described via so-called (normally unobserved) common factors
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Z. € RY, where it is usually assumed in the literature that d’ is much
smaller than d. This amounts to the model

(5.3) X, =RZ,+¢&, keZ,

where R = (Tivj)lgigd,lgjgd/ is a d x d’ matrix of factor loadings, and
&, = {&kn}hez denotes the noise sequence. We also denote with s%’g the
coordinate-wise standard deviation of {{ , }kez, and with qbfi ;=E [Zk’iZoyj] ,

qﬁi i = E[{k’i&)’j]. We then make the following assumptions.

ASSUMPTION 5.7. For § > 0 and p > 4 we have

(i) {Zk} wez and {ék} ez are independent and both satisfy Assumption
(T1),

(i) ¢7; ;2 5.; < Ck+1)7(i — |+ 1), q,p > 2 and inf}, 53 . > 0,

/ ! . .
(iii) sup; Y0, [ri ] < 0o and |30, i, j7iy | < C(log iy — do]
iy — | > 2.

)_2_6 for

The above assumptions are related to those of Assumption 5.4. This comes
as no surprise, since both process are very similar. As we shall see, rather
straightforward computations show that the corresponding spatial correla-
tion matrix ¥; = (pi,j)lgi,jgd only needs to satisfy

(5.4) pil < Cllogli—j)) 7" 6> 0,if i —j| > 2.

We now have the following result.

PROPOSITION 5.8.  Assume that d = d], with d], — oo and d'" < d.
Suppose that Assumptions 5.7, (S1) and (S2) hold. Then Theorem 2.4 (2.5)
is valid.

The above result shows that under reasonable assumptions, high dimen-
sional factor models fit into our framework. Note that the limit distribution
is pivotal, no additional information on R is required. This is important from
a statistical point of view, since the factor loadings R are usually unobserv-
able in practice. In this context, the question arises whether a structural
condition like

d/

E Ti1,5Ti2,5

J=1

(5.5) < (log fiv —ia]) 270, if Jiy —da| > 2
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is necessary to obtain a pivotal limit distribution. If (5.5) does not hold,
one can still show via Theorems 2.4, 2.6 (2.5,2.8) and the triangle inequality
that with probability one

maxi<p<q B, maxi<p<q B, 1
5.6) liminf ———* >0 and limsup —————= < —,
(56) n Viogd Sup Viogd V2

hence v/log d is the right scaling, even without (5.5). However, determining
the exact limit distribution in the absence of (5.5) seems to be very difficult,
and is likely to depend on R, questioning its usefulness for applications. In
fact, if we drop condition (5.5) in Assumption 5.7 (iii), a pivotal result like
Theorem 2.4 (2.5) cannot hold as the next result shows.

PROPOSITION 5.9.  Assume that the conditions of Proposition 5.8 hold,
with the exception that we do not have (5.5). Then universal sequences ag,
ba, only depending on d such that

vl 20, B = )

converges in distribution to a non-degenerate limit do not exist.

Proposition 5.9 tells us that an exact fluctuation control without any
intrinsic knowledge on R is not possible. In this sense, Assumption 5.7 seems
to be near the minimum requirements to obtain a pivotal, nonparametric
result like Theorem 2.4 (2.5). In any case, relation (5.6) tells us that we
always remain in control of the Type I error, and the possible loss in power
is only marginal.

ExAMPLE 5.10 (GARCH process). In this example, we discuss one pos-
sible way to extend the constant conditional GARCH model (CCG) of
Bollerslev [9]. If the dimension d is fixed, related multivariate extensions
can be found in the literature, see for instance [3]. Here, we define the
GARCH(p, q,€) sequence as

Xk h = €knSkp, Where {Skah}k,hez meets
2 2 2 2 2
Sih = Mh + 01 pSk_1p T o+ O nSk_pp + B1aXi—1p + -+ BanXj—gns

with 9, a1 py -5 Qp hy B1ks -5 Bg,n € R. Note that p and q denote the maximal
degree of o p,, B; . Possible undefined «; j, and 3; ;, are replaced with zeros.
As in the univariate case, a crucial quantity in this context is

T

(5.7) vo = max 3 lain + Finelnl, . with r = max{p, q}.
-7 =1
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If v < 1, then it can be shown that {kah}kheZ is stationary (cf. [10]).
We have the following result, establishing a link between the underlying
parameters and Assumption 2.1.

ProposITION 5.11.  Suppose that v < 1 and wf,j = ]E[ekﬂ-ekd-] satisfies

€ . .y —2—6 el .
7641 < C(log i — jl) §>0, if li—j| > 2.
Then {Xlg,h}k cz.nen meets Assumptions (T1) and (S3).

In the Supplement, we additionally discuss time series that arise as it-
erated random functions. Moreover, as in the univariate case, many more
examples can be constructed based on the vast time series literature (cf. [26,
30, 45]). Also note that any combination of the previous examples fulfills
Assumption 2.1. This means that in one coordinate we may have a GARCH
model, but in another coordinate, the process has a linear dynamic, and so
on.

6. Empirical results and applications. In the empirical part of the
paper, we first discuss the implications and relevance of our assumptions for
real data sets. We then move on to the computation of critical values. In the
third part, we asses the accuracy and behavior of SAg in a small simulation
study. In the Supplement, the S & P 500 companies over a period of one
year, with a particular emphasis of detecting companies with an unusual
behavior.

6.1. Assumptions and real data. The necessary assumptions of Theorem
2.5 can be divided into temporal and spatial conditions. Assumption 2.1
concerns temporal dependence, and is standard in the literature (cf. [51]).
We therefore focus on the spatial conditions, in particular (S3). This con-
dition implicitly assumes that the coordinates of the data-vector Xj can
be ordered such that two coordinates X} ; and X}, ; become less dependent
as the difference |i — j| increases. In many cases, the data at hand already
has a natural ordering with corresponding weak spatial dependence. Such
examples can be found in the ever growing literature on high dimensional
covariance estimation (cf. [12]), where spatial dependence is modelled (or
expressed) by a banding or block-wise structure of the matrix. Note that
in this case, the order of the coordinates is essential for the covariance es-
timator and needs to be specified in advance. In our setup, however, the
advantageous order need not be known explicitly to the practitioner due to
the maximum statistic.
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n = 100 n = 250 n = 500 numerical
d 100 250 500 | 100 250 500 | 100 250 500 | 100 250 500
qdo.9 1.83 1.93 2.00 | 1.88 1.99 2.07 1.9 2.02 210 | 1.95 205 2.14
do0.95 1.91 2.00 2.10 | 1.97 207 215|199 210 2.19 | 2.03 215 222
qo.evs | 1.98 2.07 215 | 2.05 215 222 | 2.08 219 228 | 212 221 230
q0.99 2.07 217 224 | 215 225 231|219 230 236 | 222 232 240
TABLE 1

Parametric bootstrap. Sample size n € {100,250, 500}, dimension d € {100,250, 500}.

If a spatial condition like (S3) cannot be assumed to hold (see Example
5.6), we can use the bootstrap procedures from Section 4. However, at least
some preliminary considerations should be made, see the short discussion
in Section 4.3. One way to check whether the permutation bootstrap is
necessary is by means of a PCA. The literature on factor models provides a
simple heuristic test (cf. [17]) in this direction. Compute the largest empirical
eigenvalue \; of Athe empirical correlation matrix f]d. In the presence of a
common factor, A; will explode with rate d, i.e;

(6.1) liminf A;/d > C >0 as.
d—00

Hence if A, /d is small, a common factor is rather unlikely or its overall
influence very weak, and a bootstrap is not necessary. As a final remark, let
us mention that if controlling the Type I error is essential, the parametric
bootstrap is highly recommended as a first tool for inference. The empirical
results regarding the bootstrap in Section 6.3.2 reveal that the behavior may
be significantly influenced by the choice of the number of blocks L and the
connected size K, which makes controlling the Type I error not so easy.

6.2. Critical values. Deriving reasonable critical values for extreme value
statistics is a delicate issue. The root of the problem typically lies in the
slow convergence rate of extreme value statistics. In our case, the domain
of attraction is the Gumbel distribution, and the rate of convergence (for
Gaussian random variables) is no better than O(logn™'), see [29]. Hence
using the normalizing sequences eg, fg given in Theorem 2.5 may not be
the best thing to do. On the other hand, as is demonstrated by Proposition
2.7, approximative critical values can either be obtained by a parametric
bootstrap or numerical computations. In principle, there are two methods
for obtaining critical values in case of the parametric bootstrap.

(a) Simulate maxj<p<q BZ, directly.
(b) Estimate F,(z) = P(BZ, < z), and obtain the critical values via
1 —a=F,(za)%
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Method (b) is more flexible and was used to obtain the results. The corre-
sponding critical values are tabulated in Table 1. A total of 106 MC-runs was
used to compute each critical value. Generally speaking, the quantiles ob-
tained by numerical computations (Table 1, column 'numerical’) are larger.
This can be explained by the fact that in the 'discrete’ version Bg 5, the max-
imum is taken over the set {1,...,n}, whereas in the limit B, the supremum
is taken over the whole interval [0, 1], which is a larger set, and hence leads
to this relation. In case of the permutation bootstrap, very similar results
are obtained in the same Gaussian setup. Empirical evidence for the valid-
ity of the permutation bootstrap in the presence of dependence and change
points is given in Section 6.3.2, where critical values are tabulated in Table
7.

6.3. Simulation Study. In this subsection, we investigate the Type I er-
ror and power of the estimator S§ in a small simulation study. We consider
estimates originating from the parametric as well as the permutation boot-
strap. To assess the power, several alternatives are considered: we insert
artificial changes in certain coordinates h at 7, € {(2i +1)/10}, 0 < < 4
with size §/10 where ¢ € {0, 0.25,0.5,0.75, 1}. We then study the behavior
and estimation accuracy on the sets

S5 =85, 85,855 W85, WSSs,
where
Si;={hesSi: meli-1)/5i/5)}, 1<i<5.

Note that this means that we check whether the test detects a change and
also classifies the time of change correctly. As a measure of comparison, we
evaluate the relative estimation accuracy (in %) as

E[|85, NS5,

Tai = }Sg,i‘ x 100, 1<:<5,

where the mean E chcl ZﬂSﬁH is estimated from the overall simulated sample.
This gives an accurate measure of the performance of the test procedure. We
also consider the coordinatewise Type I error, described by the probability

T, = P(he SN S4), heSa

Note that if {Xk’h}kGZ helN is a stationary random field (which is the case
in all of our simulations), then TI; is the same for all h € S; and can be
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written as

To allow for reproducibility and transparency, all simulations use exactly
the same random seed, and also the sets S, remain the same. This implies
that for n, d fixed, the Type I error TIj remains the same for all §. Natural
exceptions are only when § = 0 or the long run simulations in Tables 5
and 6 concerning the bootstrap results. The number of change points for
each S(‘ii is set to 10 for d = 100 and 15 for d = 250. This gives a total
amount of changes ‘5f00’ = 50 and ‘8550’ = 75. As sample size, we consider
n € {100,250} and 1000 MC runs for each setting, unless stated otherwise.
We use two different models for our simulations, namely Autoregressive and
Factor models. In case of the Factor model, we also investigate the behavior
of the bootstrap Algorithms 4.5 and 4.7.

6.3.1. Autoregressive models. We use the following model. We take Y} 5,
as an MA(100) process

99
(6.2) Yy = Z Qi€pni, i =0.1li|7> and e ~ N (0, 82), s =0.1.
=0

We then consider the ARMA(2,2) model
(6.3)  Xpp=02X5 15 —03Xp_0p —0.1Yp +02Y,1p 1<h<d

Note that we stick to the same model in each coordinate, which makes
the comparison and analysis easier and more transparent. Throughout this
section, the nominal level of all tests is a = 0.05, i.e; we always use the
corresponding quantiles qg.g5. We first analyze the parametric bootstrap.
The corresponding results are given in Tables 2 and 3. Note that in both
Tables, the row with é = 0 corresponds to the empirical levels of the test.
The Type I error is slightly different from the cases where 6 > 0 (not visible
due to rounded values), which is due to the fact that Sy = {1, ey d} if§ =0,
and Sg C {1, . ,d} otherwise. Observe that small changes are found with
difficulty if the sample size is small, and this effect naturally gets amplified
in higher dimensions. The power for bigger samples/changes is however very
reasonable. As expected, the test loses power if the time of change 75, moves
away from the center 1/2. Unreported simulations exhibit a similar behavior
in case of GARCH-sequences, or tests for changes in the second moment or
variance.
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Parametric d = 100 Parametric d = 250
0 7"3,1 7’3,2 7’3,3 7'2,4 7”3,5 TI;, 7"2,1 7"2,2 7”2,3 7“3,4 "“3,5 TI;,
0 - - - - - 2.01 - - - - - 1.23
0.025 | 0.19 246 6.67 224 011 2.01 | 006 143 5.05 1.76 0.06 1.23
0.05 | 0.74 13.1 281 12,5 055 2.01 | 037 9.97 228 9.87 0.27 1.23
0.075 | 2.54 388 584 380 1.8 2.01 | 1.52 323 51.6 30.7 0.95 1.23
0.1 721 67.2 825 658 4.61 201|503 61.2 773 598 290 1.23
TABLE 2
Sample size n = 100, dimension d € {100,250}, TI; = TI, x 100, = 0.05, 7.
Parametric d = 100 Parametric d = 250
4 Tan  Tae Tz Tda  Tas LI, | ran  ras  Tas  raa  ras  TL
0 - - - - - 0.94 - - - - - 0.50
0.025 | 0.04 4.96 13,9 5.02 0.04 0.94 | 0.02 3.22 10.2 3.52 0.03 0.50
0.05 | 0.76 425 65.8 41.5 056 094 | 0.25 34.1 587 334 0.27 0.50
0.075 | 5.35 84.7 955 839 4.08 094 | 198 79.6 93.6 79.9 228 0.50
0.1 19.7 96.3 99.6 956 169 094 | 10.7 96.2 99.6 956 11.4 0.50
TABLE 3

Sample size n = 250, dimension d € {100,250}, TI}; = TI; x 100, a = 0.05, 77.

Next, we briefly discuss a possible effect in the choice of variance estima-
tor. In the previous results, estimator o} was used, see Section 3 to recall the
definition. As one comparison, we now use 0. An interesting phenomena
appears. We note that o yields the better results if 7, = 1/2, and o7 if the
change is more away from 1/2. This is a little surprising, since one can show
that for large enough n, o} has the smaller MSE. A possible explanation
could be the quality of estimation of 7, and the actual choice of B..

We now turn to the behavior of the bootstrap procedures, more precisely,
we consider Algorithms 4.5 and 4.7, where we ’illegally’ set t = 0. We use
the same model (6.3). In order to obtain an overall feasible computational
time, we restrict ourselves to the setup where n = 100, d = 100 and we only
used 100 overall simulations for comparison (note: comparing the parametric
results indicates that there actually is not much difference between 100 or

Parametric d = 100 Parametric d = 250

g 7’3,1 7”3,2 7“3,3 T§,4 T§,5 TI;, 7“3,1 7“3,2 7"161,3 7"3,4 T3,5 TI;,

0 - - - - - 1.51 - - - - - 0.99
0.025 | 0.12 8.12 16.6 8.64 0.06 1.42 | 0.04 6.25 126 6.47 0.05 1.01
0.05 1.58 53.7 64.1 54.0 126 1.42 | 0.80 480 57.5 484 0.68 1.01
0.075 | 9.12 88.6 90.2 &88.6 856 1.42 | 595 &87.5 85.6 86.8 593 1.01
0.1 29.5 96.8 979 964 294 142 | 235 96.2 956 96.1 232 1.01

TABLE 4

Sample size n = 250, dimension d € {100,250}, TI}; = TI, x 100, a = 0.05, 77,.
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Bootstrap II d = 100 Parametric d = 100

c c c * c c c c Cc *
4 Tda,1  Td2 Td,3 Tda Tds TI}, Tdg,1  Td2 Td,3 Tda Tds TI},

- - - - - 3.12 - - - 1.86
0.025 | 0.3 3.3 8.7 32 02 32 |03 26 6.6 1.8 01 1.86
0.05 1.3 186 346 181 1.0 352 | 08 128 264 11.6 06 1.86
0.075 | 3.6 482 684 465 33 3.76 | 2.7 393 593 372 16 186
0.1 87 720 8.9 701 62 29 | 6.2 658 826 643 50 1.86

TABLE 5
Sample size n = 100, dimension d = 100, TI; = TI, x 100, o = 0.05, 77},.

Bootstrap III d = 100 Parametric d = 100
c c c c c * c c c c *
4 g1l Tae Tas  Taa Tas  TIy | ma1  Tas  Tras  raa  ras TI

0 - - - - - 2.3 - - - 1.86
0.025 | 0.3 2.9 7.3 25 01 24 | 0.3 2.6 6.6 1.8 0.1 1.86
0.05 | 0.8 152 300 140 08 252| 08 128 264 116 06 1.86
0.075 | 3.0 43,5 63.0 40.7 22 266 | 2.7 393 593 372 16 186

0.1 93 705 8.0 688 59 292 62 658 826 643 50 1.86

TABLE 6
Sample size n = 100, dimension d = 100, TI; = TI, x 100, « = 0.05, 77,.

1000 simulations). Moreover, we only use M = 100 Monte-Carlo runs for the
bootstrap procedures. Arguably, this might be too low to obtain a necessary
accuracy for a 95% quantile, but it turns out that this is not the case. We
choose L = 25 as the number of blocks, and thus K = 4 for the block length.
The results of Algorithm 4.5 are given in Table 5. Even though we only set
M = 100, we get slightly better results than the parametric procedure.
Observe that the results are also conservative. The behavior of Algorithm
4.7 in Table 6 is slightly worse, but overall very similar.

6.3.2. Factor models and number of block length effect. We consider a
factor model that shows that block and parametric bootstrap may behave
very differently. As explained in Example 5.6, this is the case if overall
dependence on certain factors is present. To allow for a comparison to the
autoregressive model, we use the same model for the general dynamics. We
take Y, 5 as an MA(100) process

99
(6.4) Y= Z Qi€pni, i =0.1li|7> and e ~ N (0, 52), s =0.1.
=0

We then consider the ARMA(2,2)-Factor model

Xk,h =apkF; + 0-2Xk—1,h — 0.3X/€_27h — 0~1Yk,h + 0.2Y/§_17h, 1< h<d,
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Bootstrap ar = 0.1

Bootstrap ar = 0.3

n = 250 n = 250 n = 250 n = 250
K xL 5 x 50 10 x 25 5 x 50 10 x 25
d 100 100 100 100
Algorithm II 11T II I1I I III 1I III
do.9 1.69 1.73 | 1.69 1.77 | 1.47 149 | 1.44 1.51

qo.95 1.75 183 | 1.78 1.87 | 1.56 1.59 | 1.56 1.61

q0.975 1.81 1.89 | 191 194 | 169 1.68 | 1.63 1.75

q0.99 1.89 195 | 2.05 214 | 1.82 1.80 | 1.73 1.85
TABLE 7

Bootstrap Alg. II, III. Sample size n = 250, dimension d = 100, 6 =0, ar € {0.1,0.3}.

where ap > 0 is a constant, and the factors {F k} ez Are IID standard Gaus-
sian random variables. The primary focus in this section is to demonstrate
the effect of high spatial dependence and the size L on the quantiles. The
pronounced effect of the factors is visible in Table 7, where the critical values
of Algorithms 4.5 and 4.7 are tabulated for ap € {0.1,0.3}. A value of § =0
and M = 1000 were used in the simulations. We see that the factor has
an expected significant reciprocal impact on the quantiles, i.e; larger factors
result in lower quantiles. We also observe that in this setup, the number of
blocks L € {25,50} does not have a notable impact. A slight outlier seems
to be the results of Algorithm 4.5 (II) in case of L = 25. Also note that
particularly the results about the more extremal quantiles qg.975 and qg.g9
have to be considered with care, since 'only’ M = 1000 was used.

Unreported simulations show that the power and size are different from
the autoregressive model. Particularly if ap is large, (e.g.: ap = 0.3), one
has to consider a larger size of change § > 0.1 in order to obtain visible
effects. The reason for this loss in power is the (considerably) larger long-run
variance oy, in this model, induced by the factor loading ap. More precisely,
since we scale by a (larger) consistent estimate of oy, changes become harder
to detect (see also (3.2)).

Finally, we take a look at Table 8, which reveals that the choice of L may
have a serious impact. Here, we set ar = 0 to allow for a comparison to
the results in Sections 6.2 and 6.3.1. We observe that raising K only by one
from K =4 to K =5 leads to much larger quantiles. In view of the results
presented in Section 6.3.1, these would lead to a high loss in power. The
setup itself appears rather harmless, we note however that d/n = 1 have the
same size, unlike to the situation in Table 7 where d/n = 2/5. It appears
that at least if d/n > 1, block bootstrap procedures based on multipliers
can require careful tuning. Particularly if d > n, the parametric bootstrap
seems to be the more stable option.
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n = 100 n = 100
K x L 5 x 20 4 x 25
d 100 100
Algorithm 11 111 1I 111
do.9 1.91 204 | 1.75 1.81

qo.95 2.08 223|189 1.92

q0.975 225 244 | 1.95 2.02

Jo.99 2.38 268 | 2.05 2.11
TABLE 8

Bootstrap Alg. II, III. Sample size n = 100, dimension d = 100, 6 =0, ar = 0.
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7. Proofs. All proofs together with additional results are given in detail
in the Supplement.

SUPPLEMENTARY MATERIAL

the Supplement: Data example, additional examples and proofs.
(doi: COMPLETED BY THE TYPESETTER; .pdf).
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