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Abstract: Narendra-Shapiro (NS) algorithms are bandit-type algorithms
that have been introduced in the sixties (with a view to applications in
Psychology or learning automata), whose convergence has been intensively
studied in the stochastic algorithm literature. In this paper, we adress the
following question: are the Narendra-Shapiro (NS) bandit algorithms com-
petitive from a regret point of view? In our main result, we show that some
competitive bounds can be obtained for such algorithms in their penalized
version (introduced in ?). More precisely, up to an over-penalization mod-
ification, the pseudo-regret R̄n related to the penalized two-armed bandit
algorithm is uniformly bounded by C

√
n (where C is made explicit in the

paper). We also generalize existing convergence and rates of convergence
results to the multi-armed case of the over-penalized bandit algorithm, in-
cluding the convergence toward the invariant measure of a Piecewise Deter-
ministic Markov Process (PDMP) after a suitable renormalization. Finally,
ergodic properties of this PDMP are given in the multi-armed case.

Keywords and phrases: Regret, Stochastic Bandit Algorithms, Piecewise
Deterministic Markov Processes.

1. Introduction

1.1. Generalities and objectives

The so-called Narendra-Shapiro (NS) algorithm is a bandit-type algorithm which
has been introduced in ? and developed by ? as a linear learning automata. Such
algorithms have been primarily considered by the probabilistic community as

??Authors are indebted to Sébastien Gerchinovitz and Aurélien Garivier for numerous
motivating discussions on the subject.
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an interesting benchmark of stochastic algorithm. An almost complete histor-
ical overview on recursive markovian methods may be found in the seminal
contributions of ? or ?.

As a growing field of interest, many different bandit procedures have been
developed recently and it is necessary to briefly recall what kind of d-armed ban-
dit algorithm we will study in the sequel. Let us consider a slot machine with
arms A1, . . . , Ad. When playing arm Ai, the probability of success is pi ∈ (0, 1)
(we get 1 coin with probability pi and none with probability 1− pi). Of course,
a gambler is not aware of the value of p = (pi)1≤i≤d and he wants to de-
sign a strategy to locate the optimal arm (for instance A1 if we assume that
p1 > pj ,∀j 6= 1). The Linear Reward Inaction (LRI) procedure defines a ran-
dom Markov sequence of Rd, which will be denoted (Xn)n≥1 and Xi

n represents
at step n the probability to select the arm Ai. A common expected task of
bandit algorithms is to determine which arm is the most profitable. More pre-
cisely, an algorithm is an infallible bandit algorithm if it converges (at least in
a probabilistic sense) toward the best arm as the number of attempts tends to
infinity.

As mentioned before, stochastic multi-armed bandits are known in the field
of stochastic approximation as a very simple example of recursive approximation
scheme where the limit behaviour cannot be trivially described through the
ODE methods mainly as a result of the presence of several noiseless traps. For
instance, results of ? cannot be conveniently applied in this context. Important
advances on the understanding of NS-bandit algorithms have been obtained in ?
where an explicit dissection of the possible limiting behaviour of this algorithm
is found and necessary and sufficient conditions of infallibility are given (see also
? for a study on the convergence rates of bandit algorithms).

More recently, stochastic bandit algorithms have received an outstanding
growing attention of statisticians and machine learning researchers, certainly
owing to its widespread range of applications, for instance in game theory, statis-
tics, signal processing, clinical trials or finance and its relevancy for Big Data
problems. A pioneering work of ? introduced the problem of the optimization
of the expected reward of the algorithm, by using forwards induction policy as
it is the case by the Markov algorithms quoted above. In most of the applica-
tions reminded above, the goal to maximize the rewards of the forecaster (and
therefore its cumulative gain) appears quite naturally. Of course, the optimal
strategy that would always select the arm Ai∗ that maximises the probability
of success, is not realistic since the probabilities (p1, . . . , pd) are unknown. In
order to have a good estimate of the efficiency of the algorithm, one may first
study the asymptotic rate of convergence of the algorithm when n −→ +∞. But
for practical purpose with a finite number of observations (in the framework of
clinical trials for instance), one may prefer to focus on the so-called regret of
the algorithm. It is defined in ? as the loss, after a finite number of attempts,
between the chosen policy and the best possible one, which consists in testing
the best arm Ai∗ . Hence, a natural way to assess the performance of a policy
is to compute its regret and a good algorithm aims to minimize its expected
regret after n steps (see Subsection ?? for a precise definition). There exists a
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recent literature on statistical works that aim to optimize sequencial allocation
procedures in several contexts: for online-regression (see ?), adaptive routing
(?) or many other applications. A complete state of the art may be found in the
book ? and the references therein. It is well known that the optimality of these
several policies rely on an exploration-exploitation tradeoff as pointed in ? and
some recent sophisticated statistical procedures use confidence bounds to define
suitable optimal (?, ?, ?).

In some sense, the penalized bandit algorithm developed in ? also relies
on an exploration-exploitation paradigm (see Subsection ??: the exploitation is
given by the recursive reinforcement learning and the exploration relies on the
penalization term. Note that when the penalization term is omitted, the NS-
algorithm does not possess a natural exploration term, which implies some real
difficulties to ensure infallibility. For NS-algorithms, convergence and asymptotic
rates have been deeply studied in ? and ? for the crude two-armed NS-algorithm
and in ? for the penalized (two-armed) NS-algorithm (see below for background
on crude and penalized NS-algorithms). But, to the best of our knowledge, there
is no result about the regret in this context.

Thus, we propose in this paper to adress the following questions: are NS-
algorithms competitive from a regret viewpoint and in the case of positive an-
swer, what are the associated upper-bounds ?

Due to a lack of robustness (or more precisely to a too much constraining con-
dition of infallibity), it seems that a crude NS-algorithm can not be competitive
from a regret viewpoint. This is the purpose of Section ?? and ?? and ?? where
we recall the definition of crude NS-algorithms and some basics on the regret.

Then, we mainly focus on the penalized NS-algorithms whose definition is given
in Section ??. In this section, we also define over-penalized NS-algorithms which
are slightly more penalized algorithms than the previous ones. From a theoret-
ical point of view, this slight modification accentuates the robustness of the
algorithm, which plays a non negligible role for the establishment of uniform
upper-bounds for the pseudo-regret. It can also be mentioned that, by con-
struction, these algorithms generate “anytime” bandit policies, i.e. that do not
depend on the horizon, which may be a very important feature of bandit algo-
rithms for practical applications.

Section ?? is devoted to the main results: in Theorem ??, we establish an upper-
bound of the pseudo-regret R̄n of the over-penalized algorithm in the two-armed.
This upper-bound appears to be uniformly minimax with respect to all available
bandit policies (see ? for a complete state of the art on the regret in various
frameworks, including our). A result is also given for the “original” penalized
algorithm but the bound is not completely uniform.

In this section, we also extend some existing convergence and rate of convergence
results of the algorithm to the multi-armed case. In the “critical” case (see
below for details), the normalized algorithm converges in distribution toward a
PDMP (Piecewise Deterministic Markov Process). In the two-armed case, we
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also provide a sharp study of its convergence to equilibrium by using a method
developed in ?.

The rest of the paper is devoted to the proofs of the main results: Section ??
presents the proofs of the regret analysis, Section ?? establishes the weak limit
of the rescaled multi-armed bandit algorithm. At last, Section ?? gathers all the
proofs of the ergodicity rates.

2. General settings and definitions

2.1. Crude NS-algorithm

Before going further, let us recall the mechanism of the NS-algorithms for multi-
armed bandit problems with d arms. We first define d independent infinite se-
quences of i.i.d. Bernoulli random variables Ai = (Ain)n≥1 where Ain ∼ B(pi)
where n ≥ 1 and i ∈ J1; dK. Each Ain represents the test of the arm i at step
n, its success occurs with the probability pi = P(Ain = 1) and the optimal arm
corresponds to the highest value of pi. In the sequel, we will assume that only
one arm is optimal (i.e. reaches the maximal value max1≤i≤d pi) and without
loss of generality, we define A1 as the optimal one.

Given any real vector p = (p1, . . . , pd) ∈ (0, 1)d, the crude NS-algorithm
is a LRI algorithm that defines recursively a sequence of discrete probability
measures (Xn)n≥1 on {1, . . . , d}. This sequence (Xn)n≥1 is a Markov chain and
this procedure is recalled in Algorithm ??.

Algorithm 1: Multi-armed NS algorithm

Input: p = (p1, . . . , pd) ∈ (0, 1)d, Step size sequences (γn)n≥1 of (0, 1)N

Initialization: Initialize the probability vector X0 =
(

1
d , . . . ,

1
d

)
∈ Sd.

for n = 1 to N do
• Sample In ∈ {1, . . . , d} with respect to the distribution Xn−1.
• Compute the reward of the chosen arm In, denoted AInn ∈ {0, 1}.
• Update the probability distribution as follows:

Xj
n = Xj

n−1 + γn

[
δIn(j)−Xj

n−1

]
AInn (1)

where δk(j) is equal to 1 if k = j and 0 otherwise.

end

The behaviour of (??) is rather simple: the arm In is selected at step n with
the current distribution Xn and is evaluated. If the arm fails, the weights are
kept unchanged. In case of success, the weight of the arm In is increased by
γn × (1 − Xn(In)), where 1 − Xn(In) represents the remaining weight spread
on the d− 1 other arms. In the meantime, other weights of the other arms are
decreased by a factor (1− γn).
In the two-armed case, the convergence of Algorithm ?? has been deeply studied
in ? and ?. Without recalling these results, let us remark that :
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• On the one hand, some non adaptive sequences of (γn)n≥1 may lead to a
very fast convergence to the target but in that case, a strong dependence
between (γn)n≥1 and the probabilities of success p1 and p2 is required (i.e.
Algorithm ?? is not adaptive here). In particular, without any assumptions
on (p1, p2) and (γn)n≥1, the algorithm is fallible when its rate is fast: there
exists some values of p1 and p2 such that there is a positive probability
that the NS algorithm selects the wrong arm.

• On the other hand, the crude NS-algorithm may be infallible without
conditions on p1 and p2 but in this case, the rate of convergence is very
bad. According to the results of ?, the best (always) infallible case is
obtained for γn = 1/n and the associated rate is about n−(p1−p2).

As we will see below, these remarks will imply that the crude NS-algorithm can
not be competitive from a regret point of view.

2.2. Regret of multi-armed bandit procedures

In bandit games, one considers some predictions where at each stage t between
step 1 and step n, a forecaster chooses an arm In, receives a reward AInn and
then can use this information to choose the next arm at step n+1. As introduced
in the seminal work of ?, the rewards are sampled independently from a fixed
product distribution at each step t and a natural way to assess the performance
of the policy is to compute its regret with respect to the best action. Using our
notation Ain introduced in paragraph ??, the regret Rn is the random variable
defined as

Rn := max
1≤j≤d

n∑
k=1

[
Ajk −A

Ik
k

]
.

where (Ajk)k,j is a sequence of independent random variables. A good strategy
corresponds to a selection procedure that minimizes the expected regret ERn,
optimal ones are referred to as minimax strategies. A policy that yields an
expected regret of the order inf supERn (where the supremum is considered
over all parameters p ∈ (0, 1)d and the infimum is considered over all possible
strategies for this game) are thus minimax. For a general overview on minimax
algorithms for several kind of sequential games, we refer to ? and ?. The former
expected regret cannot be easy handled and is generally replaced in statistical
analysis by the pseudo-regret defined as

R̄n := max
1≤j≤d

E
n∑
k=1

[
Ajk −A

Ik
k

]
.

Next result describes how these two quantities are related.

Proposition 2.1. Consider a stochastic bandit problem with Bernoulli rewards
described by the vector p. We have (uniformly in p)

0 ≤ ERn − R̄n ≤
√
n log d

2
.
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Furthermore, for every integers n and d and for any (admissible) strategy,

E[Rn] ≥ 1

20

√
nd (uniformly in p).

We refer to Proposition 34 of ? for a detailed proof of the first property and to
Theorem 5.1 of ? for the second one. As mentioned in the result, the bounds
are uniform in p. The rate orders are strongly different if a dependence in p is
authorized.

This result shows in particular that it is reasonable to focus on upper-bounds for
the pseudo-regret in order to study those of the “true” regret. Note that such
bounds exist in the literature. For example, it is shown in ? that the MOSS
policy leads to a uniform upper-bound of order 49

√
nd for the pseudo-regret.

2.3. Crude NS algorithm from a regret point of view

We now discuss on the regret of Algorithm ??. One can instantaneously re-
mark that the infallibility of the procedure (convergence in probability to the
good target) is in fact a necessary condition for the efficiency of the algorithm
according to the regret point of view. In other words, when the algorithm is
fallible, a moment thought leads to the conclusion that the growth of the regret
with n is linear and is absolutely not competitive (minimax uniform rate is of
the order

√
nd up to multiplicative constants). Taken together, this last remark

and paragraph ?? show that the crude NS Algorithm ?? cannot be convenient
to minimize the regret. We are thus naturally driven to focus on the penal-
ized NS-algorithm introduced in ?, which has some better adaptive convergence
properties.

2.4. Penalized and Over-penalized NS-algorithm

The main difference between the crude NS-algorithm and its penalized version
introduced by ? relies on the exploitation of the failure of the selected arms.
Algorithm ?? only uses the sequence of successes to update the probability
distribution Xn over the d arms: the value of Xn is modified (and increased)
iff AInn = 1. In the opposite, the penalized NS-algorithm of ? also uses the
information carried by the failure of the arm In and can decrease the value of
the probability of the selected arm. Note that the penalized procedure of ? is
proposed only in the case of d = 2 arms. In that case, xn := Xn(1) (resp. 1−xn)
is the probability to choose the arm 1 (resp. the arm 2) at time t. The update
formula of (xn)n≥1 is

xn = xn−1 + γn [δIn(1)− xn−1]AInn

−γnρn [xn−1δIn(1)− (1− xn−1)δIn(2)] (1−AInn ) (2)

In case of success of the selected arm In, this algorithm mimics the crude NS-
algorithm (increase of Xn(In) by γn×(1−Xn(In)) and decrease of other weights

imsart-generic ver. 2011/12/06 file: GPS_17_02_2015.tex date: February 18, 2015



/Regret bounds for Narendra-Shapiro bandit algorithms 7

by a factor (1 − γn)). But in case of failure, the weight of the selected arm is
now decreased by a factor (1 − γnρn) (whereas the probability of drawing the
other arm is increased of the corresponding quantity).

We will see that this algorithm possesses some good properties from a regret
point of view. However, we will also find that in some cases (when p1 and p2

are too close to 1), the penalty becomes too small to derive (theoretically) some
uniform upper-bounds for the pseudo-regret. More precisely, if one assumes that
p1 > p2, the capacity of (Xn)n≥1 to get out of a neighborhood of 0 decreases with
p2 and can not be controlled uniformly. This is why we introduce in this paper
a slightly “over-penalized” algorithm in order to bypass this lack of uniformity.
For a given σ ∈ [0, 1], (xσn)n≥0, is the algorithm defined by:

xσn = xσn−1 + γn
[
δIn(1)− xσn−1

]
AInn

−γnρn
[
xσn−1δIn(1)− (1− xσn−1)δIn(2)

] (
1−AInn Bσn

)
(3)

where (Bσn)n is a sequence of i.i.d. random variables with a Bernoulli distribution
B(σ), independent of (Ajn)n,j and such that for all n ∈ N, Bσn and In are also
independent. Writing

1−AInn Bσn = 1−AInn +AInn (1−Bσn),

one should understand the over-penalization as (slightly) penalizing a successful
arm with a probability σ. The case σ = 1 corresponds to the penalized bandit
introduced in ? described by Equation (??) whereas when σ = 0, the arm is
always penalized when it plays. More precisely, this modification means that
the increment of xσn is slightly weaker than in the previous case.
It should be mention that this overpenalization is an exploration term, which
plays a central role in the exploration-exploitation tradeoff and is a cornerstone
for efficient bandit algorithms (see ? for example). Hence, one should understand
this overpenalization as a completion of the exploration ability of the penalized
bandit: a success is randomly penalized to escape of local traps.
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In the multidimensional case, the algorithm is given by the following procedure:

Algorithm 2: Multi-armed σ-Over-Penalized NS-algorithm

Input: p ∈ (0, 1)d, σ ∈ (0, 1), step size sequences (γn)n≥1 and (ρn)n≥1of
(0, 1)N

Initialization: Initialize the probability vector X0 =
(

1
d , . . . ,

1
d

)
∈ Sd.

for n = 1 to N do
• Sample In ∈ {1, . . . , d} with respect to the distribution Xn−1.
• Compute the reward of the chosen arm In, denoted AInn ∈ {0, 1}.
• Update the probability distribution according to

Xj
n = Xj

n−1 + γn

[
δIn(j)−Xj

n−1

]
AInn

−γnρnXIn
n−1(1−AInn Bσn)

[
δIn(j)− 1− δIn(j)

d− 1

]
(4)

end

Conversely to the two-armed case, we have here to choose how to distribute
the penalty to the other arms. The (natural) choice made above is to divide it
fairly, i.e. to spread it uniformly over the other arms. Note that alternative algo-
rithms (not studied here) could be considered. The penalty could be distributed
proportionally to the probabilities of drawing the other arms for example.

Once again, we will say that the algorithm is over-penalized if σ < 1. When
σ = 1, the algorithm is a multi-armed version of (??) and is referred as the
multi-armed penalized NS-algorithm.

Before stating the main results, one wants to understand what performances
could be reached by the penalized NS-algorithms from a regret point of view.
For the sake of simplicity, we choose to focus on the two-armed penalized NS-
algorithm (xn)n given by (??) and we recall (in a slightly less general form) the
convergence results of Proposition 3, Theorems 3 and 4 of ?.

Theorem 2.1 (Lamberton & Pages, ?). Let 0 ≤ p2 < p1 ≤ 1 and γn = γ1n
−α

and ρn = ρ1n
−β with (α, β) ∈ (0,+∞) and (γ1, ρ1) ∈ (0, 1)2. Let (xn)n be the

algorithm given by (??).

i) If 0 < β ≤ α and α+ β ≤ 1, the penalized two-armed bandit is infallible.

ii) If furthermore 0 < β < α and α+ β < 1, then
1− xn
ρn

−→ 1− p1

p2 − p1
a.s.

iii) If α = β ≤ 1/2 and g = γ1/ρ1:
1− xn
ρn

L−→ µ, where µ is the stationary

distribution of the PDMP whose generator L acts on C1
c (R+) as

∀f ∈ C1
c (R+) L(f)(y) = p2y

f(y + g)− f(y)

g
+ (1− p1 − p1y)f ′(y).
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Now, let us stress that in the two-armed case,

R̄n = p1n− E

(
n∑
k=1

AIkk

)

= p1n− E

(
n∑
k=1

xkp1 + (1− xk)p2

)
= (p1 − p2)E

(
n∑
k=1

(1− xk)

)

= (p1 − p2)

n∑
k=1

ρkE
(

1− xk
ρk

)
. (5)

In particular,

sup
n∈N

E
[

1− xn
ρn

]
< +∞ =⇒ R̄n ≤ C(p1 − p2)

n∑
k=1

ρk, (6)

where C is a constant that may depend on p1 and p2. In order to minimize the
rate of increase of the pseudo-regret, one thus have to minimize the sequence
(ρn)n∈N. By Theorem ??, it seems that the potential optimal choice corresponds
to the one of statement (iii). Indeed, the infaillibility occurs only when α ≥ β
and α+ β ≤ 1 and Equation (??) suggests that β should be chosen as large as
possible to minimize the r.h.s. of (??), leading to α = β = 1/2.
In this case, Equation (??) makes us think that R̄n is of order

√
n, which is

(owing to Proposition ?? and the comments below) the “good” order of con-
vergence from a uniform minimax point of view. Thus, in the two-armed case,
it seems that, in order to obtain a competitive upper-bound, it “remains to re-
place” the convergence in distribution of Theorem ??(iii) by a L1-boundedness
of the sequence ((1−Xn)/ρn)n≥1 and to show that the associated bound leads
to uniform bounds for the pseudo-regret in terms of (p1, p2).

In the other cases where the algorithm is infallible, i.e. in Part (ii) of Theorem
??), the conditions imply that ρn = n−β with β < 1/2. In this case, the algo-
rithm can not be competitive from a regret viewpoint. This is why in the sequel,
we will only focus on the case

γn =
γ1√
n

and ρn =
ρ1√
n
.

It is important to point out that the penalized and over-penalized bandit al-
gorithms are “anytime” policies, meaning that these algorithms are completely
recursive and does not require the knowledge of the stopping horizon n. These
policies do not require the use of a “doubling trick” (see ? Section 2.3 for an ex-
ample of making an “anytime” strategy from a dependent horizon one). At last,
these bandit algorithms are very light and simple to handle from a numerical
point of view.
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3. Main Results

3.1. Regret of the over-penalized two-armed bandit

In this part, we establish some uniform upper-bounds for the two-armed σ-
over-penalized NS-algorithm. Our main result is Theorem ??. Before stating it,
we choose to state a new result when σ = 1, i.e. for the “original” penalized
NS-algorithm introduced in ?.

Theorem 3.1. Let (Xn)n≥0 be the two-armed penalized bandit defined by (??)
with (γ1, ρ1) ∈ (0, 1)2. Then, for every δ ∈ (0, 1), there exists Cδ > 0 such that

∀n ∈ N, sup
(p1,p2)∈[0,1],p2≤p1∧(1−δ)

R̄n ≤ Cδ
√
n.

Remark 3.1. The pseudo-regret of the original penalized-NS algorithm is not
completely uniform. From a theoretical point of view, there is a lack of penalty
when p2 is too large, which in turns generates a lack of mean-reverting effect for
the sequence ((1−Xn)/ρn)n≥1 when Xn is close to 0. Note that this constraint
also appears numerically (see Figure ?? below). Following carefully the proof of
the result, the constant Cδ could be made explicit.

This explains the interest of the over-penalization, illustrated by the next result.

Theorem 3.2. Let (Xn)n≥0 be the two-armed σ-overpenalized bandit defined
by (??) with σ ∈ [0, 1) and (γ1, ρ1) ∈ (0, 1)2.. Then,

(a) There exists Cσ(γ1, ρ1) such that

∀n ∈ N, sup
(p1,p2)∈[0,1],p2<p1

R̄n ≤ Cσ(γ1, ρ1)
√
n.

(b) Furthermore, the choice σ = 0, γn = 2.63ρn = 0.89/
√
n yields

∀n ∈ N, sup
(p1,p2)∈[0,1],p2<p1

R̄n ≤ 31.1
√

2n. (7)

Remark 3.2. Once again, for every σ > 0, Cσ could be made explicit in terms
of γ1 and ρ1. The second bound is obtained by an optimization of this quantity.

In Figure ??, we draw a numerical approximation of n 7→ sup
p2<p1

Rn√
n

for the penal-

ized and over-penalized algorithms. First, remark that the blue curve indicates
that the upper bound “44” in Theorem ?? is not sharp and the over-penalized
algorithms satisfy a uniform upper-bound of the order 0.9×

√
n. This bound is

obtained with σ = 0, and γn = 1√
4+n

= 4ρn (red line in Figure ??), suggesting

that the rewards should always be over-penalized with ρn = γn
4 . At last, the

leading constant is always lower than 9/10 and converges to a limiting value
when n −→ +∞.
As compared to our theoretical results, it seems that the boundedness of Rn/

√
n

also holds uniformly over (p1 > p2) for the standardly penalized one. However,
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this numerical results proves that the over-penalization introduced in the NS-
bandit algorithm is not only a theoretical tool but also leads to competitive
numerical bounds.
At last, we observe that the statistical performance of the KL UCB algorithm
(see e.g. ? and references therein) are slightly better. Our simulations 1 sug-
gest that the regret of the KL UCB algorithm satisfies the uniform bound
Rn ≤

√
n/2, but it is worth noticing that the over-penalized bandit algorithm is

much more faster than the initial UCB algorithm (phenomenon increased when
compared to KL UCB).

comparaison_article.jpg

Fig 1. Evolution of n 7→ sup(p1,p2)∈[0,1],p2≤p1
R̄n√
n

for over-penalized algorithms (continuous

colored line) and penalized algorithms (dashed colored line) and KL UCB (black line).

3.2. Convergence of the multi-armed over-penalized bandit

We start this section by an extension of Theorem ?? of ? to the (over) penalized
algorithm in the multi-armed situation. The first result describes the pointwise
convergence of the over-penalized algorithm.

Proposition 3.1 (Convergence of the multi-armed over-penalized bandit). Con-
sider pd ≤ . . . ≤ p2 < p1 and γn = γ1n

−α, ρn = ρ1n
−β with (α, β) ∈ (0,+∞)

and (γ1, ρ1) ∈ (0, 1)2. Algorithm ?? with σ ∈ (0, 1] satisfies

i) If 0 < β ≤ α and α+ β ≤ 1, then limn→+∞Xn = (1, 0, . . . , 0) a.s.
ii) If furthermore 0 < β < α and α+ β < 1, then

∀i ∈ {2, . . . , d}, Xi
n

ρn
−→ 1− σp1

(d− 1)(p1 − pi)
a.s.

Proposition ?? provides a sharp description of the weak convergence of the nor-
malized algorithm if we consider Yn,j =

Xn,j
ρn

. It establishes that (Yn,.)n≥0 con-

verges toward a dynamic of a Piecewise Deterministic Markov Process (PDMP
for short in what follows).

Proposition 3.2 (Weak convergence of the normalized algorithm). Under the
assumptions of Proposition ??, if α = β ≤ 1/2 and g = γ1/ρ1, then

1

ρn
(Xn,2, . . . , Xn,d)

L−→ µd,g,

where µd is the (unique) stationary distribution of the Markov process whose
generator Ld acts on compactly supported functions f of C1((R+)d−1) as follows:

1Performed with the Matlab package available on the website http://mloss.org/

software/view/415/

imsart-generic ver. 2011/12/06 file: GPS_17_02_2015.tex date: February 18, 2015

http://mloss.org/software/view/415/
http://mloss.org/software/view/415/


/Regret bounds for Narendra-Shapiro bandit algorithms 12

Ldf(y2, ..., yd) =
∑

i=2,...,d

piyi
g

(f(y2, ..., yi + g, ..., yd)− f(y2, ..., yi, ...yd))

+
∑

i=2,...,d

(
1− σp1

d− 1
− p1yi)∂if(y2, ..., yd). (8)

3.3. Ergodicity of the limiting process

In this section, we focus on the long behavior of the limiting Markov process
which appears (after normalization) in Proposition ??. As mentioned before,
this process is a PDMP and its long time behavior can be sharply studied with
some arguments in the spirit of ?. We also learned the existence of a close study
in the PhD thesis of Florian Bouguet (personal communication). Such properties
are stated for both the one-dimensional and the multidimensional cases.

3.3.1. One-dimensional case

Setting

a = 1− p1, b = p1, g =
γ1

ρ1
, c =

p2

g
,

the generator L given by Proposition ?? may be written for any C1-function
f : R∗+ → R as

Lf(x) = (a− bx)f ′(x)︸ ︷︷ ︸
deterministic part

+ cx︸︷︷︸
jump rate

(f(x+ g)− f(x))︸ ︷︷ ︸
jump size

(9)

In what follows, we will assume that a, b, c and g are positive numbers. On the
one hand, the deterministic flow that guides the PDMP between the jumps is
given by {

∂tφ(x, t) = (a− bx)∂xφ(x, t)
φ(x, 0) = x ∈ R∗+

so that
φ(x, t) =

a

b
+
(
x− a

b

)
e−bt.

Hence, if x > a
b (resp. x < a

b ), t 7→ φ(x, t) decreases (resp. increases) and
converges exponentially fast to a

b .

On the other hand, the PDMP possesses some positive jumps occuring with a
Poisson intensity “c.x”, whose size is deterministic and equals to g.
From the finiteness and positivity of g, it is easy to show that for every positive
starting point, the process is a.s. well-defined on R+, positive and does not
explode in finite time. The fact that the size of the jumps is deterministic is
less important and what follows could be easily generalized to a random size g
(under adapted integrability assumptions). In Figure ?? below, some paths of
the process are represented with different values of the parameters.
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Fig 2. Exact simulation of trajectories of a process driven by (??) when g = 0.1, a = 0.2, b =
0.8, c = 0.2 (top left) g = 2, a = 0.2, b = 0.8, c = 0.1 (top right), g = 2, a = 0.9, b = 0.9, c =
0.15 (bottom left) and g = 2, a = 0.8, b = 0.2, c = 0.05 (bottom right).

3.3.2. Convergence results

As pointed in Figure ??, the long-time behavior of the process certainly depends
on the relation between the mean-reverting effect generated by “−bx” and the
frequency and size of the jumps.

Invariant measure The process admits a unique invariant distribution if
b − cg > 0. Actually, the existence is ensured by the fact that V (x) = x is a
Lyapunov function for the process:

∀x ∈ R∗+, LV (x) = a− (b− cg)x = a− (b− cg)V (x)

Among other arguments, the uniqueness is ensured by Theorem ?? (the conver-
gence in Wasserstein distance of the process toward the invariant distribution
implies in particular its uniqueness). We denote it µ∞ in what follows. It could
be also shown that Supp(µ∞) = (a/b,+∞), that the process is strongly ergodic
on (a/b,+∞) (see e.g. ? for background) and that if b − cg > 0, the process
explodes when t→ +∞ (this case corresponds to the bottom left of Figure ??).
Finally, let us remark that for the limiting PDMP of the bandit algorithm,

b− cg = p1 − p2 = π

and thus, the ergodicity condition coincides with the positivity of π.
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Wasserstein results We aim to obtain rates of convergence results for the
PDMP toward µ∞ for two distances, namely the Wasserstein distance and the
total variation distance. There exist rather different ways to obtain such re-
sults using coupling arguments or PDEs. Here, we use coupling techniques fol-
lowing the work of ? and ?. Before stating our results, let us recall that the
p-Wasserstein distance is defined for any probability measures µ and ν on Rd
by

Wp(µ, ν) = inf
{
E ((X − Y )p))

1
p | L(X) = µ,L(Y ) = ν

}
.

Denote by µ0 the initial distribution of the PDMP and µt its law at time t,
we can now state the main result on the PDMP associated to the rescaled two-
armed overpenalized bandit, which is driven by (??).

Theorem 3.3 (One dimensional PDMP). Let p ≥ 1 and denote for every t ≥ 0
µt := L(Xµ0

t ) where (Xµ0

t ) is a Markov process driven by (??) with initial
distribution µ0 (with support included in R∗+). If p = 1, we have∣∣∣∣∫ x(µ0 − µ∞)(dx)

∣∣∣∣ e−πt ≤ W1(µt, µ∞) ≤ W1(µ0, µ∞)e−tπ

and if p > 1, a constant Cp exists such that

Wp(µt, µ∞) ≤ γpe
− tπp .

where (γp)p≥1 satisfies the recursion γpp = γp−1
p−1 [pa+ (1 + g)p].

Remark 3.3. If p = 1, the lower and upper bounds imply the optimality of
the rate obtained in the exponential. For p > 1, the optimality of the exponent
e−πt/p is still an open question.

We know give a corollary for the limiting process which appears in Proposition
??.

Corollary 3.1 (Multi-dimensional PDMP). Let (Yt)t≥0 be the PDMP driven
by (??) with initial distribution µ0 ∈ (R∗+)d Then, the conclusions of Theorem
?? hold with π = p1 − p2.

The proof of this result is almost obvious due to the “tensorized” form of the
generator Ld. Actually, for every starting point y = (y2, . . . , yd), all the co-
ordinates (Y it )t≥0 are independent one-dimensional PDMPs with generator L
defined by (??) with parameters

ai =
1− σp1

d− 1
, bi = p1 and ci = pi/g. (10)

The result then follows easily from Theorem ?? with a global rate given by
min{bi − cig, i = 2, . . . , d} = p1 − p2. The details are left to the reader.
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3.4. Total variation results

When some bounds are available for the Wasserstein distance, a classical way
to deduce an upper bound of the total variation is to build a two-step coupling.
In a first step, use a Wasserstein coupling to bring the paths sufficiently close
(with a probability controlled by the Wasserstein bound). In a second step, we
use a total variation coupling to try to stick the paths with a high probability.
In our case, the jump size is deterministic and sticking the paths implies a non
trivial coupling of the jump times. Some of the ideas to obtain the results below
are in the spirit of ?, who follows this strategy for the TCP process.

Theorem 3.4. Let µ0 be a starting distribution with moments of any order.
Then, for every ε > 0, there exists Cε > 0 such that

‖µ0Pt − µ∞Pt‖TV ≤ Cεe−(απ−ε)t with α =
1

2 + bπ
ac

.

Once again, this result can be extended to the multi-armed case.

Corollary 3.2. Let (Yt)t≥0 be the PDMP driven by (??) with initial distribution
µ0 ∈ (R∗+)d Then, the conclusions of Theorem ?? hold with απ replaced by

d∑
i=2

1

2 + biπi
aici

πi

where πi = p1 − pi and ai, bi and ci are defined by (??).

The proof of this result is based on the remark which follows Corollary ??. Owing
to the “tensorization” property, the probability for coupling all the coordinates
before time t is essentially the product of the probabilities of coupling of each
coordinate. Once again, the details are left to the reader.

4. Proof of the regret bound (Theorems ?? and ??)

This section is devoted to the study of the regret of the penalized two-armed
bandit procedure described in Algorithm ??. We will mainly focus on the proof
of the explicit bound given in Theorem ??(b) and we will give the main ideas
for the proofs of Theorems ?? and ??(a).

4.1. Notations

In order to lighten the notations, X1
n will be summarized by Xn, so that X2

n =
1−Xn.
The proofs are then strongly based on a sharp study of the behavior of the
(positive) sequence (Yn)n≥1 defined by

∀n ≥ 1 Yn =
1−Xn

γn
. (11)
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According to the important remark after Equation (??), we will consider in the
sequel the following sequences (γn)n≥1 and (ρn)n≥1:

∀n ≥ 1, γn =
γ1√
n

and ρn =
ρ1√
n

= ρ̃1γn and ρ̃1 =
ρ1

γ1
,

where γ1 and ρ1 are constants in (0, 1) that will be precised later. In the mean-
time, we also define

π = p1 − p2 ∈ (0, 1).

With this setting, the pseudo-regret is

R̄n = π

n∑
n=1

γnE[Yn].

Remark here that we have substituted the division by ρn in (??) by a normal-
ization with γn. This will be easier to handle in the sequel. The main question
is now to obtain a convenient upper bound for E[Yn]. More precisely, remark
that

∀n0 ∈ N ∀n ≤ n0 − 1, R̄n ≤ πn ≤ π
√
n0 − 1

√
n,

and conversely for every n ≥ n0,

R̄n√
n
≤ π

√
n0 − 1 + π sup

n≥n0

E[Yn]
1√
n

n∑
n=n0

γ1√
k

≤ π

(√
n0 − 1 + 2γ1 sup

n≥n0

E[Yn]

)
. (12)

Thus it is enough to derive an upper bound of E[Yn] after an iteration n0 that
can be of the order 1/π2. In particular, the “suitable” choice of n0 will strongly
depend on the value of π.

4.2. Evolution of (Yn)n≥1

Random dynamical system In order to understand the mechanism and
difficulties of the penalized procedure, let us first roughly describe the behavior
of the sequences (Xn)n≥1 and (Yn)n≥1. According to the definition of Algorithm
?? in the two-armed case, a careful inspection of (??) leads to

E [Xn+1|Xn] = Xn + γn+1Xn(1−Xn) [p1 − p2]

+γn+1ρn+1

[
(1−Xn)2(1− σp2)−X2

n(1− σp1)
]
.

One can remark that the drift term may be splitted in two parts, the main part
is the usual drift of Narendro-Shapira bandit algorithms described by h:

h(x) = [p1 − p2]x(1− x). (13)
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The second term comes from the penalization procedure and depends on σ:

κσ(x) = (1− σp2)(1− x)2 − (1− σp1)x2. (14)

As a consequence, we can write the evolution of (Xn)n≥0 as follows:

1−Xn+1 = 1−Xn − γn+1 [h(Xn) + ρn+1κσ(Xn) + ∆Mn+1] , (15)

where ∆Mn+1 is a Martingale increment. From the equation above, we easily
derive that

∀n ≥ 1, Yn+1 = Yn (1 + γn(εn − πXn))− ρn+1κ(Xn) + ∆Mn+1

where

εn =
1

γn+1
− 1

γn
=

1

γ1

(√
n+ 1−

√
n
)
≤ 1

2γ1
√
n

=
γn
2γ2

1

. (16)

It follows that the increments of (Yn)n≥1 are given by

∆Yn+1 := Yn+1 − Yn = γnϕn(Yn)−∆Mn+1

where the drift function ϕn acting on the sequence (Yn)n≥1 is defined as

ϕn(y) = y × [εn + π(γny − 1)]︸ ︷︷ ︸
:=ϕ1

n(y)

− ρn+1

γn
κσ(1− γny)︸ ︷︷ ︸
:=ϕ2

n(y)

.

To better understand the underlying effects of the dynamical system, recall
that the definition of the sequence (Yn)n≥1 implies that Yn ∈ [0, γn

−1] with
γn
−1 ∼ Cn1/2. We aim to obtain a uniform bound (over n) of E[Yn], it is thus

important to understand the behaviour of the drift ϕn over [0, γn
−1].

Crude algorithm In order to get an upper bound for (E(Yn))n≥1, one gen-
erally aims to exploit the behaviour of the drift term y 7−→ ϕn(y) and needs to
establish a mean reverting property out of a compact set (here for large values
of y). When dealing with the crude bandit algorithm (i.e. when ρ1 = 0 and
described by Algorithm ??), the drift is reduced to ϕ1

n, which does not produce
a sufficient mean reverting effect: ϕ1

n(y) is negative iff

εn − π(1− γny) < 0⇐⇒ y ≤ γn−1 − εn
πγn

⇐⇒ x ≥ εn
π
.

When x is close to 0 (in some sense depending on n, π and γ1), ϕ1
n becomes

repulsive: the fact that the crude bandit algorithm does not always converge to
the good target can be understood as a consequence of this remark.

imsart-generic ver. 2011/12/06 file: GPS_17_02_2015.tex date: February 18, 2015



/Regret bounds for Narendra-Shapiro bandit algorithms 18

Penalized algorithm When the drift ϕn contains a non null penalty, the
second term −ϕ2

n may help the dynamics to be not repulsive when x is close to
0, i.e. when y is larger than 1/γn. It can be checked that κσ(0) = 1− σp2 and

lim
n→+∞

ϕn
(
γn
−1
)

=
1

2γ2
1

− γ1

ρ1
(1− σp2).

This quantity is negative under the condition

1− σp2 ≥
ρ1

2γ3
1

. (17)

This last assumption can be easily fulfilled if one chooses a suitable triple
(σ, ρ1, γ1) and such a choice can be independent on p2. However, this prop-
erty can be false if one chooses σ = 1 and ρ1/(2γ

3
1) > 1− p2. Furthermore, note

that the mean reverting effect guaranteed by κσ is very weak (and in some sense
too weak to obtain a uniform bound for E(Yn) since ϕn(γ−1

n ) = O(1)).
Finally, note that symmetrically, ϕn may become positive in the neighborhood
of y = 0. We show in Figure ?? and Figure ?? the behaviour of ϕn in the two
“opposite” cases when 1− σp2 < ρ1/(2γ

3
1) or when 1− σp2 > ρ1/(2γ

3
1). When

σ is large (i.e. σ = 1 in Figure ??), the mean reverting effect of ϕ2
n may not be

“ strong enough” to neutralize ϕ1
n. This is not yet the case when σ is chosen

small enough (with respect to ρ1 and γ1) as pointed in Figure ??. In particular,
σ < 1− ρ1

2γ3
1

is convenient for any value of p2.

Fig 3. Drift decomposition (left) and global (right) when y ∈ [0, 1
γn

] with γ1 = ρ1 = 1,
p1 = 0.7 ,p2 = 0.6, σ = 1.

4.3. Increase of exponent

In order to overcome the difficulties previously described, the first natural idea
is to introduce some stopping times relative to the 3 areas defined by ϕn in the
spirit of ?. Unfortunately, this approach remained unsuccessful, our concurrent

idea is to introduce the nicer sequence (Z
(r)
n )n≥0:
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Fig 4. Drift decomposition (left) and global (right) when y ∈ [0, 1
γn

] with γ1 = ρ1 = 1,
p1 = 0.7 ,p2 = 0.6, σ = 0.5.

∀n ≥ 1 Z(r)
n =

(1−Xn)r

γn
. (18)

Our strategy is first to establish a link between E[Z
(r)
n ] and E[Z

(r+1)
n ] and second

to obtain a uniform control of E[Z
(r)
n ] for a properly chosen integer r.

Let us define the bounded function on [0, 1]:

∀γ ∈ [0, 1] hr(γ) =
(1 + γ)r − 1− rγ

rγ2
. (19)

The first key element is given by the next proposition.

Proposition 4.1. Let r ∈ N∗, γ1 ∈ (0, 1) and 0 < ε ≤ ε0 = 1
3 , and set

n0(ε, π, γ1) :=

⌊
1

4ε2γ2
1π

2

⌋
+ 1. (20)

Then, if 2εγ2
1(r − ε) ≤ 1,

sup
n≥n0

EZ(r)
n ≤ EZ(r)

n0
+

r

π(r − ε)

[
ρ̃1 + hr(γn0

) + π sup
n≥n0

Z(r+1)
n

]
.

In particular, for r = 1, 2, the previous inequality holds for every γ1 ∈ (0, 1) and
ε ∈ (0, 1/3].

Remark 4.1. Note that the conditions on the parameters are not really intrin-
sic. The result is written in view to the establishment of the explicit constant
given in Theorem ?? (b) for which we use the increase of exponent for r = 1, 2.
In particular, in the proofs of Theorems ?? and ?? (a), this property will be used
in a slightly different way.
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Proof For any integer r > 0 and n ≥ 0, the binomial formula applied to (??)
leads to

(1−Xn+1)r = (1−Xn −∆Xn+1)
r

= (1−Xn)r − r(1−Xn)r−1∆Xn+1

+

r−2∑
j=0

(
r

j

)
(1−Xn)j(−∆Xn+1)r−j .

where
∑
∅ = 0 and ∆Xn+1 = Xn+1−Xn = γn+1[h(Xn)+ρn+1κσ(Xn)+∆Mn+1].

From the definition of h given in (??), we get

(1− x)r−1[h(x) + ρn+1κσ(x)] = πx(1− x)r + ρn+1κσ(x)(1− x)r−1.

If we define now

β(r)
n = −rρn+1(1−Xn)r−1κσ(Xn)+

1

γn+1

r−2∑
j=0

(
r

j

)
(1−Xn)j(−∆Xn+1)r−j , (21)

we can then conclude using (??) that

Z
(r)
n+1

= Z(r)
n

γn
γn+1

− γnrπXnZ
(r)
n + β(r)

n − r(1−Xn)r−1∆Mn+1

= Z(r)
n

(
1 + γn

[
1

γn+1
− 1

γn
− rπXn

])
+ β(r)

n − r(1−Xn)r−1∆Mn+1

= Z(r)
n (1 + γn [εn − rπXn]) + β(r)

n − r(1−Xn)r−1∆Mn+1

= Z(r)
n (1 + γn [εn − rπ]) + rπγn(1−Xn)Z(r)

n + β(r)
n − r(1−Xn)r−1∆Mn+1

= Z(r)
n (1 + γn [εn − rπ]) + rπγnZ

(r+1)
n + β(r)

n − r(1−Xn)r−1∆Mn+1. (22)

The formulation above is important: it exhibits a contraction of (1 + γn [εn − rπ])

on Z
(r)
n that can be used jointly with an upper bound of Z

(r+1)
n and a simple

majorization of β
(r)
n . In this view, we study (??): |∆Xn+1| ≤ γn+1 a.s. and (??)

yields |κσ(x)| ≤ (1− σp2). Now, with hr given in (??), we get

β(r)
n ≤ rρ̃1γn+1 +

r−2∑
j=0

(
r

j

)
(γn+1)r−j−1 ≤ r (ρ̃1 + hr(γn+1)) γn+1.

For any ε ∈ (0, 1), we can see in (??) that the contraction coefficient can be
useful as soon as n is large enough. More precisely, using (??), we see that

εn ≤ ε⇐= n ≥ n0(ε, π, γ1) :=

⌊
1

4ε2γ2
1π

2

⌋
+ 1.

Then, for every n ≥ n0(ε, π, γ1),

1 + γn [εn − rπ] ≤ 1− αrγn with αr = π(r − ε).
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In the sequel, we will omit the dependence of n0 in (ε, π, γ1) and will just use
the notation n0. Also remark that under the condition 2εγ2

1(r− ε) ≤ 1, we have
αrγj < 1 for every π ∈ (0, 1) and for every j ≥ n0 (one can in particular check
that 2εγ2

1(r − ε) ≤ 1 is true for every ε ∈ (0, 1/3) and γ1 ∈ (0, 1) if r = 1, 2).
Thus, by a simple recursion based on (??), one obtains for every n ≥ n0 + 1,

E(Z(r)
n ) ≤ E(Z(r)

n0
)

n−1∏
j=n0

(1− αrγj) +

n−1∑
j=n0

(
rπγjE(Z

(r+1)
j ) + β

(r)
j

) n−1∏
l=j

(1− αrγl)

If we call Θr = r

(
π sup
j≥n0

E(Z
(r+1)
j ) + ρ̃1 + hr(γj)

)
, an iteration of the previous

inequality yields:

E(Z(r)
n ) ≤ E(Z(r)

n0
) + Θr

n−1∑
j=n0

γj

n−1∏
l=j

(1− αrγl).

We aim to apply Lemma ?? (deferred to the appendix section) to the last term.
It is possible as soon as

n0 ≥
1

(αrγ1)2
.

This last condition is fulfilled for any r ≥ 1 when 1
4ε2γ2

1π
2 ≥ 1

(1−ε)2π2γ2
1
, i.e. when

ε ≤ 1/3.
Then, by Lemma ??, one deduces that ∀ε ≤ 1/3 and ∀n ≥ n0 :

sup
n≥n0

EZ(r)
n ≤ EZ(r)

n0
+

r

π(r − ε)

[
ρ̃1 + hr(γn0

) + π sup
n≥n0

Z(r+1)
n

]
.

�
From the last proposition and a recursive argument, we can now deduce the
following key observations.

Corollary 4.1. Assume that ε ∈ (0, 1/3), γ1 ∈ (0, 1) and that n0 is defined in
(??). Then,

sup
n≥n0

EYn ≤ E[Z(1)
n0

] +
E[Z

(2)
n0 ]

1− ε
+

1

π(1− ε)

[
ρ̃1 +

ρ̃1

1− ε/2
+

1

2(1− ε/2)

]

+
supn≥n0

EZ(3)
n

(1− ε)(1− ε/2)
. (23)

Remark 4.2. Once again, this property is established in view to Theorem ??
(b). For Theorems ?? and ?? (a) with σ ∈ (0, 1), we will need to use it for large
values of r (see the end of this section for details).
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4.4. Bound for (E(Z(3)
n )n≥n0

As seen in Corollary ??, our next task is to bound E(Z
(3)
n ) for n ≥ n0 to obtain

a tractable application of Equation (??). Such a bound is reached through a

careful inspection of the increments ∆Z
(3)
n+1 := Z

(3)
n+1 − Z

(3)
n .

Lemma 4.1 (Decomposition of Z
(3)
n ). For every n ≥ 1,

E[∆Z
(3)
n+1|Fn] = γn+1(1−Xn)Pn(Xn) + ∆Rn,

where for every n ∈ N, Pn is a polynomial function defined by

Pn(x) =
(1− x)2

γn+1
(εn − 3πx)− 3ρ̃1(1− x)κσ(x) + 3

(
x(1− x)2p1 + x2(1− x)p2

)
+ γn+1

(
−x(1− x)2p1 + x3p2

)
, (24)

and if γ1 and n0 satisfy the assumptions of Proposition ??, then

∀n ≥ n0, ∆Rn ≤ (1− σp2)
[
3γn+1ρ

2
n+1 + γ2

n+1ρ
3
n+1

]
.

Remark 4.3. • The keypoint is that γk = γ1k
−1/2 and thus the series∑

n≥1 ∆Rk is uniformly bounded whatever π is. This will be enough to
obtain a competitive upper bound of the regret. With the choice of n0 given
in (??), a careful inspection of Lemma ?? leads to∑

k≥n0

∆Rk ≤ 12γ4
1 ρ̃

2
1επ +

16

3
γ8

1 ρ̃
3
1ε

3π3. (25)

• As in Remark ??, let us notice that for Theorems ?? and ?? (a) with
σ ∈ (0, 1), we will need to use such a development with some larger values
of r (see the end of this section for details).

Proof. We use again Equation (??) and deduce that

Z
(3)
n+1 − Z(3)

n = (1−Xn)3(εn − 3πXn))− 3ρ̃1γn+1(1−Xn)2κσ(Xn) (26)

+
1

γn+1

1∑
j=0

(
3

j

)
(1−Xn)j(−∆Xn+1)3−j − 3(1−Xn)2∆Mn+1 (27)

First, remark that terms in Equation (??) are associated to the first two terms
in the definition of Pn introduced in (??) up to a multiplication by (1−Xn)γn+1.
Second, we can easily compute the expectations involved in the sum of Equation
(??) since the events are all disjointed. On the one hand, when j = 1 we have

1

γn+1
E[(−∆Xn+1)2|Fn] = γn+1σ

(
p1Xn(1−Xn)2 + p2(1−Xn)X2

n

)
+ γn+1(1− σ)

(
p1Xn(1−Xn − ρn+1Xn)2 + p2(1−Xn)(Xn − ρn+1(1−Xn))2

)
+ γn+1ρ

2
n+1

[
X3
n(1− p1) + (1−Xn)3(1− p2)

]
.
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Further computations yield:

1

γn+1
E[(−∆Xn+1)2|Fn] = γn+1Xn

(
σp1(1−Xn)2 + σp2X

2
n

)
+ ∆A(1)

n

+γn+1ρ
2
n+1

[
X3
n(1− σp1) + (1−Xn)3(1− σp2)

]︸ ︷︷ ︸
:=∆R

(1)
n

with ∆A
(1)
n = −2ρn+1γn+1Xn(1−Xn)(1−σ)(Xnp1 +(1−Xn)p2). On the other

hand, we can also compute the term when j = 0:

1

γn+1
E[(−∆Xn+1)3|Fn] = γ2

n+1Xn(1−Xn)
(
p2X

2
n − p1(1−Xn)2

)
+∆A(2)

n + γ2
n+1ρ

3
n+1

[
X4
n(1− σp1)− (1−Xn)4(1− σp2)

]︸ ︷︷ ︸
:=∆R

(2)
n

with ∆A
(2)
n ≤ 3γ2

n+1ρn+1(1−σ)Xn(1−Xn)2 (πXn + ρn+1(1−Xn)p2). Set ∆R
(3)
n =

(1 − Xn)∆A
(1)
n + ∆A

(2)
n and ∆Rn := 3(1 − Xn)∆R

(1)
n + ∆R

(2)
n . Plugging the

previous controls into (??) yields

E[∆Z
(3)
n+1|Fn] ≤ γn+1(1−Xn)Pn(Xn) + ∆Rn. (28)

Note that ∆R
(1)
n can be upper bounded as follows:

3(1−Xn)∆R(1)
n ≤ 3γn+1ρ

2
n+1(1− σp2) max

0≤t≤1

[
1− σp1

1− σp2
t3(1− t) + (1− t)4

]
.

Since 1−σp1 ≤ 1−σp2, a short functional study shows that at3(1− t)+(1− t)4

when a ∈ (0, 1) reaches its maximal value for t = 0. It leads to

3(1−Xn)∆R(1)
n ≤ 3γn+1ρ

2
n+1(1− σp2).

For ∆R
(2)
n , we have ∆R

(2)
n ≤ γ2

n+1ρ
3
n+1(1−σp2) max0≤t≤1

[
1−σp1
1−σp2 t

4 − (1− t)4
]
,

which involves an increasing function of t. Thus, we have

∆R(2)
n ≤ γ2

n+1ρ
3
n+1(1− σp1) ≤ γ2

n+1ρ
3
n+1(1− σp2).

Finally, if γ1 and n0 satisfy the assumptions of Proposition ??, then for every

n ≥ n0, γn ≤ 2/3 and it follows that ∆R
(3)
n ≤ 0. The result follows according to

Equations (??).

In order to bound supn≥n0
E(Z

(3)
n ), we have now to precisely study the polyno-

mial function Pn and exhibit a mean reverting effect on its dynamics.

Proposition 4.2. Let ε ∈ (0, 1
3 ), ρ̃1 ≤ 227

232 and 1
3
√

2(1−σ)ρ̃1
≤ γ2

1 ≤ 3
2(1+ρ̃1) .

Then

i) The polynomial Pn given by (??) is negative on [0, 1− 2(1+ρ̃1)
π ].
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ii) Z
(3)
n satisfies

sup
n≥n0

EZ(3)
n ≤ EZ(3)

n0
+ 12γ4

1 ρ̃
2
1επ +

16

3
γ8

1 ρ̃
3
1ε

3π3

+
8γ4

1ε(1 + ρ̃1)
[
1 + (1 + ρ̃1)[2 + 6ρ̃1 + 12γ2

1ε]
]

π
.

Remark 4.4. The above result is given under some technical conditions which
will lead to a sharp explicit bound. Nevertheless, the reader has to keep in mind

that in view of the condition on σ, the “universal” bound on (E(Z
(3)
n ))n≥n0

is
only accessible when σ < 1, i.e. in the over-penalized case. When σ = 1, some
bounds will be atteignable only if p2 is not too large (see (??) for a similar
statement when r = 1) and in order to alleviate the constraint on p2, one will
need to take a larger exponent than r = 3 (see Subsection ?? for details).

Proof. We first provide the proof of i). The function Pn introduced in (??) is a
third degree polynomial and for n ≥ n0:

Pn(0) =
εn
γn+1

− 3ρ̃1κσ(0)

≤ γn
2γ2

1γn+1
− 3ρ̃1(1− σp2)

≤

√
1 + n−1

0

2γ2
1

− 3ρ̃1(1− σp2)

Since p2 < 1, this last quantity is negative if one has

ρ1γ1 ≥
1

3
√

2(1− σ)
. (29)

In a same way, we can check that Pn(1) = γn+1p2 > 0 and thus Pn has one root
in the interval (0, 1). A careful inspection on the leading coefficient (denoted
anx

3) of Pn in (??) shows that

an =

[
3(1 + σρ̃1)− 3

γn+1
− γn+1

]
π.

The leading coefficient an is negative as soon as 3(1 + σρ̃1) ≤ 3
γn+1

. Again, the

choice of n0 in (??) shows that this last condition is fulfilled as soon as

1

ε
≥ 2γ1π(γ1 + σρ1). (30)

But remark that we have assumed ε ∈ (0, 1/3] so that 1
ε ≥ 3. As a consequence,

(??) and (??) are satisfied as soon as (γ1, ρ̃1) satisfies

1

3
√

2(1− σ)ρ̃1

≤ γ2
1 ≤

3

2(1 + ρ̃1)
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Hence, if (??) and (??) hold, Pn possesses one root in (−∞, 0) and another one
in (1,+∞). Consequently, Pn has a unique root in (0, 1). We consider now:

ξn =
2(1 + ρ̃1)

π
γn+1 := ξγn+1.

We compute that:

Pn(1− ξn)

=
ξ2
n

γn+1
(εn − 3π(1− ξn))− 3ρ̃1ξn

[
(1− σp2)ξ2

n − (1− σp1)(1− ξn)2
]

+3
[
(1− ξn)ξ2

np1 + (1− ξn)2ξnp2

]
+ γn+1

[
(1− ξn)3p2 − ξ2

n(1− ξn)
]
.

Hence, replacing ξn by ξγn+1 and simplifying by γn+1, we see that Pn(1 − ξn)
is negative when

:=An(ξ)︷ ︸︸ ︷
ξ2εn

(1− ξn)
+ 3ρ̃1(1− σp1)(1− ξn)ξ + 3p1γn+1ξ

2 + 3p2(1− ξn)ξ + p2(1− ξn)2

≤ 3πξ2 +
3ρ̃1γ

2
n+1ξ

3(1− σp2)

1− ξn
+ γ2

n+1ξ
2︸ ︷︷ ︸

:=Bn(ξ)

.

From (??), we know that εn ≤ γn+1

2γ2
1

, and 1− ξn ≤ 1 thus

An(ξ) ≤ ξ2γn+1

(
1

2γ2
1(1− ξn)

+ 3p1

)
+ 3ξ (ρ̃1 + 1) + 1

In the meantime, we will use the simple lower bound Bn(ξ) ≥ 3πξ2. We can

check that 1− ξn = 1− 2(1+ρ̃1)γn+1

π ≥ 1− 4ε(1 + ρ̃1)γ2
1 since γn0

≤ 2εγ2
1π. Thus

An

(
2(1 + ρ̃1)

π

)
≤ 4(1 + ρ̃1)2

π2
γn+1

[
3p1 +

1

2γ2
1 [1− 4ε(1 + ρ̃1)γ2

1 ]

]
+

6(1 + ρ̃1)2

π
+ 1

≤ (1 + ρ̃1)2

π

[
24εγ2

1p1 +
4ε

1− 4ε(1 + ρ̃1)γ2
1

+ 7

]
and

Bn

(
2(1 + ρ̃1)

π

)
≥ 12(1 + ρ̃1)2

π
.

As a consequence, Pn(1− ξn) is negative if one has

5 ≥ 24εγ2
1 +

4ε

1− 4ε(1 + ρ̃1)γ2
1
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From the constraint on γ1, another computation shows that the above condition

is fulfilled when ε2 128(1+ρ̃1)
3 − ε[84 + 40(1 + ρ̃1)] + 45 ≥ 0. We then remark that

all values of ε in (0, 1
3 ] can be conveniently used when ρ̃1 ≤ 227

232 .

To obtain ii), the main idea is to use the sharp estimation of the sign of Pn on

[0, 1] and obtain an upper bound of EZ(3)
n : note that

sup
0≤t≤1

γn+1(1− t)Pn(t)

= γn+1 sup
1−ξn≤t≤1

(1− t)Pn(t)

= γn+1 sup
1−ξn≤t≤1

{
(1− t)3 [εn − 3πt]− 3ρ̃1(1− t)2κσ(t)

+3
[
t(1− t)3p1 + t2(1− t)2p2

]
+ γn+1

[
−t(1− t)3p1 + t3(1− t)p2

]}
Now, we have seen in the proof of i) that t ∈ [1 − ξn, 1] =⇒ εn ≤ 3πt. Hence,
using κσ(t) ≥ −(1− σp1)t2, we have

sup
0≤t≤1

γn+1(1− t)Pn(t)

≤ γn+1

[
3ρ̃1(1− σp1)ξ2

n + 3p1ξ
3
n + p2ξ

2
n + γn+1ξn

]
≤ C1(ρ̃1, p1, p2, σ)

π2
γ3
n+1 +

C2(ρ̃1, p1)

π3
γ4
n+1

with C1(ρ̃1, p1, p2, σ) = (1 + ρ̃1) (12ρ̃1(1 + ρ̃1)(1− σp1) + 4p2(1 + ρ̃1) + 2π) and
C2(ρ̃1, p1) = 24p1(1 + ρ̃1)3 shortenned in C1 and C2 in what follows. We apply

Lemma ?? to upper bound supn≥n0
EZ(3)

n :

sup
n≥n0

EZ(3)
n

≤ EZ(3)
n0

+ sup
n≥n0

E
n∑

k=n0

∆Z
(3)
n+1

≤ EZ(3)
n0

+ sup
n≥n0

E

[
n∑

k=n0

γk+1(1−Xk)Pk(Xk) + ∆Rk

]

≤ EZ(3)
n0

+
C1

π2

∞∑
k=n0

γ3
n+1 +

C2

π3

∞∑
k=n0

γ4
n+1 +

∞∑
k=n0

E∆Rk

Using a simple comparison argument with the integrals
∫∞
n0
t−αdt, we get

∞∑
k=n0

γ3
n+1 ≤ 2γ3

1n
−1/2
0 ≤ 4γ4

1επ and

∞∑
k=n0

γ4
n+1 ≤ γ4

1n
−1
0 ≤ 4γ6

1ε
2π2.

We then deduce that

sup
n≥n0

EZ(3)
n ≤ EZ(3)

n0
+

4γ4
1εC1

π
+

4γ6
1ε

2C2

π
+

∞∑
k=n0

∆Rk.
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The result follows using now (??).

Explicit bound We can now conclude the proof of Theorem ??.

Proof of Theorem ?? (b). We consider the extreme over-penalized case obtained
with σ = 0. and use a power increment until r = 3. Recall that n0 := n0(ε, π, γ1)
is defined by (??). In particular,

√
n0 − 1 ≤ (2εγ1π)−1 and for i = 1, 2, 3,

πE[Z
(i)
n0 ] ≤ (2εγ2

1)−1 + (γ1)−1. Gathering the results of Proposition ?? ii) and
Corollary ?? and plugging them into (??), a series of computations yields:

supp1≥p2 R̄n√
n

≤ T1(γ1, ρ̃1, ε) +
2γ1

(1− ε)(1− ε/2)
T2(γ1, ρ̃1, ε),

where

T1(γ1, ρ̃1, ε) =
1

2εγ1
+

(
1

εγ1
+ 2

)(
1 +

1

1− ε
+

1

(1− ε)(1− ε/2)

)
+ 2ρ1

(
1

1− ε
+

1

(1− ε)(1− ε/2)

)
+

γ1

(1− ε)(1− ε/2)
,

and

T2(γ1, ρ̃1, ε)

= γ4
1

[
8ε(1 + ρ̃1)

(
1 + (1 + ρ̃1)(2 + 6ρ̃1 + 12γ2

1ε)
)

+ 12ρ̃2
1ε+

16

3
γ4

1 ρ̃
3
1ε

3

]
.

Theorem ??(b) follows by minimizing (γ1, ρ̃1, ε) 7−→ T1(γ1, ρ̃1, ε) + T2(γ1, ρ̃1, ε)
up to the constraints

ε ≤ 1/3,
1

3
√

2ρ̃1

≤ γ2
1 ≤

3

2(1 + ρ̃1)
, ρ̃1 ≤ 227/232.

The “best” upper bound was obtained by setting γ1 = 0.89, ρ̃1 = 0.38, ε = 1/9,
leading to the regret upper bound

R̄n ≤ 44
√
n.

4.5. Regret of the penalized bandit of ?

Sketch of proof of Theorem ?? and ?? (a). We prove these results together. We
thus consider γ1 ∈ (0, 1), ρ1 ∈ (0, 1) and σ ∈ [0, 1]. A variant of Proposition
?? about the increase of exponent is still valid. First, one can remark that if
one sets εr = r − 1/2 (so that αr = π/2), then Lemma ?? can be applied with

ñ ≥ (π2 γ1)−2. Thus, one sets n0(λ) := bλ
2

π2 c + 1 with λ ≥ 2γ−1
1 . After a simple

adaptation of the proof of Proposition ??, one deduces that for every r ≥ 1,

sup
n≥n0(λ)

EZ(r)
n ≤ EZ(r)

n0
+

2r

π

[
ρ̃1 + hr(γn0(λ)) + π sup

n≥n0(λ)

Z(r+1)
n

]
.
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By an iteration, it follows by using the fact that πE[Z
(i)
n0(λ)] ≤ πγ

−1
n0(λ) ≤ γ

−1
1 (λ+

1) that for every r ≥ 1, some constants C1
r (λ) and C2

r (λ) exist (depending only
on σ, γ1 and ρ1) such that,

sup
n≥n0(λ)

πE[Yn] ≤ C1
r (λ) + C2

r (λ)π sup
n≥n0(λ)

EZ(r+1)
n . (31)

It remains to upper bound supn≥n0(λ) EZ
(r)
n for r large enough. Once again, a

simple adaptation of the proof of Lemma ?? yields for r ≥ 3:

E[∆Z
(r)
n+1|Fn] = γn+1(1−Xn)r−1P (r)

n (Xn) + ∆R(r)
n .

with

P (r)
n (x)

=
(1− x)2

γn+1
(εn − rπx)− rρ̃1(1− x)κσ(x) +

(
r

r − 2

)(
x(1− x)2p1 + x2(1− x)p2

)
+ γn+1

(
r

r − 3

)(
−x(1− x)2p1 + x3p2

)
(32)

and ∆R
(r)
n ≤ Crγ3

n+1 (where Cr does not depend on π). We want to prove that

P
(r)
n is negative on [0, 1 − ξn] with ξn = ξγn+1 ∈ (0, 1) where ξ is a constant

to calibrate. We follow the lines of the proof of Proposition ?? but we can use
some rougher arguments since we do not search for explicit constants. First,

P
(r)
n (0) = εn

γn+1
− rρ̃1κσ(0), so that

P (r)
n (0) < 0 ⇐⇒ γ1ρ1 >

1

r
√

2(1− σp2)
.

On the one hand, for every σ < 1, one can find a r sufficiently large for which
this condition holds. On the other hand, when σ = 1 (case which corresponds to
Theorem ??), we need now to assume that there exists δ > 0 such that p2 < 1−δ
(in this case, the condition is satisfied if r > (γ1ρ1

√
2δ)−1). For such a r, one

remarks that the leading coefficient a
(r)
n (related to x3) is

a(r)
n =

(
− r

γn+1
+

(
r

r − 2

)
+ rσρ̃1 − γn+1

)
π.

One deduces that a
(r)
n is negative for every n ≥ nσ1 where

nσ1 :=

⌊
γ2

1

(
r − 1

2
+ σρ̃1

)2
⌋
.

Assume that λ ≥
√
nσ1 in order to get n0(λ) ≥ nσ1 . Since P

(r)
n (1) = γn+1p2 > 0

and deg(P
(r)
n ) = 3, it follows that P

(r)
n has exactly one root in (0, 1) for every
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n ≥ n0 and that P
(r)
n is negative on [0, 1− ξn] as soon as P

(r)
n (1− ξn) < 0. Let n

be such that ξγn+1 ≤ 1/2. Then, some rough estimations yield that P
(r)
n (1−ξn)

is negative if
rπ

2
ξ2 − crξ − 1 > 0,

where cr is a constant which does not depend on π. One then checks that there
exists another constant ηr such that the previous property is fulfilled is ξ ≥ ηr/π.

Then, P
(r)
n (1 − ηr

π γn+1) < 0 is negative as soon as ξγn+1 < 1/2. This is true
for every n ≥ n0(λ) as soon as λ ≥ 2γ1ηr. We can conclude from what preceeds
that there exist r ≥ 3 and λ > 0 such that for every n ≥ n0(λ), for every
(p1, p2) ∈ [0, 1]2, such that p1 > p2 (resp. p1 > p2 and p2 < 1− δ) if σ < 1 (resp.
if σ = 1)

E[∆Z
(r)
n+1] ≤ γn+1 sup

t∈[1− ηrπ γn+1,1]

(1− t)P (r)
n (t) + Crγ

3
n+1.

Using that γn+1 ≤ π/λ if n ≥ n0(λ), a constant Cλ exists such that on

∀t ∈ [1− ηr
π
γn+1, 1] P (r)

n (t) ≤ Cλγn+1/π.

Under the previous conditions, we deduce

sup
π

(
π sup
n≥n0(λ)

EZ(r)
n

)
≤ sup

π

π ∑
n≥n0

Cγ3
n+1

(
π−2 + π−1

) < +∞.

The result follows by plugging this inequality into (??).

5. Almost sure and weak limit of the over-penalized bandit

We provide here the proofs of Propositions ?? and ??. For the sake of simplicity,
we restrict our study to σ = 1 (always over-penalization of the bandit), and the
argument can be adapted for any values of σ ∈ (0, 1].

5.1. A.s. convergence of the multi-armed bandit (Proposition ??)

Recall first that Xn = (Xn,1, ..., Xn,d), the multi-armed penalized bandit (??)
permits to define for i ∈ {2, ..., d},

Xn+1,i = Xn,i + γn+1hi(Xn) + γn+1ρn+1κi(Xn) + γn+1∆Mn+1,i,

where the main part of the drift hi is defined as

hi(x1, ..., xd) = (1− xi)xipi − xi
∑
j 6=i

xjpj ,
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and the penalty drift is

κi(x1, ..., xd) = −x2
i (1− pi) +

1

d− 1

∑
j 6=i

x2
j (1− pj).

Hence, the martingale increment is simply obtained as

∆Mn+1,i = ((1−Xn,i)1Vn+1,i,An+1,i
−Xn,i

∑
j 6=i

1Vn+1,j ,An+1,j
− hi(Xn))

− ρn+1(Xn,i1Vn+1,i,Acn+1,i
− 1

d− 1

∑
j 6=i

Xn,j1Vn+1,j ,Acn+1,j
+ κi(Xn))

Proof of Proposition ??. We start by (i) and identify the stationary point of the
ODE method. The ODE ẋ = h(x) possesses a finite number of equilibria that
can be easily identified. Indeed we begin by solving the equation h1(x) = 0.
Since

h1(x) = x1

d∑
i=2

xj(p1 − pj) ≥ 0,

we either have x1 = 1 and x2 = ... = xd = 0 or x1 = 0.
Then, the equation h2(x) = 0 with x1 = 0 may be reduced to

x2

d∑
i=3

xj(p2 − pj) ≥ 0.

The same argument leads to x2 = 1 or x2 = 0 and a straightforward recursion
shows that the equilibria of the ODE are (δi)1≤i≤d, with (δi)1≤i≤d defined as

δii = 1 and δij = 0 ∀j 6= i.

Let us emphasize that to discriminate among these equilibria, it is not possible

to use the second derivative criterium that relies on

(
∂hi
∂xj

)
i,j

to decide their

stability. Instead, it is possible to check that δ1 fulfills the Lyapunov certificate
with the function V (x) = (x2

2 + . . .+x2
d). If we denote h = (h1, . . . , hd), one has

〈∇V (x), h(x)〉 =

d∑
j=2

x2
j

∑
k 6=j

xk(pj − pk).

Considering x in a closed neighborhood of δ1 defined as xj ≤ ε/d, ∀j ≥ 2
(implying that x1 > 1− ε), we see that

〈∇V (x), h(x)〉 = x1

d∑
j=2

x2
j (pj − p1) +

d∑
k=2

x2
k

∑
j 6=k,j>1

xj(pk − pj)

≤ −(1− ε)(p1 − p2)

d∑
j=2

x2
j + ε

d∑
j=2

x2
j ,
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and the term above is negative as soon as ε is chosen such that

ε ≤ 1

p1 − p2 + 1
.

Oppositely, the other equilibria (δj), j 6= 1 are unstable: this can be easily
deduced from the unstability of the two-armed bandit by testing the first arm
versus the arm j.
The martingale increment ∆Mn+1,i being uniformly bounded, we can apply the
Kushner-Clark theorem (see e.g. ?) and conclude that (Xn,i)n≥0 either converges
to 1 or 0 a.s. As a consequence, it is also true that (Xn)n≥0 converges a.s. We
now make this limit explicit and show that (Xn)n≥0 converges toward (1, ..., 0)
a.s. We start by noticing that h1(x) = x1

∑
j≥2 xj(p−1−pj) ≥ 0, which implies

that

Xn,1 ≥ X0,1 +

n−1∑
j=1

γjρjκj−1,1(Xj−1) +

n−1∑
j=1

γj∆Mj . (33)

The martingale increment ∆Mj is bounded and a large enough C exists such

that ∆Mj ≤
√
C. This implies that∥∥∥∥∥∥
n−1∑
j=1

γj∆Mj

∥∥∥∥∥∥
2

L2

≤ C
n−1∑
j=1

γ2
j ≤ C sup

j∈N

(
γj
ρj

) n−1∑
j=1

γjρj .

Since
∑
ρjγj = +∞, we can deduce that

lim
n−→+∞

E

 n∑
j=1

γj∆Mj

2

n−1∑
j=1

γjρj

= 0 so that lim sup
n→∞

n−1∑
j=1

γj∆Mj

n−1∑
j=1

γjρj

≥ 0.

Consider now an event ω ∈ {X∞,1 = 0}, we have

lim
n−→+∞

κ1(Xn(ω)) =
1

d− 1

∑
k≥2

(1− pk)X∞,k(ω)2,

and according to the Toeplitz Lemma we deduce that

lim
n→∞

n−1∑
j=1

γjρjκ1(Xj−1(ω))

n−1∑
j=1

γjρj

=
1

d− 1

∑
k≥2

(1− pk)X∞,k(ω)2 > 0.

Putting together this last remark with Equation (??) leads to the conclusion
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lim sup
n→∞

Xn,1(ω)
n−1∑
j=1

γjρj

> 0.

We obtain a contradiction with the boundedness of (Xn)n≥1 and conclude that
P(X∞,1 = 0) = 0. For (ii), we refer to ? since the arguments here are similar.

5.2. Weak convergence of the normalized bandit (Proposition ??)

The proof of the weak convergence follows the lines of ?. The idea is to prove the
tightness of the pseudo-trajectories associated to the normalized sequence and
then to show that any weak limit of this sequence is a solution of the martingale
problem (L, C1

K(R+, (R+)d−1) where L is the infinitesimal generator defined in
Proposition ??. Then, proving that uniqueness holds for the solutions of the
martingale problem and for the invariant distribution, the convergence follows.
Here, we choose to only detail the key step of the characterization of the limit.
The rest of the proof can be obtained by a simple generalization of that of ?.

Proposition 5.1. Let f be a continuously differentiable function with compact
support in Rd−1

+ . We have

E(f(Yn+1,2, ..., Yn+1,d)− f(Yn,2, ..., Yn,d)|Fn) = γn+1Ldf(Yn,2, ..., Yn,d) + oP (1),

where Ld is the PDMP generator defined in (??) and Fn = σ(Yk, k ≤ n).

Proof. Since the proof does not depend on σ, we assume that σ = 1 for the sake
of clarity. We first give an alternative expression for the variables Yn,i for i ≥ 2.

Yn+1,i = Yn,i + γn+1

(
1− p1

d− 1
− (p1 − pi)Yn,i

)
+ γn+1Cn,i − g∆Mn+1,i,

where Cn,i = (κi(Xn)− 1−p1
d−1 )+Yn,i(p1−pi+(εn+ ρn

ρn+1
(pi−

∑
j 6=i

Xn,jpj))) = oP (1)

since (εn)n≥0 converges 0 and (Xn,i)n≥0 converges to 0 in probability for i ≥ 2.
We rewrite this as follows

Yn+1,i = Yn,i + γn+1

(
1− p1

d− 1
− (p1 − pi)Yn,i + Cn,i

)
+Gn,i + g∆M̃n+1,i,

where Gn,i = g(1−Xn,i)(1Vn+1,i,An+1,i
−Xn,ipi) and ∆M̃n+1,i = ∆Mn+1,i−Gn,i.

We consider a function f ∈ C1(Rd−1
+ ) with a compact support.

f(Yn+1)− f(Yn) =

d∑
i=2

f(Yn+1,2, ...Yn+1,i, ....Yn+1,d)− f(Yn,2, ...Yn,i, ....Yn,d).

We will use the following notation Fi(Yk) = f(Yn,2, ...Yk,i, ....Yn,d). It means
that the first i − 1 variables are (Yn,2, Yn,3, ...) and the d − i last ones are
(Yn+1,i+1, Yn+1,i+2, ..., Yn+1,d). We have

Fi(Yn+1,i)− Fi(Yn,i) = Fi(Yn+1,i)− Fi(Y n,i) + Fi(Y n,i)− Fi(Yn,i),
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where

Ỹn,i = Yn,i + γn+1

(
1− p1

d− 1
− (p1 − pi)Yn,i + Cn,i

)
,

and
Y n,i = Ỹn,i +Gn,i.

We begin by writing

Fi(Yn+1,i)− Fi(Y n,i) = ∂iFi(Ỹn,i)∆M̃n+1,i + γn+1Vn+1,i,

where the first order Taylor approximation formula yields

∃ θ ∈ [0, 1] : Vn+1,i =
[
Fi(Ỹn,i + θ∆M̃n+1,i)− Fi(Ỹn,i)

]
∆M̃n+1,i.

As a consequence, Vn+1,i = oP (1) and we are now going to prove that

P− lim
n→∞

E
(
Fi(Yn+1)− Fi(Yn)− γn+1AiFi(Yn)

γn+1
|Fn
)

= 0,

where

Aif(Y2, ..., Yd) =
piYi
g

(f(Y2, ..., Yi + g, ..., Yd)− f(Y2, ..., Yi, ...Yd))

+

(
1− p1

d− 1
− p1Yi

)
∂if(Y2, ..., Yd).

We compute

E(Fi(Y n,i))|Fn,i) = piXn,iFi(Ỹn,i + g(1−Xn,i)(1− piXn,i))

+ (1− gpiXn,i)Fi(Ỹn,i − gpiXn,i(1−Xn,i))).

Let us decompose the r.h.s. of the above equation in two parts, we denote

Fn,i = piXn,i(Fi(Ỹn,i + g(1−Xn,i)(1− piXn,i))− Fi(Yn,i)), (34)

and
Gn,i = (1− gpiXn,i)(Fi(Ỹn,i − gpiXn,i(1−Xn,i)))− Fi(Yn,i)). (35)

Note that (??) is the jump part of the PDMP and (??) the deterministic one. If
i ≥ 2, (Xn,i)n≥1 converges to 0 in probability and ρnγn+1

−1 = g + o(ρn), thus:

γn+1
−1Fn,i = γn+1

−1ρnpiYn,i(Fi(Yn,i + g + oP (1))− Fi(Yn,i))

=
piYn,i
g

(1 + o(ρn)) [Fi(Yn,i + g + oP (1))− Fi(Yn,i)] .

As a consequence, the asymptotic behaviour of (??) is given by

P− lim
n→∞

(
Fn,i
γn+1

− piYn,i
Fi(Yn,i + g)− Fi(Yn,i)

g

)
= 0.
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We now study (??) and compute

Ỹn,i − gXn,i(1− piXn,i) = Yn,i + γn+1

(
1− p1

d− 1
− p1Yn,i

)
+ γn+1piYn,i − gpiXn,i(1−Xn,i) + γn+1Cn,i

= Yn,i + γn+1

(
1− p1

d− 1
− p1Yn,i

)
+ γn+1piYn,i − gρnpiYn,i(1−Xn,i) + γn+1Cn,i︸ ︷︷ ︸

:=γn+1C̃n,i

,

where we used gρn = γn. Since C̃n,i converges to 0 in probability, we obtain:

γ−1
n+1Gn,i

= γ−1
n+1(1 + o(ρn))

(
Fi(Yn,i + γn+1

[
1− p1

d− 1
− p1Yn,i

]
+ γn+1C̃n,i)− Fi(Yn,i)

)

=

[
1− p1

d− 1
− p1Yn,i

] (Fi(Yn,i + γn+1

[
1−p1
d−1 − p1Yn,i

]
+ γn+1C̃n,i)− Fi(Yn,i)

)
γn+1

[
1−p1
d−1 − p1Yn,i

]
+ oP (1).

We finally obtain that the limiting behaviour of (??):

P− lim
n→∞

(
Gn,i
γn+1

−
(

1− p1

d− 1
− p1Yi

)
∂iFi(Yn,i)

)
= 0.

This ends the proof of the proposition.

6. Ergodicity of the PDMP

From now on, the variable (Xt)t≥0 will refer to a trajectory of the PDMP
associated to the normalized (over)-penalized bandit and bear no relation with
the multi-armed Bandit sequence (Xn)n≥1.

6.1. Wasserstein results

We begin the study of the ergodicity of the PDMP whose infinitesimal generator
is (??) with some computations of the moments of the process.

Lemma 6.1. Let (Xt)t≥0 be a Markov process, whose generator L is defined
by (??). If π := b− cg > 0, then supE[(Xx

t )p] ≤ C(1 + |x|p). In particular, the
invariant distribution π has moments of any order and

∀t ≥ 0 E(Xt) =
a

π
+
(
E(X0)− a

π

)
e−tπ
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Proof. Let us define fp(x) = xp, we have

Lfp(x) = p(a− bx)xp−1 + cx((x+ g)p − xp)

= −pπfp(x) + pafp−1(x) + c

p−2∑
k=0

Ckp g
p−kfk+1(x), (36)

where we adopt the convention Σ∅ = 0. If we define now αp(t) = E(Xp
t ), the

previous relation shows that αp satisfies the ODE for any integer p ≥ 1 defined
by

αp(t)
′ + pπαp(t) = paαp−1(t) + c

p−2∑
k=0

Ckp g
p−kαk+1(t).

For example, with p = 1 we have α′1(t) = −πα1(t) + a, which implies that

α1(t) =
a

π
+
(
E(X0)− a

π

)
e−tπ.

The control of the moments of order p > 1 then follows from a recursion.

6.1.1. Rescaled two-armed bandit & Theorem ??

In what follows, we will exploit Equation (??) to obtain a suitable upper bound
of the Wasserstein distanceWp between the law of Xt and the invariant measure
µ∞ of the PDMP. For this purpose, we remark that the generator (??) possesses
the stochastic monotonicity property: i.e. there exists a coupling (X,Y ) starting
from (x, y) (with x > y) such that Xt ≥ Yt for any t ≥ 0. The increase of the
jump rate (with respect to the position) and the positivity of the jumps are
of first importance for this property. Such a coupling could be built as follows:
we only allow simultaneous jumps of both components or a single jump of the
highest one (see (?) for a similar procedure). The generator of this coupling
(X,Y ) starting from (x, y) with x > y is given by:

LWf(x, y) = (a− bx)∂xf(x, y) + (a− by)∂yf(x, y)

+cy (f(x+ g, y + g)− f(x, y)) + c(x− y) (f(x+ g, y)− f(x, y)) (37)

with a symmetric expression when y > x. We now prove the main result.

Proof of theorem ??. Let µ0 be a probability on R∗+ and denote by µ∞ the
invariant distribution of the PDMP. Set

Ct = {ν ∈ P(R2), ν(dx× R+) = µt(dx), ν(R+ × dy) = µ∞(dy)}.

For any ν ∈ C, let (Xt, Yt)t≥0 denote the Markov process driven by (??) starting
from ν. From the definition of Wp and the stationary of (Yt), we have for any t:

Wp(µt, µ∞) ≤ inf{ν ∈ C0,

(∫
R2

+

E[|Xx
t − Y

y
t |p]ν(dx, dy)

) 1
p

.
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At the price of a potential exchange of the coordinates, we can now work with
some deterministic starting points x and y such that x > y > 0. Owing to the
monotonicity of LW , we thus have for any p ≥ 1

E(|Xx
t − Y

y
t |)p = E(Xx

t − Y
y
t )p.

Assume now that p ∈ N∗, we remark that LW acts on (x, y) 7→ (x− y)p as

LW(x− y)p = −pπ(x− y)p + pa(x− y)p−1 + c

p−2∑
k=0

Ckp g
p−k(x− y)k+1.

Setting βp(t) = E |Xx
t − Y

y
t |
p
, it is then immediate to check that

β̇p(t) + πpβp(t) =

(
paβp−1(t) + c

p−2∑
k=0

Ckp g
p−kβk+1(t)

)
. (38)

When p = 1, (??) implies that β1(t) = β1(0)e−πt ⇒ E[Xx
t −Y

y
t ] = (x−y)e−πt,

so that
W1(µt, µ∞) ≤ W1(µ0, µ∞)e−tπ.

For the lower-bound, one uses that

W1(µt, µ∞) ≥ inf

{
νt ∈ Ct,

∣∣∣∣∫ (x− y)νt(dx, dy)

∣∣∣∣} = |E[Xµ0

t ]− E[Y µ∞t ]| ,

which implies that

W1(µt, µ∞) ≥
∣∣∣∣∫ E[Xx

t − Y
y
t ]µ0(dx)µ∞(dy)

∣∣∣∣ =

∣∣∣∣∫ (x− y)µ0(dx)µ∞(dy)

∣∣∣∣ e−πt.
The lower-bound follows.

Now, let us consider the case p > 1 (with p ∈ N). For p = 2, we have(
β2(t)e2πt

)′
e−2πt = (2a+ cg2)β1(0)e−πt,

and an integration leads to β2(t)e2πt − β2(0) = 2a+cg2

π β1(0)[eπt − 1]. As a con-
sequence,

β2(t) ≤ e−2πtβ2(0) +
2a+ cg2

π
β1(0)e−πt.

Using the inequalities
√
u+ v ≤

√
u+
√
v and β2 ≥ W2

2 , we thus deduce that

W2(µt, µ∞) ≤ W2(µ0, µ∞)e−πt +

√
2a+ cg2

π

√
W1(µ0, µ∞)e−

πt
2 .

The result follows when p = 2 by setting

γ2 :=W2(µ0, µ∞) +

√
2a+ cg2

π

√
W1(µ0, µ∞).

A recursive argument based on (??) shows that a constant γp exists that only
depends on µ0 and µ∞ such that

Wp(µt, µ∞) ≤ γpe−
π
p t.
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6.2. Proof of Total variation results

As mentioned before, the idea is to wait that the paths get close (with a proba-
bility controlled by the Wasserstein bound) and then to try to stick them (with
high probability). Since the jump size is deterministic, sticking the paths implies
a non trivial coupling of the jump times which is described in the lemma below.
We begin by establishing the next useful lemma.

Lemma 6.2. Let ε > 0 and t ≥ 1
b ln(1 + ε). There exists a coupling (Xt, Yt)t≥0

of paths driven by (??) such that on Ax0,ε

P(Xt = Yt, t ≥ s) ≥
(

1− c

b
x0ε− e−

a
b cs − cε

b

)
max(0, 1− c

b
ε(x0 + g)),

where Ax0,ε =
{

(x, y)|ab < x ≤ x0, 0 < x− y ≤ ε
}

.

Proof Let ε > 0 and (x, y) ∈ Ax0,ε (in particular, x > y). Denote by T x1 and
T y1 the first jumps of (Xx

t ) and (Xy
t ) respectively and by T x2 the second jump

of (Xx
t ). One remarks that

P(Xt = Yt, t ≥ s) ≥ P(Xx
Ty1

= Xy
Ty1
, T y1 ≤ s).

We aim to build a coupling that leads to a sharp lower-bound of the r.h.s. For
this purpose, remark that if T x1 < T y1 < T x2 , the triple (T x1 , T

y
1 , T

x
2 ) satisfies

Xy
Ty1

= Xx
Ty1
⇐⇒ a

b
+
(
y − a

b

)
e−bT

y
1 + g =

a

b
+
(
Xx
Tx1
− a

b

)
e−b(T

y
1 −T

x
1 ).

Using that Xx
Tx1

= a
b + (x − a

b )e−T
x
1 + g and defining ψ(t) = 1

b ln
(
ebt + x−y

g

)
,

we can verify that Xy
Ty1

= Xx
Ty1
≤ s and T x1 < T y1 < T x2 as soon as

T y1 = ψ(T x1 ) ≤ s and T x2 ≥ ψ(T x1 ),

since ψ(t) ≥ t. We are naturally encouraged to consider Sx,s1 = ψ(T x1 )1{ψ(Tx1 )≤s}
and it is well known that the law of (T x1 , T

y
1 ) can be described through the

maximal coupling :

T y1 = ΘU + (1−Θ)Vy, ψ(T x1 ) = ΘU + (1−Θ)Vx,

where Vx, Vy,Θ and U are independent, U ∼
PTy1
∧Pψ(Tx1 )

‖PSx,s1
∧PTy1

‖
TV

and Θ ∼ B(p) where

p = ‖PSx,s1
∧PTy1 ‖TV . With this coupling, if q(t, z) = P(T z1 ≥ ψ(t)−t), the Strong

Markov property yields

P(T x2 − T x1 |(T x1 , T
y
1 )) = P(T x2 ≥ ψ(T x1 )|T x1 ) = q(T x1 , X

x
T1

).

Since, z 7→ q(t, z) is increasing and x > a/b (from the assumption on Ax0,ε), we
deduce that Xx

T1
≤ x+ g and it follows that

P(T x2 > T y1 |(T x1 , T
y
1 )) ≥ q(t, x+ g) ≥ q(0, x+ g).
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using that t 7→ ψ(t) − t is a non-decreasing function. As a consequence, one
obtains that with this coupling,

P(Xx
Ty1

= Xy
Ty1
, T y1 ≤ s) ≥ q(0, x+ g)P(Θ = 1) = q(0, x+ g)‖PSx,s1

∧ PTy1 ‖TV .
(39)

It remains to find a lower bound of the total variation distance involved in the
r.h.s. of the above inequality . Recall that

‖PSx,s1
∧ PTy1 ‖TV =

∫ +∞

0

fy(t) ∧ gx,s(t)dt,

where fy and gx,s denote respectively the densities of T y1 and Sx,s1 . We have

∀t > 0, fy(t) = cφ(y, t)e
−

t∫
0

cφ(y,u)du
with φ(y, t) =

a

b
+ (y − a

b
)e−bt,

and a change of variable yields

∀t > 0, gx(t) = fx(ψ−1(t))(ψ−1)′(t)1{ψ(0)≤t≤s}. (40)

On the one hand, since (x, y) ∈ Ax0,ε, we can check that

∀t ≥ 0, φ(x, t)− εe−bt ≤ φ(y, t) ≤ φ(x, t),

and then we conclude that

∀t > 0, fy(t) ≥ fx(t)− εe−bt.

One the other hand, remark that

∀t > ψ(0), ψ−1(t) =
1

b
ln

(
ebt − x− y

g

)
≤ t and (ψ−1)′(t) =

ebt

ebt − x−y
g

≥ 1,

and we deduce from (??) that ∀t ∈ [ψ(0), s]:

gx(t) ≥ cφ(x, ψ−1(t))e−
∫ t
0
cφ(x,s)ds ≥ cφ(x, t)e−

∫ t
0
cφ(x,s)ds = fx(t).

Note that we used that t 7→ φ(x, t) is decreasing since x > a/b. Thus,(
PTy1 ∧ PSx1

)
(dt) ≥ h(t)dt with h(t) = (fx(t)− εe−bt)1ψ(0)≤t≤sdt.

As a consequence,

‖PSx,s1
∧ PTy1 ‖TV ≥ e

−
∫ ψ(0)
0 cφ(x,u)du − e−

∫ s
0
cφ(x,u)du − ε

b
.

Checking that ψ(0) ≤ ε/b and that ∀t ≥ 0, a/b ≤ φ(x, t) ≤ x ≤ x0, we deduce
that

‖PSx,s1
∧ PTy1 ‖TV ≥ e

− cx0εb − e− ab cs − ε

b
≥ 1− cx0ε

b
− e− ab cs − ε

b
,
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where in the second line, we used e−u ≥ 1− u for u ≥ 0. To conclude the proof,
it remains to plug this inequality into (??) and to remark that

q(0, x+g) ≥ q(0, x0+g) = e−
∫ ψ(0)
0 cφ(x0+g,s)ds ≥ 1−cψ(0)(x0+g) ≥ 1−c

b
ε(x0+g).

�
We provide now the proof of the ergodicity w.r.t. the total variation distance.

Proof of Theorem ??. For any starting distribution µ0,

‖µ0Pt − µ∞‖TV ≤
∫
‖δxPt − δyPt‖TV µ0(dy)µ∞(dx). (41)

The idea is to use the Wasserstein coupling during a time t1 and then to try to
stick the paths on the interval [t1, t] using Lemma ??. Consider Ax0,ε defined in
lemma ?? and the alternative set A∗x0,ε = {(x, y), a/b < y < x0, 0 < y − x ≤ ε}.
Set Bx0,ε = Ax0,ε ∪A∗x0,ε, we have

1− ‖δxPt − δyPt‖TV ≥ P(Xx
t = Y yt |(Xx

t1 , Y
y
t1) ∈ Bx0,ε)P((Xx

t1 , Y
y
t1) ∈ Bx0,ε).

(42)
Since the Wasserstein coupling preserves the order and that x > a/b µ∞(dx)-
a.s., one remarks that µ∞(dx)-a.s.,

(Xx
t1 , Y

y
t1) ∈ Bx0,ε ⇐⇒

{
Xx
t1 −X

y
t1 ≤ ε and Xx

t1 ≤ x0 if x ≥ y
Xy
t1 −X

x
t1 ≤ ε and Xy

t1 ≤ x0 if x < y.

It follows that for every p > 0, µ∞(dx) almost surely:

P((Xx
t1 , Y

y
t1) ∈ Bcx0,ε) ≤ P(|Xx

t1 −X
y
t1 | > ε) + P(Xx

t1 > x0) + P(Xy
t1 > x0)

≤ 1

ε
E[|Xx

t1 −X
y
t1 |] +

1

xp0

(
E[(Xx

t1)p] + E[(Xy
t1)p]

)
.

By Theorem ?? and Lemma ??, a constant Cp exists such that Cp depends on
p, µ0 and µ∞ but not on t1 and satisfies:∫

P((Xx
t1 , Y

y
t1) ∈ Bcx0,ε)µ0(dy)µ∞(dx) ≤ W1(µ0, µ∞)

ε
e−πt1 +

Cp
xp0
.

Finally, Lemma ?? leads to

P(Xx
t = Y yt |(Xx

t1 , Y
y
t1) ∈ Bx0,ε)

≥
(

1− c

b
x0ε− e−

a
b c(t−t1) − cε

b

){
0 ∨ 1− c

b
ε(x0 + g)

}
so that plugging the previous inequalities into (??) and (??), one deduces that
for every p > 1, a constant C̃p exists such that for every t ≥ 0, for every x0 and
ε such that x0ε ≤ b/2c (with x0 > 1 and ε ∈ (0, 1)),

‖µ0Pt − µ∞‖TV ≤ C̃p
(
x0ε+ e−

a
b c(t−t1) + ε+

1

ε
e−πt1 +

1

xp0

)
.
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If we try to optimize the above bound, we set t1 = δt, x0 = C1e
αt, ε = C2e

−βt

with δ ∈ (0, 1) and β > α > 0 and deduce that a constant Čp exists such that

‖µ0Pt − µ∞‖TV ≤ Čp exp
(
−t
{
β − α ∧ ca

b
(1− δ) ∧ δπ − β ∧ αp

})
.

We can choose p as large as we want (µ0 has moments of any order) and thus
α arbitrarily small, the result then follows using an optimization on (β, δ).

Appendix A: Technical result for the pseudo-regret upper bound

Lemma A.1. Let α > 0, γ1 ∈ (0, 1) and ñ ∈ N such that αγñ < 1 and
ñ ≥ 1/(αγ1)2). We have

∀n ≥ ñ
n−1∑
j=ñ

γj

n−1∏
l=j

(1− αγl) ≤
1

α

Proof Let j ≥ ñ. By the inequality ln(1 + x) ≥ x for x > −1, we have

n−1∏
l=j

(1− αγl) = exp

ln

n−1∑
l=j

(1− αγl)

 ≤ exp

− n−1∑
l=j

αγl


Using that x 7→ 1/

√
x is decreasing,

n−1∑
l=j

γl =

n−1∑
l=j

γ1√
l
≥ γ1

n−1∑
l=j

l+1∫
l

1√
x
dx = γ1

n∫
j

1√
x
dx = 2γ1(

√
n−

√
j)

so that

n−1∑
j=n0

γj

n−1∏
l=j

(1− αγl) ≤ γ1e
−2αγ1

√
n
n−1∑
j=n0

e2αγ1
√
j

√
j

.

Checking that x 7→ 1√
x
eαγ1

√
x is non-decreasing on [ 1

(αγ1)2 ,∞) one deduces that

for any j ≥ n0,

n−1∑
j=n0

1√
j
e2αγ1

√
j ≤

n∫
n0

1√
x
e2αγ1

√
xdx ≤ 1

αγ1
.

The lemma follows.
�
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