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Abstract

We review in this paper several statistical methods, speci�cally tailored for Markov
processes with a view towards their extremal behavior. Precisely, this paper proposes
some statistical inference tools for extremal events from a regeneration theory an-
gle.Indeed, Harris Markov chains may be decomposed into independent regeneration

cycles, namely data segments between consecutive regeneration times τ1, τ2, . . . (i.e.
random times at which the chain forgets its past). Working on this approach, the
methodology proposed in this paper boils down to split up the observed sample path
into regeneration data blocks (or into data blocks drawn from a distribution approx-
imating the regeneration cycle's distribution, in the general case when regeneration
times cannot be observed). Then, the analysis boils down to examining the sequence
of maxima over the resulting data segments, as if they were i.i.d. We focus on the
estimation of the extremal dependence index and the tail index. We illustrate the
method on two examples taken from the insurance and �nance literature, ruin models
and times series exhibiting smooth threshold and/or strong conditional heteroscedas-
ticity. An illustration of the estimation methods to the CAC40 shows the potential of
regenerative tools for real data applications.
Keywords and phrases: regenerative Markov chain, Nummelin splitting technique,
extreme values statistics, cycle submaximum, Hill estimator, extremal index, ruin
theory.
AMS 2000 Mathematics Subject Classi�cation: 60G70, 60J10, 60K20.

1 Introduction

Extremal events for (strongly or weakly) dependent data have received an increasing at-
tention in the statistical literature in the last past years (see Newell (1964); Loynes (1965),
O'Brien (1974, 1987),Hsing (1988, 1991, 1993); Resnick and St ric  (1995); Rootzén (2006)
for instance). A major issue for evaluating risks and understanding extremes and their pos-
sible replications is to take into account some dependencies. Indeed, whereas extreme val-
ues naturally occur in an isolated fashion in the identically independent distributed (i.i.d.)
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setup, since extreme values may be highly correlated, they generally tend to take place
in small clusters for weakly dependent sequences. Most methods for statistical analysis
of extremal events in weakly dependent setting rely on (�xed length) blocking-techniques,
which consist, roughly speaking, in dividing an observed data series into (overlapping or
non overlapping) blocks of �xed length. Examine how extreme values occur over these
data segments allows to capture the tail and the dependency structure of extreme values.

As originally pointed out in Rootzén (1988), the extremal behavior of instantaneous
functionals f(X) = {f(Xn)}n∈N of a Harris recurrent Markov chain X may be described
through the regenerative properties of the underlying chain. The present paper empha-
sizes the importance of renewal theory and regeneration from the perspective of statistical
inference for extremal events. Indeed, as observed by Rootzén (1988) (see also Asmussen
(1998a,b); Haiman et al. (1995); Hansen and Jensen (2005)), certain parameters of extremal
behavior features of Harris Markov chains may be also expressed in terms of regeneration
cycles, namely data segments between consecutive regeneration times τ1, τ2, ..., i.e. ran-
dom times at which the chain completely forgets its past. Following in the footsteps of the
seminal contribution of Rootzén (1988) (see also Asmussen (1998a)), Bertail et al. (2009)
and Bertail et al. (2013) have recently investigated the performance of regeneration-based
statistical procedures for estimating key parameters, related to the extremal behavior anal-
ysis in a Markovian setup. In the spirit of the works of Bertail and Clémençon (2006b) (refer
also to Bertail and Clémençon (2004a), Bertail and Clémençon (2004b) Bertail and Clé-
mençon (2006a)), they developed a statistical methodology, called the "pseudo-regenerative
method", based on approximating the pseudo-regeneration properties of general Harris
Markov chains, for tackling various estimation problems in a Markovian setup. Most of
their works deal with regular di�erentiable functionals like the mean (see Bertail and Clé-
mençon (2004a), Bertail and Clémençon (2007)), the variance, quantiles, L-statistics and
their robusti�ed versions (Bertail et al. (2014)), as well asU-statistics (Bertail et al. (2011)).
Bootstrap versions of these estimates have also been proposed . For regular functionals,
they possess the same nice second order properties as the bootstrap in the i.i.d case, that is
the rate of the convergence of the bootstrap distribution which is close to n−1, for regular
Markov chains, instead of n−1/2 for the asymptotic (Gaussian) benchmark (see Bertail and
Clémençon (2006b)).

The purpose of this paper is to review and give some extensions of this approach in
the framework of extreme values for general Markov chains. The proposed methodology
consists in splitting up the observed sample path into regeneration data blocks (or into data
blocks drawn from a distribution approximating the regeneration cycle's distribution, in the
general case when regeneration times cannot be observed). We mention that the estimation
principle exposed in this paper is by no means restricted to the sole Markovian setup, but
indeed applies to any process for which a regenerative extension can be constructed and
simulated from available data (see chap. 10 in Thorisson (2000)). Then, statistical tools
are built over the sequence of maxima over the resulting data segments, as if these maxima
were i.i.d.. In order to illustrate the interest of this technique, we focus on the question of
estimating the sample maximum's tail, the extremal dependence index and the tail index
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by means of the (pseudo-) regenerative method. To motivate this approach in �nancial and
insurance applications (as well as queuing or inventory models), we illustrate how these
tools may be used in order to estimate ruin probabilities or extremal index, in ruin models
with a dividend barrier, exhibiting some regenerative properties. Such applications have
also straightforward extensions (for continuous Markov chains) in the �eld of �nance, for
instance for put option pricing (for which the "strike" plays here the role of the ruin level).

2 On the (pseudo-) regenerative approach for Markovian data

Here and throughout, X = (Xn)n∈N denotes a ψ-irreducible aperiodic time-homogeneous
Markov chain, valued in a (countable generated) measurable space (E, E) with transition
probability Π(x, dy) and initial distribution ν. We recall that the Markov property means
that, for any set B, such that ψ(B) > 0, for any sequence (xn, xn−1, ......) in E,

P(Xn+1 ∈ B | {Xj = xj, j ≤ n}) = P(Xn+1 ∈ B | Xn = xn)

= Π(xn, B).

For homogeneous Markov chains, the transition probability does not depend on n. Refer
to Revuz (1984) and Meyn and Tweedie (1996), for basic concepts of the Markov chain
theory. For sake of completeness, we specify the two following notions :

� The chain is irreductible if there exists a σ-�nite measure ψ such that for all set
B ∈ E , when ψ(B) > 0, the chain visits B with a strictly positive probability, no
matter what the starting point.

� Assuming ψ-irreducibility, there is d′ ∈ N∗ and disjointed sets D1, ...., Dd′ (Dd′+1 =
D1) weighted by ψ such that ψ(E\∪16i6d′Di) = 0 and ∀x ∈ Di, Π(x,Di+1) = 1. The
period of the chain is the greatest common divisor d of such integers. It is aperiodic
if d = 1.

� The chain is said to be recurrent if any set B with positive measure ψ(B) > 0, i.f.f
the set B is visited an in�nite number of times.

The �rst notion formalizes the idea of a communicating structure between subsets and
the second notion considers the set of time points at which such communication may occur.
Aperiodicity eliminates deterministic cycles. If the chain satis�es these three properties, it
is said to be Harris recurrent.

In what follows, Pν (respectively, Px for x in E) denotes the probability measure on
the underlying space such that X0 ∼ ν (resp., conditioned upon X0 = x), Eν[.] the Pν-
expectation (resp. Ex[.] the Px (.)-expectation) and I{A} the indicator function of any
event A. We assume further that X is positive recurrent and denote by µ its (unique)
invariant probability distribution.
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2.1 Markov chains with regeneration times : de�nitions and examples

A Markov chain X is said regenerative when it possesses an accessible atom, i.e. a measur-
able set A such that ψ(A) > 0 and Π(x, .) = Π(y, .) for all x, y in A. A recurrent Markov
chain taking its value in a �nite set is always atomic since each visited point is itself an
atom. Queuing systems or ruin models visiting an in�nite number of time the value 0
(the empty queue) or a given level (for instance a barrier in the famous Cramér-Lundberg
model, see Embrechts et al. (1997) and the examples below) are also naturally atomic.
Refer also to Asmussen (2003) for regenerative models involved in queuing theory, see also
the examples and the applications below.

Denote then by τA = τA(1) = inf {n ≥ 1, Xn ∈ A} the hitting time on A or �rst return
time to A. Put also τA(j) = inf {n > τA(j− 1), Xn ∈ A} , j ≥ 2 for the so called successive
return times to A, corresponding to the time of successive visits to the set A.

In the following EA[.] denotes the expectation conditioned on the event {X0 ∈ A}. When
the chain is Harris recurrent, for any starting distribution, the probability of returning
in�nitely often to the atom A is equal to one. Then, for any initial distribution ν, by the
strong Markov property, the sample paths of the chain may be divided into i.i.d. blocks
of random length corresponding to consecutive visits to A, generally called regeneration

cycles:
B1 = (XτA(1)+1, ..., XτA(2)), ..., Bj = (XτA(j)+1, ..., XτA(j+1)), ...

taking their values in the torus T = ∪∞n=1En. The renewal sequence {τA(j)}j≥1 de�nes suc-
cessive times at which the chain forgets its past, termed regeneration times.

Example 1 : Queuing system or storage process with an empty queue.

We consider here a storage model (or a queuing system), evolving through a sequence
of input times (Tn)n∈N (with T0 = 0 by convention), at which the storage is re�lled. Such
models appear naturally in many domains like hydrology, operation research, but also for
modeling computer CPU occupancy.

Let Xn be the size of the input into the storage system at time Tn. Between each input
time, it is assumed that withdrawals are done from the storage system at a constant rate
r. Then, in a time period [T, T + ∆T ], the amount of stored contents which disappears is
equal to r∆T . If Xn denotes the amount of contents immediately before the input time Tn,
we have for all n ∈ N,

Xn+1 = (Xn +Un+1 − r∆Tn+1)+ ,

with (x)+ = sup (x, 0) , X0 = 0 by convention and ∆Tn = Tn − Tn−1 for all n ≥ 1 and
T0 = 0. ∆Tn is sometimes called the waiting time period.

This model can be seen as a re�ected random walk on R+. Assume that, condition-
ally to X1, ..., Xn, the amounts of input U1, ..., Un are independent from each other and
independent from the inter-arrival times ∆T1, ..., ∆Tn and that the distribution of Ui is
given by K(Xi, .), for 0 6 i 6 n. Under the further assumption that (∆Tn)n>1 is an i.i.d.
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sequence, independent from U = (Un)n∈N, the storage process X is a Markov chain. The
case with exponential input-output has been extensively studied in Asmussen (1998a).

It is known that the chain Π is irreducible as soon as K(x, .) has an in�nite tail for
all x > 0 and if in addition EUn − rE∆Tn+1 < 0, {0} is an accessible atom of the chain
Xn. Moreover, if Un+1 − r∆Tn+1 has exponential tails, then the chain is exponentially
geometrically ergodic. The case with heavy tails has been studied in details by Asmussen
(1998b) and S. Asmussen and Höjgaard (2000). Under some technical assumptions, the
chain is recurrent positive and the times at which the storage process X reaches the value
0 are regeneration times. This property allows to de�ne regeneration blocks dividing the
sample path into independent blocks, as shown below. Figure 1 represents the storage
process with ∆Ti and Xi with γ(1) distribution and r = 1.05. The red line corresponds to
the atom A = {0} and the green lines are the corresponding renewal times (visit to the
atom).
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Figure 1: Splitting a re�ected random walk, with an atom at {0}; vertical lines corresponds
to regeneration times, at which the chain forgets its past. A block is a set of observations
between two lines (it may be reduced to {0} in some case)

Notice that the blocks are of random size. Some are rather long (corresponding to large
excursion of the chain), others reduce to the point {0} if the chain stays at 0 for several
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periods. In this example, for the given values of the parameters, the mean length of a block
is close to 50.5. It is thus clear that we need a lot of observations to get enough blocks.
The behavior of the maximum of this process for subexponential arrivals has been studied
at length in Asmussen (1998b).

Example 2 : Cramér-Lundberg with a dividend barrier.

Ruin models, used in insurance, are dynamic models in continuous time which describe
the behavior of the reserve of a company as a function of

i) its initial reserve u (which may be chosen by the insurer),
ii) the claims which happen at some random times (described by a arrival claim process),
iii) the premium rate which is the price paid by customers per unit of time.
In the classical Cramér-Lundberg model, the claim arrival process {N(t), t ≥ 0, N(0) =

0} is supposed to be an homogeneous Poisson process with rate λ, modeling the number of
claims in an interval [0, t]. The claims sizes Ui, i = 1,....∞ , that an insurance company has
to face, are assumed to be strictly positive and independent, with cumulative distribution
function (cdf) F. The premium rate is supposed to be constant equal to c. Then, the total

claim process, given by S(t) =
∑N(t)
i=1 Ui is a compound Poisson process. Starting with an

initial reserve U(0) = u, the reserve of the company evolves as

R(t) = u+ ct− S(t)

= u+

N(t)∑
n=1

(c∆Tn −Un).

One of the major problems in ruin models for insurance company is how to choose the
initial amount to avoid the ruin or at least ensure that the probability of ruin over a �nite
horizon (or an in�nite one) is small, equal to some given error of �rst kind, for instance
10−3. The probability of ruin for an initial reserve u over an horizon [0, T ] is given by

ψ(u, T) = P( inf
t∈[0,T ]

(R(t)) < 0).

Notice that this model is very close to the queuing process considered in example 1. The
input times (Tn)n∈N correspond here to the times of the claims. It is easy to see that
under the given hypotheses, the inter-arrival times (∆Tn)n∈N are i.i.d with exponential
distribution γ(1, λ) (with E∆Tn = 1/λ). However, most of the time, for a given company,
we only observe (at most) one ruin (since it is an absorbing state), and the reserve is
not allowed to grow over a given barrier. Actually, if the process R(t) crosses a given
threshold b, the money is redistributed in some way to the shareholders of the company.
This threshold is called a dividend barrier. In this case the process of interest is rather

X(t) = (u+ ct− R(t))∧ b,

where a ∧ b designs the in�mum between a and b. Of course, the existence of a barrier
reinforces the risk of ruin especially if the claim size may be large in particular if their
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Figure 2: Cramér-Lundberg model with a dividend barrier at b=9 (where the chain is
re�ected); ruin occurs at t=81 when the chain goes below 0.

distributions have a fat tail. The embedded chain is de�ned as the value of X(t) at the
claim times, say Xn = X(Tn) then it is easy to see that we have

Xn+1 = inf(Xn + c∆Tn −Un+1, b) with X0 = u.

Otherwise, the probability of no ruin is clearly linked to the behavior ofMax1≤i≤n(−Xn).
In comparison to example 1, this model is simply a mirror process, with this time,

an atom at {b} instead of {0} as shown in the two graphics below. In this example, the
(∆Tn)n∈N are exponential and the claims with exponential tails, the initial reserve is 5 and
the barrier at 9. In this simulation the "ruin" is attained at time t=81.

The embedded chain shows that the barrier is attained several times and allows to
build regeneration times (in green) and independent blocks just as in the �rst example.
Because of the choice of the parameters (fat tail for the claims), the number of blocks is
small on this short period but in practical insurance applications, we may hope to have
more regenerations...
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Figure 3: Splitting the embedded chain of a Cramér-Lundberg model with a dividend
barrier. Vertical lines corresponds to regeneration times (when the chain attains the barrier
b=9). The blocks of observations between two vertical lines are independent.
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2.2 Basic regeneration properties

When an accessible atom exists, the stochastic stability properties of the chain are reduced
to properties concerning the speed of return time to the atom only. Theorem 10.2.2 in
Meyn and Tweedie (1996) shows for instance that the chain X is positive recurrent if and
only if (i.f.f.) EA[τA] < ∞. The (unique) invariant probability distribution µ is then the
Pitman's occupation measure given by

µ(B) =
1

EA[τA]
EA[

τA∑
i=1

I{Xi ∈ B}], for all B ∈ E . (1)

In the case EA[τA] = ∞, if there exists 0 < β < 1 such that EτβA <∞ and Eτβ+ηA = ∞,
for any η > 0, the chain is said β − null recurrent and there exists an invariant mea-
sure (not a probability) for the chain. The splitting into independent blocks still holds
(see for instance Tjöstheim (1990) and Karlsen and Tjöstheim (2001)). This includes for
instance the case of the random walk (with β = 1/2) and such procedure may be useful
for studying the properties of the maximum for Markovian processes which have somehow
the same kind of behavior as long range memory processes. We will not consider this more
technical case here. For atomic chains, limit theorems can be derived from the application
of the corresponding results to the i.i.d. blocks (Bn)n≥1 (see Smith (1992) and the refer-
ences therein). For instance, using this kind of techniques, Meyn and Tweedie (1996) have
proved the Law of Large Number (LLN), the Central Limit Theorem (CLT) and Laws of
Iterated Logarithm (LIL) for Markov chains. Bolthausen (1980) obtained a Berry-Esseen
type theorem and Malinovski�i (1985), Malinovski�i (1987, 1989); Bertail and Clémençon
(2006b) have proved other re�nements of the CLT in particular Edgeworth expansions.
The same technique can also be applied to establish moment and probability inequalities,
which are not asymptotic results (see Clémençon (2001); Bertail and Clémençon (2010)).

Recall that a set S ∈ E is said to be small for X if there exist m ∈ N∗, δ > 0 and a
probability measure Φ supported by S such that, for all x ∈ S, B ∈ E ,

Πm(x, B) ≥ δΦ(B), (2)

denoting by Πm the m-th iterate of the transition kernel Π. In the sequel, (2) is referred to
as the minorization condition M(m,S, δ,Φ). Recall that accessible small sets always exist
for ψ-irreducible chains : any set B ∈ E such that ψ(B) > 0 contains such a set (cf Jain
and Jamison (1967)). In many models of interest m = 1 but even if it is not the case it
is possible to vectorize the Markov chains to reduce the study of this condition to m = 1.
Even if it entails replacing the initial chain X by the chain {(Xnm, ..., Xn(m+1)−1)}n∈N, we
now suppose m = 1. From a practical point of view, the minorizing probability measure
may be chosen by the user. For instance, Φ(B) may be the uniform distribution over a
given small set, typically a compact set which is often visited by the chain, then in this
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case δ may simply be seen as the minimum of the Π(x, B) over S. Of course in practice
Π is unknown but easily estimable so that plug-in estimators of these quantities may be
easily constructed (see below).

2.3 The Nummelin splitting trick and a constructive approximation

We now precise how to construct the atomic chain onto which the initial chain X is em-
bedded. Suppose that X satis�es M = M(m,S, δ,Φ) for S ∈ E such that ψ(S) > 0.

The sample space is expanded so as to de�ne a sequence (Yn)n∈N of independent Bernoulli
r.v.'s with parameter δ by de�ning the joint distribution Pν,M whose construction relies
on the following randomization of the transition probability Π each time the chain hits S.
If Xn ∈ S and

� if Yn = 1 (with probability δ ∈ ]0, 1[), then Xn+1 ∼ Φ,

� if Yn = 0, then Xn+1 ∼ (1− δ)−1(Π(Xn+1, .) − δΦ(.)).

The key point of the construction relies on the fact that AS = S× {1} is an atom for the
bivariate Markov chain (X, Y), which inherits all its communication and stochastic stability
properties from X (refer to Chapt. 14 in Meyn and Tweedie (1996)).

Here we assume further that the conditional distributions {Π(x, dy)}x∈E and the ini-
tial distribution ν are dominated by a σ-�nite measure λ of reference, so that ν(dy) =
fν(y)λ(dy) and Π(x, dy) = π(x, y)λ(dy) for all x ∈ E. For simplicity, we suppose that
conditionM is ful�lled with m = 1. Hence, Φ is absolutely continuous with respect to λ
too, and, setting Φ(dy) = φ(y).λ(dy),

∀x ∈ S, π(x, y) ≥ δφ(y), λ(dy)-almost surely. (3)

If we were able to generate binary random variables Y1, ..., Yn, so that ((X1, Y1), ..., (Xn, Yn))
be a realization of the split chain described above, then we could divide the sample path
X(n) = (X1, ..., Xn) into regeneration blocks. Given the sample path X(n+1), it may be
shown that the Yi's are independent random variables and the conditional distribution of
Yi is the Bernoulli distribution with parameter

δφ(Xi+1)

π(Xi, Xi+1)
· I{Xi ∈ S}+ δ · I{Xi /∈ S}. (4)

Therefore, knowledge of π over S2 is required to draw Y1, ..., Yn by this way.
A natural way of mimicking the Nummelin splitting construction consists in computing

�rst an estimate π̂n(x, y) of the transition density over S2, based on the available sample
path and such that π̂n(x, y) ≥ δφ(y) a.s. for all (x, y) ∈ S2, and then generating in-
dependent Bernoulli random variables Ŷ1, . . . , Ŷn given X(n+1), the parameter of Ŷi being
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obtained by plugging π̂n(Xi, Xi+1) into (4) in place of π(Xi, Xi+1). We point out that, from
a practical point of view, it actually su�ces to draw the Ŷi's only at times i when the
chain hits the small set S. Ŷi indicates whether the trajectory should be cut at time point
i or not. Proceeding this way, one gets the sequence of approximate regeneration times,
namely the successive time points at which (X, Ŷ) visits the set AS = S × {1}. Setting
l̂n =

∑
1≤k≤n I{(Xk, Ŷk) ∈ S× {1}} for the number of splits (that is the number of visits of

the approximated split chain to the arti�cial atom), one gets a sequence of approximate
renewal times,

τ̂AS(j+ 1) = inf{n ≥ 1+ τ̂AS(j)/ (Xn, Ŷn) ∈ S× {1}}, for 1 ≤ j ≤ l̂n − 1, (5)

with τ̂AS(0) = 0 by convention and forms the approximate regeneration blocks B̂1, ..., B̂l̂n−1.

The knowledge of the parameters (S, δ, φ) of condition (3) is required for implementing
this approximation method. A practical method for selecting those parameters in a fully
data-driven manner is described at length in Bertail and Clémençon (2007). The idea is
essentially to select a compact set around the mean of the time series and to increase its size.
Indeed, if the small set is too small, then there will be no data in it and the Markov chain
could not be split. On the contrary, if the small set is too large, the minimum δ over the
small set will be very small and there is little change that the we observe Yi = 1. As
the size increases, the number of regenerations increases up to an optimal value and then
decreases, the choice of the small set and of the corresponding splitting is then entirely
driven by the observations. To illustrate these ideas, we apply the method to a �nancial
time series assuming that it is Markovian (even if there are some structural changes, the
Markovian nature still remains).

Example 3 : Splitting a non regenerative �nancial time series.
Many �nancial time series exhibit some nonlinearities and structural changes both in

level and variance. To illustrate how it is possible to divide such kind of data into "almost"
independent blocks, we will study a particular model exhibiting such behavior.

Consider the following SETAR(1)-ARCH(1) model (Smooth Exponential Threshold
AutoRegressive Model with AutoRegressive Conditional Heteroscedasticity) de�ned by

Xt+1 = (α1 + α2e
−X2t )Xt + (1+ βX2t)

1/2εt+1 ,

where the noise (εt)t=1,...,n are i.i.d with variance σ2. See Fan and Yao (2003) for a detailed
description of these kinds of non-linear models. It may be used to model log-returns
or log-prices. Notice that this Markov chain (of order 1) may be seen as a continuous
approximation of a threshold model. Assume that |α1| < 1, then for large values of |Xt|,
it is easy to see that in mean Xt+1 behaves like a simple AR(1) model with coe�cient
α1 (ensuring that the process will come back to its mean, equal to 0). Conversely, for
small values of Xt (close to 0), the process behaves like an AR(1) model with coe�cient
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α1+α2 (eventually explosive if α1+α2 > 1). This process is thus able to engender bursting
bubbles. The heteroscedastic part implies that the conditional variance Var(Xt+1|Xt) =
σ2(1+βX2t)

1/2 may be strongly volatile when large values (the bubble) of the series occur.
To ensure stationarity, we require 0 < β < 1.

In the following simulation, we choose n = 200, α1 = 0.60, α2 = 0.45, β = 0.35

and σ2 = 1. The follows graph panel shows the Nadaraya estimator of the transition
density, the number of blocks obtained as the size of the small set increases. For a small
set of the form [−0.8, 0.8], we obtain l̂n = 21 pseudo-blocks and the mean length of a

block is close to 10. The estimated lower bound for the density over the small set δ̂n is
0.15. The third graphic shows the level sets of the density and the corresponding optimal
small set (containing the possible points at which the times series may be split). The last
graph shows the original time series and the corresponding pseudo-blocks obtained for an
optimal data driven small set.

Beyond the consistency property of the estimators that we will later study, this method
has an important advantage that makes it attractive from a practical perspective : blocks
are here entirely determined by the data (up to the approximation step), in contrast to
standard blocking-techniques based on �xed length blocks. Indeed, it is well known that
the choice of the block length is crucial to obtain satisfactory results and is a di�cult
technical task.

2.4 Some hypotheses

The validity of this approximation has been tackled in Bertail and Clémençon (2006a) using
a coupling approach. Precisely, the authors established a sharp bound for the deviation
between the distribution of ((Xi, Yi))1≤i≤n and the one of the ((Xi, Ŷi))1≤i≤n in the sense
of Wasserstein distance. The coupling "error" essentially depends on the rate of the mean
squared error (MSE) of the estimator of the transition density

Rn(π̂n, π) = E[( sup
(x,y)∈S2

|π̂n(x, y) − π(x, y)|)
2], (6)

with the sup norm over S× S as a loss function, under the next conditions :

A1. the parameters S and φ in (3) are chosen so that infx∈Sφ(x) > 0,

A2. sup(x,y)∈S2 π(x, y) <∞ and Pν-almost surely supn∈N sup(x,y)∈S2 π̂n(x, y) <∞.

Throughout the next sections, f denotes a �xed real valued measurable function de�ned
on the state space E. To study the properties of the block, we will also need the following
usual moment conditions on the time return.
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Figure 4: Splitting a Smooth Exponential Threshold Arch time-series, with n = 200,

α1 = 0.60, α2 = 0.45, β = 0.35 and σ2 = 1. Left upper side : estimator of the transition
density. Left down side : visit of the chain to the small set [−ε, ε]2 and the level sets of
the transition density estimator : the optimal small set should contain a lot of points in a
region with high density. Right upper side: number of regenerations according to the size
ε of the small set, optimal for εopt = 0.8. Right down side : splitting (vertical bars) of
the original time series, with horizontal bars corresponding to the optimal small set.
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A3 (Regenerative case)

H(κ) : EA[τκA] <∞,
H(ν, κ) : Eν[τκA] <∞.

and their analog versions in the non regenerative case

A4 (General Harris recurrent case)

�H(κ) : supx∈S Ex[τκS] <∞,
�H(ν, κ) : supx∈S Ex[τκS] <∞.

3 Preliminary results

Here we begin by brie�y recalling the connection between the (pseudo-) regeneration prop-
erties of a Harris chain X and the extremal behavior of sequences of type f(X) = {f(Xn)}n∈N,
�rstly pointed out in the seminal contribution of Rootzén (1988) (see also Asmussen (1998b)
and Hansen and Jensen (2005)).

3.1 Cycle submaxima for regenerative Markov chains.

We �rst consider the case when X possesses a known accessible atom A. In the following
we denote α = EA[τA]. For j ≥ 1, de�ne the submaximum over the j-th cycle of the sample
path:

ζj(f) = max
1+τA(j)≤i≤τA(j+1)

f(Xi). (7)

In the following ln =
∑n
i=1 I{Xi ∈ A} denotes the number of visits of X to the regenera-

tion set A until time n. ζ0(f) = max1≤i≤τA f(Xi) denotes the maximum over the �rst cycle
(starting from an initial distribution ν). Because of the "initialization" phase, its distribu-

tion is di�erent from the others and essentially depends on ν. ζ
(n)
ln

(f) = max1+τA(ln)≤i≤n f(Xi)
denotes the maximum over the last non-regenerative data block (meaning by that it may
be an incomplete block, since we may not observe the return to the the atom A) with the
usual convention that maximum over an empty set equals to −∞.

With these de�nitions, it is easy to understand that the maximum value Mn(f) =
max1≤i≤n f(Xi), taken by the sequence f(X) over a trajectory of length n, may be naturally
expressed in terms of submaxima over cycles

Mn(f) = max{ζ0(f), max
1≤j≤ln−1

ζj(f), ζ
(n)
ln

(f)}. (8)

By the strong Markov property and independence of the blocks, the ζj(f)'s are i.i.d.
random variables with common distribution function (df) Gf(x) = PA(max1≤i≤τA f(Xi) ≤
x). Moreover, by Harris recurrence, the number of blocks is of order ln ∼ n/α Pν-almost
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surely as n → ∞. Thus, Mn(f) behaves like the maximum of n/α i.i.d. rv′s. The
following result established in Rootzén (1988) shows that the limiting distribution of the
sample maximum of X is entirely determined by the tail behavior of the df Gf and relies
on this crucial asymptotic independence of the blocks.

Proposition 1 (Rootzén, 1988)

Let α = EA[τA] be the mean return time to the atom A. Under the assumption that the

�rst block does not a�ect the extremal behavior, that is to say that

Pν(ζ0(f) > max
1≤k≤l

ζk(f)) → 0 as l→ ∞, (9)

we have then

sup
x∈R

|Pν(Mn(f) ≤ x) −Gf(x)n/α| → 0 as n→ ∞. (10)

In the terminology of O'Brien (see O'Brien (1974, 1987)), Gf(x)
1/α may be seen as a

so called "phantom distribution", that is an arti�cial distribution which gives the same
distribution for the maximum as in the i.i.d. case. Indeed the preceding theorem shows
that the distribution of the maximum behaves exactly as if the observations were indepen-
dent with distribution Gf(x)

1/α. As a consequence, the limiting behavior of the maximum
in this dependent setting may be simply retrieved by using the famous Fischer-Typett-
Gnedenko theorem (obtained in the i.i.d. case), with the marginal distribution replaced
by the phantom distribution Gf(x)

1/α. Then, the asymptotic behavior of the sample max-
imum is entirely determined by the tail properties of the df Gf(dx). In particular, the
limiting distribution of Mn(f) (for a suitable normalization) is the generalized extreme
value distribution function Hξ(dx) with parameter ξ ∈ R , given by

Hξ(x) =
exp(−x−1/ξ)I{x > 0}, when ξ > 0.
exp(− exp(−x)), when ξ = 0.

exp(−(−x)−1/ξ)I{x < 0}, if ξ < 0.

In the following ξ will be referred as extreme value index. When ξ > 0, we will also call it
the tail index, corresponding to a Pareto like distribution. The smaller ξ, the heavier the
tail is.

Remark 1 To explain the link between the transition and the behavior of the submaximum,

consider the case where A is reduced to a point (which will be the case in our applications).

Here to simplify A = {0} and positive r.v.'s Xk, k ∈ N, it is easy to see that

Gf(x) = PA( max
1≤i≤τA

Xi ≤ x) =
∞∑
k=1

ak

ak = PA( max
1≤i≤τA

Xi ≤ x, τA = k)

15



but for k ≥ 2

ak = PA(Xi ≤ x, Xi > 0, i = 1, ...k− 1, , Xk = 0)

= PA(0 < X1 ≤ x|X0 = 0)
k−1∏
i=2

PA(0 < Xi ≤ x|0 < Xi−1 < x)PA(Xk = 0|0 < Xk−1 ≤ x)

= Π(0, ]0, x])Π(]0, x], ]0, x])k−2Π(]0, x], 0)

so that

Gf(x) = Π(0, 0) +
Π(0, ]0, x])Π(]0, x], 0)

1− Π(]0, x], ]0, x])
.

Thus, it follows that the tail of Gf essentially depends on the behavior of Π(, ) for large

values of x. The invariant measure depends itself on this quantity.

In the following, we assume that Gf belongs to the maximum domain of attraction
Hξ(x) say MDA(Hξ) (refer to Resnick (1987) for basics in extreme value theory). Then,
there exist some sequences an and cn such that Gf(anx + cn)

n → Hξ(x) as n → ∞ and
we have Pν(Mn(f) ≤ a′nx+ cn) → Hξ(x) as n→ ∞, with a′n = an/α

ξ.

3.1.1 Estimation of the cycle submaximum cumulative distribution function

In the atomic case, the cdf Gf of the cycle submaxima, ζj(f) with j ≥ 1, may be naturally
estimated by the empirical counterpart df from the observation of a random number ln−1
of complete regenerative cycles, namely

Gf,n(x) =
1

ln − 1

ln−1∑
j=1

I{ζj(f) ≤ x}, (11)

with Gf,n ≡ 0 by convention when ln ≤ 1. Notice that the �rst and the last (non
regenerative blocks) are dropped in this estimator. As a straightforward consequence of
Glivenko-Cantelli's theorem for i.i.d. data, we have that

∆n = sup
x∈R

|Gf,n(x) −Gf(x)| → 0, Pν-almost surely. (12)

Furthermore, by the LIL, we also have ∆n = O(
√
log log(n)/n) a.s.

3.1.2 Estimation of submaxima in the pseudo-regenerative case

Cycles submaxima of the split chain are generally not observable in the general Harris
case, since Nummeling extension depends on the true underlying transition probability.
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However, our regeneration-based statistical procedures may be directly applied to the sub-
maxima over the approximate regeneration cycles. De�ne the pseudo-regenerative block
maxima by

ζ̂j(f) = max
1+τ̂AS (j)≤i≤τ̂AS (j+1)

f(Xi), (13)

for i = 1, . . . , l̂n − 1. The empirical df counterpart is now given by

Ĝf,n(x) =
1

l̂n − 1

l̂n−1∑
j=1

I{ζ̂j(f) ≤ x}, (14)

with, by convention, Ĝf,n ≡ 0 if l̂n ≤ 1. As shown by the next theorem, using the
approximate cycle submaxima instead of the 'true' ones does not a�ect the convergence,
under assumption A1. Treading in the steps of Bertail and Clémençon (2004a), the proof
essentially relies on a coupling argument.

Theorem 2 Let f : (E, E) → R be a measurable function. Suppose that conditions (3),

A1 and A2 are ful�lled by the chain X. Assume further that Rn(π̂n, π) → 0 as n → ∞.

Then, Ĝf,n(x) is a consistent estimator of Gf(x) = PAS(max1≤i≤τAS f(Xi) ≤ x), uniformly
over R, as n→ ∞,

∆̂n = sup
x∈R

|Ĝf,n(x) −Gf(x)| = OPν(Rn(π̂n, π)1/2). (15)

For smooth Markov chains with smooth C∞ transition kernel density, the rate of con-
vergence of ∆̂n will be close to n−1/2. Under standard H�older constraints of order s, the
typical rate for the MSE (6) is of order n−s/(s+1) so that ∆̂n =OPν(n

−s/(2(s+1))).

4 Regeneration-based statistical methods for extremal events

The core of this paragraph is to show that, in the regenerative setup, consistent statistical
procedures for extremal events may be derived from the application of standard inference
methods introduced in the i.i.d. setting.

In the case when assumption (9) holds, one may straightforwardly derive from (10)
estimates of H(bn)(x) = Pν(Mbn(f) ≤ x) as n→ ∞ and bn → ∞ based on the observation
of (a random number of) submaxima ζj(f) over a sample path of length n, as proposed
in Glynn and Zeevi (2000). Because of the estimation step, we will require that bn

n →
0. Indeed, if we want to obtain convergent estimators of the distribution of the maximum,
we need to subsample the size of the maximum to ensure that the empirical estimation
procedure does not alter the limiting distribution. For this, put

Hn, l(x) = (Gf,n(x))
l, (16)
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with l ≥ 1. The next limit result establishes the asymptotic validity of estimator (16)
for an adequate choice of l depending both on the number of regenerations and of the
size bn, extending this way Proposition 3.6 of Glynn and Zeevi (2000). If computations
are carried out with the pseudo-regeneration cycles, under some additional technical as-
sumptions taking into account the order of the approximation of the transition kernel, the
procedure remains consistent. In this case, one would simply consider estimates of the
form Ĥn, l(x) = (Ĝf,n(x))

l. The following theorem is a simple adaption of a theorem given
in Bertail et al. (2009).

Proposition 3 (i) (Regenerative case) Suppose that assumption (9) holds. Assume that

bn → ∞ is chosen in such a way that bn = o(
√
n/ log logn). Let (un)n∈N be a

(deterministic) sequence of real numbers such that bn(1 − Gf(un))/α → η < ∞ as

n→ ∞. Then, we have

H(bn)(un) → exp(−η) as n→ ∞. (17)

In the regenerative setup, suppose furthermore that H(ν, 1) is ful�lled. If we choose
l = l(bn) ∼

bn
α as n→ ∞. Then,

Hn, l(bn)(un)/H
(bn)(un) → 1 (18)

in Pν- probability, as n→ ∞.
(ii) (General Harris recurrent case), suppose thatA1, A2 and �H(ν, 1) hold andRN(π̂n, π) =

O(n−1+ε), as n → ∞ for some ε ∈]0, 1[. If l is chosen so that, as bn → ∞, l ∼ l̂bn
and bn = o(n(1−ε)/2) , then

Ĥn, l(n)(un)/H
(bn)(un) → 1 in Pν- probability, as n→ ∞. (19)

(iii) The same results hold if the deterministic threshold is replaced by an estimator based

on the empirical distribution for instance un = G−1
f,n(1− ηα/bn).

This result indicates that, in the most favorable case, we can recover the behavior of
the maximum only over bn observations with bn much smaller than n. However, it is still
possible to estimate the tail behavior of Mn(f), by extrapolation techniques (as it is done
for instance in Bertail et al. (2004)). If in addition, one assumes that Gf belongs to some
speci�c domain of attraction MDA(Hξ), for instance to the Fréchet domain with ξ > 0 ,
it is possible to use classical inference procedures (refer to � 6.4 in Embrechts et al. (1997)
for instance) based on the submaxima ζ1(f), . . . , ζln−1(f) or the estimated submaxima over
pseudo-cycles to estimate the shape parameter ξ, as well as the norming constants an and
cn.
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5 The extremal index

The problem of estimating the extremal index of some functionals of this quantity has
been the subject of many researches in the strong mixing framework (see for instanceHsing
(1993), Ferro and Segers (2003) and more recently Robert (2009), Robert et al. (2009)).
However, we will show that in a Markov chain setting, the estimators are much more simpler
to study. Recall that α = EA[τA] is the mean return to the atom A. In the following, when
the regenerative chain X is positive recurrent, we denote Fµ(x) = α

−1EA[
∑τA
i=1 I{f(Xi) ≤ x}],

the empirical distribution function of the limiting stationary measure µ given by (1). It
has been shown (see Leadbetter and Rootzén (1988) for instance) that there exists some
index θ ∈ [0, 1], called the extremal index of the sequence {f(Xn)}n∈N , such that

Pµ(Mn(f) ≤ un) ∼
n→∞ Fµ(un)

nθ, (20)

for any sequence un = un(η) such that n(1−Fµ(un)) → η. Once again, Fµ(.)
θ may be seen

as an another phantom distribution. The inverse of the extremal index measures the clus-
tering tendency of high threshold exceedances and how the extreme values cluster together.
It is a very important parameter to estimate in risk theory, since it indicates somehow, how
many times (in mean) an extremal event will reproduce, due to the dependency structure
of the data.

As notice in Rootzén (1988), because of the non-unicity of the phantom distribution,
it is easy to see from Proposition 1 and (20) that

θ = lim
n→∞ log(Gf(un))/α

log(Fµ(un))
(21)

= lim
n→∞ log(1−Gf(un))/α

log(1− Fµ(un))
(22)

= lim
n→∞ Gf(un))

αFµ(un)
. (23)

The last equality following by a simple Taylor expansion. In the i.i.d. setup, by taking
the whole state space as an atom (A = X , so that τA = α ≡ 1, Gf = Fµ), one imme-
diately �nds that θ = 1. In the dependent case, the index θ may be interpreted as the
proportionality constant between the probability of exceeding a su�ciently high threshold
within a regenerative cycle and the mean time spent above the latter between consecutive
regeneration times.

It is also important to notice that Proposition 1 combined with (20) also entail that,
for all ξ in R, Gf and Fµ belong to the same domain of attraction (when one of them is
in a domain attraction of the maximum). Their tail behavior only di�ers from the slowly
varying functions appearing in the tail behavior. We recall that a slowly varying function
is a function L such that L(tx)/L(x) → 1 as x → ∞ for any t > 0 . For instance log,
iterated logarithm, 1/log, 1+ 1/xβ, β > 0 are slowly varying functions.
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Suppose that Gf and Fµ belong to the Fréchet domain of attraction, then it is known
(cf Theorem 8.13.2 in Bingham et al. (1987)) that there exist ξ > 0 and two slowly varying

functions L1(x) and L2(x) such that Gf(x) = L1(x) · x−
1
ξ and Fµ(x) = L2(x) · x−

1
ξ . In this

setup, the extremal index is thus simply given by the limiting behavior of

θ(u) =
L1(u)

αL2(u)
.

However, estimating slowly varying functions is a di�cult task, which requires a lot of data
(see Bertail et al. (2004)). Some more intuitive empirical estimators of θ will be proposed
below.

In the regenerative case, a simple estimator of θ is given by the empirical counterpart
of expression 23. Fn(x) = n−1

∑
1≤i≤n I{f(Xi) ≤ x} is a natural a.s. convergent empirical

estimate of Fµ(x). Recalling that n
ln

→ α a.s., de�ne for a given threshold u,

θn(u) =

∑ln−1
j=1 I{ζj(f) > u}∑n
i=1 I{f(Xi) > u}

, (24)

with the convention that θn(u) = 0 ifMn(f) < u. For general Harris chains, the empirical
counterpart of 23 computed from the approximate regeneration blocks is now given by

θ̂n(u) =

∑l̂n−1
j=1 I{ζ̂j(f) > u}∑n
i=1 I{f(Xi) > u}

, (25)

with θ̂n(u) = 0 by convention when Mn(f) < u. The following result has been recently
proved in Bertail et al. (2013). Other estimators based on �xed length blocks in the
framework of strong mixing processes are given in Robert (2009) and Robert et al. (2009).

Proposition 4 Let (rn)n∈N be increasing to in�nity in a way that rn = o(
√
n/ log logn)

as n→ ∞. And consider (vn)n∈N such that rn(1−Gf(vn)) → η <∞ as n→ ∞.

(i) In the regenerative case, suppose that H(ν, 1) and H(2) are ful�lled. Then,

θn(vn) → θ Pν-almost surely, as n→ ∞. (26)

Moreover we have√
n/rn (θn(vn) − θ(vn)) ⇒ N (0, θ2/η), as n→ ∞. (27)

(ii) In the general case, assume that A1−A3, �H(ν, 1) and �H(4) are satis�ed. Then,

θ̂n(vn) → θ in Pν-probability, as n→ ∞. (28)

We also have the following central limit theorem :√
n/rn

(
θ̂n(vn) − θ(vn)

)⇒ N (0, θ2/η) as n→ ∞. (29)
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Remark 2 In practice, the levels vn are unknown since they are de�ned as upper quantiles

of the true underlying sub-maximum distribution. However, if these thresholds are chosen

empirically by taking rn equal to G−1
n (1−η/rn) in the regenerative case or Ĝ−1

n (1−η/rn) in
the pseudo-regenerative case, then the limiting results remain valid. Because of the condi-

tion rn = o(
√
n/ log logn) , notice that the best attainable rate with our method is close

to n1/4 in the regenerative case.

Remark 3 (The extremal index θ seen as a limiting conditional probability)

Rootzén (1988) also showed that the extremal index may also be de�ned as

θ = lim
n→∞PA( max

2≤i≤τA
f(Xi) ≤ un | X1 > un). (30)

for any sequence un de�ned as before. This may be seen as a regenerative version of the

so-called runs representation of the extremal index (see Hsing (1993) for instance). This

also indicates that the extremal index measures the clustering tendency of high threshold

exceedences within regeneration cycles only. An empirical estimator is then simply given

by the empirical counterpart based on blocks (or pseudo-blocks)

θ′n(u) =

∑ln−1
j=1 I{f(X1+τA(j)) > u, max2+τA(j)≤i≤τA(j+1) f(Xi) ≤ u}∑ln−1

j=1 I{f(X1+τA(j)) > u}
, (31)

for a properly chosen level u > 0. The same kind of results may be obtained for this estima-

tor : however, a moderate sample simulation proposed in Bertail et al. (2013) shows that

our �rst estimator outperforms this long-run version as far as coverage of con�dence inter-

vals are concerned. This is probably due to the second order properties of these estimators

which may be quite di�cult to investigate.

Remark 4 Notice that the recentering value in the preceding theorem is θ(vn), which con-

verges asymptotically to θ. To control the induced bias (which is a common phenomenon in

extreme value parameter estimation), some additional second order conditions are needed.

Typically, if one assumes some second-order Hall-type conditions say

Li(x) = lim
y→∞Li(y) + Ci · x−βi + o(x−βi)

as x→ ∞ where Ci <∞ and βi > 0, i = 1, 2, then it can be shown that θ(vn) converges

to θ at the rate v−βn with β = β1 ∧ β2 and vn ∼ r
1/β1
n . Hence, as soon as rn is chosen

such that n/r
1+2β/β1
n → 0, we have that

√
n/rn (θn(vn) − θ) ⇒ N (0, θ2/η) as n → ∞.

Similar result holds true in the pseudo-regenerative case. From a practical point of view, to

control for the bias a graphical based techniques is generally used for choosing the level, by

screening di�erent values of un and detecting the region of stability of the estimator (see

the simulations below).
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6 The regeneration-based Hill estimator

As pointed out in section 5, provided that the extremal index of {f(Xn)}n∈N exists and
is strictly positive, the equivalence Gf ∈ MDA(Hξ) ⇔ Fµ ∈ MDA(Hξ) holds true, in
particular in the Fréchet case, for ξ > 0 namely. Classically, the df F belongs toMDA(Hξ)
if and only if it ful�lls the tail regularity condition

1− F(x) = L(x)x−1/ξ, (32)

where L(x) is a slowly varying function. Statistical estimation of the tail risk index ξ > 0 of
a regularly varying df based on i.i.d. data has been the subject of a good deal of attention
since the seminal contribution of Hill (1975). Most methods boil down to computing a
certain functional of an increasing sequence of upper order statistics, have been proposed
for dealing with this estimation problem, just like the celebrated Hill estimator, which can
be viewed as a conditional maximum likelihood approach. Given i.i.d. observations Z1, ...,
Zn with common distribution F(dx), the Hill estimator is

HZk,n = k−1
k∑
i=1

log
Z(i)

Z(k+1)
, with 1 ≤ k < n, (33)

where Z(i) denotes the i-th largest order statistic of the data sample Z(n) = (Z1, ..., Zn).
The asymptotic behavior of this estimator has been extensively investigated when stipulat-
ing that k = kn goes to ∞ at a suitable rate. Strong consistency is proved when kn = o(n)
and log logn = o(kn) as n → ∞ in Deheuvels et al. (1988). Its asymptotic normality is
established in Goldie (1991) : under further conditions on L (referred to as second order

regular variation) and kn, we have the convergence in distribution
√
kn(H

Z
kn,n

−ξ) ⇒ N (0,

ξ2).
The regeneration-based Hill estimator based on the observation of the ln−1 submaxima

ζ1(f), ..., ζln−1(f), denoting by ζ(j)(f) the j-th largest submaximum, is naturally de�ned as

ξn, k = k
−1

k∑
i=1

log
ζ(i)(f)

ζ(k+1)(f)
, (34)

with 1 ≤ k ≤ ln− 1 when ln > 1. Observing that, as n→ ∞, ln → ∞ with Pν probability
one, limit results holding true for i.i.d. data can be immediately extended to the present
setting (cf assertion (i) of Proposition 5). In the general Harris situation, an estimator of
exactly the same form can be used, except that approximate submaxima are involved in
the computation:

ξ̂n, k = k
−1

k∑
i=1

log
ζ̂(i)(f)

ζ̂(k+1)(f)
, (35)

with 1 ≤ k ≤ l̂n − 1 when l̂n > 1. As shown by the next result, the approximation stage
does not a�ect the consistency of the estimator, on the condition that the estimator π̂
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involved in the procedure is su�ciently accurate. For the purpose of building Gaussian
asymptotic con�dence intervals in the non-regenerative case, the estimator ξ̂n, k is also
considered, still given by Eq. (35).

Proposition 5 Suppose that Fµ ∈ MDA(Hξ) with ξ > 0. Let {k(n)} be an increasing

sequence of integers such that: k(n) < n, k(n) = o(n) and log logn = o(k(n)) as n→ ∞.

(i) Then the regeneration-based Hill estimator is strongly consistent

ξn, k(ln) → ξ Pν- almost surely, as n→ ∞. (36)

Under the further assumption that Fµ satis�es the Von Mises condition and that k(n)
is chosen accordingly (cf Goldie (1991)), it is moreover asymptotically normal in the

sense that √
k(ln)(ξn, k(ln) − ξ) ⇒ N (0, ξ2) under Pν, as n→ ∞. (37)

(ii) In the general Harris case, if A1 and A2 are furthermore ful�lled, and k = k(n) is
chosen accordingly to the Von Mises conditions and is such that Rn(π̂n, π)1/2n logn =
o(k(n)), then

ξ̂n,k(̂ln) → ξ in Pν- probability, as n→ ∞. (38)

(iii) Under A1 and A2, if one chooses a sequence (mn)n∈N of integers increasing to

in�nity such that mnRn(π̂n, π)1/2/
√
k(mn) → 0 as n→ ∞, then,√

k(̂lmn)(ξ̂mn, k(̂lmn )
− ξ) ⇒ N (0, ξ2) under Pν, as n→ ∞. (39)

Before showing how the extreme value regeneration-based statistics reviewed in the
present article practically perfom on several examples, a few comments are in order.

The tail index estimator (34) is proved strongly consistent under mild conditions in
the regenerative setting, whereas only (weak) consistency has been established for the
alternative method proposed in Resnick and St ric  (1995) under general strong mixing
assumptions. The condition stipulated in assertion (ii) may not be satis�ed for some k(n).
When the slowly varying function L(u) = 	Gf(u)/u

−1/ξ equals for instance log(.), it can
not be ful�lled. Indeed in this case, k(n) should be chosen of order o(log(n)) according
to the von Mises conditions. In contrast, choosing a subsampling size mn such that the
conditions stipulated in assertion (iii) holds is always possible.The issue of picking mn in
an optimal fashion in this case remains open.

Given the number l > 2 (ln or l̂n) of (approximate) regeneration times observed within
the available data series, the tuning parameter k ∈ 1, . . . , l− 1 can be selected by means
of standard methods in the i.i.d. context. A possible solution is to choose k so as to
minimize the estimated Mean Square Error

γ̂2n, k/k+ (an, k − γ̂n, k)
2,
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where γ̂n, k is a bias corrected version of the Hill estimator. Either the Jackknife method
or else an analytical method (see Feuerverger and Hall (1999) or Beirlant et al. (1999))
can be used for this purpose. The randomness of the number of submaxima is the sole
di�erence here.

7 Applications to ruin theory and �nancial time series

As an illustration, we now apply the inference methods described in the previous section
to two models from the insurance and the �nancial �elds.

7.1 Cramér-Lundberg model with a barrier : example 2

Considering example 2, we apply the preceding results to obtain an approximation of the
distribution of the subminimum, of the global minimum (that is the probability of ruin
over a given period) and the extremal index. We will not consider here the subexponential
case (heavy tail claims) for which it is known that the extremal index is equal to θ = 0,
corresponding to in�nite clusters of extreme values (see Asmussen (1998b)). Recall that
the continuous process of interest is given by

X(t) = (u+ ct− R(t))∧ b

and that the embedded chain satis�es

Xn+1 = inf(Xn + c∆Tn −Un+1, b) with X0 = u.

Notice that if the barrier b is too high in comparison to the initial reserve u, then the
chain will regenerate very rarely (unless the price c is very high) and the method will not
be useful. But if the barrier is attained at least one time, then the probability of ruin will
only depend on b not on u. Assume that ∆Tn is γ(λ) and the claims are distributed as
γ(1/µ) with EWn = µ . The safety loading is then given by ρ = c

λµ − 1 and is assumed to
be non negative to ensure that the probability of ruin is not equal to 1 a.s.

Using well known results in the case of i.i.d. exponential inputs and outputs, the
extremal index is given by θ = (1− 1

1+ρ)
2 = (1− λµ

c )
2. In our simulation we choose µ = 0.2

and c = 0.3λ with λ = 10−2 so that the extremal index is given here by θ = 0.111. We
emphasize the fact that we need to observe the times series over a very long period (5000
days) so as to observe enough cycles. The barrier is here at b = 44 with a initial reserve
u = 43.

For n = 5000 and if we choose bn of order
√
n ≈ 70.7, with proposition 3 by calculating

the quantile ofGf,n of order 1+log(η)α/bn for η = 0.95, we obtain that Prob(min1≤i≤
√
n(Xi) ≤

4.8) = 5%. This is an indicator that in the next 70 days there is a rather high probability of
being ruined. Inversely, some straightforward inversions (hereGf,n(b) = Pr(min1≤i≤τA(Xi) ≥
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Figure 5: Estimator (continuous line) and bootstrap con�dence interval (dotted lines) of
the extremal index θ(νn), for a sequence of high values of the threshold νn (seen as a
quantile of the x-coordinate). True value of θ = 0.111.

0) = P(min1≤i≤τA(Xi−b) ≥ −b) = P(max1≤i≤τA(b−Xi) ≤ b)) shows that the probability
of ruin

P( min
1≤i≤

√
n
(Xi) ≤ 0) = 1−Hn, l(bn)(b)

and that
' 1− (Gf,n(b))

bn/α = 1− 0.9583 ' 4.2

This strongly suggests that the dividend barrier and the initial reserve are too low.

As far as the extremal index is concerned, we obtain a rather good estimator of θ as
shown in Figure 5 (see also the simulation results in Bertail et al. (2013) in a slightly
di�erent setting (M/M/1 queues)). It represents the value of θ(νn) for a sequence of
high value of the threshold. The stable part of θ(νn) for a large range of value of levels
corresponding to νn is very close to the true value. It should be noticed that when νn is
too high, the quantiles of Gf,n are badly estimated, resulting in a very bad estimation of
θ. Although we did not present in this paper the validity of the regenerative bootstrap
(that is bootstrapping regenerative blocks) as shown in Bertail et al. (2013), we represent
the corresponding bootstrap con�dence intervals on the graphics. It is also interesting to
notice that the change in width of the con�dence interval is a good indicator in order to
choose the adequate level νn.
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7.2 Pseudo regenerative �nancial time series : extremal index and tail

estimation

We will consider the model exhibited in example 3 for a much more longer stretch of
observations. Recall that the process is given by the nonlinear autoregressive form

Xt+1 = (α1 + α2e
−X2t )Xt + (1+ βX2t)

1/2εt+1 , t = 0, ..., n− 1.

Indeed the methods used here will only be of interest when
√
n/α and the number of

pseudo regeneration are not too small. The rate of convergence of the Hill estimator is also
strongly in�uenced by the presence of the slowly varying function (here in the distribution
of the sub-maxima). Recall that if the slowly varying function belongs to the Hall's family,
i.e., is of the form, for some D ∈ R and β > 0,

L(x) = 1+Dx−β(1+ o(1)),

then the optimal rate of convergence of the Hill estimator is of order at most nβ/(2β+1/ξ) (see
Goldie (1991)). Thus, if β is small, the rate of convergence of the Hill estimator may be
very slow. In practice, we rarely estimate the slowly varying function, but the index is
determined graphically by looking at range kn of extreme values, where the index is quite
stable. We also use the bias correction methods (Feuerverger and Hall (1999) or Beirlant
et al. (1999)) mentioned before, which greatly improve the stability of the estimators.

We now present in Figure 6 a path of an SETAR-ARCH process, with a large value of
n = 5000. We choose α1 = 0.6 , α2 = 0.45 and β = 0.35, which insures stationarity of
the process. This process clearly exhibits the features of many log-returns encountered in
�nance. The optimal small set (among those of the form [−c, c]) is given by [−1.092, 1.092],
which is quite large, because of the variability of the time-series, with a corresponding value
of δ = 0.145.

The true value of θ (obtained by simulating several very long time series N = 107) is
close to 0.50. This means that maxima clusterize by pair. Figure 11 presents the depen-
dence index estimator, for a range of values of the threshold (the level of the quantile is
given on the axe). The estimator is rather unstable for large quantiles, but we clearly
identify a zone of stability near the true value of θ. Bootstrap con�dence intervals lead to
an estimator of θ,between 0.428 and 0.587 at the level 95% (which is in the range of the
limit theorem given before). The problem of choosing the optimal value of kn in this case
is still an open problem.

Figure 7 presents the regenerative Bootstrap distribution (Bertail and Clémençon
(2006b)) of the Hill estimator, with a choice of the optimal fraction k(̂lmn) obtained by
minimizing the mean-square-error. This leads to a con�dence interval for the tail (with
a error rate of 5%) of the distribution given by [0.090, 0.345]. This suggests that for this
process that the tail may be quite heavy, since even the moment of order 3 may not exist.
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Figure 6: Simulation of the SETAR-ARCH process for n = 5000, α1 = 0.6 , α2 = 0.45 and
β = 0.35,exhibiting strong volatility and large excursions.
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Figure 7: Estimator (continuous line) and con�dence intervals (dotted lines) of the extremal
index as a function of the quantile level θ(νn), for a sequence of high values of the threshold
νn (seen as a quantile of the x-coordinate). True value of θ close to 0.5.
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Figure 8: Bootstrap distribution of the pseudo-regenerative Hill estimator (smoothed with
a Gaussian kernel), based on B = 999 bootstrap replications. Mode around 2.8.
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Figure 9: Log-returns of the CAC40, from 10/07/1987 to 06/16/2014.

8 An application to the CAC40

We will apply our method to the daily log-return of the CAC40, from 10/07/1987 to
06/16/2014 assuming that this time series follows a Markov chain. Such hypothesis has
been tested by several authors (using discretization methods) on other periods, suggesting
that the usual stochastic volatility models (Black and Scholes) may not be appropriate in
this case (see for instance McQueen and Thorley (1991), Jondeaua and Rockinger (2003),
Bhat and Kuma (2010) and Cont (2000)). The log-returns are plotted in �gure 8. Notice
that the time-series exhibits the same features as the SETAR-ARCH model studied before.
However, we do not assume here any speci�c model for the underlying Markov chain. We
observe a lot of regeneration blocks (1567 over 6814 observations) in a small set of optimal
size close to ε = 0.985 (a minorizing constant close to δ = 0.188), yielding blocks of mean
size 4.35.

We have used two di�erent speci�cations for the Markov chains, a Markov chain of
order 1 and 2. The results are very similar and we thus present only the results for a
speci�cation of a Markov chain of order 1. We distinguish between the behavior of the
Markov chain for the miniminum and the maximum, for which both the tail index and
the extremal index may be di�erent, leading to an asymmetric behavior between gains
and losses. The following tables summarizes the main results : we give the value of the
estimators of the tail and extremal index as well as Bootstrap con�dence intervals (CI)
respectively for the minimum and the maximum of the time series.
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Estimators/left and right tail Min (left tail) Max (right tail)

Hill Tail Index estimator 0.307 0.328

Lower CI Tail Index 2.5% 0.242 0.273

Upper CI Tail Index 97.5% 0.361 0.389

Extremal Index estimator 0.440 0.562

Lower CI Extremal Index 2.5% 0.359 0.494

Upper CI Extremal Index 97.5% 0.520 0.614
Estimators and con�dence intervals for tails and extremal indexes.

The extremal index estimators are very stable when the threshold u is changed, yielding
very robust estimators.We emphasize that the tail of the process is very heavy since we are
close to the non-existence of the moment of order 4. A simple test based on the Bootstrap
con�dence intervals allows us to accept the hypothesis that H0 : ξ < 1/3 against ξ > 1/3
but reject the the existence of the moment of order four, H0 : ξ < 1/4 against ξ > 1/4 for
a type I error of 5%.

A striking feature of these results is seemingly some asymmetry in the times series
between the minimum and the maximum log returns. In both case, the process has heavy
tails with a much more heavy tail for positive log-returns, but with a dynamic which creates
smaller clusters of extremum values for maximum (of mean size 1.78) than for minimun
(of mean size 2.27). This means that losses may be less strong than gains but may be
more persistent. However, a simple test (consisting in comparing the con�dence regions)
yields that we do not reject the hypothesis of similar tail. This goes in the same direction
as Jondeau, Rockinger (2003) on a di�erent period with di�erent method, rather based on
the notion of weak dependence.

9 Conclusion

Given the ubiquity of the Markov assumption in time-series modeling and applied probabil-
ity models, we review in this paper several statistical methods, speci�cally tailored for the
Markovian framework with a view towards the extremal behavior of such processes. Pre-
cisely, this paper looks at statistical inference for extremal events from the renewal theory
angle. We recalled that certain extremal behavior features of Harris Markov chains may be
also expressed in terms of regeneration cycles, namely data segments between consecutive
regeneration times τ1, τ2, . . . (i.e. random times at which the chain forgets its past).
Working on this approach, the methodology proposed in this paper boils down to split up
the observed sample path into regeneration data blocks (or into data blocks drawn from a
distribution approximating the regeneration cycle's distribution, in the general case when
regeneration times cannot be observed). Then the analysis boils down to examining the
sequence of maxima over the resulting data segments, as if they were i.i.d., via standard
statistical methods. In order to illustrate the interest of this technique, we have concen-
trated on several important inference problems concerning, the question of estimating the
sample maximum's tail, the extremal dependence index and the tail index. However many
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other parameters of interest may be investigated in the same manner. The two examples
given here, ruin models in insurance and times series exhibiting threshold and/or strong
conditional heteroscedasticity clearly show the potentiality of such methods in these �elds.
An illustration of the estimation methods to the CAC40 shows the potential of the method
for real data applications.
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