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Abstract

This paper proposes a Mirrleesian theory of commodity taxation in the presence of

durable goods. Nondurable goods should be taxed uniformly provided that the prefer-

ences over nondurable consumption are weakly separable from labor effort. A uniform

taxation across all goods is optimal if the utility from durable consumption is linear and

the preferences are additively separable between durable goods, nondurable goods and

labor effort. If those conditions are not met, wealth effects and substitution effects justify

the use of differential commodity taxes. To characterize the sign of the tax differential, the

paper exploits a “Substitution Euler Equation” that links the marginal rate of substitution

between durable and nondurable consumption across time. Finally, an application of this

theory suggests that housing investment should face higher tax rates than nondurable con-

sumption.
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1 Introduction

The analysis of commodity taxation by Atkinson and Stiglitz (1976) is arguably one of the

most fundamental contributions to public finance theory. The analysis has influenced aca-

demic discussions and policy circles alike.1 However, as argued by the present paper, the

Atkinson–Stiglitz framework fails to capture a major share of goods. In fact, approximately

40% of a typical household’s consumption expenditure are spent on durable goods (housing,

cars, furniture, consumer electronics, etc.).2 Durable goods are not easily represented in the

static Atkinson–Stiglitz framework because they are stock (rather than flow) variables.

The present paper sets up an explicit model of durable goods and proposes a dynamic

Mirrleesian theory of commodity taxation when durable and nondurable goods coexist. The

main findings can be summarized as follows.

First, I show that nondurable goods should be taxed uniformly provided that the prefer-

ences over nondurable consumption are weakly separable from labor effort (Proposition 1).

Stated differently, the Atkinson–Stiglitz result on uniform commodity taxation holds true for

nondurable goods in dynamic frameworks. This finding extends a result by Golosov, Kocher-

lakota, and Tsyvinski (2003) to a model that includes durable goods in addition to nondurable

goods.

Second, I derive a maximal case in which all goods should be taxed uniformly (Propo-

sition 2). If if the utility from durable consumption is linear and the preferences are addi-

tively separable between durable goods, nondurable goods and labor effort, a uniform taxa-

tion across all goods (durables and nondurables) is optimal. This result is sharp. If any of its

assumptions is relaxed, a uniform commodity taxation is in general no longer optimal.

Third, I study the properties of optimal differential commodity taxation. I derive a “Substi-

tution Euler Equation” that links the marginal rate of substitution between durable and non-

durable consumption across time (Proposition 3). Then, I exploit this equation to characterize

the optimal tax differential between durable and nondurable goods. I show that wealth effects

and substitution effects justify the use of differential commodity taxes in order to facilitate the

1For example, the insights by Atkinson and Stiglitz (1976) have motivated some of the policy recommendations
of the recent ‘Mirrlees Review’ on tax policy in the United Kingdom.

2The average annual expenditure on durable goods (shelter, household furnishings and equipment, apparel, ve-
hicles, entertainment equipment) in the Consumer Expenditure Survey (CEX) 2011 is $25,390. The average annual
total expenditure amounts to $63,972.
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provision of incentives in the future (Propositions 4 to 7). Wealth effects emerge because in-

vestment in a durable good modifies the valuation of future investment. Substitution effects

stem from nonseparabilities across goods and describe how an investment in the durable good

affects the future valuation of other consumption goods. Specifically, if a durable and a non-

durable good are (Edgeworth) substitutes, the durable good should be taxed at a higher rate

than the nondurable good.3

Fourth, I show that optimal commodity taxation depends on the frequency at which durable

goods are adjusted. In the polar case where investment in a durable good occurs only once,

wealth effects (captured by the curvature of the utility from durable consumption) play no role

and commodity taxation is entirely determined by the nonseparability of the utility function

across goods. This finding suggests that adjustment frictions may moderate the tax differential

between durable and nondurable goods.

Fifth, I explore the consequences of uncertain depreciation rates. I show that, when the

depreciation of durable goods is stochastic and unobservable, subsidies to durable goods may

help to provide insurance against this source of uncertainty. Sixth, I apply the model to the

case of housing. Based on recent estimations of the preferences for housing, I find evidence

that housing and nondurable consumption are Edgeworth substitutes. Thus, the theory in this

paper suggests that housing investment should face higher tax rates than nondurable goods.

This paper is structured as follows. The remainder of this section surveys the related litera-

ture. Section 2 sets up a multi-period optimal tax problem with durable and nondurable goods.

Section 3 explores a special case in which optimal commodity taxes are uniform. Section 4

studies differential commodity taxes in a two-period setting with one durable and one non-

durable good. Section 5 documents the robustness of the basic results with respect to the time

horizon and the number of goods. Moreover, some alternative specifications of uncertainty,

e.g., stochastic depreciation rates, are considered. Section 6 provides concluding remarks and

applies the model to the case of housing. Appendix A collects the proofs of all theoretical

results.
3Two goods are Edgeworth substitutes if the utility function has a negative cross derivative with respect to

these goods. Since von Neumann–Morgenstern utility functions are unique up to positive affine transformations,
the notion of Edgeworth substitutability does not depend on the representation of preferences.
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1.1 Related literature

This paper is closely related to the study of pre-committed goods by Cremer and Gahvari

(1995a,b). I extend their approach by proposing an explicit model of durability in a dynamic

framework. I show that the tax implications of durable goods differ notably from those of pre-

committed goods. Thus, pre-commitment does not easily translate into durability. At the same

time, I suggest a novel interpretation of their findings: subsidies to pre-committed goods can

be seen as a rationale for intertemporal wedges on nondurable goods in dynamic frameworks.

The discussion in Section 6.2 compares durable goods and pre-committed goods in more detail.

More generally, the present paper relates to the vast literature on commodity taxation that

emerges from the analysis by Atkinson and Stiglitz (1976). The Atkinson–Stiglitz theorem on

uniform commodity taxation considers a static environment that, by construction, cannot dis-

tinguish between durable and nondurable goods. More recently, Jacobs and Boadway (2014)

study optimal linear commodity taxation in a similar framework. Golosov et al. (2003) ex-

tend the Atkinson–Stiglitz theorem to a dynamic environment under the assumption that all

goods in every period provide utility in the given period only. Therefore, neither the origi-

nal Atkinson–Stiglitz result nor the dynamic extension shed any light on the case of durable

goods.

In an unpublished paper, da Costa and Werning (2002) show that the role of commodity

taxation coincides for hidden action models and adverse selection models. The analysis in the

present paper rests on variational arguments that change the consumption allocation but leave

consumption utility and labor effort unaffected. Therefore, the present results hold under very

general specifications of informational frictions, including frameworks that combine hidden

actions and adverse selection.

Grochulski and Kocherlakota (2010) and Koehne and Kuhn (2014) analyze labor and sav-

ings taxation when the consumption preferences are time-nonseparable because of habit for-

mation. Durable goods also generate a particular form of a time-nonseparability. However, the

implications of durable goods for optimal taxation, and especially for commodity taxation, are

quite distinct. First, habit formation alone does not justify differential commodity taxes. Differ-

ential taxes may only be helpful if the habit formation process differs across goods. However,

to date, there is little empirical evidence to support that view. In contrast, the durability of
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goods can be clearly distinguished and measured. Second, durable goods give rise to differ-

ent applications and relate to the taxation of housing and pre-committed goods. Moreover,

durable goods have several aspects that matter for optimal taxation but lack a counterpart in

models of habit formation, such as the frequency of adjustment or uncertainty with respect to

depreciation. Finally, unlike earlier works on time-nonseparable preferences, the present pa-

per identifies the sign of the commodity tax wedge analytically in an environment with a very

general specification of uncertainty. In contrast, Koehne and Kuhn (2014) provide a numerical

quantification of optimal labor and savings wedges for a habit formation model with a single

consumption good and a special case of transitory binary skill shocks. Grochulski and Kocher-

lakota (2010) explore the properties of efficient decentralizations (with respect to labor supply

and saving) in a similar habit formation model with one consumption good.

2 Model

This section introduces durable goods into a dynamic Mirrleesian taxation problem similar to

that of Golosov et al. (2003).

2.1 Preferences

There is a continuum of agents with identical, time-separable von Neumann–Morgenstern

preferences. The agents live for T periods (with 2 ≤ T ≤ ∞) and discount the future at the

rate β ∈ (0, 1). Their period utility depends on a vector ct ∈ RN
+ of nondurable consumption

goods, a vector st ∈ RM
+ of service flows from durable consumption goods, and labor effort

et ∈ R+. The utility function is U : RN+M+1
+ → R, (ct, st, et) 7→ U(ct, st, et), with N, M ≥ 1. The

utility function is strictly increasing in the first N + M arguments, strictly decreasing in the last

argument, and continuously differentiable in the first N + M arguments on RN+M
++ ×R+. For

k = 1, . . . , N + M, the subscript notation Uk represents the partial derivative of U with respect

to the k-th argument.

2.2 Durable goods

Durable goods generate service flows st proportional to the stock of durable goods dt ∈ RM
+ .

More specifically, st = ρdt := (ρ1dt,1, . . . , ρMdt,M), where ρ ∈ RM
++ is a vector of proportionality
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coefficients and ρdt denotes the point-wise product of vectors ρ and dt. The stock of durable

goods depreciates over time and can be adjusted by investment: dt = δdt−1 + it, where δdt−1 :=

(δ1dt−1,1, . . . , δMdt−1,M) is the point-wise product, δ ∈ (0, 1)M represents depreciation and it ∈

RM denotes investment. Negative investment in durable goods is feasible but the stock is

required to remain nonnegative at all times. The initial stock of durable goods is identical

across agents and normalized to d0 = 0. After period T, there is no activity and the stock of

durable goods vanishes.

2.3 Uncertainty

Agents face idiosyncratic uncertainty regarding their productivity θt ∈ Θ ⊂ R++. To sidestep

some formalities on the measurability and integrability of random variables, I assume that

the productivity set Θ is a finite subset of R++. For t = 1, productivity θ1 is distributed with

probability weights π1(θ1) > 0, with ∑θ1∈Θ π1(θ1) = 1. For t > 1, the productivity has the

conditional probability weights πt
(
θt|θt−1) > 0, where θt−1 = (θ1, . . . , θt−1) ∈ Θt−1 denotes

the history of productivities before period t, and ∑θt∈Θ πt
(
θt|θt−1) = 1 for all θt−1. The uncon-

ditional probability of a history θt is given by Πt(θt) := π1 (θ1)π2
(
θ2|θ1) · · ·πt

(
θt|θt−1). The

distribution Πt has full support for all t.4

As usual in this class of models, I assume that a law of large numbers applies. The indi-

vidual distribution of uncertainty is thus identical to the realized cross-sectional distribution.

The expectation operator with respect to the unconditional distribution of skill histories θT is

denoted by E[ · ]. The notation Et [ · ] := E
[
· |θt] represents expectations conditional on the

period-t history θt. Similarly, covt ( · , · ) represents covariances conditional on the period-t

history.

An agent with productivity θt and labor effort et generates yt = θtet efficiency units of la-

bor. Productivity and labor effort are private information, whereas effective labor yt is publicly

observable. A natural interpretation of this framework is that θt represents the wage rate and

labor effort et represents the intensive margin of labor supply. The social planner (tax author-

ity) only observes annual income yt but not how productive a worker is nor how much labor

4All results in this paper can be extended to productivity sets that are intervals or countable sets, and distribu-
tions without full support. However, such extensions will complicate the exposition and introduce some technical
issues without adding economic insight.
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the worker supplied.

2.4 Allocations

In addition to consumption goods and labor, there is a capital good. The social planner owns

the capital stock and has a given initial capital endowment K̄1 > 0.

An allocation is a collection (c, d, y, K) = (ct, dt, yt, Kt)
T
t=1 of the following objects for each t:

Kt ∈ R+, ct : Θt → RN
+ , dt : Θt → RM

+ , yt : Θt → R+.

Here, Kt represents the capital stock, ct denotes the bundle of nondurable consumption goods,

dt denotes the stock of durable goods, and yt represents effective labor. The last three objects

are functions of the time-t history θt. Each allocation of durable stocks generates a unique

sequence of investment it : Θt → RM, t = 1, . . . , T, and service flows st : Θt → RM
+ , t =

1, . . . , T, according to the identities it = dt − δdt−1 and st = ρdt from above.

Under standard assumptions on preferences, consumption will be nonzero. This motivates

the following definition.

Definition 1. An allocation (c, d, y, K) has interior consumption if there exists a scalar ε > 0

with ct (θ) ≥ ε and dt (θ) ≥ ε for all t and all θt.

The social planner operates a general production technology that takes capital Kt and ag-

gregate labor E[yt] as inputs and produces nondurable consumption goods, investment in

durable consumption goods, and future capital Kt+1 as outputs. An allocation is feasible if

G (E [ct] , E [it] , Kt+1, Kt, E [yt]) ≤ 0 for all t,

with the convention KT+1 = 0. The function G : RN+M+3 → R is continuously differentiable,

strictly increasing in the first N + M + 1 arguments and strictly decreasing in the remaining

two arguments. As usual, for k = 1, . . . , N + M + 3, the subscript notation Gk represents the

partial derivatives of G.

For example, the technology may be defined by a production function F that combines

capital and labor to produce a final good and the final good is converted one-to-one into capital
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or any of the consumption goods:

G
(
C, I, K′, K, Y

)
=

N

∑
n=1

Cn +
M

∑
m=1

Im + K′ − (1− δK)K− F(K, Y).

In particular, if δK = −r and F(K, Y) = Y, capital corresponds to a savings technology with

exogenous return r and the production technology is linear in labor.

2.5 Optimal allocation problem

Because labor effort and productivity are private information, allocations need to satisfy in-

centive compatibility conditions. By the revelation principle, one can restrict the attention to

direct mechanisms where the agents report their productivities to the planner, who then allo-

cates consumption and labor. A reporting strategy is a sequence σ = (σt)t=1,...,T of mappings σt :

Θt → Θ. Denote the set of all reporting strategies by Σ and set σt(θt) :=
(
σ1(θ

1), . . . , σt(θt)
)
. A

reporting strategy σ ∈ Σ yields ex ante expected utility according to

w (c ◦ σ, d ◦ σ, y ◦ σ) :=
T

∑
t=1

βt−1E

[
U

(
ct
(
σt (θt)) , ρdt

(
σt (θt)) ,

yt
(
σt (θt))

θt

)]
.

An allocation is incentive compatible if no agent has an incentive to misreport the productivity,

i.e., if

w (c, d, y) ≥ w (c ◦ σ, d ◦ σ, y ◦ σ) for all σ ∈ Σ.

An allocation is incentive-feasible if it is incentive compatible and feasible.

The planner has the ability to fully commit ex ante to an allocation. The function χ : Θ →

R+, with χ(θ1) > 0 for at least one θ1, defines the planner’s Pareto weights based on the initial

productivities. Given the capital endowment K̄1, the planner solves the following problem:

V (K̄1) = sup
c,d,y,K

T

∑
t=1

βt−1E

[
χ(θ1)U

(
ct
(
θt) , ρdt

(
θt) ,

yt
(
θt)

θt

)]
(1)

s.t. (c, d, y, K) incentive-feasible; K1 ≤ K̄1.

An allocation (c∗, d∗, y∗, K∗) is called optimal if the allocation is incentive-feasible, satisfies
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K∗1 ≤ K̄1 and solves

V (K̄1) =
T

∑
t=1

βt−1E

[
χ(θ1)U

(
c∗t
(
θt) , ρd∗t

(
θt) ,

y∗t
(
θt)

θt

)]
. (2)

Throughout the paper, a maintained assumption is that V is finite. For this property, it is

sufficient to have a utility function that is bounded above.

2.6 Monotonicity with respect to initial capital

Some results in this paper will rely on the assumption that V, the optimized value of social

welfare, is strictly increasing in the initial capital endowment K̄1.5 By construction, V is weakly

increasing in K̄1. As shown by the next result, V is strictly increasing in K̄1 under a common

assumption on preferences.

Lemma 1. Suppose that U(c, s, e) = u(c, s) − v(e), where u is strictly increasing and continuous.

Then, V (K̄1) < V (K̄′1) for all K̄1 < K̄′1.

Lemma 1 follows from the same logic as in the case without durable goods (Golosov et al.,

2003) and a formal proof is thus omitted. The main idea of the proof is as follows. Suppose

that, contrary to the claim, V (K̄1) = V (K̄′1) for some K̄1 < K̄′1. Then, an allocation that solves

V (K̄1) is also optimal for the problem V (K̄′1) but does not use all initial capital. One can

therefore use the spare resources and slightly increase the consumption of one nondurable

good in the first period. The increase can be done in such a way that the consumption utilities

of all agents grow by the same amount in the first period. All consumption utilities in later

periods remain fixed and all differences in lifetime consumption utilities across realizations

remain fixed, too. Hence, by the additive separability of preferences, the modified allocation is

still incentive compatible. Because the modified allocation yields more social welfare than the

original allocation, the assumption V (K̄1) = V (K̄′1) must be false and hence V (K̄1) < V (K̄′1)

must hold.
5This issue does not arise if the planner problem is set up as a cost minimization problem rather than a welfare

maximization problem.
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3 A maximal case of uniform commodity taxation

Optimal allocations impose tax distortions (“wedges”) that any decentralizing tax system must

generate. In the special case analyzed in this section, the consumption choice will be undis-

torted. This implies that optimal allocations can be decentralized by labor and capital taxes

combined with uniform commodity taxes.

Note that an investment in the stock of durable goods affects the service flows in all re-

maining periods. The marginal utility from investing in durable good m at time t is the sum of

an immediate flow and an expected discounted future flow:

ρmUN+m

(
ct, st,

yt

θt

)
+ ρmEt

[
T

∑
k=t+1

(βδm)
k−t UN+m

(
ck, sk,

yk

θk

)]
.

Here, recall that UN+m is the partial derivative of U with respect to the service flow from the

m-th durable good, δm represents depreciation for that good, and ρm maps stocks to service

flows.

An allocation is associated with uniform commodity taxes if, for any pair of goods within

any period, the marginal rate of substitution coincides with the marginal rate of transforma-

tion. Formally, the definition is as follows.

Definition 2. An allocation (c, d, y, K) implies a uniform taxation across all goods (within any

period) if, for all t and all n ∈ {1, . . . , N}, m ∈ {1, . . . , M},

ρmUN+m

(
ct, st,

yt
θt

)
+ ρmEt

[
∑T

k=t+1 (βδm)
k−t UN+m

(
ck, sk, yk

θk

)]
Un

(
ct, st,

yt
θt

)
=

GN+m (E [ct] , E [it] , Kt+1, Kt, E [yt])

Gn (E [ct] , E [it] , Kt+1, Kt, E [yt])
.

(3)

The allocation implies a uniform taxation across all nondurable goods (within any period) if, for all t

and all n, n′ ∈ {1, . . . , N},

Un′
(

ct, st,
yt
θt

)
Un

(
ct, st,

yt
θt

) =
Gn′ (E [ct] , E [it] , Kt+1, Kt, E [yt])

Gn (E [ct] , E [it] , Kt+1, Kt, E [yt])
. (4)

Definition 2 requires some explanation. First, note that Eq. (3) only considers pairs that
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consist of one durable good m and one nondurable good n. However, if Eq. (3) is satisfied for all

such pairs, the marginal rates of substitution and transformation will also coincide for any pair

of durables (m, m′) or any pair of nondurables (n, n′). Hence, the first part of Definition 2 does

indeed refer to situations where all goods are taxed the same. Second, Definition 2 restricts the

tax differentials across goods within any period to be zero but allows for tax differentials across

time. Given that dynamic private information models generally lead to positive intertemporal

wedges, tax differentials across time are a common feature of optimal allocations. Third, recall

that the allocation objects (ct, st, yt) are functions of the period-t history. Therefore, Eqs. (3)

and (4) are satisfied if and only if they hold for all possible histories.

Next, I show that a uniform taxation of nondurable goods is optimal if the preferences over

those goods are weakly separable from labor.

Definition 3. The preferences over nondurable goods are weakly separable from labor if there ex-

ists a function u : RN+M
+ → R, strictly increasing and continuously differentiable (on the inte-

rior of its domain) in the first N arguments , and a function Ũ : R×RM+1
+ → R, strictly increas-

ing and continuously differentiable in the first argument, such that U(c, s, e) = Ũ (u(c, s), s, e)

for all (c, s, e) ∈ RN+M+1
+ .

Proposition 1 (Nondurable goods). Suppose that V (K̄1) < V (K̄′1) for all K̄1 < K̄′1. Suppose that

the preferences over nondurable goods are weakly separable from labor. Then, any optimal allocation

with interior consumption implies a uniform taxation across all nondurable goods.

The proof of Proposition 1 and all further proofs are relegated to the appendix. In models

without durable goods, it is well known that a uniform taxation of goods is optimal when the

preferences over consumption are weakly separable from labor (Atkinson and Stiglitz, 1976;

Golosov et al., 2003). Proposition 1 allows nondurable goods to coexist with durable goods

and shows, following a similar logic, that a uniform taxation across nondurable goods remains

optimal when the preferences over nondurable goods are weakly separable from labor.

Now, I establish the main result of this section. The proposition guarantees a uniform

taxation across all goods (durables and nondurables).

Proposition 2 (Uniform taxation). Let α ∈ RM
++. Let u : RN

+ → R be strictly increasing and
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continuously differentiable on the interior of its domain. Suppose that

U(c, s, e) = u(c) + α · s− v(e) for all (c, s, e) ∈ RN+M+1
+ (5)

where α · s := ∑M
m=1 αmsm denotes the scalar product. Then, any optimal allocation with interior

consumption implies a uniform taxation across all goods.

Heuristically, the proof of Proposition 2 works as follows. Because of the additive separabil-

ity and linearity of the preferences over durable consumption, the utility flow from investing

in a durable good does not depend on the consumption of other (durable and nondurable)

goods, nor on past or future investment. Put differently, investing in a durable good yields a

deterministic flow of utility. Following this reasoning, durable goods and nondurable goods

become equivalent and Proposition 1 suggests that all goods should be taxed the same.

To ensure a uniform taxation of all goods, Proposition 2 relies on assumptions that are

significantly stronger than those required in models without durable goods. The additive sep-

arability and linearity of the preferences over durable consumption are, in fact, violated for

many common frameworks with durable goods; see the discussion of housing in Section 6.1,

for instance. Therefore, Proposition 2 is not widely applicable. However, the proposition es-

tablishes an important theoretical benchmark because it identifies a maximal case where the

taxation of all goods is uniform. If any of the assumptions is relaxed, a uniform taxation will

be no longer optimal.

Example. Suppose that the utility from consumption is additively separable and linear in

durable consumption as in Eq. (5) but that period utility is only weakly separable between

consumption and labor:

U(c, s, e) := (u(c) + α · s) v(1− e)

where u and v are strictly positive, strictly increasing and continuously differentiable, α ∈ RM
++

and e ∈ (0, 1). For simplicity, consider a two-period problem with no uncertainty in the first

period. Productivity in the second period is an element of the binary set {θL, θH}, with θL < θH

and probability weights 0 < π(θL), π(θH) < 1. The production technology is linear in labor
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and the planner chooses an allocation to maximize social welfare

max (u(c) + α · ρi) v
(

1− y
θ

)
+ β ∑

k=L,H
π(θk) (u(ck) + α · ρ(ik + δi)) v

(
1− yk

θk

)

subject to resource feasibility and the (downward) incentive compatibility constraint,

(u(cH) + α · ρ(iH + δi)) v
(

1− yH

θH

)
≥ (u(cL) + α · ρ(iL + δi)) v

(
1− yL

θH

)
.

The first-order conditions with respect to consumption in the first period imply

αmρmv
(
1− y

θ

)
+ βαmρmδm ∑k=L,H π(θk)v

(
1− yk

θk

)
un(c)v

(
1− y

θ

)
=

GN+m (c, i, K2, K1, y)
Gn (c, i, K2, K1, y)

+
µαmρmδm∆v

λGn (c, i, K2, K1, y)

(6)

where λ is the Lagrange multiplier for the feasibility constraint, µ the multiplier for the incen-

tive constraint, and ∆v := v
(

1− yL
θH

)
− v

(
1− yH

θH

)
≥ 0. Suppose that optimal consumption

is interior and the incentive constraint in the second period is binding. Then, µ > 0 and

∆v > 0. By the first-order conditions, the marginal rate of substitution of durable good m for

nondurable good n in the first period (the left-hand side of Eq. (6)) exceeds the marginal rate

of transformation (the first term on the right-hand side of Eq. (6)). This means that durable

goods are implicitly taxed at a higher rate than nondurables. Intuitively, by the multiplicative

specification of utility, all consumption goods are complementary with leisure in this example.

However, durable investment is also complementary with future leisure, whereas nondurable

consumption is not. This motivates a tax on durable goods in order to make leisure less attrac-

tive in the second period.

As shown by the above example, the uniform taxation result breaks down if the addi-

tive separability between consumption and labor in Eq. (5) is relaxed. By constructing similar

examples, it can be verified that the additive separability between durable consumption (or

nondurable consumption) and labor cannot be relaxed individually either. Moreover, in the

following section, it will become clear that nonseparability between durable and nondurable

consumption, or nonlinearity of the utility from durable consumption, will also give rise to

differential commodity taxes. Hence, the uniform taxation of goods in Proposition 2 remains a
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knife-edge case.

4 Differential commodity taxation for two goods in two periods

This section studies optimal commodity taxation in a two-period setting with one durable and

one nondurable good. Rather than focusing on explicit tax instruments, I analyze the distortion

of the consumption choice at optimal allocations. This level of generality is useful for at least

three reasons. First, dynamic private information problems are much more tractable for theo-

retical analysis if no constraints other than incentive compatibility and resource feasibility are

present. Second, the distortions imposed by optimal allocations often provide guidelines for

tax rates in settings with simple, linear instruments (Farhi and Werning, 2013). Third, complex

forms of commodity taxation constitute a feature of many existing tax systems. For example,

investment in owner-occupied housing is often treated differently from other goods because

interest payments for mortgages can be deducted from the income tax. Such provisions make

the actual taxation of housing nonlinear and dependent on income.

Define the (implicit) tax differential between a durable and a nondurable good as follows.

Definition 4. Let n ∈ {1, . . . , N}, m ∈ {1, . . . , M} and t ∈ {1, . . . , T}. An allocation (c, d, y, K)

implies that the durable good m should be taxed at a higher rate than the nondurable good n (in period

t) if

ρmUN+m

(
ct, st,

yt
θt

)
+ ρmEt

[
∑T

k=t+1 (βδm)
k−t UN+m

(
ck, sk, yk

θk

)]
Un

(
ct, st,

yt
θt

)
≥ GN+m (E [ct] , E [it] , Kt+1, Kt, E [yt])

Gn (E [ct] , E [it] , Kt+1, Kt, E [yt])
.

(7)

If the inequality is strict, the durable good m should be taxed at a strictly higher rate than the

nondurable good n. If the reverse inequality holds, the durable good m should be taxed at a

(strictly) lower rate than the nondurable good n.

Once more, recall that the allocation variables depend on the period-t history. Thus, Defi-

nition 4 only applies when the respective inequality is satisfied for all histories.

If Eq. (7) holds, the marginal rate of substitution of the durable good for the nondurable

good exceeds the marginal rate of transformation. In this case, any decentralization of the al-
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location must distort the price of the durable good upward. Such a distortion can, for instance,

be achieved by a commodity tax at the time of transaction or by an income tax that depends

on the stock of the durable good.

4.1 Necessary conditions for intertemporal optimality

To make the analysis of differential commodity taxation more tractable, I consider a two-period

setting with one durable and one nondurable good: T = 2 and M = N = 1. (These as-

sumptions will be relaxed in Section 5.1.) The utility function is additively separable between

consumption and labor effort:

U(c, s, e) = u(c, s)− v(e), (8)

where u is strictly increasing, strictly concave (unlike the specification in Proposition 2) and

twice continuously differentiable. The technology is described by a strictly increasing, contin-

uously differentiable production function F that produces a final good. The final good can be

used for nondurable consumption, investment in the durable good and investment in capital:

G
(
C, I, K′, K, Y

)
= C + I + K′ − (1− δK)K− F(K, Y). (9)

It is convenient to denote the gross interest rate at an optimal allocation by R∗ := 1− δK +

FK (K∗2 , E [y∗2 ]).

The following two equations characterize nondurable and durable consumption over time.

Lemma 2 (Inverse Euler Equation). Let (c∗, d∗, y∗, K∗) be an optimal allocation with interior con-

sumption. Then,
βR∗

uc
(
c∗1 , ρd∗1

) = E1

[
1

uc (c∗2 , ρd∗2)

]
. (10)

Proposition 3 (Substitution Euler Equation). Let (c∗, d∗, y∗, K∗) be an optimal allocation with

interior consumption. Then,

1 = ρ
us (c∗1 , ρd∗1)
uc
(
c∗1 , ρd∗1

) + ρδ

R∗
E1

[
us (c∗2 , ρd∗2)
uc (c∗2 , ρd∗2)

]
. (11)

The Inverse Euler Equation is well known (Rogerson, 1985; Golosov et al., 2003) and stems
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from an intertemporal trade-off in the provision of utility from nondurable consumption. The

introduction of durable goods does not affect the underlying logic. However, the Substitution

Euler Equation is novel. This equation is based on the following reasoning. Suppose that in-

vestment in the durable good is reduced by one marginal unit at t = 1. In turn, nondurable

consumption is increased in both periods so that the agent remains as well off as before (in ev-

ery period and for every realization). The reduced investment in the durable good saves one

unit of resources, which explains the left-hand side of Eq. (11). The right-hand side of Eq. (11)

captures the present-value of the resources needed to increase nondurable consumption ac-

cordingly. The Substitution Euler Equation states that no resources are freed up if durable

consumption is exchanged for nondurable consumption in an incentive-neutral way.

4.2 Optimal commodity taxation with one-time investment or repeated investment

in durables

For a moment, I will assume that investment in the durable good is only possible in the first

period. This assumption allows me to isolate one specific channel of optimal commodity tax-

ation. Moreover, this setup relates to models with explicit adjustment frictions (transaction

costs, search costs, nondivisibilities, etc.). By comparing the tax implications when the durable

good cannot be adjusted to those when investment occurs in every period, one can draw ten-

tative conclusions on how the optimal taxes on durable goods with large adjustment frictions

differ from durable goods whose adjustment is frictionless.

Proposition 4 (Differential taxation with one-time investment). Let T = 2 and M = N = 1.

Suppose that investment in the durable good is only possible in the first period. Then, any optimal

allocation with interior consumption has the following implications: If ucs ≤ 0, the durable good should

be taxed at a higher rate than the nondurable good (in period 1). If ucs < 0 and consumption is not fully

insured in the second period, the result becomes strict. If ucs ≥ 0, the result is reversed.

For the setup with one-time investment, Proposition 4 shows that durable goods should

be taxed differently from nondurable goods if the preferences are nonseparable across goods.

Hence, although the preferences are additively separable between consumption and labor ef-

fort, the Atkinson–Stiglitz result on uniform (intra-period) commodity taxation does not apply.

The key difference between durable and nondurable goods is that investment in durables af-
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fects the incentive problem in the following period. This dynamic incentive effect is precisely

the reason why the Atkinson–Stiglitz result fails.

Intuitively, if durable consumption is an (Edgeworth) substitute with nondurable con-

sumption (u′′cs ≤ 0), investment in the durable good reduces the marginal value of nondurable

consumption in the following period. In that case, variations of nondurable consumption

translate into smaller variations of utility. This effect is socially harmful because it tightens

the incentive compatibility constraint. To account for this negative externality, the durable

good should be taxed more than the nondurable good. Conversely, if durable consumption

is complementary with nondurable consumption, the argument is reversed and the durable

good should be taxed at a lower rate than the nondurable good.

The setup with one-time investment in the durable good identifies one rationale for differ-

ential taxation but abstracts from the role of future investment. Now, I return to the standard

framework with investment in every period. Then, the case for differential commodity taxa-

tion becomes even stronger.

Proposition 5 (Differential taxation with repeated investment). Let T = 2 and M = N = 1.

Suppose that investment in the durable good is possible in both periods. Then, any optimal allocation

with interior consumption has the following implications: (i) The durable good should be taxed at a

higher rate than the nondurable good in period 1. If consumption is not fully insured in the second

period, this result becomes strict. (ii) The durable good should be taxed at the same rate as the nondurable

good in period 2.

The second part of Proposition 5 makes intuitive sense because the distinction between

durable and nondurable goods vanishes in the last period of the two-period setting. Thus,

Proposition 1 suggests that all goods should be taxed uniformly in period 2.

The first part of Proposition 5 establishes a stark result: in the first period, given any strictly

concave utility function, durable goods should be taxed more than nondurable goods. To

understand this result, note that the value of investment in the durable good depends on the

stock of the durable good. Because of concavity, any current investment in the durable good

lowers the marginal value of future investment. Consequently, future variations of investment

become a less effective tool for incentive provision. This reasoning motivates a tax on the

durable good in the first period to relax the incentive compatibility constraint. Note that this
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argument is similar to the rationale for savings distortions in models with nondurable goods

(Diamond and Mirrlees, 1978).

In summary, the two-period model shows that concavities in durable consumption (“wealth

effects”) and interactions between durable and nondurable consumption justify the use of dif-

ferential commodity taxes. These two insights apply in the same way also to models with

longer time horizons (Section 5.1). Yet, the implications of frameworks with repeated invest-

ment will become slightly more nuanced for longer horizons. More precisely, the tax differen-

tial will in general depend on the sum of wealth effects and interaction effects, and concavity

of the utility function alone will no longer guarantee a positive tax wedge on durable goods.6

5 Extensions

Next, I extend the results from Section 4 to settings with many periods and a large number

of consumption goods. I also show that the results hold under very general specifications of

uncertainty. Moreover, I study the consequences of stochastic depreciation rates.

5.1 Many periods and many goods

First, suppose that T ≥ 2 and M = N = 1. Let the preferences and production technology

be specified as in Eqs. (8) and (9) in Section 4. Proposition 4 extends to this more general

framework without any difficulty. More precisely, the result is as follows.

Proposition 6. Let T ≥ 2 and M = N = 1. Let t < T and suppose that investment in the durable

good is only possible in period t. Then, any optimal allocation with interior consumption has the fol-

lowing implications: If ucs ≤ 0, the durable good should be taxed at a higher rate than the nondurable

good (in period t). If ucs < 0 and consumption is not fully insured in periods t + 1, . . . , T, the result

becomes strict. If ucs ≥ 0, the result is reversed.

Next, consider the case of repeated investment in the durable good. Proposition 5 extends

in a straightforward way to the last two periods of the T-period framework. Proposition 5 can

also be adapted to earlier periods. However, some further structure is helpful to establish that

6The stark result in part (i) of Proposition 5 relies on the finding that the marginal rate of substitution between
durable and nondurable consumption is undistorted in the second period. In models with more than two periods,
this finding only applies to the last period.
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durable goods are taxed at a higher rate than nondurable goods. With repeated investment

in the durable good, its service flow becomes a random process. Hence, the utility value of

investing in the durable good depends on the dynamic realization of the two-dimensional

process for durable and nondurable goods. If the two goods are monotonically related, this

process can be reduced to a one-dimensional “sufficient statistic”.

Definition 5. The nondurable good n and the durable good m are perfectly rank correlated after

period t if

cτ,n (θ
τ) ≥ cτ,n

(
θ̃τ
)
⇐⇒ dτ,m (θτ) ≥ dτ,m

(
θ̃τ
)

for all periods τ > t and all histories θτ, θ̃τ ∈ Θτ.

Note that, in a static environment, two goods are perfectly rank correlated if the consump-

tion of both goods increases with the realization of uncertainty. Thus, Definition 5 establishes

a dynamic concept of the normality of goods. Although perfect rank correlation helps keep

the mathematical analysis tractable, the underlying economic argument suggests that the re-

sults are robust as long as there is a sufficiently positive relationship between durable and

nondurable consumption.

The tax differential in the model with repeated investment satisfies the following result.

Proposition 7. Let T ≥ 2 and M = N = 1. Let t < T and suppose that investment in the durable

good is possible in every period. If the durable and the nondurable good are perfectly rank correlated after

period t, any optimal allocation with interior consumption has the following implications: If ucs ≤ 0,

the durable good should be taxed at a higher rate than the nondurable good in period t. If consumption

is not fully insured in periods t + 1, . . . , T, the result becomes strict.

To rationalize Proposition 7, note that the planner uses consumption variations to incen-

tivize the agents to supply labor. Suppose that investment in the durable good in period t is

increased by a small amount ∆i. In period τ > t, consider two candidate realizations θ̃τ, θ̂τ

and suppose that the associated consumption levels are ranked as c̃τ > ĉτ and d̃τ > d̂τ. An

incremental investment in period t raises the stock of the durable good in period τ by δτ−t∆i

units. Hence, in response to a marginal increment at time t, the utility difference between the
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states θ̃τ, θ̂τ in period τ changes by ∆u, where ∆u is given by

∆u
ρδτ−t = us(c̃τ, ρd̃τ)− us(ĉτ, ρd̂τ)

= us(c̃τ, ρd̃τ)− us(c̃τ, ρd̂τ) + us(c̃τ, ρd̂τ)− us(ĉτ, ρd̂τ)

=
∫ d̃τ

d̂τ

uss(c̃τ, ρξ)dξ +
∫ c̃τ

ĉτ

ucs(κ, ρd̂τ)dκ.

By concavity, the second derivative uss is negative. Hence, when durable and nondurable con-

sumption are Edgeworth substitutes (ucs ≤ 0), the utility difference ∆u in the above example

consists of two negative terms. In that case, investment in the durable good dampens the vari-

ation of future utility. This effect makes the incentive provision in the remaining periods more

difficult and justifies a tax on the durable good to relax the incentive compatibility constraint.

Note that this result is a combination of substitution effects (captured by the cross derivative

ucs) and wealth effects (captured by the second derivative uss) that were already visible in the

two-period model; see Proposition 4 and Proposition 5.

Finally, consider the consequences of having several durable or nondurable consumption

goods: M, N ≥ 1. Then, the substitution and wealth effects from the two-goods model are

complemented by non-separabilities with other consumption goods. Similar to Eq. (21) in the

proof of Proposition 7, it can be shown that the durable good m should be taxed at a higher

rate than the nondurable good n in period t if and only if

T

∑
τ=t+1

qτ
t δτ−t

m covt

(
−uN+m (cτ, ρdτ) ,

1
un (cτ, ρdτ)

)
≥ 0.

By arguments akin to the proof of Proposition 7, this inequality is satisfied if all goods are

Edgeworth substitutes (provided that the consumption goods are sufficiently monotonic). 7

5.2 Adverse selection and moral hazard

The mathematical analysis in this paper rests on incentive-neutral perturbations of optimal

allocations. More precisely, the analysis modifies the allocation of consumption across time

and goods, but keeps the assignment of labor effort and consumption utility fixed. Therefore,

7For example, Edgeworth substitutability holds if durable consumption is weakly separable from nondurable
consumption, u(c, ρd) = û(ũ(c), ρd), with an aggregator function û that is submodular.
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the results easily extend to setups with more general processes of effective labor.

For example, the multiplicative specification of effective labor, yt = θtet, can be replaced

by a general framework where θt is a preference shock that affects the (dis)utility of labor

effort. None of the results in this paper would change if the disutility of labor were given

by a function v̂(yt; θt) rather than the current specification v(yt/θt). Furthermore, the results

in this paper remain valid when adverse selection and moral hazard coexist. For instance,

suppose that there are two sources of (idiosyncratic) uncertainty. First, individual skills θt

follow a stochastic process as before. Second, given labor effort et and skill θt, effective labor

yt is a random variable described by a distribution F(yt|et, θt). The timing of events is as

follows. At the beginning of the period, agents learn their skill θt. Next, they choose a labor

effort vector et. Then, effective labor yt is realized. Skill and effort are private information,

whereas effective labor is publicly observable. In this framework, labor effort in period t is

assigned based on the histories (yt−1, θt) and consumption is allocated based on the same

histories and the current realization yt. All results in this paper extend to this framework

because they exploit consumption variations for a given assignment of labor effort. The form

of these consumption variations is independent of the question why labor effort differs across

agents.

5.3 Stochastic depreciation

Uncertainty with respect to the depreciation of durable goods may be a further motivation for

tax policy. When the depreciation shocks are observable, the planner can provide full insurance

against these shocks without affecting any other decision margin. However, when the shocks

are private information, insurance provision becomes less direct and commodity taxation may

be justified.

I set up a tractable framework to explore the role of unobservable depreciation shocks.

Consider a model with one durable and one nondurable good. For simplicity, suppose that

the depreciation rate of the durable good can take two values: δ ∈ {δL, δH}, with δL < δH and

probability weights πL, πH > 0. I assume that the utility function u is strictly concave and
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satisfies the single-crossing property:8

d uc(c,ρ(i+δ))
us(c,ρ(i+δ))

dδ
> 0 for all c, ρ, i, δ > 0.

Here, c represents durable consumption, i denotes investment in the durable good, ρ maps

durable stocks to service flows, and uc and us represent the marginal utilities with respect

to nondurable and durable consumption flows. Because of the single-crossing property, the

insurance problem can be set up in a relaxed form, with only a downward incentive compati-

bility constraint:

max u(c0, ρi0) + β ∑
k=L,H

πku (ck, ρ(ik + δki0))

s.t. Y− c0 − i0 − q ∑
k=L,H

πk [ck + ik] = 0

u (cH, ρ(iH + δHi0)) = u (cL, ρ(iL + δHi0))

Here, Y denotes the (exogenous) level of aggregate resources and q represents the discounting

of costs over time.

The necessary first-order conditions of this problem imply that the consumption choice is

undistorted in the case of a positive depreciation shock:

ρus (cH, ρ(iH + δHi0))
uc (cH, ρ(iH + δHi0))

= 1.

By the single-crossing property, the optimal plan for the negative depreciation shock satisfies

cL < cH and iL > iH. Since the indifference curves are strictly convex, this ordering implies

ρus (cL, ρ(iL + δHi0))
uc (cL, ρ(iL + δHi0))

<
ρus (cH, ρ(iH + δHi0))
uc (cH, ρ(iH + δHi0))

. (12)

Denote the Lagrange multipliers for the resource constraint and incentive constraint by λ and

8The single-crossing property holds if and only if ucd > ucudd/ud. Intuitively, this condition is satisfied if
durable and nondurable consumption are not too closely substitutable.
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µ, respectively. The first-order conditions for cL and iL yield

ρus (cL, ρ(iL + δLi0))
uc (cL, ρ(iL + δLi0))

=
λqπL + µρus (cL, ρ(iL + δHi0))
λqπL + µuc (cL, ρ(iL + δHi0))

.

By combining the first-order condition with Eq. (12), it becomes clear that the solution to the

insurance problem satisfies
ρus (cL, ρ(iL + δLi0))
uρ (cL, ρ(iL + δLi0))

< 1.

Hence, for the consumption plan associated with negative depreciation shock, investment in

the durable good is subsidized relative to nondurable consumption. Note that an agent with a

positive depreciation shock values investment less than an agent with a negative shock. Thus,

a subsidy to investment yields some slackness in the incentive compatibility constraint and

facilitates the provision of insurance.9

6 Discussion and conclusion

This paper shows that optimal commodity taxes are generically non-uniform in the presence

of durable goods. Nonseparabilities between durable and nondurable consumption, as well

as nonlinearities of the utility from durable consumption, imply that differential commodity

taxes improve welfare.

The findings in this paper have implications for the taxation of housing. They also shed

some light on the interpretation of optimal taxes on pre-committed goods.

6.1 Application to housing taxes

Housing is a prime example of a durable good. Housing is particularly interesting from an op-

timal tax perspective because tax advantages for housing are widespread in many countries.10

9The implied tax wedge is once more affected by the interaction of durable and nondurable consumption. Note
that the slope of the indifference curve depends less strongly on the depreciation shock δ when the two goods
are close substitutes. In the limit case of perfect substitutes, u(c, ρ(i + δ)) = û (c + ρ(i + δ)), the marginal rate
of substitution between durable and nondurable consumption in fact becomes independent of δ. In that case, the
solution of the insurance problem is a pooling allocation where the marginal rate of substitution equals the marginal
rate of transformation. This insight suggests that substitutability of durable and nondurable consumption leads
to a lower subsidy on durable goods. Note that this finding is similar to the results in the main part of the paper:
substitutability again calls for relatively higher taxes (lower subsidies) on durable goods.

10Different from many critiques of such tax advantages, the present approach is based on pure efficiency reason-
ing and is independent of the redistributional objective.
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For instance, payments of mortgage interest are (partly or fully) tax-deductible in the United

States, the Netherlands, Switzerland, Belgium, Ireland, Norway and Sweden. In the UK, there

is a reduced value added tax on the construction of new houses and renovations.

Given the large body of research that estimates the preferences over housing and other

consumption, the present analysis can be readily applied to housing taxation. In the economic

literature on housing, the preferences are commonly specified by a utility function with a con-

stant elasticity of substitution,

u(c, h) =

[
(1−ω)c1− 1

ε + ωh1− 1
ε

] 1− 1
σ

1− 1
ε

1− 1
σ

,

where c denotes nondurable consumption, h denotes housing services, the parameter ε > 0

measures the intratemporal substitutability between housing and nondurable consumption,

ω ∈ (0, 1) controls the expenditure share on housing, and σ > 0 governs the intertemporal

substitutability of the consumption-housing composite. This specification implies that hous-

ing and nondurable consumption are strict substitutes in the Edgeworth sense
(
u′′ch < 0

)
if and

only if the parameters satisfy ε > σ, i.e., if and only if the intratemporal elasticity of substitu-

tion exceeds the intertemporal elasticity. Therefore, if ε > σ, Propositions 4 to 7 suggest that

housing should face higher tax rates than nondurable consumption.

Many papers have estimated the above CES specification. Several approaches rely on

macroeconomic evidence and calibration strategies. For example, based on macro-level con-

sumption data, Piazzesi, Schneider, and Tuzel (2007) provide a calibration for low risk aversion

with (ε, σ) = (1.05, 0.2) and one for high risk aversion with (ε, σ) = (1.25, 0.0625). Their paper

refers to several further calibrations of the CES function for housing where the intratemporal

elasticity of substitution exceeds the intertemporal one. More recently, two papers estimate

the CES function by matching cross-sectional and time series moments of wealth and hous-

ing profiles from PSID micro data. Li, Liu, Yang, and Yao (2015) estimate parameter values

of (ε, σ) = (0.487, 0.140). Bajari, Chan, Krueger, and Miller (2013) follow a similar approach

for logarithmic utility functions and estimate (ε, σ) = (4.550, 1). In sum, the available empiri-

cal evidence suggests that ε > σ, which means that housing and nondurable consumption are

Edgeworth substitutes. Thus, according to the theory in this paper, housing should face higher
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tax rates than nondurable consumption.11

The present analysis abstracts from several alternative motives for housing policy. For in-

stance, capital market imperfections such as borrowing constraints may justify subsidies to

housing. Moreover, political economy considerations may lead to outcomes that differ from

the solution of a social planning problem. Such imperfections warrant an independent inves-

tigation because they have many consequences beyond the taxation of housing. In principle,

capital market imperfections and the government’s role can be affected by political decisions,

whereas the wealth and substitution effects highlighted in this paper are primitives that follow

directly from individual preferences.

6.2 Durable goods versus pre-committed goods

This paper leads to a novel interpretation of the analysis of pre-committed goods by Cremer

and Gahvari (1995a,b). Assuming separability between pre-committed and post-uncertainty

goods, their main finding is that pre-committed goods should be subsidized relative to post-

uncertainty goods.

Consider a two-period version of the present model with one durable and one nondurable

consumption good in each period. Moreover, suppose that there is no uncertainty in the first

period. Then, the consumption goods are pre-committed in the first period (i.e., decided before

the realization of uncertainty) but they are post-uncertainty goods in the second period. Hence,

durable and nondurable goods become pre-committed goods or post-uncertainty goods de-

pending on the timing. Stated differently, the notion of pre-commitment does not distinguish

durable goods from nondurable goods.

Part (ii) of Proposition 5 shows that a uniform taxation of goods is optimal in the sec-

ond period. This result is closely related to the finding that post-uncertainty goods should be

taxed uniformly. In contrast, the tax wedge between durable and nondurable goods in the

first period (or more generally in non-terminal periods) in part (i) of Proposition 5 does not

have a counterpart in the analysis of pre-committed goods, because that analysis focuses on

differentials between pre-committed and post-uncertainty goods, not on differentials within

11As pointed out in Section 5.3, housing subsidies may be helpful if the depreciation rates (and thus the house
values) are stochastic and unobservable. For housing, the assumption of nonobservability seems restrictive be-
cause depreciation shocks may be correlated across space. Moreover, housing transactions are public information
(through laws on property registration).
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pre-committed goods. However, the motive to subsidize pre-committed goods relates to a dy-

namic result in the present paper. Note that a nondurable good in the first period is separable

from the consumption goods in the second period, and it is decided before the resolution of

uncertainty. The motive to subsidize this good relative to a post-uncertainty good means that

there is an intertemporal wedge on nondurable goods, as shown by the Inverse Euler Equation

in Lemma 2.

Appendix

A Proofs of all theoretical results

Proof of Proposition 1. The proof adapts the argument from Theorem 2 in Golosov et al. (2003)

to the framework with durable goods. Let (c∗, d∗, y∗, K∗) be an optimal allocation with interior

consumption. Let i∗ be the associated investment plan.

Step 1: I claim that c∗t solves the following cost minization problem:

min
ct≥0

G (E [ct] , E [i∗t ] , K∗t+1, K∗t , E [y∗t ])

s.t. u
(
ct
(
θt) , ρd∗t

(
θt)) = u

(
c∗t
(
θt) , ρd∗t

(
θt)) for all θt.

Suppose that, contrary to the claim, there exists a mapping c′t : Θt → R+ with

u
(
c′t
(
θt) , ρd∗t

(
θt)) = u

(
c∗t
(
θt) , ρd∗t

(
θt)) for all θt

and

G
(
E
[
c′t
]

, E [i∗t ] , K∗t+1, K∗t , E [y∗t ]
)
< G (E [c∗t ] , E [i∗t ] , K∗t+1, K∗t , E [y∗t ]) ≤ 0. (13)

Define c′ =
(
c′t, c∗−t

)
and consider the allocation (c′, d∗, y∗, K∗). The allocation is feasible. The
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allocation is also incentive compatible: for all reporting strategies σ we have

w
(
c′, d∗, y∗

)
=

T

∑
τ=1

βτ−1E

[
Ũ
(

u
(
c′τ (θ

τ) , ρd∗τ (θ
τ)
)

, ρd∗τ (θ
τ) ,

y∗τ (θτ)

θτ

)]
=

T

∑
τ=1

βτ−1E

[
Ũ
(

u (c∗τ (θ
τ) , ρd∗τ (θ

τ)) , ρd∗τ (θ
τ) ,

y∗τ (θτ)

θτ

)]
≥

T

∑
τ=1

βτ−1E

[
Ũ
(

u (c∗τ (σ
τ (θτ)) , ρd∗τ (σ

τ (θτ))) , ρd∗τ (σ
τ (θτ)) ,

y∗τ (στ (θτ))

θτ

)]
=

T

∑
τ=1

βτ−1E

[
Ũ
(

u
(
c′τ (σ

τ (θτ)) , ρd∗τ (σ
τ (θτ))

)
, ρd∗τ (σ

τ (θτ)) ,
y∗τ (στ (θτ))

θτ

)]
= w

(
c′ ◦ σ, d∗ ◦ σ, y∗ ◦ σ

)
where the inequality follows from the incentive compatibility of (c∗, d∗, y∗, K∗). Moreover, the

allocation delivers the same level of social welfare as the optimal allocation (c∗, d∗, y∗, K∗).

Therefore, (c′, d∗, y∗, K∗) is also an optimal allocation. However, by Eq. (13), (c′, d∗, y∗, K∗)

does not use all capital in period t. By the strict monotonicity of the production technology G

in capital, there exists a sequence of capital stocks K′, with K′1 < K∗1 , such that (c′, d∗, y∗, K′)

solves the planner problem for initial capital K′1. This implies V (K′1) = V (K∗1) , which is a

contradiction.

Step 2: Derive the necessary first-order conditions for the cost minimization problem. Let

n ∈ {1, . . . , N}. The first-order condition with respect to ct,n
(
θt) is

Πt (θt)Gn (E [c∗t ] , E [i∗t ] , K∗t+1, K∗t , E [y∗t ]) = µ
(
θt) un

(
c∗t
(
θt) , ρd∗τ (θ

τ)
)

where µ
(
θt) is the Lagrange multiplier associated with the utility constraint for history θt. By

dividing the condition for n′ by the one for n, we obtain Eq. (4).

Proof of Proposition 2. By the linearity and additive separability of U(c, s, e) in s, the utility flow

from investing in a durable good is separable from all other goods, and from past and future

investments. Specifically, the utility flow from investing it,m in durable good m at time t is

given by

βt−1
(

αmρmit,m + βαmρmδmit,m + · · ·+ βT−tαmρmδT−t
m it,m

)
= βt−1αmρm

1− (βδm)T−t+1

1− βδm
it,m.

27



Define a function

ũt(it) := ∑
m

αmρm
1− (βδm)T−t+1

1− βδm
it,m.

Using the above formula, the ex ante consumption utility of any deterministic plan (ct, dt)t is

given by

T

∑
t=1

βt−1 (u(ct) + α · ρdt) =
T

∑
t=1

βt−1

(
u(ct) + α · ρ

t

∑
k=1

δt−kik

)

=
T

∑
t=1

βt−1 (u(ct) + ũt(it)
)

.

Therefore, the framework is equivalent to a model with nondurable goods (c, i) and time-

dependent utility functions Ut(c, i, e) = u(c) + ũt(i)− v(e).

Let (c∗, d∗, y∗, K∗) be an optimal allocation with interior consumption. Let i∗ be the asso-

ciated investment plan. The preferences are additively separable between consumption and

labor and therefore Lemma 1 applies. By proceeding as in the proof of Proposition 1, the allo-

cation can only be optimal if (c∗t , i∗t ) solves the following cost minimization problem:

min
ct,it

G (E [ct] , E [it] , K∗t+1, K∗t , E [y∗t ])

s.t. u
(
ct
(
θt))+ ũt (it

(
θt)) = u

(
c∗t
(
θt))+ ũt (i∗t (θt)) for all θt.

The first-order conditions with respect to it,m
(
θt) and ct,n

(
θt) are

Πt (θt)GN+m (E [c∗t ] , E [i∗t ] , K∗t+1, K∗t , E [y∗t ]) = µ
(
θt) ũt

m
(
i∗t
(
θt))

Πt (θt)Gn (E [c∗t ] , E [i∗t ] , K∗t+1, K∗t , E [y∗t ]) = µ
(
θt) un

(
c∗t
(
θt))

where µ
(
θt) is the Lagrange multiplier associated with the utility constraint for history θt.

By the definition of preferences, UN+m (c, s, e) = αm and Un (c, s, e) = un(c) for all (c, s, e).
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Therefore,

ũt
m (i∗t )

un (c∗t )
=

αmρm
1−(βδm)T−t+1

1−βδm

un (c∗t )

=
ρmUN+m

(
c∗t , s∗t , y∗t

θt

)
+ ρmEt

[
∑T

k=t+1 (βδm)
k−t UN+m

(
c∗k , s∗k , y∗k

θk

)]
Un

(
c∗t , s∗t , y∗t

θt

) .

Hence, by dividing the first-order conditions of the cost minimization problem by each other,

Eq. (3) follows.

Proof of Lemma 2. Let (c, d, y, K) be an incentive-feasible allocation with interior consumption.

Let θ′1 ∈ Θ. Consider the following perturbation of nondurable consumption:

u
(
cε

1
(
θ′1
)

, ρd1
(
θ′1
))

= u
(
c1
(
θ′1
)

, ρd1
(
θ′1
))

+ ε

u
(
cε

2
(
θ′1, θ2

)
, ρd2

(
θ′1, θ2

))
= u

(
c2
(
θ′1, θ2

)
, ρd2

(
θ′1, θ2

))
− ε

β
.

For histories (θ1, θ2) with θ1 6= θ′1, set cε
t = ct for t = 1, 2. Adjust the capital stock of the second

period in response to the changed consumption levels. Formally, define Kε
2 := K2− ζε with the

help of the equation

π1
(
θ′1
)
∑
θ2

π2
(
θ2|θ′1

) [
c2
(
θ′1, θ2

)
− cε

2
(
θ′1, θ2

)]
= F (K2, E [y2])− F (K2 − ζε, E [y2])+

(
1− δK

)
ζε.

By construction, for all histories (θ1, θ2) , the perturbed allocation delivers the same lifetime

utility as the original allocation. Hence, the perturbed allocation is also incentive compatible

and yields the same social welfare. If the perturbed allocation requires fewer initial resources

than the original allocation, there exists an incentive-feasible allocation with identical social

welfare for a strictly smaller capital endowment. Then, by Lemma 1, the original allocation

cannot be optimal.

Hence, a necessary condition for the optimality of (c, d, y, K) is that ε = 0 solves the fol-

lowing cost minimization problem:

min
ε

{
π1
(
θ′1
)

cε
1
(
θ′1
)
− ζε

}
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This implies the first-order condition

0 = π1
(
θ′1
) dcε

1 (θ
′
1)

dε
|ε=0 −

dζε

dε
|ε=0

which is equivalent to

0 =
π1 (θ

′
1)

uc
(
c1
(
θ′1
)

, ρd1
(
θ′1
)) − 1

βR ∑
θ2

π2
(
θ2|θ′1

) π1 (θ
′
1)

uc
(
c2
(
θ′1, θ2

)
, ρd2

(
θ′1, θ2

))
with R := 1− δK + FK (K2, E [y2]) . Dividing by π1 (θ

′
1) , Eq. (10) follows.

Proof of Proposition 3. Let (c, d, y, K) be an incentive-feasible allocation with interior consump-

tion. Let θ′1 ∈ Θ. Consider the following perturbation of investment in the durable good:

iε
1
(
θ′1
)

= i1
(
θ′1
)
− ε

iε
2
(
θ′1, θ2

)
= i2

(
θ′1, θ2

)
dε

1
(
θ′1
)

= d1
(
θ′1
)
− ε

dε
2
(
θ′1, θ2

)
= d2

(
θ′1, θ2

)
− δε.

Adjust the level of nondurable consumption so that, in every period and for every realization,

the agent obtains the same consumption utility as before:

u
(
cε

1
(
θ′1
)

, ρdε
1
(
θ′1
))

= u
(
c1
(
θ′1
)

, ρd1
(
θ′1
))

u
(
cε

2
(
θ′1, θ2

)
, ρdε

2
(
θ′1, θ2

))
= u

(
c2
(
θ′1, θ2

)
, ρd2

(
θ′1, θ2

))
.

For histories (θ1, θ2) with θ1 6= θ′1, set dε
t = dt and cε

t = ct for t = 1, 2. Moreover, adjust the

capital stock of the second period in response to the changed nondurable consumption levels.

Formally, define Kε
2 := K2 + ζε with the help of the equation

π1
(
θ′1
)
∑
θ2

π2
(
θ2|θ′1

) [
cε

2
(
θ′1, θ2

)
− c2

(
θ′1, θ2

)]
= F (K2 + ζε, E [y2])− F (K2, E [y2])+

(
1− δK

)
ζε.

Similar to the proof of Lemma 2, the allocation (c, d, y, K) can only be optimal if ε = 0 solves
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the following cost minimization problem:

min
ε

{
π1
(
θ′1
) [

cε
1
(
θ′1
)
+ iε

1
(
θ′1
)]

+ ζε
}

This implies the first-order condition

0 = π1
(
θ′1
) dcε

1 (θ
′
1)

dε
|ε=0 − π1

(
θ′1
)
+

dζε

dε
|ε=0.

By the construction of the perturbed allocation, we have

dcε
1 (θ
′
1)

dε
|ε=0 = ρ

us (c1 (θ
′
1) , ρd1 (θ

′
1))

uc
(
c1
(
θ′1
)

, ρd1
(
θ′1
))

dcε
2 (θ
′
1, θ2)

dε
|ε=0 = ρδ

us (c2 (θ′1, θ2) , ρd2 (θ′1, θ2))

uc
(
c2
(
θ′1, θ2

)
, ρd2

(
θ′1, θ2

)) .

Moreover, the derivative of ζε is implicitly given by

(
1− δK + FK (K2, E [y2])

) dζε

dε
|ε=0 = π1

(
θ′1
)
∑
θ2

π2
(
θ2|θ′1

) dcε
2 (θ
′
1, θ2)

dε
|ε=0.

After combining these equations and dividing by π1 (θ
′
1), we can write the first-order condition

of the cost minimization problem as

0 = ρ
us (c1 (θ

′
1) , ρd1 (θ

′
1))

uc
(
c1
(
θ′1
)

, ρd1
(
θ′1
)) − 1 +

ρδ

R ∑
θ2

π2
(
θ2|θ′1

) us (c2 (θ′1, θ2) , ρd2 (θ′1, θ2))

uc
(
c2
(
θ′1, θ2

)
, ρd2

(
θ′1, θ2

)) ,

where R := 1− δK + FK (K2, E [y2]) . This establishes Eq. (11).

Proof of Proposition 4. Let (c∗, d∗, y∗, K∗) be an optimal allocation with interior consumption.

Given that investment in the durable good is only possible in the first period, the stock of the

durable good is independent of the realization of uncertainty in the second period, i.e., we have

d∗2 = d∗2 (θ1). Note that Lemma 2 and Proposition 3 remain valid in this modified framework

because they do not rely on perturbations of durable investment after the first period.

The Substitution Euler Equation (Eq. (11)) implies

ρ
us (c∗1 , ρd∗1)
uc
(
c∗1 , ρd∗1

) = 1− ρδ

R∗
E1

[
us (c∗2 , ρd∗2)
uc (c∗2 , ρd∗2)

]
.
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Equivalently,

ρ
us (c∗1 , ρd∗1)
uc
(
c∗1 , ρd∗1

) + ρβδE1

[
us (c∗2 , ρd∗2)
uc
(
c∗1 , ρd∗1

)]

= 1− ρδ

R∗
E1

[
us (c∗2 , ρd∗2)

(
1

uc (c∗2 , ρd∗2)
− βR∗

uc
(
c∗1 , ρd∗1

))] .

The Inverse Euler Equation (Eq. (10)) implies

βR∗

uc
(
c∗1 , ρd∗1

) = E1

[
1

uc (c∗2 , ρd∗2)

]
.

Hence, the Substitution Euler Equation can be written in terms of a covariance,

ρ
us (c∗1 , ρd∗1)
uc
(
c∗1 , ρd∗1

) + ρβδE1

[
us (c∗2 , ρd∗2)
uc
(
c∗1 , ρd∗1

)]

= 1− ρδ

R∗
cov1

(
us (c∗2 , ρd∗2) ,

1
uc (c∗2 , ρd∗2)

− βR∗

uc
(
c∗1 , ρd∗1

)) ,

where cov1 ( · , · ) represents the covariance with respect to the realization of uncertainty in

period 2, conditional on the realization in period 1. Since c∗1 and d∗1 are certain after period 1,

the equation can be simplified to

ρ
us (c∗1 , ρd∗1)
uc
(
c∗1 , ρd∗1

) + ρβδE1

[
us (c∗2 , ρd∗2)
uc
(
c∗1 , ρd∗1

)] = 1− ρδ

R∗
cov1

(
us (c∗2 , ρd∗2) ,

1
uc (c∗2 , ρd∗2)

)
.

The marginal rate of substitution of the durable good for the nondurable good exceeds unity

(the marginal rate of transformation) if and only if

cov1

(
−us (c∗2 , ρd∗2) ,

1
uc (c∗2 , ρd∗2)

)
≥ 0. (14)

Recall that d∗2 = d∗2 (θ1) does not depend on θ2 in this framework. Hence, the marginal utili-

ties us (c∗2 , ρd∗2) and uc (c∗2 , ρd∗2) are uncertain only through their dependence on c∗2 (θ1, θ2) . By

concavity, uc (c∗2 , ρd∗2) is strictly decreasing in c∗2 . If ucs ≤ 0, us (c∗2 , ρd∗2) is weakly decreasing

in c∗2 . In that case, Eq. (14) measures the covariance of two increasing functions of the same

random variable. Therefore, the covariance is nonnegative. Moreover, if ucs < 0 and c∗2 (θ1, θ2)

is not constant across θ2, the covariance is strictly positive. Finally, if ucs ≥ 0 or ucs > 0, the
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respective inequalities are reversed.

Proof of Proposition 5. Let (c∗, d∗, y∗, K∗) be an optimal allocation with interior consumption.

Let (θ′1, θ′2) ∈ Θ2 and consider the following perturbation of second-period consumption:

iε
2
(
θ′1, θ′2

)
= i∗2

(
θ′1, θ′2

)
+ ε

dε
2
(
θ′1, θ′2

)
= d∗2

(
θ′1, θ′2

)
+ ε

u
(
cε

2
(
θ′1, θ′2

)
, ρdε

2
(
θ′1, θ′2

))
= u

(
c∗2
(
θ′1, θ′2

)
, ρd∗2

(
θ′1, θ′2

))
.

Set cε
1 = c∗1 , dε

1 = d∗1 and cε
2
(
θ2) = c∗2

(
θ2), cε

2
(
θ2) = c∗2

(
θ2) for all histories θ2 6= (θ′1, θ′2) .

By construction, the perturbed allocation delivers the same utility as the original allocation

for all periods and all histories. Hence, the perturbed allocation is also incentive compatible

and yields the same social welfare. If the perturbed allocation requires fewer resources than

the original allocation, there exists an incentive-feasible allocation with identical social welfare

for a strictly smaller capital endowment. Then, by Lemma 1, the original allocation cannot be

optimal.

Therefore, the allocation (c∗, d∗, y∗, K∗) can only be optimal if ε = 0 solves the following

minimization problem:

min
ε

{
cε

2
(
θ′1, θ′2

)
+ iε

2
(
θ′1, θ′2

)}
This implies the first-order condition

ρ
us (c∗2 (θ

′
1, θ′2) , ρd∗2 (θ

′
1, θ′2))

uc
(
c∗2
(
θ′1, θ′2

)
, ρd∗2

(
θ′1, θ′2

)) = 1. (15)

Hence, in the second period, the marginal rate of substitution of the durable good for the

nondurable good equals unity (the marginal rate of transformation). This establishes that the

durable good should be taxed at the same rate as the nondurable good in period 2.

Now consider the tax distortion for period 1. By following the same steps as in the proof of

Proposition 4, the marginal rate of substitution of the durable good for the nondurable good

exceeds the marginal rate of transformation if and only if

cov1

(
us (c∗2 , ρd∗2) ,

1
uc (c∗2 , ρd∗2)

)
≤ 0.
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By Eq. (15), this condition is equivalent to

cov1

(
us (c∗2 , ρd∗2) ,

1
us (c∗2 , ρd∗2)

)
≤ 0. (16)

Since the utility function is strictly concave, the covariance in Eq. (16) is nonpositive. Moreover,

if c∗2 or d∗2 depends on the realization of uncertainty in the second period, the covariance is

strictly negative.

Proof of Proposition 6. Let (c∗, d∗, y∗, K∗) be an optimal allocation with interior consumption.

By proceeding as in Lemma 2, the following Inverse Euler Equation holds for all t < T:

βR∗t+1

uc (c∗t , ρd∗t )
= Et

[
1

uc
(
c∗t+1, ρd∗t+1

)] , (17)

where the interest rate is defined as R∗t+1 := 1− δK + FK
(
K∗t+1, E

[
y∗t+1

])
. For k > t, define the

intertemporal discount factor qk
t :=

(
∏k

i=t+1 R∗i
)−1

and set qt
t = 1. Similar to Proposition 3, the

generalized Substitution Euler Equation for all t ≤ T is given by

1 = ρ
T

∑
k=t

qk
t δk−tEt

[
us
(
c∗k , ρd∗k

)
uc
(
c∗k , ρd∗k

)] . (18)

The generalized Substitution Euler Equation implies

ρ
us (c∗t , ρd∗t )
uc (c∗t , ρd∗t )

= 1− ρ
T

∑
k=t+1

qk
t δk−tEt

[
us
(
c∗k , ρd∗k

)
uc
(
c∗k , ρd∗k

)] .

Equivalently,

ρ
us (c∗t , ρd∗t ) + ∑T

k=t+1 (βδ)k−t
Et
[
us
(
c∗k , ρd∗k

)]
uc (c∗t , ρd∗t )

= 1− ρ
T

∑
k=t+1

qk
t δk−tEt

[
us (c∗k , ρd∗k )

(
1

uc
(
c∗k , ρd∗k

) − βk−t

qk
t uc (c∗t , ρd∗t )

)]
.

(19)

By the Inverse Euler Equation, for all k > t we have

Et

[
1

uc
(
c∗k , ρd∗k

) − βk−t

qk
t uc (c∗t , ρd∗t )

]
= 0.
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Therefore, the expectation of the following product coincides with its covariance,

Et

[
us (c∗k , ρd∗k )

(
1

uc
(
c∗k , ρd∗k

) − βk−t

qk
t uc (c∗t , ρd∗t )

)]

= covt

(
us (c∗k , ρd∗k ) ,

1
uc
(
c∗k , ρd∗k

) − βk−t

qk
t uc (c∗t , ρd∗t )

)

= covt

(
us (c∗k , ρd∗k ) ,

1
uc
(
c∗k , ρd∗k

)) .

Consequently, Eq. (19) shows that the marginal rate of substitution of the durable good for the

nondurable good in period t exceeds unity (the marginal rate of transformation) if and only if

T

∑
k=t+1

qk
t δk−t covt

(
−us (c∗k , ρd∗k ) ,

1
uc
(
c∗k , ρd∗k

)) ≥ 0. (20)

Now the result follows from the same arguments as in the proof of Proposition 4.

Proof of Proposition 7. Let (c∗, d∗, y∗, K∗) be an optimal allocation with interior consumption.

Based on Eq. (20) from the proof of Proposition 6, the marginal rate of substitution of the

durable good for the nondurable good in period t exceeds the marginal rate of transformation

if and only if
T

∑
τ=t+1

qτ
t δτ−t covt

(
−us (c∗τ, ρd∗τ) ,

1
uc (c∗τ, ρd∗τ)

)
≥ 0. (21)

Given that the consumption goods are perfectly rank correlated, there exist a “sufficient statis-

tic” λτ : Θτ → R and strictly increasing functions Cτ : R→ R+, Dτ : R→ R+ such that

c∗τ = Cτ ◦ λτ , d∗τ = Dτ ◦ λτ.

The marginal utilities us and uc depend on the realization of uncertainty only through the

statistic λτ. Consider two realizations λ = λτ (θτ) and λ̂ = λτ

(
θ̂τ
)
with λ ≥ λ̂. Then, by

the mean value theorem, there exists a number ξ ∈
[
Dτ

(
λ̂
)

, Dτ (λ)
]

and a number κ ∈
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[
Cτ

(
λ̂
)

, Cτ (λ)
]

such that

us (Cτ (λ) , ρDτ (λ))− us
(
Cτ

(
λ̂
)

, ρDτ

(
λ̂
))

= us (Cτ (λ) , ρDτ (λ))− us
(
Cτ (λ) , ρDτ

(
λ̂
))

+ us
(
Cτ (λ) , ρDτ

(
λ̂
))
− us

(
Cτ

(
λ̂
)

, ρDτ

(
λ̂
))

= ρuss (Cτ (λ) , ρξ)
[
Dτ (λ)− Dτ

(
λ̂
)]

+ ucs
(
κ, ρDτ

(
λ̂
)) [

Cτ (λ)− Cτ

(
λ̂
)]

.

Hence, if ucs ≤ 0, the marginal utility us (Cτ (λ) , ρDτ (λ)) is strictly decreasing in λ. Similarly,

for the marginal utility of nondurable consumption, there exists a number ξ ′ ∈
[
Dτ

(
λ̂
)

, Dτ (λ)
]

and a number κ′ ∈
[
Cτ

(
λ̂
)

, Cτ (λ)
]

such that

uc (Cτ (λ) , ρDτ (λ))− uc
(
Cτ

(
λ̂
)

, ρDτ

(
λ̂
))

= uc (Cτ (λ) , ρDτ (λ))− uc
(
Cτ (λ) , ρDτ

(
λ̂
))

+ uc
(
Cτ (λ) , ρDτ

(
λ̂
))
− uc

(
Cτ

(
λ̂
)

, ρDτ

(
λ̂
))

= ρucs
(
Cτ (λ) , ρξ ′

) [
Dτ (λ)− Dτ

(
λ̂
)]

+ ucc
(
κ′, ρDτ

(
λ̂
)) [

Cτ (λ)− Cτ

(
λ̂
)]

.

Once more, if ucs ≤ 0, the marginal utility uc (Cτ (λ) , ρDτ (λ)) is strictly decreasing in λ. This

implies that the random variables−us and 1/uc in Eq. (21) are monotonic in the same direction.

Hence, their covariance is nonnegative and Eq. (21) is satisfied. Moreover, because ucc < 0 and

uss < 0, the covariance is strictly positive unless λτ is constant. Thus, unless consumption is

fully insured in periods t + 1, . . . , T, the result becomes strict.
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