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Abstract
We study the Fisher model of a competitive market from the algorithmic perspective.

For that, the related convex optimization problem due to Gale and Eisenberg [10] is
used. The latter problem is known to yield a Fisher equilibrium under some structural
assumptions on consumers’ utilities, e.g. homogeneity of degree 1, homotheticity etc. Our
goal is to examine the applicability of the convex optimization framework by departing
from these traditional assumptions. We just assume the concavity of consumers’ utility
functions. For this case we suggest a novel concept of Fisher-Gale equilibrium by using
consumers’ utility prices. The prices of utility transfer the utility of a consumption bundle
to a common numéraire. We develop a subgradient-type algorithm from Convex Analysis
to compute a Fisher-Gale equilibrium via Gale’s approach. In order to decentralize prices,
we additionally implement the auction design, i.e. consumers settle and update their
individual prices and producers sell at the highest offer price. Our price adjustment is
based on a tâtonnement procedure, i.e. the prices change proportionally to consumers’
individual excess supplies. Historical averages of consumption are shown to clear the
market of goods. Our algorithm enjoys a convergence rate. In worst case, the number of
price updates needed to achieve the ε-tolerance is proportional to 1

ε2 .
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from the “Direction de la recherche scientifique - Communautè française de Belgique”. The research of the
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1 Introduction

The concept of Fisher equilibrium for a competitive market dates back to 1891, see e.g.
[2]. Due to Fisher’s model, consumers buy goods by spending given wealths in order to
maximize their utility functions. There are fixed amounts of supplied goods available
at the market. Fisher equilibrium comprises of optimal consumption bundles and equi-
librium prices which clear the market of goods. Aiming at the efficient computation of
a Fisher equilibrium, a related convex optimization problem has been proposed in [10].
This so-called Gale’s problem consists of maximizing an aggregated logarithmic utility
function subject to market feasibility constraints. The feasibility constraints ensure that
the aggregated consumption does not exceed the fixed amounts of supplied goods. The
solutions of Gale’s problem give equilibrium allocations for the Fisher market. Moreover,
the Lagrange (or dual) multipliers for its feasibility constraints yield equilibrium prices.
It is crucial to point out that the solutions of Gale’s problem provide Fisher equilibrium
mainly if the wealths are fully spent within the budget constraints. To guarantee the
latter fact some structural assumptions on the consumers’ utility functions have been
made in the literature. In [10] the case of linear utility functions for Fisher market has
been considered. Later, the Gale’s approach has been extended for concave and homo-
geneous utility functions of degree one in [11]. The convex optimization framework has
been applied in [15] in order to handle homothetic and quasi-concave utilities. Recently
in [3], the particular case of concave and non-homogeneous utility functions in potential
or logarithmic form has been successively studied.

The goal of the present paper is to examine the applicability of Gale’s approach by
departing from the structural assumptions on the consumers’ utilities. In what follows,
we just assume the concavity of consumers’ utility functions. In case of general concave
utility functions, we cannot guarantee the full spending of wealths within the budget con-
straints. This is the main reason why under our concavity assumption the concepts of
Fisher and Gale equilibrium may come apart. To explain this feature, we generalize both
concepts of Fisher and Gale equilibrium by using the so-called utility prices attributed
to consumers. They play the role of trade-offs between consumers’ budget spending and
utility maximization. Prices of utility allow to dynamically transfer the utility of a con-
sumption bundle to a common numéraire. Using this transferable utility, we introduce
a novel concept of Fisher-Gale equilibrium. Here, consumers maximize their revenues
as the differences of transferred utilities and expenditures expressed in a numéraire (see
Definition 3 for details). It turns out that Fisher and Gale equilibria can be viewed as
Fisher-Gale equilibrium (see Theorem 1). In particular, for Fisher equilibrium the utility
prices are inverse shadow prices (or Lagrange multipliers associated to budget constraints).
For Gale equilibrium, the utility prices appear as ratios of wealths to achieved utilities.
The latter gives rise to the efficient computation of a Fisher-Gale equilibrium by follow-
ing the Gale’s approach. We revise some previous attempts to solve the Gale’s convex
optimization problem known in the literature. Already in [13] the ellipsoid method has
been applied for that. In [9], a polynomial time algorithm based on a primal-dual scheme
has been proposed to tackle the Gale’s problem. An interior-point method for Gale’s
problem is developed in [32]. For an algorithm based on the excess demand function we
refer to [6]. An auction-based algorithm for Fisher model has been suggested in [14]. A
distributed algorithm via gradient descent for Fisher market with linear and spending
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constraint utilities has been suggested in [1]. In [12], a decentralized algorithm with the
tâtonnement price adjustment has been constructed using the indirect utility functions.
We also mention [20] where a simultaneous ascending auction is used to construct a de-
centralized price adjustment. For comprehensive surveys on the computational issues of
economic equilibria see [8, 29].

In this paper we develop a subgradient-type algorithm to compute a Fisher-Gale equi-
librium by Gale’s approach. Its convergence properties are crucially based on Convex
Analysis. The price adjustment corresponds to the quasi-monotone subgradent method
for nonsmooth convex minimization, recently suggested in [23]. As objective function for
the latter method we take the total logarithmic revenue of the market. Equilibrium prices
can be then characterized as its minimizers. By doing so, we independently rediscovered
the framework recently proposed in [5]. In [5] the minimization of the total logarithmic
revenue has been studied in the smooth setting by using gradient method. For that,
the authors concentrate on Leontief utilities and complementary Constant Elasticity of
Substitution (CES) utilities which induce a smooth total logarithmic revenue. As to be
expected for the usual gradient method, their analysis provides 1

ε rate of convergence for
the ε-tolerance. In contrast to this study, we minimize the total logarithmic revenue in
the nonsmooth setting assuming just the concavity of consumers’ utility functions. In this
general case, the total logarithmic revenue need not to be smooth, as already the example
with linear additive utilities shows (see Example 2).

In order to decentralize prices, we additionally implement the auction design:

consumers settle and update their individual prices,
and producers sell at the highest offer price.

It is crucial for our approach that the introduction of the auction design preserves convex-
ity of the total logarithmic revenue. Moreover, its convex subgradients w.r.t. a consumer’s
price become his individual excess supplies, which are easily observable. This is used by
consumers to successively update prices by themselves rather than by relying on a central
authority. Our price adjustment is based on a tâtonnement procedure, i.e. the prices
change proportionally to consumers’ individual excess supplies. While our algorithm pro-
ceeds, the market clearance is achieved on average. The latter means that during the price
adjustment supply meets demand statistically. In mathematical terms, average consump-
tion bundles approach the solution of the Gale’s (or adjoint) problem for the minimization
of the total logarithmic revenue. Altogether, the sequence of highest offer prices, historical
averages of consumption bundles and historical averages of utility prices generated by our
algorithm, converges to the set of Fisher-Gale equilibria (see Theorem 5). Moreover, our
algorithm is able to guarantee a convergence rate of this process. In the worst case, the
number of price updates needed to achieve the ε-tolerance is proportional to 1

ε2 . Note that
this rate of convergence is optimal for nonsmooth convex minimization, cf. [22]. From
the economic perspective, this result explains why competitive markets adjust in efficient
way, moreover, it quantifies the worst-case efficiency. Note that relatively low accuracy
of price adjustment processes usually suffices for markets. Consequently, our complexity
result of 1

ε2 is quite reasonable.
The article is organized as follows. In Section 2 we introduce and discuss the concept

of Fisher-Gale equilibrium. In Section 3 we describe the decentralization of prices by the
auction. We prove the convergence of our decentralized subgradient-type algorithm toward
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the set of Fisher-Gale equilibria in Section 4. Appendix is devoted to the mathematical
justification of quasi-monotone subgradient schemes.

Notation. Our notation is quite standard. We denote by Rn the space of n-
dimensional column vectors x = (x(1), . . . , x(n))T , and by Rn

+ the set of all vectors with
nonnegative components. R++ stand for the set of positive real numbers. For x and y
from Rn, we introduce the standard scalar product and the Hadamard product

〈x, y〉 =
n∑

i=1

x(i)y(i), x ◦ y =
(
x(i)y(i)

)n

i=1
∈ Rn.

For the vectors p1, . . . , pI ∈ Rn, we denote by max
i=1,...,I

pi ∈ Rn the vector with coordinates

(
max

i=1,...,I
pi

)(j)

= max
i=1,...,I

p
(j)
i , j = 1, . . . , n.

2 Fisher-Gale equilibrium

We start with the classical concept of Fisher equilibrium, see e.g. [2]. Consider a market
with I consumers, which are able to buy n divisible goods. The i-th consumer has to
decide on the consumption bundle xi ∈ Xi, where the consumption set Xi ⊂ Rn

+ is
assumed to be nonempty and convex. Given a vector of prices p ∈ Rn

+, the i-th consumer
maximizes the concave utility function ui : Rn

+ → R with respect to the so-called budget
constraint. The latter says that the acquired consumption bundle cannot cost more than
the available wealth wi ∈ R+ of the i-th consumer. We assume that the utility function
ui is positive on the topological interior of the consumption set int(Xi), i.e. ui(xi) > 0 for
all xi ∈ int(Xi). On the production side of the market there are K producers. Each of
them supplies fixed amounts of goods as given by the vectors ek ∈ Rn

+, k = 1, . . . ,K. The

aggregate supply of goods is thus e def=
∑K

k=1 ek ∈ Rn
+. Finally, equilibrium prices ensure

the market clearing condition, i.e. the aggregate consumption never exceeds the available
amounts of supplied goods, and the markets of goods with positive prices are perfectly
cleared.

Definition 1 (Fisher equilibrium, [2]) The vector of prices and consumption bundles(
p∗, (x∗i )

I
i=1

)
is called Fisher equilibrium, if

(i) consumers maximize utilities w.r.t. budget constraints, i.e.

x∗i ∈ arg max
xi ∈ Xi

〈p∗, xi〉 ≤ wi

ui(xi), i = 1, . . . , I, (1)

(ii) the market clearing condition holds, i.e.

p∗ ≥ 0, e−
I∑

i=1

x∗i ≥ 0,

〈
p∗, e−

I∑
i=1

x∗i

〉
= 0. (2)
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In order to compute Fisher equilibrium, the following convex optimization problem
has been proposed in [10, 13]:

max
xi ∈ Xi

i = 1, . . . , I

I∑
i=1

wi lnui(xi) such that
I∑

i=1

xi ≤ e. (3)

The objective function in (3) may be viewed as a socially aggregated utility, i.e. the sum
of consumers’ wealths assessed by logarithmic utility factors. The feasibility constraint
in (3) means that the aggregate consumption never exceeds the available amounts of
supplied goods. Market prices appear naturally as Lagrange multipliers for the feasibility
constraint. Indeed, due to the duality of convex optimization, we obtain for (3):

max
xi ∈ Xi

i = 1, . . . , I

min
p≥0

I∑
i=1

wi lnui(xi) +

〈
p, e−

I∑
i=1

xi

〉
=

min
p≥0

I∑
i=1

max
xi ∈ Xi

wi lnui(xi)− 〈p, xi〉+ 〈p, e〉 .

The latter saddle-point problem can be interpreted economically as follows. Given the
vector of prices p ∈ Rn

+, the i-th consumer maximizes his logarithmic revenue, i.e. he
solves

LRi(p)
def= max

xi ∈ Xi

wi lnui(xi)− 〈p, xi〉 . (4)

Here, the logarithmic revenue is given as the difference between i-th consumer’s log-
arithmically assessed wealth and his expenditures. Finally, the equilibrium prices are
characterized by minimizing the total logarithmic revenue of consumers and producers:

TLR(p) def=
I∑

i=1

LRi(p) + 〈p, e〉 .

Motivated by the forgoing discussion, we define

Definition 2 (Gale equilibrium, [10, 13]) The vector of prices and consumption bun-
dles

(
p∗, (x∗i )

I
i=1

)
is called Gale equilibrium, if it solves the saddle point problem

min
p≥0

I∑
i=1

max
xi ∈ Xi

wi lnui(xi)− 〈p, xi〉+ 〈p, e〉 .

Namely,

(i) consumers maximize logarithmic revenues, i.e.

x∗i ∈ arg max
xi ∈ Xi

wi lnui(xi)− 〈p∗, xi〉 , i = 1, . . . , I, (5)
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(ii) the market clearing condition holds, i.e.

p∗ ≥ 0, e−
I∑

i=1

x∗i ≥ 0,

〈
p∗, e−

I∑
i=1

x∗i

〉
= 0. (6)

It is well-known in the literature under which conditions the concepts of Fisher and
Gale equilibrium coincide. In case of Xi = Rn

+ and linear utility functions ui(·), i =
1, . . . , I, the equivalence of Fisher and Gale equilibrium has served as a starting point for
the seminal paper [10]. In [11], the equivalence result has been generalized for concave
and homogeneous utility functions of degree 1. The convex optimization framework (3)
has been applied in [15] in order to handle homothetic and quasi-concave utilities. Re-
cently in [3], the case of concave and non-homogeneous utility functions in potential or
logarithmic form has been successively tackled. It is worth to mention that the equiva-
lence of Fisher and Gale concepts crucially relies on the full spending of wealths within
the budget constraints. It turns out that the structural assumptions on the utilities pro-
vide the latter fact. The goal of the present paper is to examine the applicability of the
convex optimization approach (3) by departing from the structural assumptions on the
consumers’ utilities. We merely assume that the utility functions ui(·), i = 1, . . . , I, are
concave. Moreover, as a novelty we introduce general compact consumption sets Xi with
0 ∈ Xi, i = 1, . . . , I rather than Xi = Rn

+ as in the previous literature. The compactness
assumption on Xi refers to the fact that the consumption is bounded. Naturally, taking
into account there are physical limits to what people can consume and want to consume in
order to satisfy their needs. The bounded consumption can also be justified by ecological
reasons. The unbounded desire for wealth is not an issue here, since the wealth wi is a
primitive in Fisher’s model (confer the discussion on this assumption in [27]). In case
of general concave utility functions and compact consumption sets, we cannot guarantee
the full spending of wealths within the budget constraints. This is the main reason why
under our assumptions the concepts of Fisher and Gale equilibrium need not to coincide in
general. To explain this feature, we generalize both concepts of Fisher and Gale equilibria
by using the so-called utility prices qi ∈ (0,∞] attributed to the i-th consumer. Prices of
utility qi allow to dynamically transfer the utility ui(xi) of a consumption bundle xi to a
common numéraire by qiui(xi). For the discussion on the concept of transferable utility
we refer e.g. to [18].

Definition 3 (Fisher-Gale equilibrium) The vector of prices and consumption bun-
dles

(
p∗, (x∗i )

I
i=1

)
is called Fisher-Gale equilibrium w.r.t. utility prices (qi)

I
i=1, if

(i) consumers maximize revenues fulfilling budget constraints, i.e.

x∗i ∈ arg max
xi ∈ Xi

qiui(xi)− 〈p∗, xi〉 , and 〈p∗, x∗i 〉 ≤ wi, i = 1, . . . , I, (7)

(ii) the market clearing condition holds, i.e.

p∗ ≥ 0, e−
I∑

i=1

x∗i ≥ 0,

〈
p∗, e−

I∑
i=1

x∗i

〉
= 0. (8)
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Note that the utility price qi = ∞ in (7) means that x∗i ∈ arg max
xi ∈ Xi

ui(xi).

In what follows, we discuss the novel concept of Fisher-Gale equilibrium in detail.
First, note that utility prices (qi)

I
i=1 from Definition 3 play the role of trade-offs between

consumers’ budget spending and utility maximization. By properly choosing utility prices
the consumers may keep some budget unspent. The latter will cause the sacrifices in their
achieved utility. Next Example 1 highlights this issue. Here, we examine the consumer’s
revenue maximization (7) for homogeneous utility functions of degree γ ∈ (0, 1).

Example 1 (Homogeneity of degree γ ∈ (0, 1)) Let us consider the consumer’s rev-
enue maximization as in (7):

max
x ≥ 0

qu(x)− 〈p, x〉, and 〈p, x〉 ≤ w, (9)

where the utility function u is homogeneous of degree γ ∈ (0, 1), i.e.

u(tx) = tγu(x) for all x, t ≥ 0.

Substituting x = ty into (9), we have

max
x ≥ 0

qu(x)− 〈p, x〉 = max
y, t ≥ 0

qtγu(y)− t〈p, y〉. (10)

Maximizing first w.r.t. t for a fixed y, we obtain

t =
[
γqu(y)
〈p, y〉

] 1
1−γ

.

Substituting this formula into (10), we get

max
y ≥ 0

[
qu(y)
〈p, y〉γ

] 1
1−γ

γ
γ

1−γ (1− γ).

Due to the homogeneity of u(·) of degree γ, this maximization problem is equivalent to

max
〈p, y〉 = 1

y ≥ 0

u(y). (11)

Here, one unit of the numéraire is spent optimally w.r.t. the usual utility maximization.
Having a solution y∗ of (11), we obtain a solution of (10):

x∗ = ty∗ = [γqu(y∗)]
1

1−γ y∗.

The optimal budget spending and achieved utility are

〈p, x∗〉 = [γqu(y∗)]
1

1−γ , u(x∗) = [γqu(y∗)]
γ

1−γ u(y∗).

Further, note that from 〈p, x∗〉 ≤ w, we deduce that the utility price need to satisfy:

q ≤ w1−γ

γu(y∗)
.
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From here we see that utility prices compromise both the budget spending and the achieved
utility. In particular, if q → 0, then 〈p, x∗〉 → 0 and u(x∗) → 0; if q → w1−γ

γu(y∗) , then
〈p, x∗〉 → w and u(x∗) → wγu(y∗).

Further, it turns out that by setting particular utility prices in (9) we recover Fisher’s
utility maximization (1) and Gale’s logarithmic revenue maximization (5). Indeed, if
q = w1−γ

γu(y∗) , then 〈p, x∗〉 = w, and x∗ = wy∗. Here, the whole budget is spent, and we

have the optimal consumption of Fisher’s utility maximization (1). If q = w1−γ

γγu(y∗) , then
〈p, x∗〉 = γw, and x∗ = γwy∗. The latter gives us the optimal consumption of Gale’s
logarithmic revenue maximization (5). 2

Next Theorem 1 shows in general that equilibria due to Fisher and Gale are particular
cases of Fisher-Gale equilibrium. For Fisher equilibrium the utility prices arise as in-
verse shadow prices (or Lagrange multipliers associated to budget constraints). For Gale
equilibrium the utility prices can be found as ratios of wealths to achieved utility values.

Theorem 1

(a) If
(
p∗, (x∗i )

I
i=1

)
is a Fisher equilibrium with Lagrange multipliers λ∗i associated to

budget constraints in (1), then
(
p∗, (x∗i )

I
i=1

)
is a Fisher-Gale equilibrium w.r.t. util-

ity prices
(

1
λ∗i

)I

i=1

.

(b) If
(
p∗, (x∗i )

I
i=1

)
is a Gale equilibrium, then

(
p∗, (x∗i )

I
i=1

)
is a Fisher-Gale equilibrium

w.r.t. utility prices
(

wi

ui (x∗i )

)I

i=1

.

Proof:
(a) Let

(
p∗, (x∗i )

I
i=1

)
be a Fisher equilibrium according to Definition 1. Optimality con-

ditions for (1) read

〈∇ui(x∗i )− λ∗i p
∗, x∗i − yi〉 ≥ 0 for all yi ∈ Xi, (12)

λ∗i ≥ 0, 〈p∗, x∗i 〉 ≤ wi, λ
∗
i (wi − 〈p∗, x∗i 〉) = 0,

Due to concavity of utility functions ui(·), i = 1, . . . , I, we have

〈∇ui(x∗i ), x
∗
i − yi〉 ≤ ui(x∗i )− ui(yi) for all yi ∈ Xi. (13)

Together with (12) we obtain

ui(x∗i )− ui(yi)− λ∗i 〈p∗, x∗i − yi〉 ≥ 0 for all yi ∈ Xi,

thus, if λ∗i 6= 0,

1
λ∗i
ui(x∗i )− 〈p∗, x∗i 〉 ≥

1
λ∗i
ui(yi)− 〈p∗, yi〉 ≥ 0 for all yi ∈ Xi.
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If λ∗i = 0, then the utility price is formally set to 1
λ∗i

= ∞, and

ui(x∗i ) ≥ ui(yi) for all yi ∈ Xi.

(b) Let
(
p∗, (x∗i )

I
i=1

)
be a Gale equilibrium according to Definition 2. Optimality condi-

tions for (5) read 〈
wi

ui (x∗i )
∇ui(x∗i )− p∗, x∗i − yi

〉
≥ 0 for all yi ∈ Xi, (14)

Again using (13), we obtain

wi

ui (x∗i )
ui(x∗i )− 〈p∗, x∗i 〉 ≥

wi

ui (x∗i )
ui(yi)− 〈p∗, yi〉 for all yi ∈ Xi.

Moreover, setting yi = 0 in (14) and in (13), we have

〈p∗, x∗i 〉 ≤ wi
〈∇ui(x∗i ), x

∗
i 〉

ui (x∗i )
≤ wi

ui(x∗i )− ui(0)
ui (x∗i )

≤ wi.

Overall, the assertions (a) and (b) follow. 2

Using Theorem 1, we relate the Fisher-Gale equilibrium to the well-known Negishi’s
approach to exchange equilibria from [21].

Remark 1 (Negishi’s approach and Fisher-Gale equilibrium) In [21] Negishi aims
at characterizing exchange equilibria as welfare maximizers by appropriately choosing util-
ity prices. In order to apply Negishi’s approach, we equivalently reformulate Fisher equi-
librium in terms of exchange. For that, we assign to every consumer a fraction of the
producers’ supplied goods proportional to his wealth. We call the vector of prices and
consumption bundles

(
p∗, (x∗i )

I
i=1

)
exchange equilibrium, if

(i) consumers maximize utilities w.r.t. modified budget constraints, i.e.

x∗i ∈ arg max
xi ∈ Xi

〈p∗, xi〉 ≤
fi

p∗, wiPI
i=1 wi

e

fl ui(xi), i = 1, . . . , I,

(ii) the market clearing condition holds, i.e.

p∗ ≥ 0, e−
I∑

i=1

x∗i ≥ 0,

〈
p∗, e−

I∑
i=1

x∗i

〉
= 0.

It is straightforward to see that the concepts of Fisher and exchange equilibria are equiva-
lent. Namely, if

(
p∗, (x∗i )

I
i=1

)
is a Fisher equilibrium, then it is also an exchange equilib-

rium. Vice versa, if
(
p∗, (x∗i )

I
i=1

)
is a an exchange equilibrium, then

(PI
i=1 wi

〈p∗,e〉 p
∗, (x∗i )

I
i=1

)
is a Fisher equilibrium. Here, we use the invariance of the exchange equilibrium under
the scaling of prices.
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The Negishi’s welfare maximization is

max
xi ∈ Xi

i = 1, . . . I

{
I∑

i=1

qiui(xi)

∣∣∣∣∣
I∑

i=1

xi ≤ e

}
, (15)

where qi, i = 1, . . . , I, are positive utility prices. Due to [21], if
(
p∗, (x∗i )

I
i=1

)
is an

exchange equilibrium, then there exist utility prices (qi)
I
i=1 such that (x∗i )

I
i=1 maximizes

Negishi’s welfare with dual (or Lagrange) multipliers p∗ w.r.t. the market feasibility con-
straints

∑I
i=1 xi ≤ e. As we have seen in Theorem 1 (a), these utility prices can be taken

as inverse shadow prices corresponding to the budget constraints. Also, the converse state-
ment is given in [21]. Namely, fixing some utility prices in (15), its welfare maximizer
with corresponding dual prices of goods forms an exchange equilibrium, but in general with
redistributed wealths. Hence, in order to find a Fisher equilibrium, it is sufficient to de-
termine utility prices for (15) such that initial budget constraints are fulfilled. However,
this task is as challenging as to compute a Fisher equilibrium itself. E.g., in [17] an ad-
justment of utility prices according to the consumers’ savings is studied. In our approach,
we relax the concept of Fisher equilibrium by imposing budget constraints for Negishi’s
welfare maximizers:

(x∗i )
I
i=1 ∈ arg max

xi ∈ Xi

i = 1, . . . I

{
I∑

i=1

qiui(xi)

∣∣∣∣∣
I∑

i=1

xi ≤ e

}
,

and 〈p∗, x∗i 〉 ≤ wi, i = 1, . . . , I,

(16)

where prices p∗ are dual multipliers w.r.t. the market feasibility. After a moment of
reflection we see that

(
p∗, (x∗i )

I
i=1

)
from (16) is a Fisher-Gale equilibrium. 2

Theorem 1 clarifies how consumers may settle utility prices in a meaningful way, i.e.
in consistency with their economic behavior. At least two possibilities are

• inverse shadow prices,

• wealth/utility ratios.

In this paper we examine the adjustment of utility prices according to the wealth/utility
relation by following the Gale’s approach. For that, we assume that the i-th consumer
is able to compute an optimal consumption bundle xi by maximizing the logarithmic
revenue (4), i.e.

xi ∈ arg max
xi ∈ Xi

wi lnui(xi)− 〈p, xi〉 , (17)

for a fixed vector of prices p ∈ Rn
+. Let us provide algorithmic and economic justifications

for this assumption.

1) Algorithmic justification for logarithmic revenue maximization

As we have seen in the proof of Theorem 1 (b), a consumption bundle xi from (17)
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• satisfies the budget constraint, i.e. 〈p, xi〉 ≤ wi,

• maximizes revenue with the utility price qi = wi
ui(xi)

, i.e.

qiui(xi)− 〈p, xi〉 ≥ qiui(yi)− 〈p, yi〉 for all yi ∈ Xi. (18)

In accordance with this interpretation, we always associate the utility price qi = wi
ui(xi)

with the consumption bundle xi. The maximization of the logarithmic revenue as in (17)
can be performed unintentionally by subgradient dynamics

ẋi ∈
w

ui(x)
∇ui(x)− p. (19)

In order to form the subgradient w
ui(x)∇ui(x)−p of the logarithmic revenue, the consumer

estimates the marginal utility ∇ui(x) which is further reassessed by the utility price w
ui(x) .

Here, the utility price is taken as the wealth/utility ratio. Finally, the comparison of this
reassessed marginal utility w

ui(x)∇ui(x) with the prices of goods p is performed. Thus, it is
reasonable to assume that w

ui(x)∇ui(x)−p can be used in (19) by the i-th consumer. Note
that there is evidence from behavioral economics that consumer’s choices need not be
consistent with the maximization of a preference relation (see [16] and references therein).
The reason for that is usually referred to as consumers’ bounded rationality. Classic ex-
amples include status-quo biases, attraction, compromise and framing effects, temptation
and self-control, consideration sets, and choice overload. Within our approach, the con-
sumption based on the maximization of the logarithmic revenue is consistent with the
concept of transferable utility (cf. also [4]). Further, we mention that the discretization of
(19) leads to subgradient schemes for nonsmooth convex optimization. Those are known
to enjoy guaranteed rates of convergence [22]. This explains how consumers efficiently
maximize the logarithmic revenue by successively using its subgradients w

ui(x)∇ui(x)− p.

2) Economic justification for logarithmic revenue maximization

Let us define a quasilinear utility function for the i-th consumer as follows

U(xi, τi)
def= wi lnui(xi) + τi, (20)

where τi ∈ R+ denotes the unspent numéraire. We consider the i-th consumer’s quasilinear
utility maximization [18]:

max
〈p, xi〉+ τi ≤ wi

xi ∈ Xi, τi ≥ 0

Ui(xi, τi).

Due to (20), the budget constraint 〈p, xi〉 + τi ≤ wi is tight for optimal consumption
bundles xi, and we get

max
〈p, xi〉+ τi ≤ wi

xi ∈ Xi, τi ≥ 0

Ui(xi, τi) = max
〈p, xi〉+ τi = wi

xi ∈ Xi, τi ≥ 0

wi lnui(xi) + τi

= wi + max
〈p, xi〉 ≤ wi

xi ∈ Xi

wi lnui(xi)− 〈p, xi〉 = wi + max
xi ∈ Xi

wi lnui(xi)− 〈p, xi〉 .

10



The latter equality follows from the proof of Theorem 1 (b), since 〈p, xi〉 ≤ wi always
holds for optimal consumption bundles of the logarithmic revenue maximization. Thus,
the constraint 〈p, xi〉 ≤ wi is superfluous here. In case of a general quaislinear utility this
budget constraint is usually neglected by an assumption of no income effects [18]. No
income effects mean that the available wealth wi does not affect consumption. This as-
sumption has been questioned in the framework of Marshallian partial equilibrium analysis
in [19, 30]. In [30] the setting of a variable number of commodities is suggested. Sufficient
conditions for a neo-classical utility function to induce small income effects are provided
if the number of commodities is sufficiently large. In [19] a special class of quasilinear
functions with restrictions for large income levels is studied. Due to our approach, an as-
sumption on income effects is not needed. Overall, the logarithmic revenue maximization
(17) is equivalent to the maximization of the particular quasilinear utility function (20)
with respect to the budget constraint. 2

Finally, we compare the optimal budget spending for Fisher and Gale equilibria. In
case of Fisher equilibrium consumers face the full budget spending under standard mono-
tonicity assumptions. In turn, for Gale equilibrium the optimal budget spending is ad-
justable and depends on elasticities of utility functions.

Remark 2 (Budget spending) Assuming Xi = Rn
+, we consider the Fisher’s utility

maximization
max
xi ≥ 0

〈p, xi〉 ≤ wi

ui(xi).

If ui(·) is strictly monotone, then the optimal budget spending 〈p, xi〉 amounts to the
available wealth wi. In this context, the budget spending is fixed at the wealth level wi which
should be known a priori as the amount of numéraire surely spent on the market under
consideration. Moreover, every strictly monotone transformation of ui(·) also induces the
full budget spending (cf. Example 1). Hence, the optimal budget spending is not affected
by the elasticities of the utility function ui [18]:

εj(xi)
def=

∂xjui(xi)
ui(xi)

· x(j), j = 1, . . . , n.

In case of Gale’s logarithmic revenue maximization

max
xi ≥ 0

wi lnui(xi)− 〈p, xi〉

the situation is different. In fact, assuming ui(·) to be differentiable, we have necessary
optimality conditions

w

u(xi)
∇u(xi) = p

for an optimal consumption bundle xi ∈ Rn
++. Multiplying by xi, we get

〈p, xi〉 = wi
〈∇u(xi), xi〉

ui(xi)
= wi

n∑
j=1

εj(xi).

11



This formula says that the ratio of the optimal budget spending 〈p, xi〉 to the available
wealth wi is the sum of elasticities εj(xi), j = 1, . . . , n. Here, the optimal budget spending
is adjusted depending on utility elasticities and is not known a priori. The available wealth
wi has a role of its upper bound which may or may not be reached. Recall from the proof
of Theorem 1 (b) that

n∑
j=1

εj(xi) ≤ 1

for a concave utility function ui. 2

3 Auction design

Theorem 1 (b) suggests that for finding a Fisher-Gale equilibrium we may solve the
following saddle point problem:

min
p≥0

I∑
i=1

max
xi ∈ Xi

wi lnui(xi)− 〈p, xi〉+ 〈p, e〉 .

First, we concentrate on the Fisher-Gale equilibrium prices as minimizers of the total
logarithmic revenue, cf. [5]:

TLR∗
def= min

p∈Rn
+

TLR(p), (P)

where

TLR(p) =
I∑

i=1

LRi(p) + 〈p, e〉 , LRi(p) = max
xi ∈ Xi

[wi lnui(xi)− 〈p, xi〉] .

In order to ensure solvability in (P), we assume that the market is productive. The
productivity of the market says that there exist x̄i ∈ Xi with ui(x̄) > 0, i = 1, . . . , I, such
that the supply of goods strictly exceeds the aggregate demand, i.e.

I∑
i=1

x̄i < e.

Actually, the market productivity can be viewed as the standard Slater condition for
the logarithmic welfare maximization (3). It is well-known that Slater condition implies
the existence and boundedness of Lagrange multipliers (e.g., [25]), which are equilibrium
prices in our context. Hence, at productive markets the set of equilibrium prices (or,
equivalently, minimizers of the total logarithmic revenue TLR) is nonempty and bounded.
From now on, let us assume the market productivity throughout.

As the maximum of linear functions the total logarithmic revenue TLR(p) is convex
w.r.t. the price p. However, the total logarithmic revenue is in general nonsmooth, even
in case of homogeneous utilities. We illustrate this by examining markets with Leontief,
Cobb-Douglas and linear additive utilities.

12



Example 2 (Leontief, Cobb-Douglas and linear additive utilities, cf. [5])
a) Let consumers apply Leontief utility functions

ui(xi) = min
1≤j≤n

x
(j)
i

b
(j)
i

,

where b(j)i are positive scaling coefficients. This case corresponds to complementary goods.
Assuming Xi = R+, we obtain after simple computations:

LRi(p) = max
xi ≥ 0

[
wi ln

(
min

1≤j≤n

x
(j)
i

b
(j)
i

)
− 〈p, xi〉

]
= −wi ln 〈p, bi〉+ wi (lnwi − 1) ,

and, thus,

TLR(p) = −
I∑

i=1

wi ln 〈p, bi〉+ 〈p, e〉+
I∑

i=1

wi (lnwi − 1) .

In case of Leontief utilities the total logarithmic revenue turns out to be smooth.
b) Let consumers apply Cobb-Douglas utility functions

ui(xi) = α
n∏

j=1

(
x

(j)
i

)αj
i
,

where αj
i are positive elasticities with

n∑
j=1

αj
i = 1, and α is a positive scaling coefficient.

This case also corresponds to complementary goods. Assuming Xi = R+, we obtain after
simple computations:

LRi(p) = max
xi ≥ 0

wi ln

α n∏
j=1

(
x

(j)
i

)αj
i

− 〈p, xi〉


= −wi ln p(j) + wi

ln(αwi) +
n∑

j=1

αj
i lnαj

i − 1

 ,

and, thus,

TLR(p) = −
I∑

i=1

wi ln p(j) +
I∑

i=1

wi

lnαwi +
n∑

j=1

αj
i lnαj

i − 1

 .

In case of Cobb-Douglas utilities the total logarithmic revenue turns out to be also smooth.
c) Let consumers apply linear additive utility functions

ui(xi) = 〈ai, xi〉 =
n∑

j=1

a
(j)
i x

(j)
i ,

13



where a(j)
i are positive scaling coefficients. This case corresponds to substitutionary goods.

Assuming Xi = R+, we obtain after simple computations:

LRi(p) = max
xi ≥ 0

[wi ln 〈ai, xi〉 − 〈p, xi〉] = −wi ln

(
min

1≤j≤n

p(j)

a
(j)
i

)
+ wi (lnwi − 1) ,

and, thus,

TLR(p) = −
I∑

i=1

wi ln

(
min

1≤j≤n

p(j)

a
(j)
i

)
+ 〈p, e〉+

I∑
i=1

wi (lnwi − 1) .

In case of linear additive utilities the total logarithmic revenue is nonsmooth. Hence, we
emphasize that the total logarithmic revenue need not to be smooth. Also note that in
all cases a), b) and c) Gale equilibrium coincides with Fisher equilibrium, since Leontief,
Cobb-Douglas and linear additive utilities are monotone and homogeneous. 2

Note that in [5] the minimization of the total logarithmic revenue has been studied in
the smooth setting by assuming Leontief utilities and complementary Constant Elasticity
of Substitution (CES) utilities, such as Cobb-Douglas utilities for example. We present
a nonsmooth treatment for the case of general concave utility functions. Our goal is to
explain how agents can efficiently tackle the nonsmooth convex minimization problem (P)
by successively updating prices. It is crucial for our approach that the updates of prices
correspond to subgradient-type schemes for solving (P).

Theorem 2 (Subdifferential of TLR, cf. [5]) For p ∈ Rn
+ it holds:

∂TLR(p) = e−
I∑

i=1

arg max
xi ∈ Xi

[wi lnui(xi)− 〈p, xi〉] .

Proof:
We apply [25, Theorem 23.8] on the subdifferential of the sum of convex functions in order
to obtain

∂TLR(p) = e−
I∑

i=1

∂LRi(p).

Due to [31, Theorem 2.4.18] on the convex subdifferential of a max-type function, we also
have

∂LRi(p) = −arg max
xi ∈ Xi

[wi lnui(xi)− 〈p, xi〉] , i = 1, . . . , I.

Overall, the assertion follows. 2

Due to Theorem 2, the subgradients of TLR represent the excess supply, i.e.

∇TLR(p) = e−
I∑

i=1

xi ∈ ∂TLR(p), (21)

14



where xi ∈ argmax xi ∈ Xi
wi lnui(xi) − 〈p, xi〉. This gives rise to use the subgradients

∇TLR(p) for the iterative minimization of TLR. E.g., the change of prices ∆p can be
taken proportional to the current excess demand:

∆p ∼ −∇TLR(p).

However, as it can be seen from (21), the subgradients of TLR are known neither to
consumers nor to producers. Indeed, ∇TLR(p) represents the aggregate excess supply. For
getting access to its value, one would assume the existence of a manager who collects the
information about all consumption bundles xi, producers’ fixed supplies ek and aggregates
them over the whole market. Recall that e =

∑K
k=1 ek. Here, the full information about

consumption and production over the market must be available to the manager. Besides,
the prices need to be updated by the manager, thus, leading to price regulation. Clearly,
these assumptions can be justified only within a centrally planned economy. Aiming to
avoid this restriction, we decentralize prices.

The decentralization of prices can be implemented by the introduction of the auction
design:

i-th consumer settles and updates his individual prices pi,
and producers sell at the highest offer price max

i=1,...,I
pi.

Note that for vectors p1, . . . , pI ∈ Rn, we denote by max
i=1,...,I

pi ∈ Rn the vector with

coordinates (
max

i=1,...,I
pi

)(j)

= max
i=1,...,I

p
(j)
i , j = 1, . . . , n.

Now, the total logarithmic revenue depends on the consumers’ prices (pi)
I
i=1 as follows:

TLR(p1, . . . , pI)
def=

I∑
i=1

LRi (pi) +
〈

max
i=1,...,I

pi, e

〉
=

I∑
i=1

max
xi ∈ Xi

wi lnui(xi)− 〈pi, xi〉+
K∑
k

〈
max

i=1,...,I
pi, ek

〉
. (22)

The decentralization of prices makes the corresponding subdifferential information about
excess demands available to consumers. In fact, note that the total logarithmic revenue
TLR from (22) is convex in the variables (pi)

I
i=1. Let us obtain an expression for its

convex subgradients ∇piTLR(p1, . . . , pI) w.r.t. pi:

∇piTLR(p1, . . . , pI) =
K∑
k

µik ◦ ek − xi, i = 1, . . . , I. (23)

Here, xi ∈ arg max
xi ∈ Xi

[wi lnui(xi)− 〈pi, xi〉] is the demand of i-th consumer w.r.t. his

individual price pi. Further, µ(j)
ik denotes the share of k-th producer’s supply ek to i-th

consumer for good j. Indeed, the shares µ(j)
ik for good j sum up to 1 over all consumers
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i = 1, . . . , I. Moreover, the share µ(j)
ik vanishes if the i-th consumer’s price p(j)

i is less than
the highest offer price max

i=1,...,I
p
(j)
i for good j.

Thus, we write
(µik)

I
i=1 ∈M (p1, . . . , pI) ,

where

M (p1, . . . , pI)
def=

(µi)
I
i=1 ∈ [0, 1]n×I

∣∣∣∣∣∣∣∣∣∣

I∑
i=1

µ
(j)
i = 1,

µ
(j)
i = 0 if p(j)

i 6= max
i=1,...,I

p
(j)
i

j = 1, . . . , n, i = 1, . . . , I

 .

We claim that the subdifferential information in (23) is known to i-th consumer. First,
note that xi is his consumption bundle. Despite of the fact that the shares µik and the
supplies ek cannot be estimated by i-th consumer, their aggregate product

∑K
k µik ◦ ek is

perfectly available to him. Indeed,
∑K

k µik ◦ ek forms the bundle of goods supplied by all
producers to i-th consumer independently from each other. Altogether, the subgradients
∇piTLR(p1, . . . , pI) represent the individual excess of i-th consumer’s supply over his
demands. Overall, we obtain:

Theorem 3 (Producers’ excess supply and TLR)

∂piTLR(p1, . . . , pI) =
K∑
k

µik ◦ ek − arg max
xi ∈ Xi

[wi lnui(xi)− 〈pi, xi〉] , i = 1, . . . , I,

with demand shares (µik)
I
i=1 ∈M (p1, . . . , pI) .

Due to Theorem 3, the subdifferential of TLR(p1, . . . , pI) is completely available to
i-th consumer. This fact suggests to adjust prices by solving the minimization problem

min
p1,...,pI∈Rn

+

TLR(p1, . . . , pI). (PD)

Note that the minimization problem (PD) is stated w.r.t. the decentralized consumers’
prices (pi)

I
i=1, while previously in (P) one minimizes over the common prices p.

We relate the minimization problems (P) and (PD) by exploiting the fact that they
have the same adjoint problem (3):

max
xi ∈ Xi

i = 1, . . . , I

{
Φ (x1, . . . , xI)

∣∣∣∣∣
I∑

i=1

xi ≤ e

}
, (A)

where

Φ (x1, . . . , xI)
def=

I∑
i=1

wi lnui(xi). (24)

In (A) the central authority assigns consumption bundles by maximizing the logarithmic
welfare of the society and by ensuring the market feasibility. In order to state (A), the
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central authority needs to know agents’ utility functions, consumption sets, etc. Obvi-
ously, this information about the consumers is hardly observable to the central authority.
Consequently, it cannot be justified in general that the welfare maximization problem is
tackled directly. Nevertheless, note that the prices of goods play the role of Lagrange or
dual multipliers for the market feasibility constraint

I∑
i=1

xi ≤ e.

Confer already [13, 26] for similar interpretations.
In order to prove that (A) is the adjoint problem not only for (P), but also for (PD),

we need the following simple Lemma 1.

Lemma 1 For xi, e ∈ Rn
+, i = 1, . . . , I, the inequality

I∑
i=1

xi ≤ e (25)

is equivalent to

I∑
i=1

〈pi, xi〉 ≤
〈

max
i=1,...,I

pi, e

〉
for all pi ∈ Rn

+, i = 1, . . . , I. (26)

Proof:
(i) Let (25) be satisfied. For pi ∈ Rn

+, i = 1, . . . , I, we have

I∑
i=1

〈pi, xi〉 −
〈

max
i=1,...,I

pi, e

〉
=

n∑
j=1

(
I∑

i=1

p
(j)
i x

(j)
i − max

i=1,...,I
p
(j)
i e(j)

)
.

For (26) to hold, it is sufficient to show that

I∑
i=1

p
(j)
i x

(j)
i − max

i=1,...,I
p
(j)
i e(j) ≤ 0 for all j = 1, . . . , n.

Indeed, setting for fixed j ∈ {1, . . . , n}

p(j) = max
i=1,...,I

p
(j)
i and I(j) =

{
i ∈ {1, . . . , I}

∣∣∣ p(j)
i = p(j)

}
, (27)

we obtain:

I∑
i=1

p
(j)
i x

(j)
i − max

i=1,...,I
p
(j)
i e(j) =

∑
i∈I(j)

p(j)x
(j)
i +

∑
i6∈I(j)

p
(j)
i x

(j)
i − p(j)e(j) =

=
∑

i∈I(j)

p(j)x
(j)
i +

∑
i6∈I(j)

p
(j)
i x

(j)
i − p(j)e(j) +

∑
i6∈I(j)

p(j)x
(j)
i −

∑
i6∈I(j)

p(j)x
(j)
i
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= p(j)

(
I∑

i=1

x
(j)
i − e(j)

)
+
∑

i6∈I(j)

(
p
(j)
i − p(j)

)
x

(j)
i .

The last expression is nonpositive due to (25), (27), and p(j), x
(j)
i ∈ R+, i = 1, . . . , I.

(ii) Let (26) be satisfied. Setting there pi = p ∈ Rn
+, we get〈

p,
I∑

i=1

xi

〉
≤ 〈p, e〉 for all p ∈ Rn

+.

Hence, (25) is fulfilled. 2

Theorem 4 It holds:

min
p∈Rn

+

TLR(p) = min
p1,...,pI∈Rn

+

TLR(p1, . . . , pI)

= max
xi ∈ Xi

i = 1, . . . , I

{
Φ (x1, . . . , xI)

∣∣∣∣∣
I∑

i=1

xi ≤ e

}
.

Proof:

TLR(p1, . . . , pI) = max
xi ∈ Xi

i = 1, . . . , I

[
Φ (x1, . . . , xI)−

I∑
i=1

〈pi, xi〉+
〈

max
i=1,...,I

pi, e

〉]
. (28)

Using this representation (28) of TLR(p1, . . . , pI), we obtain:

min
p1,...,pI∈Rn

+

TLR(p1, . . . , pI) =

= min
p1,...,pI∈Rn

+

max
xi ∈ Xi

i = 1, . . . , I

[
Φ (x1, . . . , xI)−

I∑
i=1

〈pi, xi〉+
〈

max
i=1,...,I

pi, e

〉]

= max
xi ∈ Xi

i = 1, . . . , I

Φ (x1, . . . , xI) + min
p1,...,pI∈Rn

+

−
I∑

i=1

〈pi, xi〉+
〈

max
i=1,...,I

pi, e

〉
(29)

= max
xi ∈ Xi

i = 1, . . . , I

Φ (x1, . . . , xI)

∣∣∣∣∣∣∣
I∑

i=1

〈pi, xi〉 ≤
〈

max
i=1,...,I

pi, e

〉
for all pi ∈ Rn

+, i = 1, . . . , I

 .

Applying Lemma 1, the adjoint constraint
I∑

i=1

xi ≤ e is equivalent to

I∑
i=1

〈pi, xi〉 ≤
〈

max
i=1,...,I

pi, e

〉
for all pi ∈ Rn

+, i = 1, . . . , I.
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Overall, (A) is the adjoint problem for (PD). Analogously, (A) is the adjoint problem
for (P). 2

Corollary 1 Let (pi)
I
i=1 solve (PD) and (xi)

I
i=1 solve its adjoint problem (A). Then, the

highest offer prices together with consumption bundles(
max

i=1,...,I
pi, (xi)

I
i=1

)
form a Gale equilibrium. Moreover, the i-th consumer’s bundle x(j)

i vanishes if his indi-
vidual price p(j)

i is less than the highest offer price max
i=1,...,I

p
(j)
i for good j, i.e.

x
(j)
i = 0 if p(j)

i 6= max
i=1,...,I

p
(j)
i , i = 1, . . . , I, j = 1, . . . , n.

Proof:
Due to Theorem 4:

0 ≤ TLR

(
max

i=1,...,I
pi

)
− Φ (x1, . . . , xI)

(22)

≤ TLR (p1, . . . , pI)− Φ (x1, . . . , xI) = 0.

Hence, max
i=1,...,I

pi solves (P). Due to the fact that (A) is the adjoint problem also for (P),

(
max

i=1,...,I
pi, (xi)

I
i=1

)
is a Gale equilibrium according to Definition 2.

Further, (29) from Theorem 4 yields

−
I∑

i=1

〈pi, xi〉+
〈

max
i=1,...,I

pi, e

〉
= −

I∑
i=1

〈
max

i=1,...,I
pi, xi

〉
−
〈

max
i=1,...,I

pi, e

〉
= 0.

Thus,
I∑

i=1

〈
max

i=1,...,I
pi − pi, xi

〉
= 0,

or, equivalently,〈
max

i=1,...,I
pi − p

(j)
i , x

(j)
i

〉
= 0, i = 1, . . . , I, j = 1, . . . , n.

The latter implies: x(j)
i = 0 if pj

i 6= max
i=1,...,I

p
(j)
i . 2
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4 Algorithm for Fisher-Gale equilibrium

We describe how consumers may efficiently adjust their individual prices (pi)
I
i=1 to arrive

at a Fisher-Gale equilibrium. This price adjustment corresponds to the quasi-monotone
subgradient method (SM) [23], which is described in Appendix for reader’s convenience.
It is applied to the minimization of the total logarithmic revenue (PD):

min
p1,...,pI∈Rn

+

TLR(p1, . . . , pI).

Let i-th consumer choose a sequence of positive confidence parameters {χi[t]}t≥0, i =
1, . . . , I. We consider the following iteration:

Algorithm for Fisher-Gale equilibrium (AFG)

1. Consumers determine their current excess supplies ∇piTLR(p1[t], . . . , pI [t]):

a) i-th consumer computes an optimal bundle

xi(pi[t]) ∈ arg max
xi ∈ Xi

[wi lnui(xi)− 〈pi[t], xi〉] ,

and the corresponding utility prices

qi(pi[t]) =
wi

ui (xi(pi[t]))
, i = 1, . . . , I.

b) k-th producers identifies the highest offer prices

p[t] = max
i=1,...,I

pi[t],

decides on supply shares

(µik[t])
I
i=1 ∈M (p1[t], . . . , pI [t]) ,

and supplies to the i-th consumer the bundle

µik[t] ◦ ek, i = 1, . . . , I.

c) i-th consumer computes his current excess supply

∇piTLR(p1[t], . . . , pI [t]) =
K∑
k

µik[t] ◦ ek − xi(pi[t]). (30)

2. Consumers accumulate their excess supplies

zi[t] = zi[t− 1] +∇piTLR(p1[t], . . . , pI [t]), zi[−1] = 0, i = 1, . . . , I. (31)

3. Consumers compute their price forecasts w.r.t. the confidence parameters χi[t]

p+
i [t] =

ζ
(j)
i

χi[t]
(−zi[t])+ , i = 1, . . . , I. (32)

where ζ(j)
i are positive scaling coefficients.
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4. Consumer update

pi[t+ 1] =
t+ 1
t+ 2

pi[t] +
1

t+ 2
p+

i [t], i = 1, . . . , I (33)

by combining their previous prices with the forecasts. 2

First, we give an interpretation for the price forecast (32). Recall that zi[t] represents
the excess of producers’ supply to i-th consumer over his demands for good j accumulated
up to time t. If z(j)

i [t] ≥ 0, i.e. supply exceeds demand, then naturally, the long-term
forecast is p+(j)

i [t] = 0 for good j. In case of z(j)
i [t] < 0, the price forecast p+(j)

i [t] is
proportional to the accumulated individual excess demand of i-th consumer with positive
scaling coefficients ζ(j)

i . Here, χi[t] plays the role of a confidence parameter. Namely,
χi[t]’s express to which extent consumers take into account their excess demands while
forecasting prices.

Secondly, let us interpret the price update (33):

pi[t+ 1] =
t+ 1
t+ 2

pi[t] +
1

t+ 2
p+

i [t].

Due to the latter, the next price is a convex combination of the previous price and the
price forecast. With time advancing, the proportion of the previous price becomes nearly
one, but the fraction of the forecast vanishes. Hence, we conclude that our price update
corresponds to a behavior of an experienced consumer. He credits his experience much
more than the current forecast. Further, from (33) we have

pi[t+ 1] =
1

t+ 2

(
pi[0] +

t∑
r=0

p+
i [r]

)
. (34)

The latter means that the prices generated by (AFG) can be viewed as historical aver-
ages of preceding forecasts. This averaging pattern is also quite natural to assume for
consumer’s behavior while adjusting prices.

Next, we produce a feasible sequence for the adjoint problem (A) by averaging con-
sumption bundles from (AFG). Along with the prices {(p1[t], . . . , pI [t])}t≥0 generated
by algorithm (AFG), we consider the corresponding historical averages of consumption
bundles

xi[t]
def=

1
t+ 1

t∑
r=0

xi(p[r]) ∈ Xi, i = 1, . . . , I,

as well as the corresponding geometric means of utility prices

qi[t]
def=

(
t∏

r=0

qi(pi[r])

) 1
t+1

=

(
t∏

r=0

wi

ui (xi(p[r]))

) 1
t+1

, i = 1, . . . , I.

Next Lemma 2 estimates the dual gap for the minimization problem (PD) and its
adjoint problem (A) evaluated at the historical averages.
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For that, we set

TLR[t] def= TLR(p1[t], . . . , pI [t]),

Φ[t] def= Φ (x1[t], . . . , xI [t]) ,

Φav[t]
def=

1
t+ 1

t∑
r=0

Φ (x1(p[r]), . . . , xI(p[r])) ,

F [t] def=
n∑

j=1

(
I∑

i=1

xi[t](j) − e

)2

+

.

TLR[t] is the value of the primal problem (PD), which is computed at the current prices
(p1[t], . . . , pI [t]). Φ[t] is the value of the adjoint problem (A), which is computed at
historical averages (x1[t], . . . , xI [t]). Φav[t] the average value of the adjoint problem (A),
which is computed at current consumption bundles (x1(p[r]), . . . , xI(p[r])). Note that due
to the concavity of Φ:

Φav[t] ≤ Φ[t].

F [t] is the quadratic penalty for violation of the market feasibility constraint:

I∑
i=1

xi[t] ≤ e.

Further, we define the upper and lower remainder terms bt and dt:

bt
def=

1
t+ 1

I∑
i=1

t∑
r=0

1
χi[r − 1]

, χi[−1] = χi[0],

dt
def=

∑I
i=1 χi[t]
t+ 1

.

Lemma 2 Let the sequence {p1[t], . . . , pI [t]}t≥0 be generated by (AFG) with nondecreas-
ing confidence parameters

χi[t+ 1] ≥ χi[t], t ≥ 0, i = 1, . . . , I.

Then, for all t ≥ 0 it holds:

TLR[t]−TLR∗−C1dt ≤ TLR[t]−Φ[t]+
C2

dt
F [t] ≤ TLR[t]−Φav[t]+

C2

dt
F [t] ≤ C3bt (35)

with some positive constants C1, C2, C3 > 0.

Proof:
The proof of Lemma 2 is based on the application of the quasi-monotone subgradient
method for nonsmooth convex minimization from [23]. Its proof is postponed to Appendix
for reader’s convenience. 2
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In order to arrive at the equilibrium price, consumers need to appropriately adjust
their confidence parameters {χi[t]}t≥0, i = 1, . . . , I. Next Lemma 3 identifies successful
adjustment strategies of confidence parameters. Namely, the confidence in the market
mechanism increases, but by decreasing increments. This ensures the convergence of the
remainder terms bt, dt from Lemma 2.

Lemma 3 Let nondecreasing confidence parameters of the i-th consumer satisfy

χi[t]− χi[t− 1] → 0, χi[t] →∞. (36)

Then,
χi[t]
t+ 1

→ 0, and
1

t+ 1

t∑
r=0

1
χi[r − 1]

→ 0. (37)

Moreover, the achievable order of convergence in (37) is O
(

1√
t

)
.

Proof:

Since χi[t]−χi[t−1] → 0, it holds by averaging that
1

t+ 1

t∑
r=0

χi[r]−χi[r−1] → 0. Thus,

1
t+ 1

χi[t] =
1

t+ 1

t∑
r=0

χi[r]− χi[r − 1] +
1

t+ 1
χi[−1] → 0.

From χi[t] →∞ we have
1

χi[t]
→ 0, and also by averaging,

1
t+ 1

t∑
r=0

1
χi[r − 1]

→ 0.

The convergence of the order O
(

1√
t

)
can be achieved in (37) by choosing χi[t] =

O(
√
t). In fact, we obtain:

1
t+ 1

t∑
r=0

1
χi[r − 1]

=
1

t+ 1

(
1

χi[−1]
+

1
χi[0]

)
+

1
t+ 1

t∑
r=1

1√
r
.

Immediately, we see that 1
t+1

(
1

χi[−1]
+

1
χi[0]

)
→ 0 as of the order O

(
1
t

)
. Note that for

a convex univariate function ξ(r), r ∈ R, and integer bounds a, b, we have

b∑
r=a

ξ(r) ≤
b+1/2∫

a−1/2

ξ(s)ds. (38)

Hence, we get

1
t+ 1

t∑
r=1

1√
r

(38)

≤ 1
t+ 1

t+1/2∫
1−1/2

1√
s
ds =

2
t+ 1

√
s
∣∣∣t+1/2

1/2
=

2
t+ 1

(√
t+ 1/2−

√
1/2
)
→ 0.

Here, the order of convergence is O
(

1√
t

)
. By assuming χi[t] = O(

√
t), the convergence

χi[t]
t+ 1

=
√
t

t+ 1
→ 0 is also of the order O

(
1√
t

)
. 2

23



Remark 3 As in the proof of Lemma 3, nondecreasing confidence parameters can be
written in the cumulative form:

χi[t] =
t∑

r=0

hi[r] + χi[−1]

with incremental confidences hi[t] ≥ 0. Then, the convergence condition (36) means that
incremental confidences tend to zero and sum up to infinity, i.e.

hi[t] → 0,
∞∑

t=0

hi[t] = ∞.

The latter coincides with the usual condition imposed on the step-sizes of the subgradient
method for nonsmooth convex minimization (e.g., [22]). However, in our setting hi[t] play
the role of incremental step-sizes. This gives rise to suppose that confidence parameters
χi[t] can be formed by consumers by incremental learning (cf. [28]). In fact, the i-th
consumer’s confidence in the price adjustment process, χi[t], increases over time, however,
by decreasing increments hi[t]. The latter means that consumers properly slow down the
pace of their confidence in the market mechanism. 2

Now, we are ready to prove the main convergence result for (AFG).

Theorem 5 Let consumers apply in (AFG) confidence parameters satisfying

χi[t]− χi[t− 1] → 0, χi[t] →∞, i = 1, . . . , I.

Then, the sequence of highest offer prices and historical averages of consumption bundles(
max

i=1,...,I
pi[t], (xi[t])

I
i=1

)
from algorithm (AFG), converges to the set of Fisher-Gale equilibria w.r.t. the utility
prices (

lim
t→∞

qi[t]
)I

i=1
.

The achievable rate of convergence is of the order O
(

1√
t

)
.

Proof:
From Lemma 2 we obtain:

TLR[t]− TLR∗ − C1dt ≤ TLR[t]− Φ[t] +
C2

dt
F [t] ≤ C3bt. (39)

This inequality is composed by the objective function TLR of the primal problem (PD),
computed at the current prices (p1[t], . . . , pI [t]), objective function Φ of its adjoint problem
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(A), computed at historical averages (x1[t], . . . , xI [t]), and the quadratic penalty F [t] for
violation of the market feasibility constraint:

I∑
i=1

xi[t] ≤ e.

Due to the choice of confidence parameters χi[t], i = 1, . . . , I, Lemma 3 provides:

bt → 0, and dt → 0.

Using Theorem 4, (pi[t])
I
i=1 converges toward the solution set of (PD), and (xi[t])

I
i=1

converges toward the solution set of (A) by order O
(

1√
t

)
. We apply Corollary 1 to

conclude that the sequence of highest offer prices together with historical averages of
consumption bundles (

max
i=1,...,I

pi, (xi[t])
I
i=1

)
converges to the set of Gale equilibria (cf. Definition 2). In order to get the additional
convergence to the set of Fisher-Gale equilibria, we apply Theorem 1 (b). For that, it is
enough to show that the sequence of geometric means of utility prices

qi[t]
def=

(
t∏

r=0

qi(pi[r])

) 1
t+1

=

(
t∏

r=0

wi

ui (xi(p[r]))

) 1
t+1

,

and the sequence of utility prices corresponding to the average consumption

wi

ui (xi[t])
, i = 1, . . . , I,

have the same limit. From Lemma 2 we know that Φav[t] and Φ[t] have the same limit.
Recalling the definitions of Φav[t] and Φ[t], see also (24), the sequences

1
t+ 1

t∑
r=0

lnui (xi(p[r])) and lnui (xi[t]) , i = 1, . . . , I,

have the same limit. Applying exponential and inversion to the latter, the assertion
follows. 2
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Appendix

Appendix is devoted to the proof of Lemma 2. For that, we first present the quasi-
monotone subgradient method for nonsmooth convex minimization from [23]. As already
mentioned, the price adjustment (AFG) corresponds to this quasi-monotone subgradient
method. Using this fact, we prove Lemma 2 in the second part of Apppendix.

Quasi-monotone subgradient methods

We consider the following minimization problem:

min
x∈X

f(x), (40)
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where X ⊂ Rn is a closed convex set with nonempty interior intX, and f is a convex
function on Rn. Moreover, let f be representable as a maximum of concave functions, i.e.

f(x) = max
a∈A

Φ(a) + ϕ(x, a), (41)

where A ⊂ Rm is a closed convex set, ϕ(·, a) is a convex function on Rn for every a ∈ A,
and Φ, ϕ(x, ·) are concave functions on Rm for every x ∈ X. Denote by a(x) one of the
optimal solutions of the maximization problem in (41). Then,

∇f(x) def= ∇xϕ(x, a(x)) (42)

is a subgradient of f at x. Recall that for an arbitrary subgradient ∇f(x) at x ∈ X of a
convex function f we have:

f(y) ≥ f(x) + 〈∇f(x), y − x〉, y ∈ X. (43)

Using the representation (41), we also have:

min
x∈X

f(x) = min
x∈X

max
a∈A

[Φ(a) + ϕ(x, a)] = max
a∈A

[
Φ(a) + min

x∈X
ϕ(x, a)

]
.

The latter maximization problem

max
a∈A

[
Φ(a) + min

x∈X
ϕ(x, a)

]
(44)

is called adjoint for (40) with the adjoint variable a ∈ A.
For the set X, we assume to be known a prox-function d(x).

Definition 4 d : X 7→ R is called a prox-function for X if the following holds:

• d(x) ≥ 0 for all x ∈ X and d(x[0]) = 0 for certain x[0] ∈ X;

• d is strongly convex on X with convexity parameter one:

d(y) ≥ d(x) + 〈∇d(x), y − x〉+
1
2
‖y − x‖2, x, y ∈ X, (45)

where ‖ · ‖ is a norm on Rn.

• Auxiliary minimization problem

min
x∈X

{〈z, x〉+ χd(x)} (46)

is easily solvable for z ∈ Rn, χ > 0.

As a simple consequence of Definition 4, we have for x ∈ X:

d(x) ≥ d(x[0]) + 〈∇d(x[0]), x− x[0]〉+
1
2
‖x− x[0]‖2 ≥ 1

2
‖x− x[0]‖2. (47)

For a sequence of positive parameters {χ[t]}t≥0, we consider the following iteration:
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Quasi-monotone Subgradient Method

1. Take a current subgradient ∇f(x[t]) = ∇xϕ(x[t], a(x[t])).

2. Accumulate subgradients z[t] = z[t− 1] +∇f(x[t]), z[−1] = 0.

3. Compute the forecast x+[t] = argmin
x∈X

{〈z[t], x〉+ χ[t]d(x)}.

4. Update by combining x[t+ 1] =
t+ 1
t+ 2

x[t] +
1

t+ 2
x+[t].

(SM)

Note that from (SM) we have

z[t] =
t∑

r=0

∇f(x[r]), x[t+ 1] =
1

t+ 2

(
x[0] +

t∑
r=0

x+[r]

)
.

Next Theorem 6 is crucial for the convergence analysis of the quasi-monotone subgra-
dient method (SM). It estimates the dual gap for the minimization problem (40) and its
adjoint problem (44) evaluated at the historical averages.

For that, we define the penalty term ht and the remainder term ρt, t ≥ 0, as follows:

ht(a)
def= min

x∈X

{
ϕ(x, a) +

χ[t]
t+ 1

d(x)
}
, a ∈ A,

ρt
def=

1
t+ 1

t∑
r=0

1
2χ[r − 1]

‖∇f(x[r])‖2
∗ , χ[−1] = χ[0].

Here, ‖ · ‖∗ is the conjugate norm to ‖ · ‖, i.e.

‖s‖∗
def= max

s∈Rn
{〈s, x〉 : ‖x‖ ≤ 1} , s ∈ Rn. (48)

Note that Φ + ht is a smoothed version of the objective function in (44).
Further, we define the average adjoint state

a[t] def=
1

t+ 1

t∑
r=0

a(x[r]), t ≥ 0.

Note that a[t] ∈ A, since A is convex. Let us write

Φav[t]
def=

1
t+ 1

t∑
r=0

Φ(a(x[r])), t ≥ 0,

for the average value of the adjoint problem computed along (SM).
Theorem 6 is motivated by the estimate sequence technique (e.g., Section 2.2.1 in [22])

and is due to [23]. We decided to present its proof for readers’ convenience.
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Theorem 6 (cf. [23]) Let the sequence {x[t]}t≥0 be generated by (SM) with nondecreas-
ing parameters

χ[t+ 1] ≥ χ[t], t ≥ 0. (49)

Then, for all t ≥ 0 it holds:

f(x[t])− Φ(a[t])− ht(a[t]) ≤ f(x[t])− Φav[t]− ht(a[t]) ≤ ρt. (50)

Proof:
We define the average linearization terms `t and ψt for f :

`t(x)
def=

t∑
r=0

f(x[r]) + 〈∇f(x[r]), x− x[r]〉 ,

ψt
def= min

x∈X
{`t(x) + χ[t]d(x)} .

First, we show by induction that for all t ≥ 0 it holds:

f(x[t])− ψt

t+ 1
≤ ρt. (51)

Let us assume that condition (51) is valid for some t ≥ 0. Then,

ψt+1 = min
x∈X

{`t(x) + f(xt+1) + 〈∇f(x[t+ 1]), x− x[t+ 1]〉+ χ[t+ 1]d(x)}

(49)

≥ min
x∈X

{`t(x) + χ[t]d(x) + f(x[t+ 1]) + 〈∇f(x[t+ 1]), x− x[t+ 1]〉}

(45)

≥ min
x∈X

{
ψt +

1
2
χ[t]

∥∥x− x+[t]
∥∥2 + f(x[t+ 1]) + 〈∇f(x[t+ 1]), x− x[t+ 1]〉

}
(51)

≥ min
x∈X

{
(t+ 1)f(x[t])− (t+ 1)ρt

+1
2χ[t] ‖x− x+[t]‖2 + f(x[t+ 1]) + 〈∇f(x[t+ 1]), x− x[t+ 1]〉

}
(43)

≥ min
x∈X

{
(t+ 1) [f(x[t+ 1]) + 〈∇f(x[t+ 1]), x[t]− x[t+ 1]〉]− (t+ 1)ρt

+1
2χ[t] ‖x− x+[t]‖2 + f(x[t+ 1]) + 〈∇f(x[t+ 1]), x− x[t+ 1]〉

}
.

Since (t+ 2)x[t+ 1] = (t+ 1)x[t] + x+[t], we obtain

ψt+1 ≥ (t+ 2)f(x[t+ 1])− (t+ 1)ρt

+min
x∈X

{〈
∇f(x[t+ 1]), x− x+[t]

〉
+

1
2
χ[t]

∥∥x− x+[t]
∥∥2
}

≥ (t+ 2)f(x[t+ 1])− (t+ 1)ρt −
1

2χ[t]
‖∇f(x[t+ 1])‖2

∗ .

= (t+ 2)f(x[t+ 1])− (t+ 2)ρt+1.

It remains to note that

ψ0 = min
x∈X

{f(x[0]) + 〈∇f(x[0]), x− x[0]〉+ χ[0]d(x)}
(47)

≥ f(x[0])− ρ0.
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Now, we relate the term
ψt

t+ 1
from (51) to the adjoint problem (44). It holds due to

convexity of ϕ(·, a), a ∈ A:

f(x[r]) + 〈∇f(x[r]), x− x[r]〉 =

(41),(42)
= Φ(a(x[r])) + ϕ (x[r], a(x[r])) + 〈∇xϕ (x[r], a(x[r])) , x− x[r]〉

≤ Φ (a(x[r]) + ϕ (x, a(x[r])) .

Hence, we obtain due to concavity of ϕ(x, ·), x ∈ X:

`t(x) ≤
t∑

r=0

Φ (a(x[r]) + ϕ (x, a(x[r])) ≤ (t+ 1) [Φav[t] + ϕ (x, a[t])] .

Finally, we get

ψt

t+ 1
≤ Φav[t] + min

x∈X

{
ϕ (x, a[t]) +

χ[t]
t+ 1

d(x)
}

= Φav[t] + ht(a[t]). (52)

Altogether, (51) and (52) provide the right-hand side of the formula (50). The left-hand
side is due to

Φav[t] =
1

t+ 1

t∑
r=0

Φ(a(x[r])) ≤ Φ

(
1

t+ 1

t∑
r=0

a(x[r])

)
= Φ(a[t]),

which is a consequence of the concavity of Φ. 2

Additionally, we need the following result on the quadratic penalty for general convex
optimization problems. From now on, let us consider the maximization problem

Φ∗ def= max
a ∈ A

{Φ(a) | gl(a) ≤ 0, l = 1, . . . , L} , (53)

where A ⊂ Rm is a closed convex set, Φ is a concave function, and gl(·), l = 1, . . . , L
are convex functions on Rm. We assume that the convex feasible set of the maximization
problem (53) has a Slater point (e.g., [25]). Let a∗ be an optimal solution of (53) with
some Lagrange multipliers λ∗l , l = 1, . . . , L, i.e.〈

∇Φ(a∗)−
L∑

l=1

λ∗l∇gl(a∗), a∗ − a

〉
≥ 0, for all a ∈ A, (54)

λ∗l ≥ 0, gl(a∗) ≤ 0,
L∑

l=1

λ∗l gl(a∗) = 0. (55)

Lemma 4 It holds for κ > 0:

max
a ∈ A

[
Φ(a)− κ

2

L∑
l=1

(gl(a))
2
+

]
≤ Φ∗ +

1
2κ

L∑
l=1

λ∗l .
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Proof:
Due to the concavity of Φ and the convexity of gl, l = 1, . . . , L, it holds for all a ∈ A:

Φ(a) ≤ Φ(a∗) + 〈∇Φ(a∗), a− a∗〉 , (56)

gl(a) ≥ gl(a∗) + 〈∇gl(a∗), a− a∗〉 . (57)

We estimate

Φ(a)
(56)

≤ Φ(a∗) + 〈∇Φ(a∗), a− a∗〉
(54)

≤ Φ∗ +
L∑

l=1

λ∗l 〈∇gl(a∗), a− a∗〉

(57)

≤ Φ∗ +
L∑

l=1

λ∗l (gl(a)− gl(a∗))
(55)
= Φ∗ +

L∑
l=1

λ∗l gl(a), a ∈ A.

Hence,

max
a ∈ A

[
Φ(a)− κ

2

L∑
l=1

(gl(a))
2
+

]
≤ Φ∗ + max

a ∈ A

L∑
l=1

[
λ∗l gl(a)−

κ

2
(gl(a))

2
+

]
≤ Φ∗ +

L∑
l=1

max
bl ∈ R

L∑
l=1

[
λ∗l bl −

κ

2
(bl)

2
+

]
= Φ∗ +

L∑
l=1

1
2κ
λ∗l .

2

Proof of Lemma 2

We start by proving that the price adjustment (AFG) is a variant of the quasi-monotone
subgradient method (SM). For that, it suffices to show that

1) the price forecast (32) can be derived by means of Euclidean prox-functions,

2) TLR can be represented as the maximum of concave functions.

Firstly, we define the Euclidean prox-functions:

di(p)
def=

1
2

n∑
j=1

1

ζ
(j)
i

(
p(j)
)2
, i = 1, . . . , I,

where ζ(j)
i are positive scaling coefficients. The corresponding norms in Definition 4 and

their conjugates according to (48) are

‖p‖2
i =

n∑
j=1

1

ζ
(j)
i

(
p(j)
)2
, ‖s‖2

i∗ =
n∑

j=1

ζ
(j)
i

(
s(j)
)2
, i = 1, . . . , I.

For zi[t] ∈ Rn, χi[t] > 0 we consider the minimization problem as from step 3. in (SM):

min
p1,...,pi∈Rn

+

{
I∑

i=1

〈zi[t], pi〉+ χi[t]di(pi)

}
. (58)
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Its unique solution is the price forecast (32) as from step 3. in (AFG):

p
+(j)
i [t] =

ζ
(j)
i

χi[t]

(
−z(j)

i [t]
)

+
, j = 1, . . . , n, i = 1, . . . , I.

Secondly, it follows from (28) that the total logarithmic revenue is representable as a
maximum of concave functions:

TLR(p1, . . . , pI) = max
xi ∈ Xi

i = 1, . . . , I

Φ (x1, . . . , xI) + ϕ (p1, . . . , pK , x1, . . . , xI) ,

where

ϕ (p1, . . . , pI , x1, . . . , xi) = −
I∑

i=1

〈pi, xi〉+
〈

max
i=1,...,I

pi, e

〉
.

Overall, we may apply Theorem 6 to get the following inequality:

TLR(p1[t], . . . , pI [t])− Φav[t]− ht (x1[t], . . . , xI [t]) ≤ ρt, (59)

where

ht (x1[t], . . . , xI [t]) = min
p1,...,pI∈Rn

+

{
ϕ (p1, . . . , pI , x1[t], . . . , xI [t]) +

1
t+ 1

I∑
i=1

χi[t]di(pi)

}
,

ρt =
1

t+ 1

I∑
i=1

t∑
r=0

1
2χi[r − 1]

‖∇piTLR(p1[t], . . . , pI [t])‖2
i∗ .

We relate the penalty term ht to F [t] from Lemma 2. For that, we define the Euclidean
prox-function

d(p) def=
1
2

n∑
j=1

(
p(j)
)2
.

It holds:

ht (x1[t], . . . , xI [t]) ≤ min
p∈Rn

+

{
ϕ (p, . . . , p, x1[t], . . . , xI [t]) +

1
t+ 1

I∑
i=1

χi[t]di(p)

}

= min
p∈Rn

+

{〈
p, e−

I∑
i=1

xi[t]

〉
+

1
t+ 1

I∑
i=1

χi[t]di(p)

}

≤ min
p∈Rn

+

{〈
p, e−

I∑
i=1

xi[t]

〉
+
∑I

i=1 χi[t]
t+ 1

1

mini,j ζ
(j)
i

d(p)

}

= − t+ 1∑I
i=1 χi[t]

min
i,j

ζ
(j)
i

2

n∑
j=1

(
I∑

i=1

x
(j)
i [t]− e

)2

+

= −C2

dt
F [t],
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where C2 = mini,j
ζ
(j)
i
2 .

Now, we relate the remainder term ρt to bt from Lemma 2. For that, let the constant
C3 > 0 bound the sequence of i-th consumer’s excess supplies:

‖∇piTLR(p1[t], . . . , pI [t])‖2
i∗ ≤ 2C3, t ≥ 0, i = 1, . . . , I, (60)

where, due to (30),

∇piTLR(p1[t], . . . , pI [t]) =
K∑
k

µik[t] ◦ ek − xi(pi[t]).

The existence of C3 in (60) follows from the compactness of the consumption sets Xi,
i = 1, . . . , I (see Section 2). Then, it holds:

ρt =
1

t+ 1

I∑
i=1

t∑
r=0

1
2χi[r − 1]

‖∇piTLR(p1[t], . . . , pI [t])‖2
i∗ ≤ C3bt.

Altogether, we estimated

ht (x1[t], . . . , xI [t]) ≤ −C2

dt
F [t], ρt ≤ C3bt.

Substituting this into (59), we get the right-hand side of (35) in Lemma 2:

TLR[t]− Φav[t] +
C2

dt
F [t] ≤ C3bt.

Now, we estimate the dual gap in Lemma 2 from below. For that, we apply Lemma 4
and Theorem 4 to obtain

Φ[t]− C2

dt
F [t] = Φ (x1[t], . . . , xI [t])−

C2

dt

n∑
j=1

(
I∑

i=1

x
(j)
i [t]− e

)2

+

≤ max
xi ∈ Xi

i = 1, . . . , I

Φ (x1, . . . , xI)−
C2

dt

n∑
j=1

(
I∑

i=1

x
(j)
i − e

)2

+

≤ max
xi ∈ Xi

i = 1, . . . , I
IX

i=1

xi ≤ e

Φ (x1, . . . , xI) +
dt

4C2

n∑
j=1

p∗(j) = TLR∗ + C1dt,

where C1 =

∑n
j=1 p

∗(j)

4C2
and p∗ is an equilibrium price. The latter exists due to the

assumption on market productivity. Note that Lagrange multipliers for the market fea-
sibility constraint in the adjoint problem (A) coincide with minimizers p∗ of the total
logarithmic revenue TLR.

Finally, we estimate

TLR[t]− Φ[t] +
C2

dt
F [t] ≥ TLR[t]− TLR∗ − C1dt.
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This is the left-hand side of (35) in Lemma 2. It remains to note that the inequality in
the middle of (35) follows due to the concavity of Φ:

Φav[t] ≤ Φ[t].

35


