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Abstract

We provide an assignment model to decompose changes in between-group wage in-
equality into changes in the composition of the workforce, the productivity/demand
for tasks, computerization, and labor productivity. The model incorporates com-
parative advantage between many groups of workers, many types of equipment,
and many tasks and yet may be parameterized and estimated in a transparent man-
ner. Our identification of parameters, measurement of shocks, and the equilibrium
equation determining wages are all very similar to what have been used in previous
reduced-form analyses. We use U.S. data on the allocation of workers to occupations
and computer usage as well as changes in average wages across worker groups be-
tween 1984 and 2003 to parameterize our model. We find that computerization and
changes in task productivity/demand, which are both measured without directly us-
ing data on changes in wages, jointly explain the majority of the rise in the skill pre-
mium and more disaggregated measures of between-eduation group inequality as
well as roughly half of the rise in the relative wage of women over this time period.
We show how to link the strength of these two forces to changes in the extent of inter-
national trade.
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national Economics Section for their support.



1 Introduction

The last few decades in the United States have witnessed pronounced changes in rel-
ative average wages across groups of workers with different observable characteristics
(between-group inequality). For example, the relative wages of more educated to less edu-
cated workers and of women relative to men have increased substantially. What explains
these and other observed changes in between-group inequality?1

A voluminous literature has emerged—following Katz and Murphy (1992)—studying
how changes in relative supply and demand for labor groups shape their relative wages.
Changes in relative demand across labor groups have been linked to a number of changes
in the economic environment. Prominent amongst these changes are computerization (or
a reduction in the price of equipment more generally)—see e.g. Krueger (1993), Krusell
et al. (2000), Acemoglu (2002a), and Autor and Dorn (2013)—and changes in relative pro-
ductivity or demand across occupations or sectors, driven by structural transformation,
offshoring, and international trade—see e.g. Berman et al. (1994) and Autor et al. (2003).
Related to the first hypothesis, Table 1 shows that between 1984 and 2003 computer use

1984 1989 1993 1997 2003

All 27.4 40.1 49.8 53.3 57.8
Gender Female 32.8 47.6 57.3 61.3 65.1

Male 23.6 34.5 43.9 47.0 52.1
Education College degree 45.5 62.5 73.4 79.8 85.7

No college degree 22.1 32.7 41.0 43.7 45.3

Table 1: Share of hours worked with computers

rose dramatically and that computers are used more intensively by educated workers and
women.2 Consistent with the second hypothesis, Figure 1 shows that over the same time
period education- and female-intensive occupations grew relatively quickly.

In this paper we provide an assignment model with many groups of workers, many
types of equipment, and many tasks, building on the work of Eaton and Kortum (2002),
Lagakos and Waugh (2013), and Hsieh et al. (2013). Changes in relative wages across
worker groups are shaped by shocks to (i) the composition of labor supply across groups,

1The relative importance of between- and within-group inequality is an area of active research. Autor
(2014) concludes: “In the U.S., for example, about two-thirds of the overall rise of earnings dispersion
between 1980 and 2005 is proximately accounted for by the increased premium associated with schooling
in general and postsecondary education in particular.” On the other hand, Helpman et al. (2012) conclude:
“Residual wage inequality is at least as important as worker observables in explaining the overall level and
growth of wage inequality in Brazil from 1986-1995.”

2We describe our data sources in depth in Section 3.1.
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Figure 1: Growth (1984-2003) of the occupation share of labor payments and the average
(1984 & 2003) of the share of workers in the occupation who have a college degree (left)
and are female (right)

(ii) a composite of task demand and productivity, which we refer to as “task shifters,”
(iii) a composite of equipment cost and productivity, which we refer to as “equipment
productivity,” and (iv) a composite of other factors affecting the relative productivity
of worker groups, independent of the equipment workers use and tasks in which they
are employed,3 which we refer to as “labor productivity.” The model’s aggregate im-
plications for relative wages nest those of workhorse macro models of between-group
inequality, e.g. Katz and Murphy (1992) and Krusell et al. (2000). In spite of its high
dimensionality—in our baseline empirics we use 10 education-gender groups, 2 types
of equipment, and 30 occupations—the model can be parametrized and estimated in a
transparent manner. We use the model to perform aggregate counterfactuals to quantify
the impact on between-group inequality of the four shocks above.

In our model, the impact of changes in the economic environment on between-group
inequality is shaped by comparative advantage between worker groups, equipment types,
and tasks. Consider, for example, the potential impact of computerization on a labor
group—such as educated workers or women—that uses computers intensively. A labor
group may use computers intensively for two reasons. First, it may have a compara-
tive advantage with computers, in which case this group would use computers relatively
more within tasks, as we show is the case in the data for more educated workers. Com-
puterization increases the relative wage of such groups. Second, a labor group may have
a comparative advantage in the tasks in which computers have a comparative advantage,
in which case this group would be allocated disproportionately to tasks in which all work-
ers are relatively likely to use computers, as we show is the case in the data for female
workers. Depending on the value of the elasticity of substitution between tasks, com-

3These factors include, for example, discrimination and the quality of education and health systems;
see e.g. Card and Krueger (1992) and Goldin and Katz (2002).
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puterization may increase or decrease relative wages of such groups and may increase or
decrease employment in computer-intensive tasks.4 Therefore, measuring comparative
advantage between worker groups, equipment types, and tasks is a key ingredient in our
quantitative analysis.

Given data on the allocation of workers to equipment type-task pairs and the share
of labor payments across tasks, we measure comparative advantage and shocks to task
shifters and equipment productivity. In contrast, we measure changes in labor produc-
tivity as a residual to match changes in observed average wages across labor groups. We
measure worker allocation using the October Current Population Survey (CPS) Computer
Use Supplement, which provides information for five years (1984, 1989, 1993, 1999, and
2003) on whether or not a worker has direct or hands on use of a computer at work—be
it a personal computer, laptop, mini computer, or mainframe—in addition to information
on worker characteristics, hours worked, and occupation; see, e.g., Krueger (1993) and
Autor et al. (1998) for previous studies using the October Supplement. This data is not
without limitations, as we discuss in more depth in the paper: it imposes a narrow view
of computerization that does not capture, e.g., automation of assembly lines; it only pro-
vides information on the allocation of workers to one type of equipment, computers; and
it does not detail the share of each worker’s time at work spent using computers.

We find that the combined effects of changes in task shifters and equipment productiv-
ity explain the majority of the rise in both aggregated (e.g., the skill premium) and disag-
gregated (e.g., the relative wage of workers with graduate training relative to high school
dropouts) measures of between-education-group inequality between 1984 and 2003. Be-
cause we measure each of these (skill-biased) forces using data on changes in worker
allocation and without directly using data on changes in average wages, this finding con-
trasts with previous results that attribute the majority of the rise in the skill premium to
unobservable skill-biased technical change, see e.g. Lee and Wolpin (2010), or do not al-
low for trend growth in skill-biased technical change, see e.g. Krusell et al. (2000) and
its discussion in Acemoglu (2002b). On the other hand, we find that changes in labor
productivity, the residual, explain roughly half whereas computerization explains only a
very small share of the fall in the gender gap. To demonstrate the importance of combin-
ing all three forces in a unified framework, we show how our results change if we turn
off different sources of comparative advantage.

In spite of the strong assumptions in our structural model, we show that our identi-

4Our model is flexible enough so that computerization may increase the relative wage of workers who
are relatively productive using computers and may reduce the relative wage of workers employed in tasks
in which computers are particularly productive, as described by, e.g., Autor et al. (1998) and Autor et al.
(2003).
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fication of parameters, measurement of shocks, and equation determining wages are all
very similar to what have been used, separately, in previous reduced-form analyses and,
therefore, shed new light on and complement this work. We estimate the key elasticity in
our model using an estimating equation almost identical to that introduced in Katz and
Murphy (1992). In a limiting case of our model, we measure task shifters as changes in
occupation shares of labor income exactly as in the literature using shift-share analyses,
e.g. Autor et al. (1998). Moreover, our model generates an equation for wage changes in
response to changes in task and equipment prices that provides a structural interpreta-
tion for the regression that Acemoglu and Autor (2011) offer as a stylized example of how
their model might be brought to the data.

Our exercise is intended to shed light on classes of mechanisms through which changes
in the economic environment lead to changes in between-group inequality. In our base-
line model we treat shocks to task shifters, equipment productivity, and labor produc-
tivity as exogenous. Through the lens of our analysis, more primitive mechanisms—
including, e.g., international trade, offshoring, structural change, or directed technical
change—may play a central role driving changes in between-education inequality in the
U.S. by changing the relative importance of occupations—see e.g. Grossman and Rossi-
Hansberg (2008), Autor et al. (2003), and Garicano and Rossi-Hansberg (2006) for work
on offshoring, automation of routine tasks, and hierarchies, respectively—or changing
the relative prices or stocks of different types of equipment—see e.g. Krusell et al. (2000)
and Acemoglu (2002a). In Section 6 we take a first theoretical step in this direction and ex-
tend our model to incorporate international trade in equipment and sector output as well
as task offshoring. We show that changes in import and export shares in each of these
markets shapes what we treated, in our baseline closed-economy model, as exogenous
primitive shocks to equipment productivity, sector shifters, and within-sector occupation
shifters, respectively.

Our paper’s approach is most similar to Hsieh et al. (2013). We follow Hsieh et al.
(2013) and Lagakos and Waugh (2013), who build on Eaton and Kortum (2002) and Dekle
et al. (2008), and use an assignment model of the labor market parameterized with a
Fréchet distribution. Relative to Hsieh et al. (2013), we introduce equipment, quantify the
role of computerization for between-group inequality, and analyze changes in between-
education group inequality. We also introduce international trade in equipment, sectoral
output, and tasks (e.g. offshoring) into our assignment model of the labor market, op-
erationalizing the theoretical insights of Costinot and Vogel (2010) regarding the impact
of international trade on inequality in a high-dimensional environment. We show that
one can use a similar approach to that introduced by Dekle et al. (2008) in a single-factor
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trade model—i.e. replacing a large number of unknown parameters with observable al-
locations in an initial equilibrium—in closed and open-economy many-factor assignment
models to quantify the impact of various shocks on relative wages; Burstein et al. (2013),
Parro (2013), and Costinot and Rodriguez-Clare (2014) use similar approaches in models
with two labor groups.

Our paper’s objective is most similar to Lee and Wolpin (2010). They use a model of
endogenous human capital accumulation in a dynamic framework to study the evolu-
tion of relative wages and labor supply and find that skill-biased technical change (the
residual) plays the central role in explaining changes in the skill premium. By adopting
an assignment approach, our framework is sufficiently tractable to allow for a greater
degree of disaggregation (e.g. 30 occupations) and to exploit the detailed observed allo-
cation of workers to equipment type-task pairs, reducing substantially the role of changes
in labor productivity in shaping changes in the skill premium. On the other hand, in con-
strast to Lee and Wolpin (2010) we treat labor composition as exogenous, measuring it
in each period directly from the data. Extending our model using standard assumptions
to endogenize education and labor participation would give rise to the same equilibrium
equations determining factor allocations and wages, given labor composition. Hence, our
measures of shocks—to task shifters, equipment productivity, and labor productivity—
and our estimates of model parameters would remain unchanged. In our counterfactual
exercises, we fix labor composition to isolate the direct effect of individual shocks to task
shifters, equipment productivity, and labor productivity on labor demand and wages.

Our paper is organized as follows. We provide our framework, characterize its equi-
librium, and describe its mechanisms in Section 2. We parameterize the model in Section
3, describe our baseline closed-economy results in Section 4, and consider various ro-
bustness exercises and sensitivity analyses in Section 5. Finally, we extend the model to
incorporate sectors and international trade in Section 6 and conclude in Section 7.

2 Model

In this section we introduce our baseline version of the model, characterize the equilib-
rium, and show how to decompose observed changes in relative average wages between
any two periods into four channels. Finally, we provide intuition for how each channel
operates.
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2.1 Environment

At time t there is a continuum of workers indexed by z 2 Zt, each of whom inelastically
supplies one unit of labor. We divide workers into a finite number of groups, indexed by
l. The set of workers in group l is given by Zt (l) ✓ Zt, which has mass Lt (l). There is
a finite number of equipment types, indexed by k. Workers and equipment are employed
by production units to produce a finite number of tasks, indexed by w; in our quantitative
analysis we map these tasks to occupations.5

Tasks are used to produce a single final good according to a constant elasticity of sub-
stitution (CES) production function

Yt =

 

Â
w

µt (w)1/r Yt (w)(r�1)/r

!r/(r�1)

, (1)

where r > 0 is the elasticity of substitution across tasks, Yt (w) � 0 is the endogenous
output of task w, and µt (w) � 0 is an exogenous demand shifter for task w.6 The fi-
nal good is used to produce consumption, Ct, and equipment, Yt (k),7 according to the
resource constraint

Yt = Ct + Â
k

qt (k)Yt (k) , (2)

where qt (k) denotes the cost of a unit of equipment k in terms of units of the final good.8

Task production occurs within perfectly competitive production units. A unit hiring k
units of equipment type k and l efficiency units of labor group l produces ka [Tt (l, k, w) l]1�a

units of output, where a denotes the output elasticity of equipment in each task and

5In order to take into consideration the accumulation of occupation-specific human capital as studied
in, e.g., Kambourov and Manovskii (2009a) and Kambourov and Manovskii (2009b), empirically we would
have to include occupational experience as a worker characteristic when defining labor groups in the data
(unfortunately, the October CPS does not contain this information) and theoretically we would have to
model dynamic worker optimization. We leave these considerations for future work.

6We show in Section 6.1 that we can disaggregate µt (w) further into sector shifters and within-sector
task shifters. We show in Section 6.2 how changes in the extent of international trade/offshoring in sec-
toral output and task output generate endogenous changes in these sector shifters and a within-sector task
shifters. For now, however, we combine sector and within-sector task shifters and treat them as exogenous.

7We assume that the sets of equipment types and tasks (as well as labor groups) are disjoint. Hence, the
domain of a function such as Yt (·) may be the union of these sets.

8Here we have assumed that equipment fully depreciates every period. Alternatively, we could assume
that Yt (k) denotes investment in capital equipment k, which depreciates at a given rate. All our results
hold comparing across two balanced growth paths in which the real interest rate and the growth rate of
relative productivity are both constant over time. We show in Section 6 how changes in the extent of
international trade in equipment generates endogenous changes in qt (k). For now, however, we treat the
cost of producing equipment as exogenous.

6



Tt (l, k, w) denotes labor l’s productivity in task w when using equipment k.9 Compara-
tive advantage (between labor and equipment) is defined as follows: l0 has a comparative
advantage (relative to l) using equipment k0 (relative to k) in task w if Tt(l0, k0, w)/Tt(l0, k, w) �
Tt(l, k0, w)/Tt(l, k, w). Labor-task and equipment-task comparative advantage are de-
fined symmetrically.

A worker z 2 Zt (l) supplies # (z, k, w) efficiency units of labor if teamed with equip-
ment k in task w. For each worker z 2 Zt (l), the vector # (z)—which contains one
# (z, k, w) for each (k, w) pair—is drawn from a multivariate Fréchet distribution,

G (# (z) ; l) = exp

0

@�
 

Â
k,w

# (z, k, w)�q̃(l)/1�n(l)

!1�n(l)
1

A .

The parameter q̃ (l) > 1 governs the l�specific dispersion of efficiency units across
(k, w) pairs; a higher value of q̃ (l) decreases this dispersion. The parameter 0  n (l) 
1 governs the l�specific correlation of each worker’s efficiency units across (k, w) pairs;
a higher value of n (l) increases this correlation.10 We define q (l) ⌘ q̃ (l) / (1 � n (l)).
The assumption that efficiency units are distributed Fréchet is made first for analytical
tractability—e.g., it implies that the average wage of a worker group is a CES function of
prices and productivities—and second because it provides a reasonable approximation
of the observed distribution of individual wages—see e.g. Saez (2001) and Figure 4 in
Appendix A.

Total output of task w, Yt (w), is the sum of output across all units producing task w

using any labor group l and equipment type k. All markets are perfectly competitive and
all factors are freely mobile.

Relation to alternative frameworks. Whereas our framework imposes strong restric-
tions on task production functions, its aggregate implications for wages nest those of
two frameworks that have been used commonly to study between-group inequality: the
canonical model, as named in Acemoglu and Autor (2011), and an extension of the canon-
ical model that incorporates capital-skill complementarity; see e.g. Katz and Murphy
(1992) and Krusell et al. (2000), respectively.11

9We restrict a to be common across w because we do not have the data to assign a different value of
a (w) to each w.

10In allowing for correlation across draws for each worker, we follow the approach of Ramondo and
Rodriǵuez-Clare (2013) and Hsieh et al. (2013). See Lagakos and Waugh (2013) for a related approach.

11The aggregate implications of our model for relative wages are equivalent to those of the canonical
model if we assume no equipment (i.e. a = 0) and two labor groups, each of which has a positive produc-
tivity in only one task. The model of capital-skill complementarity is an extension of the canonical model in
which there is one type of equipment and the equipment share is positive in one task and zero in the other
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2.2 Equilibrium

We characterize the competitive equilibrium, first in partial equilibrium—taking task and
equipment prices as given—and then in general equilibrium.

Partial equilibrium. A task production unit hiring k units of equipment k and l efficiency
units of labor l earns revenues pt (w) ka [Tt (l, k, w) l]1�a and incurs costs pt (k) k+Wt (l, k, w) l,
where Wt (l, k, w) is the wage per efficiency unit of labor l when teamed with equipment
k in task w and where pt (w) and pt (k) are the prices of task w output and of equip-
ment type k. The profit maximizing choice of equipment quantity and the zero profit
condition—due to costless entry of production units—yield

Wt (l, k, w) = āpt (k)
�a

1�a pt (w)
1

1�a Tt (l, k, w)

if there is positive entry in (l, k, w), where ā ⌘ (1 � a) aa/(1�a). Facing the wage profile
Wt (l, k, w), each worker z 2 Zt (l) chooses the equipment-task pair (k, w) that maxi-
mizes her wage, #t (z, k, w)Wt (l, k, w).

The assumption that idiosyncratic productivity is distributed multivariate Fréchet im-
plies that the probability that a randomly sampled worker, z 2 Zt (l), uses equipment k

in task w is

pt (l, k, w) =

h
Tt(l, k, w)pt (k)

�a
1�a pt (w)

1
1�a

iq(l)

Âk0,w0

h
Tt(l, k0, w0)pt (k0)

�a
1�a pt (w0)

1
1�a

iq(l)
, (3)

The higher is q (l)—either because efficiency units are less dispersed or more correlated
across (k, w) for a given worker—the more responsive are factor allocations to changes in
prices or productivities. According to equation (3), comparative advantage shapes factor
allocations. As an example, the assignment of workers across equipment types within
any given task satisfies

✓
pt(l0, k0, w)
pt(l0, k, w)

◆1/q(l0)
,✓

pt(l, k0, w)
pt(l, k, w)

◆1/q(l)

=
Tt(l0, k0, w)
Tt(l0, k, w)

�
Tt(l, k0, w)
Tt(l, k, w)

, (4)

so that if l0 workers (relative to l) have a comparative advantage using k0 (relative to k)
in task w, then they are relatively more likely to be allocated to k0 in task w, adjusted for
potentially different values of q (l0) and q (l). Similar conditions hold for the allocation
of workers to tasks (within an equipment type) and for the allocation of equipment to

(i.e. a = 0 for the latter task).
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tasks (within a worker group).
The average wage of workers in group l teamed with equipment k in task w, denoted

by wt (l, k, w), is the integral of #t (z, k, w)Wt (l, k, w) across workers teamed with k in
task w, divided by the mass of these workers. Using the distributional assumption on
idiosyncratic productivity, we obtain

wt (l, k, w) = āg (l) Tt(l, k, w)pt (k)
�a

1�a pt (w)
1

1�a pt (l, k, w)�1/q(l)

where g (l) ⌘ G
⇣

1 � 1
q(l)(1�n(l))

⌘
and G (·) is the Gamma function. An increase in pro-

ductivity or task price, Tt (l, k, w) or pt (w), or a decrease in equipment price, pt (k),
raises the wages of infra-marginal l workers allocated to (k, w). However, the average
wage of all l workers in (k, w) increases less than proportionately due to self-selection,
i.e. pt (l, k, w) increases, which lowers the average efficiency units of l workers using
equipment k in task w.

Denoting by wt (l) the average wage of workers in group l, the previous expression
and equation (3) imply wt (l) = wt (l, k, w) for all (k, w), where12

wt (l) = āg (l)

 

Â
k,w

⇣
Tt(l, k, w)pt (k)

�a
1�a pt (w)

1
1�a

⌘q(l)
!1/q(l)

. (5)

General equilibrium. We normalize the price of the final good to one. In any period,
task prices pt (w) must be such that total expenditure in task w is equal to total revenue
earned by all factors employed in task w,

µt (w) pt (w)1�r Et =
1

1 � a
zt (w) , (6)

where Et ⌘ 1
1�a Âl wt (l) Lt (l) is total income and zt (w) ⌘ Âl,k wt (l) Lt (l)pt (l, k, w)

is total labor income in task w. The left-hand side of equation (6) is expenditure on task w

and the right-hand side is total income earned by factors employed in task w. The price
of each type of equipment is

pt (k) = qt (k) (7)

according to equation (2). In equilibrium, the aggregate quantity of the final good is

12In Appendix C we incorporate preference shifters for working in different tasks, similar to Heckman
and Sedlacek (1985), generating differences in average wages across tasks within a labor group.
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Yt = Et, the aggregate quantity of equipment k is

Yt (k) =
1

pt (k)
a

1 � a Â
l,w

pt (l, k, w)wt (l) Lt (l) ,

and aggregate consumption is determined by equation (2).

2.3 Decomposing changes in relative wages

Our aim is to decompose observed changes in relative average wages of any two labor
groups—ŵ (l) /ŵ (l1), where we denote changes over time by x̂ ⌘ xt1/xt0 for any vari-
able x—between any two periods t0 and t1. In order to separately identify the impact of
changes in labor productivity, task shifters, and equipment productivity, in our baseline
specification we impose the following restriction on productivity:

Tt(l, k, w) ⌘ Tt (l) Tt (k) Tt (w) T(l, k, w). (8)

Whereas we allow worker group, Tt (l) � 0, equipment type, Tt (k) � 0, and task,
Tt (w) � 0, productivity to vary over time, we impose that the interaction between worker
group, equipment type, and task productivity, T (l, k, w) � 0, is constant across time.
That is, we assume that comparative advantage is fixed over time. In Section 5.3 we al-
low for more general changes in technology, allowing comparative advantage to vary
over time.

We group changes in the economic environment into four components: (i) changes
in labor composition, L̂(l); (ii) changes in labor productivity, T̂(l); (iii) changes in task
shifters, which combine changes in the productivity of workers employed in different
tasks, T̂(w), and in the demand for these tasks, µ̂(w), as captured by changes in the
term eµt(w) ⌘ µt(w)Tt(w)(1�a)(r�1); and (iv) changes in equipment productivity, which
combine changes in the productivity, T̂(k), and production cost, q̂(k), of different types
of equipment, as captured by changes in the term eTt(k) ⌘ qt(k)

�a
1�a Tt(k).13

Changes in average wages, using equations (5) and (8), are given by

ŵ(l) = T̂(l)

"

Â
k,w

⇣
êp (w) êT (k)

⌘q(l)
pt0(l, k, w)

#1/q(l)

, (9)

where we have defined transformed task prices, ept(w) ⌘ pt(w)1/(1�a)Tt(w), which depend

13One could use additional information on changes in equipment or task prices, which are hard to mea-
sure in practice, to separate the effects on relative wages of T̂ (k) and q̂ (k) or T̂ (w) and µ̂ (w), respectively.
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both on task prices and productivities. According to equation (9), changes in wages
are proportional to changes in labor productivity, T̂(l), and are a CES combination of
changes in transformed task prices, êp (w), and equipment productivities, êT (k), where
the weight given to changes in each of these components depends on factor allocations in
the initial period t0, pt0 (l, k, w). Taking a first-order approximation of equation (9) yields

log ŵ(l) = log T̂(l) + Â
k,w

pt0(l, k, w)
⇣

log êp (w) + log êT (k)
⌘

. (10)

Hence, changes in average wages in response to given changes in transformed task prices
and equipment productivities do not depend—to a first-order approximation—on the
value of q (l), which determines the extent to which workers reallocate.14 However, be-
cause the value of q (l) determines the extent of factor reallocation in response to given
changes in transformed task prices and equipment productivities, the value of q (l) does
affect the first-order response of transformed task prices to shocks.

Changes in transformed task prices are determined by the following system of equa-
tions

p̂ (l, k, w) =

⇣
êp (w) êT (k)

⌘q(l)

Âk0,w0

⇣
êp (w0) êT (k0)

⌘q(l)
pt0 (l, k0, w0)

, (11)

êµ (w)
⇣
êp (w)

⌘(1�a)(1�r)
Ê =

1
zt0 (w) Â

l,k
wt0 (l) Lt0 (l)pt0 (l, k, w) ŵ (l) L̂ (l) p̂ (l, k, w) .

(12)
Whereas changes in labor composition and task shifters affect wages only indirectly through
transformed task prices—equations (11) and (12)—labor and equipment productivity af-
fect wages both directly and indirectly.

We can re-express equations (9), (11), and (12) so that relative wages, ŵ (l) /ŵ(l1),
and price changes, êp (w) / êp(w1), depend on relative shocks to labor composition, task
shifters, equipment productivity, and labor productivity, as shown in Appendix B. This
transformation is useful because we will measure only relative shocks to task shifters,
equipment productivity, and labor productivity.

2.4 Intuition

The impact of shocks on relative wages can be understood as follows.

14Equation (10) provides a micro-foundation for the regression model that Acemoglu and Autor (2011)
offer as a stylized example of how their model might be brought to the data.
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Consider an increase in the task shifter eµt (w), i.e. êµ (w) > 1. By equation (9), êµ (w)

only impacts average wages through general equilibrium changes in transformed prices
êp (w). This shock raises the price of task w and, therefore, the average wages of worker
groups that are disproportionately employed in task w. Similarly, an increase in labor
supply Lt (l) reduces the prices of tasks in which group l is disproportionately em-
ployed. This lowers the relative wage not only of group l, but also of worker groups
employed in similar tasks as l. An increase in labor productivity Tt (l) directly raises the
relative wage of group l and affects all other labor groups through changes in task prices
similarly to an increase in Lt (l).15 In all cases, the effect through task prices is stronger
for lower values of r, since task prices are more responsive to shocks in this case.

Finally, consider the impact on relative wages of a change in the productivity of equip-
ment k. An increase in eTt (k) raises the relative wages of worker groups that use k inten-
sively. It also reduces transformed task prices, i.e. êp (w) < 1, in the tasks in which k

is used intensively, lowering the relative wages of worker groups that tend to be em-
ployed in these tasks. The impact on relative wages of changes in equipment productiv-
ity depend on whether aggregate patterns of labor allocation across equipment types are
generated directly by labor-equipment comparative advantage or indirectly by labor-task
and equipment-task comparative advantage. While in practice all sources of comparative
advantage are active, it is useful to consider two extreme cases.

If the only form of comparative advantage is between workers and equipment, then
an increase in eTt (k) does not affect relative task prices. In this case, relative wages are
affected only directly through changes in equipment productivity.

On the other hand, if there is no comparative advantage between workers and equip-
ment but there is comparative advantage between workers and tasks and between equip-
ment and tasks, then an increase in eTt (k) directly increases the relative wage of workers
employed in k-intensive tasks and indirectly, through task prices, reduces the relative
wage of workers employed in k-intensive tasks. The relative strength of the direct and
indirect channels depends on r. The relative wage of workers employed in k-intensive
tasks falls—i.e. the indirect task price effect dominates the direct effect—if and only if
r < 1. Intuitively, an increase in eTt (k) acts like a positive productivity shock to the tasks
in which k has a comparative advantage. If r < 1 this reduces employment and the rel-
ative wages of worker groups disproportionately employed in the tasks in which k has a

15Costinot and Vogel (Forthcoming) provide analytic results on the implications for relative wages of
changes in labor composition, Lt (l), and task demand, µt (w), in an environment to which our model
limits when a = 0 (i.e., in the absence of equipment) and when T (l, w)—i.e. our T (l, k, w) in the absence
of equipment—is log-supermodular.
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comparative advantage.16

3 Parameterization

In our baseline approach, we impose a common q (l) for all l and denote this value by q.
We relax this restriction in our robustness section.

Using equations (9), (11), and (12) to quantify the impact of shocks between period
t0 and t1 on relative wages, we require: (i) period t0 measures of factor allocations,
pt0 (l, k, w), relative average wages, wt0 (l), labor composition, Lt0(l), and the share
of labor payments by occupation, zt0(w); (ii) measures of shocks to labor composition,
L̂(l)/L̂(l1), task shifters, êµ(w)/ êµ(w1), equipment productivity (to the power q), êT(k)q/ êT(k1)q,
and labor productivity, T̂(l)/T̂(l1); and (iii) the parameters a, r, and q.

3.1 Data

We use data from the Combined CPS May, Outgoing Rotation Group (MORG CPS) and
the October CPS Supplement (October Supplement) in 1984, 1989, 1993, 1997, and 2003.
We restrict our sample by dropping workers who are younger than 17 years old, do not
report positive paid hours worked, or are self-employed. Here we briefly describe our use
of these sources; we provide further details in Appendix A. After cleaning, the MORG
CPS and October Supplement contain data for roughly 115,000 and 50,000 individuals,
respectively, in each year.

We divide workers into 10 labor groups by gender and education (high school dropouts,
HSD; high school graduates, HSG; some college, SMC; completed college, CLG; and grad-
uate training, GTC); as a robustness check, we consider 30 labor groups in Section 5.4. We
consider two types of equipment: computers and other equipment. We link tasks in the
model to occupations in the data and consider thirty occupations, which we list, together
with summary statistics, in Table 10 in Appendix A.17

16More generally—without imposing Cobb Douglas task-level production functions—in the absence of
labor-equipment comparative advantage an increase in equipment k productivity reduces employment in
tasks in which k has a comparative advantage if the elasticity of substitution between labor and equip-
ment at the level of the production unit, assumed to be one in our model, is greater than the elasticity of
substitution between tasks, assumed to be r in our model.

17An alternative approach, discussed in Autor (2013), maps tasks to data by appending a set of stan-
dardized job descriptors to each occupation (e.g., routineness). We have taken a step in this direction, es-
timating comparative advantage between worker characteristics, occupation characteristics, and equipment
types (rather than measuring comparative advantage between worker groups, occupations, and equipment
types, as in our baseline approach). Details are available upon request.
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We use the MORG CPS to construct total hours worked and average wages by labor
group by year.18 We use the October Supplement to construct the share of total hours
worked by labor group l that is spent using equipment type k in occupation w in year
t, denoted by pt (l, k, w). In 1984, 1989, 1993, 1997, and 2003, the October Supplement
asked respondents whether they “have direct or hands on use of computers at work,”
“directly use a computer at work,” or “use a computer at/for his/her/your main job.”
Using a computer at work refers only to “direct” or “hands on” use of a computer with
typewriter like keyboards, whether a personal computer, laptop, mini computer, or main-
frame. We construct pt (l, k0, w) as the hours worked in occupation w by l workers who
report that they use a computer k0 at work relative to total hours worked by labor group
l in year t. Similarly, we construct pt (l, k00, w) as the hours worked in occupation w

by l workers who report that they do not use a computer at work (where k00 = other
equipment) relative to total hours worked by labor group l in year t.19

Constructing allocations, pt (l, k, w), as we do introduces three limitations. First, our
view of computerization is narrow. Second, at the individual level our computer-use
variable takes only two values: zero or one. Third, we are not using any information on
the allocation of non-computer equipment.20

3.2 Factor allocations

In Table 1 we showed that women and more educated workers use computers more in-
tensively than men and less educated workers, respectively, by aggregating pt (l, k, w)

across w and l. To quantify the impact of shocks between t0 and t1, however, we require
the disaggregated measures of factor allocations. Here we identify a few key patterns in
the pt (l, k, w) data.

18We measure wages using the MORG CPS rather than the March CPS because the March CPS does
not directly measure hourly wages of workers paid by the hour and, therefore, introduces substantial mea-
surement error in individual wages; see Lemieux (2006). Both datasets imply similar changes in average
wages within a labor group. However, measurement error in individual wages introduce bias in one of our
approaches to estimate q (l).

19We observe pt (l, k, w) = 0 in the data for roughly 12% of (l, k, w) observations in any given year.
20The German Qualification and Working Conditions survey helps mitigate the second and third issues

by providing data on worker usage of multiple types of equipment and the share of hours spent using
computers. In ongoing work we have found the following preliminary results using this data. We find
in the raw data similar patterns of factor allocations—on computer use by education group and gender
within occupation—as in the U.S. data described below. In our counterfactual analysis applied to Germany
between 1986 and 2006, in which we include three types of equipment—computers, writing implements,
and other equipment—we find that computerization generates a substantial rise in the skill premium but
only a small reduction in the gender gap, as we find in the U.S., detailed below. These results are available
upon request. We discuss the relationship between our work and DiNardo and Pischke (1997), which uses
this dataset, below.
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To determine the extent to which college educated workers (l0) compared to workers
with high school degrees in the same gender group (l) use computers (k0) relatively more
than non-computer equipment (k) within occupations (w), the left panel of Figure 2 plots
the histogram of

log
pt
�
l0, k0, w

�

pt
�
l0, k, w

� � log
pt
�
l, k0, w

�

pt
�
l, k, w

�

across all five years, thirty occupations, and 2 genders. Clearly, college educated workers
are relatively more likely to use computers within occupations compared to high school
educated workers. A similar pattern holds comparing across other education groups.

Figure 2: Computer relative to non-computer usage for college degree relative to high
school degree workers (female relative to male workers) in the left (right) panel

The right panel of Figure 2 plots a similar histogram, where l0 and l denote female
and male workers, respectively, in the same education groups. This figure shows that on
average there is no clear difference in computer usage across genders within occupations
(i.e. the histogram is roughly centered around zero).

We can similarly study the extent to which worker groups differ in their allocations
across occupations conditional on computer usage and the extent to which computers dif-
fer in their allocations across occupations conditional on worker groups. For instance, us-
ing similar histograms we can show that women are much more likely than men to work
in administrative support relative to construction occupations, conditional on the type of
equipment used; and that computers are much more likely to be used in administrative
support than in construction occupations, conditional on worker group. These compar-
isons provide an example of a more general relationship: women tend to be employed in
occupations in which all worker groups are relatively more likely to use computers.

3.3 Measuring shocks

Here we describe how we measure shocks to labor composition, L̂(l)/L̂(l1), equipment
productivity (to the power q), êT(k)q/ êT(k1)q, task shifters, êµ(w)/ êµ(w1), and labor pro-
ductivity, T̂(l)/T̂(l1). We measure the change in labor composition directly from the
MORG CPS. We measure changes in equipment productivity using data only on changes
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in equipment usage over time. We measure changes in task shifters using data on changes
in occupation employment over time as well as changes in the share of labor payments
by occupation. Note that we do not directly use changes in relative wages to mea-
sure changes in either equipment productivity or task shifters. Finally, given measured
changes in equipment productivity and task shifters, and an estimate of q, we measure
changes in labor productivity as a residual to match relative wages. Details are provided
in Appendix B.

Consider first our measure of changes in equipment productivity (to the power q).
Equations (3) and (8) give,

êT(k)q

êT(k1)q
=

p̂(l, k, w)
p̂(l, k1, w)

(13)

for any (l, w) pair. Hence, if computer productivity rises relative to other equipment be-
tween t0 and t1, then the share of l hours spent working with computers relative to other
equipment in task w will increase. It is important to condition on (l, w) pairs when iden-
tifying changes in equipment productivity (to the power q) because unconditional growth
over time in computer usage, shown in Table 1, may also reflect growth in the supply of
labor groups who have a comparative advantage using computers and/or changes in task
shifters that are biased towards the occupations in which computers have a comparative
advantage.

Figure 3 shows a large increase between each pair of consecutive years (i.e., 1984-1989,
1989-1993, etc...) in computer usage within most (l, w) pairs. This pattern is consistent

Figure 3: Histogram across (l, w) pairs of the logarithm of the right-hand-side of equation
(13), with k =computers and k1 =other equipment, between all pairs of consecutive years

with ample direct evidence showing a rapid decline in the price of computers relative to
all other equipment types and structures, which we do not directly use in our estimation
procedure.21

21The decline over time in the U.S. in the price of equipment relative to structures—see e.g. Greenwood
et al. (1997)—is mostly driven by a decline in computer prices. For example, between 1984 and 2003: (i) the
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The few (l, w) pairs, visible in Figure 3, that experience a decrease in the share of
hours spent using computers tend to have a small number of observations in the relevant
period t0 or t1, suggestive of measurement error. More generally, in our data the right-
hand-side of equation (13) is clearly not equal across (l, w) pairs for any given pair of
years t0 and t1. In our baseline approach we rationalize these differences through mea-
surement error in observed allocations and measure the left-hand-side of equation (13)
using the exponential of the sample average over all (l, w) pairs of the logarithm of the
right-hand side.22 We take a complementary approach to rationalize these differences in
Section 5, where we allow for comparative advantage to evolve over time.

To measure changes in task shifters, we first use equations (3) and (8) to obtain mea-
sures of changes in transformed task prices (to the power q) between t0 and t1,

êp(w)q

êp(w1)q
=

p̂(l, k, w)
p̂(l, k, w1)

(14)

for any (l, k) pair.23 Hence, if the transformed task price of w rises relative to w1 between
t0 and t1, then the share of l hours spent working with k in task w relative to in task w1

will increase. As above, it is important to condition on (l, k) when identifying changes
in transformed task prices; and, as above, we measure the left-hand-side of equation (14)
using the exponential of the sample average over all (l, k) pairs of the logarithm of the
right-hand side. Given values for a, r, and q, we then use the task-market clearing condi-
tion and changes in labor payments by occupation to recover changes in task shifters,

êµ(w)

êµ(w1)
=

ẑ(w)

ẑ(w1)

 
êp(w)

êp(w1)

!(1�a)(r�1)

. (15)

If r = 1, measured changes in task shifters depend only on changes in the share of labor
payments across occupations, shown in Figure 1, exactly as in, e.g. Autor et al. (1998).

price of industrial equipment and transportation equipment relative to computers and peripheral equip-
ment has risen by a factor of 32 and 34, respectively (calculated using the BEA’s Price Indexes for Private
Fixed Investment in Equipment and Software by Type), and (ii) the quantity of computers and peripheral
equipment relative to industrial equipment and transportation equipment rose by a factor of 35 and 33, re-
spectively (calculated using the BEA’s Chain-Type Quantity Indexes for Net Stock of Private Fixed Assets,
Equipment and Software, and Structures by Type). We do not use equipment price or quantity data directly
in our procedure in part because of quality-adjustment issues raised by, e.g., Gordon (1990).

22In robustness exercises we have also used weighted averages as well as dropped outliers in construct-
ing changes in both equipment productivity (to the power q) and transformed task prices. Our results are
robust to these alternatives.

23Here we use observed changes in allocations between t0 and t1. Of course, in calculating changes in
relative wages in response to a subset of shocks, we solve for counterfactual changes in transformed task
prices and allocations using equations (11) and (12).
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Finally, given an estimate of q, measures of allocations in period t0, and measures
of changes in relative transformed task prices and equipment productivities, both to the
power q, we measure changes in labor productivity as a residual to match exactly changes
in relative wages,

T̂(l)
T̂(l1)

=
ŵ(l)
ŵ(l1)

✓
S (l1)
S (l)

◆1/q

(16)

where

S (l) = Â
k,w

êp (w)q

êp(w1)q

êT(k)q

êT(k1)q
pt0(l, k, w) (17)

is a labor-group specific weighted average of changes in relative transformed task prices
to the power q and equipment productivities to the power q, which are pinned down in
the data independently of the value of q using equations (13) and (14). Note that changes
in relative wages only directly affect our measures of changes in labor productivities.

3.4 Parameter estimates

We assign the values of a and r as follows. The parameter a determines the share of pay-
ments that accrue to equipment. We set a = 0.24, consistent with estimates in Burstein et
al. (2013). Note that when r = 1 the value of a 2 (0, 1) does not impact any of our quan-
titative results. The parameter r determines the elasticity of substitution between tasks.
We set r = 0.9 as in Goos et al. (2014), who estimate this elasticity using 21 occupations in
16 Western European countries. In our robustness section we conduct sensitivity analyses
using values of r ranging from 0.1 to 10.

In our baseline approach for estimating q, we express changes in relative labor pro-
ductivity as following a linear time trend with deviations around the trend,

log
T̂(l)
T̂(l1)

= g (l)⇥ (t1 � t0) + i (l, t0, t1) .

Hence, changes in relative average wages can be expressed as

log
ŵ(l)
ŵ(l1)

= g (l) (t1 � t0) +
1
q

log
S (l)
S (l1)

+ i (l, t0, t1) . (18)

Note that equation (18) is equivalent to the equation that is used to estimate the key elas-
ticity in the canonical model, see e.g. Katz and Murphy (1992), except we replace changes
in relative labor-group specific hours worked, L̂ (l) /L̂ (l1), with relative labor-group
specific weighted averages of measured changes in transformed task prices and equip-
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ment productivities to the power q, S (l) /S (l1).
We observe changes in relative wages between each pair of consecutive years in our

sample and we construct S (l) /S (l1) between each pair of years using equation (17),
period t0 allocations, and our measures of changes in equipment productivity and trans-
formed task prices to the power q, all of which are measured independently of q. Using
equation (18), we estimate q and g (l), a total of 10 parameters, via OLS. This estima-
tor is consistent if deviations from trend in labor productivity are mean-independent of
S (l). Of course, these deviations affect task prices, and task prices enter S (l). This bias
decreases in the number of labor groups if deviations from trend are uncorrelated across
labor groups. This approach yields q = 2.67.

In an alternative approach, based on Lagakos and Waugh (2013) and Hsieh et al.
(2013), we use the empirical distribution of wages within each l to estimate q̃ (l)—
separately for each labor group l—using both maximum likelihood and method of mo-
ments, and recover q (l) = q̃ (l) / (1 � n (l))—where n (l) governs the l�specific cor-
relation of each worker’s efficiency units across (k, w) pairs—using the value of n (l)

obtained by Hsieh et al. (2013). This approach, described in Section 5.1, yields an average
of q across l equal to 2.50 and 3.82 using MLE and method of moments, respectively.

4 Results

In this section we summarize our baseline results.24 Specifically, given our baseline pa-
rameter values, initial allocations, and measures of the four shocks, we quantify—using
equations (9), (11), and (12)—the implications for relative wages of changes in labor com-
position, task shifters, equipment productivity, and labor productivity. We report results
for each sub-period in our data: 1984-1989 (that is, we set t0 = 1984 and t1 = 1989),
1989-1993, 1993-1997, and 1997-2003. We also report the cumulative change in log rel-
ative wages between 1984 and 2003, calculated as the sum of the log change over all
sub-periods in our data.25

Skill premium. We begin by decomposing changes in the skill premium between each
pair of consecutive years and over the full sample, displayed in Table 2. The first col-
umn reports the change in the data, which is also the change predicted by the model
when all changes—in labor composition, task shifters, equipment productivity, and labor

24All wage changes reported in the paper are composition adjusted, i.e. holding fixed over time the relative
employment shares of demographic groups. We use the same procedure in the data and in the model.

25For cumulative changes in log relative wages we obtain very similar results if we set t0 = 1984 and
t1 = 2003 instead of adding changes in log relative wages over all sub-periods.
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productivity—are simultaneously considered. Between 1984 and 2003 the skill premium
increased by 16.1 log points, with the largest increases ocurring between 1984 and 1993.
The subsequent four columns summarize the counterfactual change in the skill premium
predicted by the model if only one component is changed over time (i.e. holding the other
components at their t0 level).

Labor Task Equip. Labor
Data comp. shifters prod. prod.

1984 - 1989 0.062 -0.028 0.043 0.023 0.023
1989 - 1993 0.070 -0.013 0.020 0.022 0.038
1993 - 1997 0.033 -0.023 0.040 0.006 0.010
1997 - 2003 -0.005 -0.044 0.030 0.018 -0.008
1984 - 2003 0.161 -0.108 0.134 0.070 0.063

Table 2: Decomposing changes in the log skill premium

Changes in labor composition decrease the skill premium between every pair of years
in response to the large increase in the share of hours of more educated workers over
this period. The increase in hours worked by those with college degrees relative to those
without of 46 log points between 1984 and 2003 decreases the skill premium by 10.8 log
points. Changes in relative demand must, therefore, not only generate the observed rise
of the skill premium in the data, but also compensate for the impact of changes in labor
composition.

The combination of changes in equipment productivity and task shifters explain the
majority of the rise in the skill premium between 1984 and 2003. The equipment pro-
ductivity component alone accounts for roughly 26% of the sum of the forces pushing the
skill premium upwards: 0.26 ' 0.070/(0.134+ 0.070+ 0.063). Over sub-periods, changes
in equipment productivity are particularly important in generating increases in the skill
premium over the years in which the skill premium rose most dramatically: 1984-1989
and 1989-1993. These are precisely the years in which the overall share of workers using
computers rose most rapidly; see Table 1.

We obtain the result that computerization has substantially increased the U.S. skill
premium because the data indicate that there is: (i) strong education-computer compar-
ative advantage (see Figure 2), (ii) a substantial share of workers using computers (see
Table 1), and (iii) large growth in computer usage within worker-task pairs (see Figure
3).26

26DiNardo and Pischke (1997) critique Krueger (1993) by showing that pencils can explain wage premia
as well as computers. Their critique does not apply here for two reasons. First, our approach is fundamen-
tally different from Krueger (1993). Instead of using the October Supplement to regress wages on computer
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The task shifter component accounts for roughly 50% of the sum of the forces pushing
the skill premium upwards over the full sample. We obtain the result that task shifters
have substantially increased the U.S. skill premium because we find: (i) large variation
in education-intensity across tasks, (ii) a substantial share of workers in expanding and
contracting tasks, and (iii) large changes in task shifters. This is related to a key result
in Autor et al. (2003)—who, using a shift-share analysis, find that task shifters account
for roughly 60% of the relative demand shift favoring college labor between 1970 and
1988—but is not implied by it. Under some assumptions (Cobb-Douglas utility and pro-
duction functions), shift-share analyses structurally decompose into within and between
task shifters changes in wage bill shares, i.e. changes in w (l) L (l) relative to the sum
of labor payments across all l.27 Changes in wage bill shares can be very different from
changes in relative wages when changes in labor composition are large, as they are in the
data.

Perhaps surprisingly, of the demand-side mechanisms affecting relative wages, the
one that we measure as a residual to match observed changes in relative wages, labor
productivity, only accounts for roughly 24% of the sum of the effects of the three demand-
side mechanisms.

Disaggregated groups. Table 3 decomposes changes in between-education-group wage
inequality at a higher level of worker disaggregation, comparing changes in average
wages across the five education groups considered in our analysis over the full sample,
1984-2003. The 16.1 log point change in the skill premium aggregates across heteroge-
neous changes in relative wages between more disaggregated education groups.

Labor Task Equip. Labor
Data comp. shifters prod. prod.

HSG / HSD 0.112 -0.043 0.059 0.055 0.044
SMC / HSD 0.166 -0.087 0.121 0.103 0.031
CLG / HSD 0.254 -0.147 0.185 0.129 0.088
GTC / HSD 0.305 -0.178 0.238 0.139 0.107

Table 3: Decomposing changes in log relative wages across education groups between
1984 and 2003

usage, we use it to identify comparative advantage and measure shocks. Second, in order for pencils to
drive changes in wages (as we find computers do), we would have to find (i) strong education-pencil com-
parative advantage (identified within tasks), (ii) a large share of workers using pencils, and (iii) extremely
large and systematic changes in pencil usage within worker-task pairs over time. Using the German Quali-
fication and Working Conditions dataset, we find that pencil use, measured by whether a worker answers that
writing implements are his/her most-used tool at work, fails all three criteria, unlike computer use.

27Katz and Autor (1999) show that shift-share analyses provide a local decomposition of relative wages
(that is, given arbitrarily small changes in labor composition and wages).
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Nevertheless, the results reported in Table 2 are robust: the labor productivity component
is not particularly important for explaining the rise in between-education-group inequal-
ity.

Gender wage gap. The average wage of men relative to women, the gender gap, declined
by 13.2 log points between 1984 and 2003. Table 4 decomposes changes in the gender
wage gap between each pair of consecutive years and over the full sample. The increase
in hours worked by women relative to men of roughly 12 log points between 1984 and
2003 increases the gender gap by 4.5 log points.

Labor Task Equip. Labor
Data comp. shifters prod. prod.

1984 - 1989 -0.058 0.012 -0.016 -0.003 -0.050
1989 - 1993 -0.050 0.014 -0.036 -0.003 -0.023
1993 - 1997 -0.001 0.007 0.008 -0.001 -0.015
1997 - 2003 -0.023 0.012 -0.046 -0.003 0.016
1984 - 2003 -0.132 0.045 -0.090 -0.010 -0.072

Table 4: Decomposing changes in the log gender gap

Equipment productivity has almost no effect on the gender wage gap—in spite of
the fact that women are substantially more likely to use computers at work than men—
because we incorporate comparative advantage between worker groups, equipment types,
and tasks. Whereas women have a slight comparative advantage using computers (see
Figure 2)—through which computerization decreases the gender gap—they have a com-
parative advantage in the tasks in which computers have a comparative advantage—
through which computerization increases the gender gap with r < 1. Unlike the skill
premium, changes in labor productivity account for almost half (42%) of the impact of
the demand-side forces affecting the gender wage gap and plays a central role in each
sub-period except for 1997-2003. This suggests that changes in gender discrimination—if
they affect labor productivity irrespective of (k, w)–may have played a substantial role in
reducing the gender wage gap, as discussed in Hsieh et al. (2013), especially early in our
sample (in the 1980s and early 1990s).

Job polarization. Autor et al. (2008) document simultaneous growth in the share of em-
ployment in high-skill, high-wage occupations and in low-skill, low-wage occupations
(“job polarization”) in the U.S. starting in 1989; Goos and Manning (2007) and Goos et
al. (2014) document similar patterns in the U.K. and in 15 additional European countries,
respectively. Whereas our focus is on relative wages, our framework is also well-suited
to analyze the effect of shocks on changes in employment across tasks. Grouping occu-
pations into three categories by average wage across all years—High, Middle, and Low,
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as detailed in Appendix A—we observe growth between 1989 and 2003 in the share of
employment in High and Low wage occupations relative to Middle wage occupations, as
shown in Table 5. Not surprisingly, we find that task shifters are the central force driving
this result. However, the combination of changes in labor composition and changes in
equipment productivity have a non-negligible role, explaining roughly 25% and 15% of
the forces expanding High and Low wage occupations, respectively, relative to Middle
wage occupations.

Labor comp. Task Labor
Data + Equip. prod. shifters prod.

High - Middle employment share 0.16 0.04 0.14 -0.02
Low - Middle employment share 0.10 0.02 0.12 0.01

Table 5: Decomposing the difference in the (log) growth rate in the total hours of High
versus Middle wage occupations, and Low versus Middle wage occupations between
1989 and 2003

5 Robustness and sensitivity analysis

In this section we consider four types of sensitivity exercises. First, we perform sensitivity
to different values of r and q. Second, we illustrate the importance of all three forms
of comparative advantage by turning some of them off. Third, we allow for changes in
comparative advantage over time. Finally, we consider a greater degree of disaggregation
across labor groups.

5.1 Alternative parameter values

We now consider the sensitivity of our results as we vary q and r. For each parameteriza-
tion, we re-calculate task shifters, equipment shifters, and labor productivity.

Alternative values for q. As briefly mentioned in Section 3.4, we obtain alternative esti-
mates of q (l) using the empirical distribution of wages within each l. Our assumption
on the distribution of idiosyncratic productivity implies that the distribution of wages
within a labor group l is Fréchet with shape parameter q̃ (l), where q (l) = q̃ (l) / (1 � n (l)).
We take two approaches to recover q̃ (l) using the empirical distribution of wages within
each l in the MORG CPS. First, we jointly estimate the shape and scale parameter for
each l in each year t using maximum likelihood (MLE). Figure 4 in Appendix A plots the
empirical and predicted (using MLE) wage distributions for all ten labor groups in 2003.
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Second, we use method of moments (MM) to match the coefficient of variation of wages
for each l within each year t, as in Hsieh et al. (2013). In both cases, we average across
years our estimates of the shape parameter to obtain q̃ (l) and obtain an estimate of q (l)

from q̃ (l) using Hsieh et al.’s (2013) implied estimate of n ⌘ n (l) ⇡ 0.1. Averaging q (l)

across l yields MLE and MM estimates of q equal to 2.50 and 3.82, respectively.
In the left panel of Table 6 we decompose changes in the skill premium between 1984

and 2003 using these two alternative values of q. We also use our MLE estimate of l-
specific values of q (l). Varying q yields three conclusions. First, the combination of
changes in equipment productivity and task shifters explains the majority of the rise in
the skill premium for all alternative values of q. Second, results are similar using the
average value or heterogeneous values of q (l). Third, a higher value of q increases the
relative importance of changes in labor productivity. Here we describe the intuition for
this third result.

Labor Task Equip. Labor Labor Task Equip. Labor
value of q comp. shifters prod. prod. value of r comp. shifters prod. prod.
q (l) (MLE) -0.120 0.140 0.071 0.067 r = 0.1 -0.162 0.257 0.006 0.052
q = 2.50 (MLE) -0.113 0.141 0.074 0.058 r = 0.9 -0.108 0.134 0.070 0.063
q = 2.67 (baseline) -0.108 0.134 0.070 0.063 r = 1 -0.103 0.123 0.075 0.064
q = 3.82 (MM) -0.081 0.100 0.055 0.086 r = 10 -0.022 -0.066 0.167 0.080

Table 6: Decomposing changes in the log skill premium between 1984 and 2003 for alter-
native values of q and r

As discussed in Section 2.2, whereas changes in average wages in response to given
changes in task prices or productivities do not depend—to a first-order approximation—
on the value of q, the value of q does affect the first-order response of task prices to shocks.
However, the logic for how the value of q affects our decomposition is more complicated
because we are not taking as given changes to primitives. Instead, the value of q shapes
the shocks that we infer.

Recall from equation (16) that we measure changes in relative labor productivities to
exactly match changes in relative wages given our measure of S (l) /S (l1), which is in-
dendent of q, as well as the value of q. In the extreme in which q is infinite, changes in
wages are explained exclusively by changes in relative labor productivities. More gener-
ally, a higher value of q implies a larger role for changes in relative labor productivities
and a smaller role for the remaining shocks in explaining changes in relative wages.

Alternative values for r. Recall that r is the elasticity of substitution across tasks in the
aggregate production function. In the right panel of Table 6 we decompose changes in
the skill premium between 1984 and 2003 using values of r ranging from 1/10 to 10. Our
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main result—that the combination of changes in task shifters and equipment productiv-
ity explains the majority of the rise in between-education group inequality—is robust to
alternative values of r within this range. Specifically, for all values of r between 1/10
and 10, changes in labor productivity increase the skill premium by between 5 and 8 log
points.

However, the importance of task shifters falls substantially relative to the importance
of equipment productivity as we increase r from 0.1 to 10. Intuitively, task prices are less
responsive to changes in primitives for larger values of r. This directly reduces the impact
of changes in labor composition, which affect wages only through changes in task prices.
Given that educated workers tend to have a comparative advantage in the tasks in which
computers do, this also increases the impact of changes in equipment productivity.

5.2 Sources of comparative advantage

To demonstrate the importance of including each of the three forms of comparative ad-
vantage, we perform two exercises. First, we abstract from comparative advantage re-
lated to tasks, imposing pt (l, k, wi) = pt (l, k, w) for all (l, k) and all i. This is equiv-
alent, in terms of the model’s implications for changes in relative wages in response
to changes in fundamentals, to assuming that there is a single task. Second, we ab-
stract from comparative advantage related to equipment. To do so, we impose that
pt (l, k1, w) = pt (l, k2, w) for all (l, w). This is equivalent to assuming that there a
single equipment good. In all cases, we hold the values of a, r, and q fixed.

Table 7 reports our baseline decomposition between 1984-2003 both for the skill pre-
mium (in the left panel) and the gender wage gap (in the right panel) as well as decompo-
sitions under the restriction that there is comparative advantage only between labor and
equipment or only between labor and tasks.

Skill premium Gender gap
Labor Task Equip. Labor Labor Task Equip. Labor
comp. shifters prod. prod. comp. shifters prod. prod.

Baseline -0.108 0.134 0.070 0.063 0.045 -0.090 -0.010 -0.072
Only labor-equipment CA 0 0 0.160 0.000 0 0 -0.070 -0.062
Only labor-task CA -0.108 0.146 0 0.121 0.045 -0.063 0 -0.111

Table 7: Decomposing changes in the log skill premium and log gender gap between 1984
and 2003 under different assumptions on comparative advantage

Abstracting from any comparative advantage at the level of tasks (i.e. assuming away
worker-task and equipment-task comparative advantage) has two effects. First, it im-
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plies that the labor composition and task shifters components of our decomposition go
to zero (because changes in labor composition and task shifters affect relative wages only
through task prices). This affects the labor productivity component, since changes in la-
bor productivity are identified as a residual to match observed changes in relative wages.
Second, it implies that worker-equipment comparative advantage is the only force giving
rise to the observed allocation of worker groups to equipment types. This affects the in-
ferred strength of worker-equipment comparative advantage and, therefore, affects both
the equipment and labor productivity components of the decomposition.

Table 7 shows that if we were to abstract from any comparative advantage at the level
of tasks, we would incorrectly conclude that almost all of the rise in the skill premium
has been driven by changes in relative equipment productivities. Similarly, because we
would infer that women have a strong comparative advantage with computers in the
absence of worker-task or equipment-task comparative advantage, we would incorrectly
conclude that changes in equipment productivity played a central role in reducing the
gender gap.

Similarly, abstracting from any comparative advantage at the level of equipment im-
plies that the equipment productivity component of our decomposition goes to zero and
that the only force giving rise to the allocation of worker groups to tasks is worker-task
comparative advantage. Table 7 shows that abstracting from any comparative advantage
at the level of equipment magnifies the importance of labor productivity in explaining
the rise of the skill premium and the fall in the gender gap. The impact of task shifters on
the gender gap does not change dramatically, suggesting that the results in Hsieh et al.
(2013) are robust to the inclusion of equipment.

In summary, abstracting from comparative advantage at the level of either tasks or
equipment has a large impact on the decomposition of changes in between-group in-
equality. It does so by forcing changes in labor productivity to absorb the impact of the
missing component(s) and by changing the inferred strength of the remaining source of
comparative advantage.

5.3 Evolving comparative advantage

In our baseline model we imposed that the only time-varying components of productivity
are multiplicatively separable between labor components, equipment components, and
task components. In practice, over time some worker groups may have become relatively
more productive in some tasks or using some types of equipment, perhaps caused by
differential changes in discrimination of worker groups across occupations, by changes
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in occupation characteristics that differentially affect worker groups (e.g. job flexibility,
which women may value relatively more, see e.g. Goldin 2014), or by changes in the
characteristics of equipment. Here we generalize our baseline model to incorporate such
potential changes over time and show that our results remain largely unchanged.

Specifically, we consider separately three extensions to our baseline model:

Tt (l, k, w) =

8
>>><

>>>:

Tt (k) Tt (l, w) T (l, k, w) case 1

Tt (w) Tt (l, k) T (l, k, w) case 2

Tt (l) Tt (k, w) T (l, k, w) case 3

We allow for changes over time in comparative advantage between workers and tasks in
case 1, workers and equipment in case 2, and equipment and tasks in case 3. If we allow
for the most general form of changes in comparative advantage in which the triple inter-
action between l, k, and w evolves over time, then we could only decompose changes
in between-group inequality into changes in the composition of the labor force (which
would be unchanged relative to the baseline) and changes in overall productivity. In Ap-
pendix D we show how to measure the relevant shocks and how to decompose changes
in between-group inequality into labor composition, task shifter, and labor-equipment
components in case 2. Details for cases 1 and 3 are similar. Table 8 reports our results
from decomposing changes in the skill premium between 1984 and 2003 in our baseline
exercise as well as in cases 1, 2, and 3. In all cases, we hold the values of a, r, and q fixed.

Labor Task Equip. Labor Labor- Labor- Equip.-
Changes in CA comp. shifters prod. prod. task equip. task

None (baseline) -0.108 0.134 0.070 0.063 - - -
Worker-task (case 1) -0.108 - 0.070 - 0.203 - -
Worker-equipment (case 2) -0.108 0.128 - - - 0.141 -
Equip.-task (case 3) -0.108 - - 0.050 - - 0.219

Table 8: Decomposing changes in the log skill premium between 1984 and 2003 allowing
comparative advantage to evolve over time

The intuition for why our results are largely unchanged is straightforward in cases 1
and 2. In each case our measures of initial factor allocations and changes in labor compo-
sition as well as the system of equations that determines the impact of changes in labor
composition on relative wages (i.e., abstracting from all other shocks) are exactly the same
as in our baseline model. Hence, the labor composition component of our baseline decom-
position is unchanged if we incorporate time-varying comparative advantage. Similarly,
in case 1 our measure of changes in equipment productivity as well as the system of equa-
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tions that determines their impact are exactly the same as in our baseline model. Hence,
the equipment productivity component is unchanged from the baseline in case 1. In case
2, whereas our measure of changes in transformed task prices is exactly the same as in our
baseline model, our measure of changes in task labor payment shares—and, therefore, our
measure of task shifters—differs slightly from our baseline, since predicted allocations in
period t1 differ slightly. However, since these differences aren’t large and since the sys-
tem of equations determining the impact of task shifters is the same, our results on task
shifters is very similar to the baseline in case 2. Finally, since the sum of all four (in the
baseline model) or three (in the extensions considered here) components of our decompo-
sition match the change in relative wages in the data, the change in wages resulting from
sum of the labor productivity and task productivity components in our baseline (when
fed in one at a time) must closely match the change in wages from the labor-task compo-
nent in case 1; similarly, the sum of the labor productivity and equipment productivity
components in our baseline must closely match the labor-equipment component in case
2.

5.4 Greater worker disaggregation

In theory we could incorporate as many labor groups, equipment types, and tasks as the
data permits without complicating our measurement of shocks or our estimation of q.
In practice, we are constrained by data. Specifically, as we increase the number of labor
groups, equipment types, or tasks we increase the share of (l, k, w) triplets for which
pt (l, k, w) = 0 and measurement error in factor allocations in general. Here we increase
the number of labor groups from 10 to 30 by incorporating three age groups: 17-30, 31-43,
and 44 and older. In this case, the share of (l, k, w) observations for which pt (l, k, w) = 0
rises from (roughly) 12% to 27%. Moreover, because we composition-adjust wages not
only for gender and education, but also for age, we find slightly different changes in the
skill premium, 15.1 instead of 16.1 log points, and the gender wage gap, -13.3 instead of
-13.2 log points, between 1984 and 2003.

We re-measure all shocks and report results in Table 9 both using a re-estimated value
of q, q = 2.02, and using our baseline value of q, q = 2.67. Our baseline results are quite
robust to increasing worker group disaggregation. For example, when we re-estimate
q, we find that changes in labor productivity only account for roughly 19% of the sum
of the effects of the three demand-side mechanisms pushing the skill premium upwards
(compared to 24% in our baseline).
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Skill premium Gender gap
Labor Task Equip. Labor Labor Task Equip. Labor
comp. shifters prod. prod. comp. shifters prod. prod.

10 labor groups: baseline -0.108 0.134 0.070 0.063 0.045 -0.090 -0.010 -0.072
30 labor groups q = 2.67 -0.126 0.131 0.071 0.073 0.047 -0.091 -0.009 -0.076
30 labor groups q = 2.02 -0.156 0.163 0.085 0.057 0.058 -0.116 -0.008 -0.063

Table 9: Decomposing changes in the log skill premium and log gender gap between 1984
and 2003 with 30 labor groups

6 International trade

We extend our baseline model to incorporate international trade in equipment, sectoral
output, and task output.28 We show how the degree of openness is reflected in what we
had treated as exogenous primitive shocks to the cost of producing equipment and to task
shifters in our baseline closed-economy model. As a preliminary step, we first introduce
sectors in the closed-economy model in Section 6.1 and show that we can decompose the
effects of changes in task shifters into changes in (i) sector shifters and (ii) within-sector
task shifters.

6.1 Sectors in a closed economy

Sectors are indexed by s. The final good combines sectoral output, Yt (s), according to a
CES production function,

Yt =

 

Â
s

µt (s)
1/rs Yt (s)

(rs�1)/rs

!rs/(rs�1)

(19)

where rs > 0 is the elasticity of substitution across sectors and µt (s) � 0 is an exogenous
demand shifter for sector s. Sectoral output is itself a CES combination of the output of
different tasks,

Yt (s) =

 

Â
w

µt (w, s)1/r Yt (w, s)(r�1)/r

!r/(r�1)

(20)

28See Burstein et al. (2013) and Parro (2013) for quantitative analyses of the impact of trade in capital
equipment on the skill premium and Stokey (1996) for a theoretical treatment of trade in skill comple-
mentary capital. See e.g. Grossman and Rossi-Hansberg (2008) for a theoretical analysis of task trade and
inequality and Feenstra and Hanson (1999) for an empirical treatment of offshoring and relative wages.
Our framework, which includes multiple types of equipment and comparative advantage between labor
groups and equipment types rationalizes the findings in Caselli and Wilson (2004), that countries with
different distributions of education import different mixes of equipment.
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where Yt (w, s) � 0 denotes the absorption of task w in the production of sector s,
µt (w, s) � 0 is an exogenous demand shifter for task w in sector s, and r > 0 is the
elasticity of substitution across tasks within each sector.

Tasks are produced exactly as in our baseline specification: a worker’s productivity
depends only on her task w, and not on her sector of employment s. Accordingly, for
example, an individual worker provides the same efficiency units of labor as an executive
in an airplane-producing sector or as an executive in a textile-producing sector; although
the airplane-producing sector may demand relatively more output from the executive
task according to equation (20).29 Production and absorption must satisfy the resource
constraint Yt (w) = Âs Yt (w, s).

In Appendix E we show how we can use this extension to further decompose the ef-
fects of changes in task shifters into changes in (i) sector shifters and (ii) within-sector
task shifters. Sector shifters are changes in the relative demand for sectoral output in the
production of the final good, which combine changes in µt (s) /µt (s1) and µt (w1, s)

�
µt (w1, s1),

so that a proportional change in µt (w, s) across all w in a given s is treated as a sec-
tor shifter. Within-sector task shifters are changes in the relative productivity/demand
for tasks within sectors, denoted by êµ (w, s)

�
êµ (w1, s), where, as in our baseline model,

eµt (w, s) is a transformed variable combining µt (w, s) and Tt (w).
The system of equations to solve for changes in wages is very similar to equations

(9), (11), and (12). The task-market clearing condition (12) must be generalized: the de-
mand shifter across tasks on the left-hand side of equation (12), êµ (w)

�
êµ (w1), in our

baseline model is replaced by a combination of changes in sector shifters, within-sector
task shifters, and changes in sectoral prices. All shocks excluding sector shifters and
within-sector task shifters are measured as in our baseline model. Given a value of rs,
constructing sector shifters and within-sector task shifters is straightforward using read-
ily available data on the share of labor payments (i) across sectors and (ii) across tasks
(i.e. occupations in our application) within sectors.

Finally, in the special case in which r = rs, this extension is equivalent to our baseline
model where the task shifter in our baseline model, µt (w), is given by Âs µt (w, s) µt (s).
Therefore, the quantitative results from our decomposition (where task shifters now com-
bine changes in sector shifters and within-sector task shifters) are exactly the same as in
our baseline model (given the same value of r).

29Alternatively, we could assume that worker productivity depends both on task and sector of employ-
ment, Tt (l, k, w, s) # (z, k, w, s). Our estimation approach extends directly to this alternative assumption;
however, in practice, the data may become sparse—in the sense that there might be many (l, k, w, s, t) for
which pt (l, k, w, s) = 0—given this alternative assumption.
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6.2 International trade in tasks, sectors, and equipment

All variables are indexed by country, n, and we omit time subscripts for simplicity. We
use Y to indicate output and D to indicate absorption; this distinction is required in the
open economy but not in the closed economy. We assume that labor is internationally
immobile.

The final good and sector production functions in country n, the open economy coun-
terparts of equations (19) and (20), are given by

Yn =

 

Â
s

µn (s)
1/rs Dn (s)

(rs�1)/rs

!rs/(rs�1)

Yn (s) =

 

Â
w

µn (w, s)1/r Dn (w, s)(r�1)/r

!r/(r�1)

.

Country n produces task, sector, and equipment output: Yn (w), Yn (s), and Yn (k), re-
spectively. Its absorption of task, sector, and equipment goods is itself a CES aggregate of
these goods sourced from all countries in the world. For example, absorption of task w in
country n is

Dn (w) =

 

Â
i

Din (w)
h(w)�1

h(w)

!h(w)/(h(w)�1)

,

where Din (w) is absorption in country n of task w sourced from country i, and h (w) > 1
is the elasticity of substitution across source countries for task w.30 Trade is subject to
iceberg transportation costs, where dni (x) � 1 denotes units of x output that must be
shipped from origin country n in order for one unit to arrive in destination country i. For
example, output of task w in country n satisfies

Yn (w) = Â
i

dni (w) Dni (w) .

Without loss of generality for our results on relative wages, we abstract from trade in the
consumption good. Production and absorption must also satisfy Yn = C+Âk qn (k)Yn (k)

and Dn (w) = Âs Dn (w, s). As in our baseline model, Yn (w) is the sum of output across
all workers employed in w. For the exercises we consider below, we do not need to specify
conditions on trade balance in each country. We provide additional details in Appendix
F.

30We assume an Armington trade model only for expositional simplicity. Our results would also hold in
a Ricardian model as in Eaton and Kortum (2002).
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We consider two counterfactual exercises quantifying the impact of international trade
on country n that do not require solving the full world general equilibrium or assigning
parameters in any other country. The first counterfactual quantifies the impact on wages
in country n at time t if it were to move to autarky, holding all of country n’s parameters
fixed. The second counterfactual answers the following question: what are the differential
effects of changes in primitives (i.e. worldwide technologies, labor compositions, and
trade costs) between periods t0 and t1 on wages in country n, relative to the effects of the
same changes in primitives if country n were a closed economy?

To understand these counterfactuals, define wn (l; Ft, F⇤
t , dt) to be the average wage

of worker group l in country n given that country n fundamentals are Ft, fundamentals
in the rest of the world are F⇤

t , and the full matrix of world trade costs (for equipment,
sectors, and tasks) are dt. Define dA

n,t to be an alternative matrix of world trade costs in
which country n’s trade costs are infinite (din,t = • for all i 6= n). Our first counterfactual
calculates ŵA

n,t (l) ⌘ wn
�
l; Ft, F⇤

t , dA
n,t
�

/wn (l; Ft, F⇤
t , dn,t). Our second counterfactual

calculates
wn

⇣
l; Ft1 , F⇤

t1
, dt1

⌘

wn

⇣
l; Ft0 , F⇤

t0
, dt0

⌘
,

wn

⇣
l; Ft1 , F⇤

t1
, dA

t1

⌘

wn

⇣
l; Ft0 , F⇤

t0
, dA

t0

⌘

which is simply ŵA
n,t0

(l)
.

ŵA
n,t1

(l) . Because the second counterfactual amounts to con-
ducting the first counterfactual twice, at different points in time, we only explain how to
solve the first counterfactual.

In Appendix F we show that ŵA
n,t (l)

�
ŵA

n,t (l1) is the solution to a system of equations
very similar to the sector version of the closed-economy system. Changes in equipment
absorption prices induced by moving to autarky at time t are a simple function of do-
mestic absorption shares for each k at time t and equipment trade elasticities for each k,
h (k). If the domestic absorption share of equipment type k is low (and trade elasticities
are common across equipment goods), then moving to autarky increases the relative ab-
sorption price of equipment type k. This has the same implications for relative wages as
an increase in the relative cost of producing equipment k, q (k), in a closed economy.

Changes in sector shifters induced by moving to autarky at time t are a simple function
of domestic absorption shares and export shares across sectors at time t; sectoral trade
elasticities, h (s); and the elasticity of substitution across sectors, rs. For instance, under
mild parametric restrictions, if sector s has a low export share and/or a high import share
relative to s0, then moving to autarky increases the demand for s relative to s0. This has
the same implications for relative wages as an increase in µ (s) relative to µ (s0) in a
closed economy. Similarly, changes in within-sector task shifters induced by moving to
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autarky at time t are a simple function of domestic absorption shares and export shares
across tasks at time t; task trade elasticities, h (w); and the elasticity of substitution across
tasks r.31

While measures of trade in equipment and sectoral output are typically available for
many countries, constructing measures of trade in tasks (or occupations in our applica-
tion) is more challenging.

7 Conclusions

In this paper we have developed a framework in which changes in workforce compo-
sition, task shifters, computerization, and labor productivity shape changes in between-
group inequality across many labor groups. We have parameterized the model to match
observed factor allocations and wages in the United States between 1984 and 2003. We
have shown that the combination of computerization and task shifters (both of which are
measured without directly using data on wage changes) explain the majority of the rise in
the skill premium and the rise in inequality across more disaggregated education groups
as well as roughly half the fall in the gender wage gap.

Our framework and estimation strategy could be used more broadly in any country
with sufficiently rich data on worker allocation to equipment types and occupations, sec-
tors, or firms. For instance, in ongoing work, we use this approach to study the evolution
of between-group inequality in Germany.

In spite of its high dimensionality, our framework remains tractable, lending itself to
a variety of extensions and applications. We have extended our model to incorporate in-
ternational trade in equipment and sector output as well as offshoring of tasks and have
shown that changes in import and export shares in each of these markets shape what we
treated, in our baseline closed-economy model, as exogenous primitive shocks. It would
be interesting to bring this extended model to the data. One challenge in implement-
ing such an application is the lack of available data on trade in tasks. Another interest-
ing extension would be to model inter- and intra-national trade—and, potentially fric-
tional labor mobility as in, e.g., Redding (2012)—and use the information from regional
analyses—see e.g. Autor et al. (2013), Autor and Dorn (2013), and Kovak (2013)—to dis-

31Our extended model does not capture some of the mechanisms that have been studied in the literature
linking international trade to between-group inequality. For example, as studied in Yeaple (2005), Bustos
(2011), and Burstein and Vogel (2012), trade liberalization increases the measured skill bias of technology
by reallocating resources from less to more skill-intensive firms within industries and/or inducing firms to
increase their skill intensity. Extending the model to capture these mechanisms and mapping them into the
components of our decomposition is a promising area for future work.
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cipline the parameters that shape the outcomes of our aggregate counterfactual analyses.
Finally, the focus of this paper has been on the distribution of labor income between

groups of workers with different observable characteristics. A fruitful avenue for future
research is to extend our framework to address the changing distribution of income ac-
cruing to labor and capital, as analyzed in e.g. Karabarbounis and Neiman (2014) and
Oberfield and Raval (2014), as well as the changing distribution of income across work-
ers within groups, as analyzed in e.g. Huggett et al. (2011), Hornstein et al. (2011), and
Helpman et al. (2012).
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A Data details

Throughout, we restrict our sample by dropping workers who are younger than 17 years old, do
not report positive paid hours worked, are self-employed, or are in the military.

MORG. We use the MORG CPS to form a sample—for each worker group—of hours worked and
income. We use the “hour wage sample” from Acemoglu and Autor (2011). Hourly wages are
equal to the reported hourly earnings for those paid by the hour and the usual weekly earnings
divided by hours worked last week for non-hourly workers. Top-coded earnings observations are
multiplied by 1.5. Workers earning below $1.675/hour in 1982 dollars are dropped, as are workers
whose hourly wages exceed 1/35th the top-coded value of weekly earnings (i.e., workers paid by
the hour whose wages are sufficiently high so that their weekly income would be top-coded if
they worked at least 35 hours and were not paid by the hour). Allocated earnings observations
are excluded in all years. Our measure of labor composition, Lt (l), is hours worked within each
labor group l (weighted by sample weights).

October Supplement. In 1984, 1989, 1993, 1997, and 2003, the October Supplement asked respon-
dents whether they “have direct or hands on use of computers at work,” “directly use a computer
at work,” or “use a computer at/for his/her/your main job.” Using a computer at work refers
only to “direct” or “hands on” use of a computer with typewriter like keyboards, whether a per-
sonal computer, laptop, mini computer, or mainframe.

Occupations. The occupations we include are listed in Table 10, where we also list the share
of hours worked in each occupation by college educated workers and by women as well as the
occupation share of labor payments in 1984 and in 2003. Our concordance of occupations across
time is based on the concordance developed in Autor and Dorn (2013).

When we group occupations into High, Middle, and Low wage bins in Section 4, we do so
as follows. We calculate the average wage in each occupation in each year, take a simple av-
erage across years, and bin occupations as follows. High wage occupations include executive;
management; architect; engineer; life, physical, and social science; computer and mathematical;
lawyers; education, training, etc...; health diagnosing; and health assessment and treating. Middle
wage occupations include community and social services; arts, design, entertainment, sports, me-
dia; technicians; financial sales; retail sales; administrative support; protective services; mechan-
ics and repairers; construction; precision production; machine operators, assemblers, inspectors;
and transportation and material moving. Low wage occupations include housekeeping, cleaning,
laundry; food preparation and service; health service; building, grounds cleaning, maintenance;
miscellaneous; child care, agriculture and mining; and handlers, equipment cleaners, helpers, and
laborers.
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College intensity Female intensity Income share
Occupations 1984 2003 1984 2003 1984 2003
Executive, administrative, managerial 0.48 0.58 0.32 0.40 0.12 0.16

Management related 0.53 0.61 0.43 0.54 0.05 0.05

Architect 0.86 0.88 0.15 0.24 0.00 0.00

Engineer 0.71 0.79 0.06 0.11 0.03 0.03

Life, physical, and social science 0.65 0.55 0.30 0.30 0.01 0.02

Computer and mathematical 0.86 0.91 0.31 0.41 0.01 0.01

Community and social services 0.76 0.73 0.46 0.58 0.01 0.02

Lawyers 0.98 0.98 0.24 0.35 0.01 0.01

Education, training, etc...* 0.90 0.87 0.63 0.68 0.05 0.06

Arts, design, entertainment, sports, media 0.49 0.57 0.39 0.45 0.01 0.01

Health diagnosing 0.96 0.98 0.20 0.33 0.01 0.01

Health assessment and treating 0.51 0.64 0.85 0.84 0.02 0.04

Technicians and related support 0.30 0.43 0.46 0.43 0.04 0.05

Financial sales and related 0.31 0.33 0.31 0.40 0.04 0.05

Retail sales 0.17 0.24 0.54 0.50 0.05 0.05

Administrative support 0.12 0.16 0.78 0.74 0.14 0.12

Housekeeping, cleaning, laundry 0.01 0.03 0.83 0.83 0.01 0.00

Protective service 0.16 0.21 0.11 0.19 0.02 0.02

Food preparation and service 0.05 0.06 0.61 0.51 0.02 0.02

Health service 0.04 0.08 0.90 0.90 0.01 0.01

Building, grounds cleaning, maintenance 0.04 0.05 0.20 0.21 0.02 0.01

Miscellaneous** 0.12 0.17 0.67 0.63 0.01 0.01

Child care 0.11 0.12 0.91 0.94 0.00 0.01

Agriculture and mining 0.05 0.06 0.10 0.16 0.01 0.00

Mechanics and repairers 0.04 0.07 0.03 0.04 0.05 0.01

Construction 0.04 0.05 0.01 0.02 0.05 0.04

Precision production 0.07 0.08 0.15 0.25 0.04 0.03

Machine operators, assemblers, inspectors 0.02 0.06 0.40 0.34 0.08 0.04

Transportation and material moving 0.03 0.05 0.06 0.09 0.05 0.04

Handlers, equip. cleaners, helpers, laborers 0.03 0.04 0.17 0.18 0.03 0.02

Table 10: Thirty occupations, their college and female intensities, and the occupational
share of labor payments
*Education, training, etc... also includes library, legal support/assistants/paralegals

**Miscellaneous includes personal appearance, misc. personal care and service, recreation and hospitality

College intensity (Female intensity) indicates hours worked in the occupation by the combination of CLG and GTC (females) relative

to total hours worked in the occupation. Income share denotes labor payments in the occupation relative to total labor payments.

Each is calculated using the MORG CPS.
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Male HSD Female HSD

Male HSG Female HSG

Male SMC Female SMC

Male CLG Female CLG

Male GTC Female GTC

Figure 4: Empirical and predicted (Fréchet distribution estimated using maximum likeli-
hood) wage distributions for all worker groups in 2003
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B Measurement of shocks and estimation

B.1 Baseline

Here we describe in depth the steps we take to measure shocks and estimate our model. First,
we re-express equations (9), (11), and (12) so that relative wages, ŵ (l) /ŵ(l1), and price changes,
êp (w) / êp(w1), depend on relative shocks to labor composition, task shifters, equipment produc-
tivity, and labor productivity. Second, we measure changes in equipment and transformed task
prices (both to the power q) using only factor allocations. Third, we use these and changes in
relative wages between groups to estimate q. Finally, we measure changes in task shifters and
changes in labor productivity.

Equations (9), (11), and (12) can be written as
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We measure changes in equipment productivity (to the power q) using equation (13) as

êT(k2)q

êT(k1)q
= exp
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log
p̂(l, k2, w)
p̂(l, k1, w)

!
,

dropping all (l, w) pairs for which pt (l, k1, w) = 0 or pt (l, k2, w) = 0 in either period t0 or
t1. N (k1, k2) is the number of (l, w) pairs over which we average; in the absence of any zeroes
in allocations we have N (k1, k2) = 300, which is the number of labor groups multiplied by the
number of occupations.

We measure changes in transformed task prices relative to task w0 (to the power q) using
equation (14) as
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dropping all (l, k) pairs for which pt (l, k, w0) = 0 or pt (l, k, w) = 0 in either period t0 or
t1. N (w, w0) is the number of (l, k) pairs over which we average; in the absence of any zeroes
in allocations we have N (w, w0) = 20, which is the number of labor groups multiplied by the
number of equipment types. Under the assumption that p̂(l, k, w) are affected by multiplicative
error terms, the two expressions above yield consistent estimators.

In our model, the estimates of the relative occupation shifters for any two occupations wA and
wB should not depend on the choice of the reference category w0. However, because of measure-
ment error, in the expression above the estimate of changes in relative transformed task prices
crucially depends on the choice of w0. In order to avoid this sensitivity to the choice of w0, we
compute relative changes in relative transformed task prices using the following average

êp(w)q

êp(w1)q
=

1
20 Â

w0

êp(w)q

êp(w0)q

 
êp(w1)q

êp(w0)q

!�1

where êp(w)q

êp(w0)q for each w and w0 is calculated as described above. This expression yields estimates
that do not depend on the choice of w1.

Given our measures of changes in equipment and transformed task prices (both to the power
q), we construct S (l) using equation (17). Given S (l), we estimate q using equation (18) via OLS.
Finally, given our estimate of q we measure changes in labor productivity using equation (16) and
we measure changes in task shifters using equation (15) and values of a and r. In constructing
task shifters using equation (15), we construct ẑ(w)

ẑ(w1)
as follows. The initial levels, zt0 (w) /zt0 (w1),

are calculated directly using the observed values of pt0 (l, k, w), wt0 (l), and Lt0 (l). The terminal
levels, zt1 (w) /zt1 (w1), are constructed as
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.

B.2 Elasticities vary across worker group

In the general case in which q (l) varies across l and we know the value of q (l) for each l, we
can measure shocks as follows. Instead of equation (13), we have
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for every (l, w) pair. We therefore estimate these relative changes in capital shifters as
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Similarly, instead of equation (14), we measure

êp(w)

êp(w0)
=

✓
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for every (l, k) pair. Hence, we estimate the changes in transformed task prices relative to each
occupation w0 as

êp(w)
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We then construct êp(w)
êp(w1)

that does not depend on the choice of w1 exactly as in our baseline. Given
these measures, constructing changes in task shifters and labor productivity is straightforward.

C Compensating differentials

Our baseline model implies that the average wage of workers in group l is the same across all
equipment-task pairs. Here we extend our model to incorporate preference heterogeneity in addi-
tion to productivity heterogeneity. This simple extension implies that the average wage of workers
in group l varies across equipment-task pairs. We show how to use data on average wages across
equipment-task pairs to identify the parameters of the extended model and how to use these pa-
rameters to conduct an extended decomposition.

C.1 Environment and equilibrium

The indirect utility function of a worker z 2 Z (l) earning income It (z) and employed in task w

with equipment k is
U (z, k, w) = It (z) ut (l, k, w) (21)

where ut (l, k, w) > 0 is a time-varying preference shifter.32 We have normalized the price index
to one. We normalize ut (l, k1, w1) = 1 for all l and t. This model limits to our baseline model
when ut (l, w, k) = 1 for all t and (l, k, w).

A task production unit hiring k units of equipment k and l efficiency units of labor l earns
profits pt (w) ka [Tt (l, k, w) l]1�a � pt (k) k �Wt (l, k, w) l. The profit maximizing choice of equip-
ment quantity and the zero profit condition yield

Wt (l, k, w) = āpt (k)
�a

1�a pt (w)
1

1�a Tt (l, k, w)

if there is positive entry in (l, k, w). Facing the wage profile Wt (l, k, w), each worker z 2 Z (l)

32In this extended environment it is straightforward to allow for ut (l, k, w) = 0, in which case no
workers in group l would choose (k, w) in period t.
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chooses (k, w) to maximize her indirect utility, #t (z, k, w) ut (l, k, w)Wt (l, k, w).
In our extended model, preference parameters ut (l, k, w) and productivity parameters, Tt (l, k, w),

affect worker utility in the same way, as shown by the previous expression. Hence, they also affect
worker allocation in the same way: the probability that a randomly sampled worker, z 2 Z (l),
uses equipment k in task w is

pt (l, k, w) =

h
ut (l, k, w) Tt(l, k, w)pt (k)

�a
1�a pt (w)

1
1�a
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�a
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1
1�a

iq(l)
. (22)

On the other hand, preferences and productivities affect wages differently. The average wage of
workers z 2 Z (l) teamed with equipment k in task w is now given by
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g (l)
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(23)

If ut (l, k, w) > ut (l, k0, w0), then the average wage of group l is lower in (k, w) than in (k0, w0)

in period t.
The general equilibrium conditions are identical to our baseline model and are given by equa-

tions (6) and (7), although total labor income in task w is now given by

zt (w) ⌘ Â
l,k

wt (l, k, w) Lt (l)pt (l, k, w) .

C.2 Parameterization

Here, we focus on measuring preference shifters and shocks under the restriction that q (l) = q

for all l, taking q as given.

Preference shifters. From equation (23), we have
wt (l, k, w)

wt (l, k1, w1)
=

1
ut (l, k, w)

. (24)

Hence, we measure preference shifters directly from average wages.

Equipment productivity and task shifters. Equations (8) and (22) give us,
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which, together with equation (24), gives us
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Hence, we obtain

log
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= log
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We can then average over all (l, w) and then exponentiate, exactly as in our baseline, to obtain a
measure of changes in equipment productivity (to the power q). We obtain a measure of changes
in transformed task prices to the power q similarly and use this to measure changes in task shifters
using equation (15), as in our baseline approach. Finally, we have
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Hence, given measures of changes in transformed task prices (to the power q), changes in equip-
ment productivity (to the power q), and changes in preference shifters (obtained above) as well
as observed changes in wages and observed allocations in period t0, we can measure changes in
relative labor productivities using the previous expression for group l relative to group l1.

D Evolving comparative advantage details

Here we study case 2, where

Tt (l, k, w) ⌘ Tt (w) Tt (l, k) T (l, k, w) . (25)

Cases 1 and 3 are similar and available upon request.
The equilibrium conditions are unchanged: equations (3), (5), (6), and (7) all hold as in our

baseline model. However, we can re-express the system in changes as follows. Defining

eTt (l, k) ⌘ Tt (l, k) pt (k)
�a

1�a ,

equations (9) and (11) become
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whereas equation (12) remains unchanged. Expressing equation (26) in relative terms yields
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Hence, the decomposition requires that we measure êT (l, k) / êT (l, k1) for each l, k as well as
êT (l, k1) / êT (l1, k1) for each l.

Here we provide an overview—similar in structure to that provided in Section 3.3—of how we
measure shocks taking as given the parameters a, r, and q. Equations (3) and (25) give us

êT (l, k1)
q

êT (l, k2)
q
=

p̂ (l, k1, w)
p̂ (l, k2, w)

for each l and w. Hence, we can measure êT (l, k1)
q / êT (l, k2)

q for each l as the exponential of the
average across w of the log of the right-hand side of the previous expression. This procedure yields
consistent estimates of the changes in technology in the presence of multiplicative measurement
error in the observed allocations. We can recover changes in transformed task prices to the power
q and use these to measure changes in task shifters exactly as in our baseline. Finally, given these
measures, we can recover êT (l, k1)

q / êT (l1, k1)
q to match changes in relative wages using equation

(28).
From equation (28) it might appear possible to divide the labor-equipment component of the

decomposition into two separate parts: an equipment component,
êT(l,k)
êT(l,k1)

, and a labor component,

êT(l,k1)
êT(l1,k1)

. However, whereas the choice of k1 is irrelevant for quantitative results on the labor com-

position, task shifter, and labor-equipment components, the choice of k1 has large effects if we
attempt to decompose the labor-equipment component into separate equipment productivity and
labor productivity components.

Whereas in case 2 the choice ofk1 is irrelevant for all quantitative results in Table 8, the same
is not true of the similar choice of l1 in case 1 or of k1 in case 3.33 In practice, however, the
dependence of our results on these choices is very small. As in case 2, if we try to decompose

33Specifically, in case 1 the choice of l1 does affect the labor-task component of the decomposition (al-
though it does not affect the labor composition or equipment productivity components). Similarly, in case 3
the choice of k1 does affect the equipment-task and the labor productivity components of the decomposition
(although it does not affect the labor composition component).
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the labor-task component into separate task shifter and labor productivity components in case 1
or the equipment-task component in case 3 into separate equipment productivity and task shifter
components in case 3, then the choice of l1 and k1, respectively, has large effects on these results.
In the results presented in Table 8, we chose l1 as the young, male, HSD group in case 1 and we
chose k1 as computers in case 3.

E Model with sectors: Details

Here we provide additional details on the closed economy extension with sectors. Because the
partial equilibrium is the same as in our baseline model, the equations in levels determining the
the allocations pt (l, k, w) and the average wage wt (l) are the same as in the baseline model and
are given by (3) and (5), respectively. The only change to the equilibrium equations (in levels) is
to the task market clearing condition, which becomes

Â
s

Et (w, s) =
1

1 � a
zt (w)

where Et (w, s) denotes income (or expenditure) on task w in sector s,

Et (w, s) = µt (s) µt (w, s) pt (w)1�r pt (s)
r�rs Et

and pt (s) denotes the price index of sector s

pt (s) =

 

Â
w

µt (w, s) pt (w)1�r

! 1
1�r

We now provide the system of equations in changes, analogous to equations (9), (11), and (12)
with which to calculate wage changes that result from changes in the primitives between periods
t0 and t1. The expressions for changes in wages and in allocations are given, as in the baseline
model, by (9) and (11), respectively. The right hand side of the task market clearing condition in
changes is the same as in the baseline model,

ẑ (w) =
1

zt0 (w) Â
l,k

wt0 (l) Lt0 (l)pt0 (l, k, w) ŵ (l) L̂ (l) p̂ (l, k, w) . (29)

The left hand side of the task market clearing condition in changes and the change in the sectoral
price index are, respectively,

p̂ (w)1�r Ê Â
s

nt0 (s|w) µ̂ (s) µ̂ (w, s) p̂ (s)r�rs = ẑ (w) (30)
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and

p̂ (s) =

"

Â
w

nt0 (w|s) µ̂ (w, s) p̂ (w)1�r

# 1
1�r

(31)

Here, nt (s|w) ⌘ Et(w,s)
Âs0 Et(w,s0) denotes the share of expenditure on task w across all sectors that oc-

curs within sector s and nt (w|s) = Et(w,s)
Âw0 Et(w0,s) denotes the share of expenditure on task w across

all tasks employed within sector s. Defining, as in the baseline model, changes in transformed
task shifters êµ(w, s) = µ̂ (w) T̂(w)(1�a)(r�1) and changes in transformed task prices êp(w) =

p̂(w)1/(1�a)T̂(w) we can write (30) and (31) as

êp (w)(1�a)(1�r) Ê Â
s

nt0 (s|w) µ̂ (s)
êµ (w, s)

êµ (w1, s)
êµ (w1, s) p̂ (s)r�rs = ẑ (w)

and

p̂ (s) = êµ (w1, s)
1

1�r

"

Â
w

nt0 (w|s) êµ (w, s)

êµ (w1, s)
êp (w)(1�r)(1�a)

# 1
1�r

Furthermore, defining changes in transformed sector prices êp (s) = p̂ (s) µ̂ (w1, s)
�1

1�r and changes

in transformed sector shifters êµ (s) = µ̂ (w1, s)
1�rs
1�r µ̂ (s) we can re-write these two equations as

êp (w)(1�a)(1�r) Ê Â
s

nt0 (s|w) êµ (s)
êµ (w, s)

êµ (w1, s)
êp (s)r�rs = ẑ (w) (32)

êp (s) =
"

Â
w

nt0 (w|s) êµ (w, s)

êµ (w1, s)
êp (w)(1�r)(1�a)

# 1
1�r

(33)

Therefore we can solve for changes in relative wages ŵ (l) /ŵ (l1), relative task prices êp (w) / êp (w1)

and relative sectoral prices êp (s) / êp (s1) using equations (9), (11), (29), (32) and (33), given shocks
L̂ (l) /L̂ (l1), T̂(l)/T̂(l1), êT (k) / êT (k1), êµ (w, s) / êµ (w1, s) and êµ (s) / êµ (s1) . Note that when
r = rs, êp (s) drops out from equation (32) and the extension of our baseline model that accounts
for sectors is equivalent to our baseline model where the task shifter in our baseline model, êµ (w),
is replaced by Âs nt0 (s|w) êµ (s) êµ(w,s)

êµ(w1,s)
.

We measure T̂(l)/T̂(l1), êT (k) / êT (k1) and êp (w) / êp (w1) between any two time periods using
the same procedure and data as in our baseline model. To measure changes in transformed within-
sector task shifters and transformed sector shifters, and to construct nt (s|w) and nt (w|s) we need
data on Et (w, s) in t0 and t1. To measure within-sector task shifters, êµ (w, s) / êµ (w1, s), we start
from the equilibrium relationship

Ê (w, s)

Ê (w1, s)
=

µ̂ (w, s)
µ̂ (w1, s)

✓
p̂ (w)
p̂ (w1)

◆1�r
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which can be re-expressed in terms of transformed shifters as

Ê (w, s)

Ê (w1, s)
=
êµ (w, s)

êµ (w1, s)

 
êp (w)

êp (w1)

!(1�a)(1�r)

. (34)

We use equation (34) to back-out êµ (w, s) / êµ (w1, s). To estimate µ̂(s)
µ̂(s1)

, we start from the equilib-
rium relationship

Ê (s)

Ê (s1)
=

µ̂ (s)
µ̂ (s1)

✓
p̂ (s)
p̂ (s1)

◆1�rs

(35)

or in terms of transformed variables

Ê (s)

Ê (s1)
=
êµ (s)

êµ (s1)

 
êp (s)
êp (s1)

!1�rs

.

The previous expression and equation (33) yield

Ê (s)

Ê (s1)
=

µ̂ (s)
µ̂ (s1)

0

B@
Âw nt0 (w|s) êµ(w,s)

êµ(w1,s)
êp (w)(1�r)(1�a)

Âw0 nt0 (w
0|s1)

êµ(w0,s1)
êµ(w1,s1)

êp (w0)(1�r)(1�a)

1

CA

1�rs
1�r

(36)

We use equation (36) to back-out êµ (s) / êµ (s1).

F Model with international trade: Details

Here we derive the system of equations (analogous to equations (9), (11), and (12) in the closed
economy model without sectors) that can be used to calculate changes in relative wages in some
country n at time t0 when this country moves to autarky (dni (x) becomes infinite for all i 6= n and
all other primitives remain constant). We show that, moving to autarky, the equilibrium system
of equations in an open economy is equivalent to the system that characterizes a closed economy
with sectors as presented in Section 6.1 and as detailed in Appendix E. Here, however, changes in
equipment productivity, sector shifters, and within-sector task shifters are induced by moving to
autarky.

Variables with the superscript A refer to counterfactual autarky values (holding all other pa-
rameters fixed such as productivities, primitive task and sector shifters, and labor composition at
their time t0 levels) and variables without the superscript A refer to factual values in period t0.
Variables with hats denote the ratio of the value of this variable in autarky relative to the value of
this variable at time t0: ŷ = yA

t0
/yt0 . For simplicity, in this section we omit time indices.

In an open economy, we must distinguish between production prices and absorption prices.
For example, we denote by pin (w) the price of country i’s output of task w in country n (inclusive
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of trade costs) and by pn (w) the absorption price of task w in country n, given by

pn (w) =

"

Â
i

pin (w)1�h(w)

# 1
1�h(w)

;

output prices pin (s), pin (k), and absorption prices pn (s), and pn (k) are defined analogously.
Changes in relative wages and in allocations depend on changes in absorption prices for equip-

ment (since it is an input in production) and production prices for tasks (since tasks are produced
in each country). Since productivities are assumed constant when moving to autarky, we set
êT (k) = p̂n (k)

�a
1�a and êp (w) = p̂nn (w)

1
1�a , and equations (9) and (11) (moving to autarky) become

ŵn(l) =

(

Â
k,w

h
p̂nn (w)

1
1�a p̂n (k)

�a
1�a

iq(l)
pn(l, k, w)

)1/q(l)

(37)

p̂n (l, k, w) =

h
p̂nn (w)

1
1�a p̂n (k)

�a
1�a

iq(l)

Âw0,k0
h

p̂nn (w0)
1

1�a p̂n (k0)
�a

1�a

iq(l)
pn (l, k0, w0)

(38)

The remaining equations are the open-economy versions of the task-market clearing condition
(12) (the analog of equation (30)) and the sectoral price index (the analog of equation (31)).

The right-hand side of equation (12) remains unchanged, so we focus on the left-hand side
only. The level of worldwide absorption expenditure on country n’s produced task w is Âi Eni (w),
where Eni (w) denotes country i’s absorption expenditure of task w from country n,

Eni (w) = pni (w) Dni (w) =

✓
pni (w)
pi (w)

◆1�h(w)

Ei (w)

In autarky, Eni (w) = 0 for i 6= n. Hence, the ratio of Âi Eni (w) between autarky and t0 (the left
hand side of equation (12)) is

Âi EA
ni (w)

Âi Eni (w)
= Enn(w)

Âi Eni(w)
EA

nn(w)
Enn(w) = fnn (w)

✓
p̂nn (w)
p̂n (w)

◆1�h(w)

Ên (w)

where fnn (w) = Enn(w)
Âi Eni(w) denotes the share of domestic sales of task w relative to its total sales

(one minus the export share).
We now calculate an expression for Ên (w), the change in total expenditure on absorption of

task w in country n. The level of En (w) is given by

En (w) = Â
s

En (w, s) (39)
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where En (w, s) denotes country n’s absorption expenditures on task w in sector s and is given by

En (w, s) = µn (w, s)

✓
pn (w)
pnn (s)

◆1�r

Yn (s) pnn (s) (40)

where pnn (s) =
⇣

Âw µn (w, s) pn (w)1�r
⌘1/(1�r)

. The value of sector s production in country n is

Yn (s) pnn (s) = Â
i

Yni (s) din (s) pnn (s) = Â
i

Eni (s) (41)

where Eni (s) denotes expenditures on absorption in country i of country n’s sector s output,
given by

Eni (s) = µi (s)

✓
pni (s)
pi (s)

◆1�h(s) ✓ pi (s)
pi

◆1�rs

Ei (42)

and Ei denotes total expenditures on the final good in country i. Combining equations (40), (41),
and (42) yields

En (w, s) = µn (w, s)

✓
pn (w)
pnn (s)

◆1�r

Â
i

µi (s) pni (s)
1�h(s) pi (s)

h(s)�rs p1�rs

i Ei.

The ratio of En (w, s) in autarky relative to its level at time t0 is then

Ên (w, s) = p̂n (w)1�r p̂nn (s)
r�rs

✓
p̂n (s)
p̂nn (s)

◆h(s)�rs

fnn (s) Ên

where fnn (s) denotes the share of domestic sales of sector s relative to its total sales is the defined
analogously to fnn (w). Equation (39) therefore yields

Ên (w) = Â
s

nn (s|w) Ên (w, s) = Â
s

nn (s|w) p̂n (w)1�r p̂nn (s)
r�rs

✓
p̂n (s)
p̂nn (s)

◆h(s)�rs

fnn (s) Ên.

Combining these results, we have

Âi EA
ni (w)

Âi Eni (w)
= fnn (w) p̂n (w)1�r

✓
p̂nn (w)
p̂n (w)

◆1�h(w)

Â
s

nn (s|w) p̂nn (s)
r�rs

✓
p̂n (s)
p̂nn (s)

◆h(s)�rs

fnn (s) Ên

(43)
where the change in the production sectoral price index is

p̂nn (s) =

 

Â
w

nn (w|s) p̂n (w)1�r

!1/(1�r)

. (44)

Finally, we calculate the differential change in absorption and production prices, p̂n (w) / p̂nn (w),
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p̂n (k) / p̂nn (k), and p̂n (s) / p̂nn (s) . When moving to autarky at time t0, the change in import
prices is infinite. The change in the absorption price of task w, for example, is

p̂n (w) =
pA

nn (w) /pnn (w)
⇣

Âi (pin (w) /pnn (w))1�h(w)
⌘ 1

1�h(w)

=
p̂nn (w)

snn (w)
1

h(w)�1
(45)

where snn (w) denotes expenditure on domestic task w relative to total expenditure on task w in
country n (one minus the import share),

snn (w) =
pnn (w) Dnn (w)

Âi pin (w) Din (w)
.

The second equality in (45) uses the following relationship between the prices of domestic and
imported goods

(pin (w) /pnn (w))1�h(w) = (pin (w) Din (w)) / (pnn (w) Dnn (w)) .

Similarly, changes in absorption prices of sector s are

p̂n (s) =
p̂nn (s)

snn (s)
1

h(s)�1
(46)

where snn (s) is defined analogously to snn (w). The change in the absorption price of k is simply

p̂n (k) = snn (k)
�1

h(k)�1 , (47)

where snn (k) is defined analogously to snn (w) and where have used the fact that p̂nn (k) = 1
given our choice of numeraire.

We can substitute equation (47) directly into equations (37) and (38). Similarly, substituting
(45) and (46) into (43) and (44) we have

Âi EA
ni (w)

Âi Eni (w)
= p̂nn (w)1�r fnn (w)

snn (w)
h(w)�r
h(w)�1

Â
s

nn (s|w)
fnn (s)

snn (s)
h(s)�rs
h(s)�1

p̂nn (s)
r�rs Ên

and

p̂nn (s) =

 

Â
w

nn (w|s) snn (w)
r�1

h(w)�1 p̂nn (w)1�r

!1/(1�r)

. (48)

In sum, the system of equation to solve for changes in factor allocations and relative prices
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when moving to autarky is given by

p̂n (l, k, w) =

h
( p̂nn (w))

1
1�a snnt0 (k)

a
(1�a)(h(k)�1)

iq(l)

Âw0,k0
h
( p̂nn (w0))

1
1�a snnt0 (k

0)
a

(1�a)(h(k)�1)
iq(l)

pnt0 (l, k0, w0)

ŵn(l) =

(

Â
k,w

h
( p̂nn (w))

1
1�a snnt0 (k)

a
(1�a)(h(k)�1)

iq(l)
pnt0(l, k, w)

)1/q(l)

p̂nn (s) =

 

Â
w

nnt0 (w|s) snnt0 (w)
r�1

h(w)�1 ( p̂nn (w))1�r

!1/(1�r)

and

( p̂nn (w))1�r fnnt0 (w)

snnt0 (w)
h(w)�r
h(w)�1

Â
s

nn (s|w)
fnnt0 (s)

snnt0 (s)
h(s)�rs
h(s)�1

( p̂nn (s))
r�rs Ê

=
1

zt0 (w) Â
l,k

wt0 (l) Lt0 (l)pt0 (l, k, w) ŵ (l) L̂ (l) p̂ (l, k, w)

All variables in the previous four equations that are indexed by t0 represent either their observed
level or are constructed based on estimates. Note that this system of equations corresponds to the
system of equations in the closed economy version of the model with sectors, where within-sector
task shifters, ˆ̄µn (w, s), and between-sector shifters, ˆ̄µn (s), are equal to

ˆ̄µn (w, s) ⌘ fnnt0 (w) snnt0 (w)
r�h(w)
h(w)�1

ˆ̄µn (s) ⌘ fnnt0 (s) snnt0 (s)
rs�h(s)
h(s)�1 ,

and changes in equipment costs are equal to

ˆ̄qn (k) = snnt0 (k)
1

1�h(k) .
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