
Abstract

This paper extends the generalized expected utility model of the 2009
Journal of Mathematical Economics paper, [22], to the case of a Markov
investment returns process. Using this generalization of the additively
separable model, we derive the equity premium in a Lucas asset pric-
ing equilibrium with Markov consumption growth and extend the Mehra
and Prescott, [40] calibration to the non-additively separable case. Risk-
free rates and levered equity premia near the historical averages can be
obtained by combining the assumption of a relatively high elasticity of
substitution with the assumption that the relative risk aversion measure
is also high. In particluar we can, as is commonly done, assume an elas-
ticity of substitution of one and combine this with the assumption of a
high relative risk aversion measure. Surprisingly the calibration results
for the generalized expected utility preferences are virtually the same as
those obtained assuming Epstein-Zin, Weil (EZW) preferences with the
same parameter values. The EZW generalization of the additively sep-
arable preferences does not assume expected utility maximization but is
dynamically consistent while our generalization does retain the assump-
tion of expected utility maximization but is not dynamically consistent.
Throughout the paper we relate our approach to the standard develop-
ment of the additively separable case and to the EZW approach. We
also present a separate development of the case in which the elasticity
of substitution is one, which in the additively separable case, is "the log
case."
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1 Introduction

The foundations of modern asset pricing theory were laid during the late 1960’s
and early 1970’s in a series of papers by Levhari and Srinavasan [31], Merton
[37] and [38], Samuelson [45] and Hakansson [18]. These papers analyzed the
consumption-savings and portfolio choice implications of a model, that I will
refer to as the additively separable model, in which consumers are assumed
to maximize the expected value of the discounted sum of utilities of per period
consumption. Merton [39] used this framework to obtain a dynamic asset pricing
model and Breeden [5] demonstrated how the equilibrium conditions obtained
by Merton could be interpreted to yield what is now called the consumption
CAPM. In his pioneering paper, [32], Lucas also used the additively separable
model to construct a dynamic asset pricing model. The Lucas and Merton
models provide the foundation for much of the subsequent work on dynamic
asset pricing; see for example Grossman and Shiller, [15] and [16], Grossman,
Melino and Shiller, [17], Hansen-Singleton, [20] and Mehra and Prescott [40].
In addition, many of the important developments of modern macroeconomics
are obtained using the framework provided by the additively separable model.
The fact that the additively separable model is based on expected utility

maximization and implies that the consumer’s choices exhibit dynamic consis-
tency makes it an attractive and widely accepted foundation for theory in macro
and asset pricing. Because of the specific assumptions usually made about the
utility function, it is also a quite tractable model and its implications have
provided a useful starting point for empirical work in these broad fields.
In spite of its successes, there has been a growing recognition over the last

thirty years that the restrictions imposed by the additively separable model may
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limit its ability to provide the basis for constructing an explanation for some
important empirical phenomena. In particular, in [19] Hall emphasized that the
model does not permit the measures of risk aversion and of the intertemporal
elasticity of substitution to be chosen independently. This is not only restrictive,
it also makes it diffi cult to interpret the implications of the model. For example,
as Grossman and Shiller, [15], Grossman, Melino and Shiller, [17], and Mehra
and Prescott [40] point out, the model in its simple form can only explain the
equity premium if the risk aversion measure is quite high and the intertemporal
elasticity of substitution is, consequently, low. If the risk aversion measure could
be chosen independently of the intertemporal elasticity of substitution it might
be possible to determine the independent effects of each of these parameters on
the equity premium and on other aspects of investment and savings behavior.
Recent contributions by Epstein and Zin and Weil (EZW) have addressed the

issue raised by Hall. In a series of papers, Epstein [11], Epstein and Zin [12], [13],
[14], Weil [51] and [52] these authors developed a generalization of the additively
separable model that allows the intertemporal elasticity of substitution and the
risk aversion measure to be chosen independently. A general version of the
preferences used by EZW had originally been proposed by Kreps and Porteus,
[26], [27] and [28]. Selden, [46], [47], had also proposed the use of the same
preferences but his discussion was restricted to the case of two periods. Since
its introduction, the EZW generalization of the additively separable model has
provided the basis for much important work in dynamic asset pricing; see for
example Campbell, [7] and [8] and Bansal-Yaron [3].
The EZW generalization retains one of the attractive features of the addi-

tively separately model while sacrificing another. Specifically, the EZW gener-
alization does not assume that consumers maximize expected utility but it does
imply that their choices are dynamically consistent. Another attractive feature
of the EZW generalization is its tractability.
In a 2009 Journal of Mathematical Economics paper, [22], the current author

proposed an alternative generalization to the one proposed by EZW and, in
the current paper, we continue to develop that approach. As noted in [22],
when this alternative generalization of the additively separable model is used,
the assumption that consumers maximize expected utility is retained but, in
general, a dynamic inconsistency arises.
The generalized expected utility approach we propose is obtained by simply

applying standard consumer theory to independently choose the intertemporal
elasticity of substitution and the risk aversion measure. Consumer theory tells
us that, when "ordinal preferences" for consumption streams can be represented
by an additively separable utility function, that representation is just one of infi-
nitely many "cardinal utility functions" that represent those preferences. Every
monotonically increasing transformation of the additively separable utility func-
tion represents the same ordinal preferences and the intertemporal elasticity of
substitution is unaffected by the monotonic transformation. That’s true be-
cause the intertemporal elasticity of substitution is a property of the ordinal
preferences and not of the particular cardinal utility function used to represent
those ordinal preferences. When there is no uncertainty it doesn’t matter which
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cardinal utility function we use to represent the ordinal preferences, and if it’s
simpler to use the additively separable representation that would seem to be
the obvious choice. When there is uncertainty, and the consumer maximizes
expected utility, different utility functions representing the same ordinal pref-
erences will imply different attitudes toward risk. In the case of uncertainty,
Kihlstrom-Mirman [23] and [24] describe how it is possible to compare the risk
aversion of different cardinal representations of the same ordinal preferences.
If we choose a non-additively separable representation of the ordinal prefer-
ences, we can compare the risk aversion of this alternative representation to
the risk aversion of the additively separable representation. In fact, we can fol-
low Kihlstrom and Mirman and compare the risk aversion of any pair of utility
functions that represent the same ordinal preferences.
As is commonly done, we assume that the consumer’s preferences are rep-

resented by a CES utility function of the consumption stream. We do not,
however, restrict attention to the additively separable representation although
that representation is one of the alternatives permitted by our approach. We
also assume that, at each point in time, the consumer’s current consumption-
saving and portfolio choices maximize the expected value of his utility of current
and future consumption. As noted, by taking this approach we are able retain
one of the attractive features of the additively separable model, namely the
assumption that the consumer maximizes expected utility. Because the con-
sumer ignores past consumption, we refer to him as having "forward looking"
von Neumann-Morgenstern preferences, but we sometimes simply refer to these
preferences as the generalized expected utility model. Unfortunately, when the
consumer maximizes the expected value of a non-additively separable utility
function that is independent of past consumption, a dynamic inconsistency typ-
ically arises. Specifically, the consumer’s current choices are not the ones he
would have committed himself to make if such a commitment had been possible
at an earlier point in time. Thus, while we are able to retain the assumption
of expected utility maximization, the specific assumptions we make about the
evolution of the consumer’s preferences over time imply that it is impossible for
us to retain the dynamic consistency of the additively separable model. We
would emphasize, however, that the impact of this dynamic inconsistency is
limited in an important way with our approach when it is applied to generalize
the widely used additively separable case in which the log of consumption is the
utility function of consumption. We refer to this special case of CES preferences
as the "Cobb-Douglas" case. It is the case in which the elasticity of substitution
is one. In the asset pricing and macro literature it is commonly referred to as
the "log case."
The mention of dynamic inconsistency typically brings to mind the literature

on hyperbolic discounting. As a consequence it is important to emphasize that
the dynamic inconsistency we are, in general, forced to deal with is only super-
ficially similar to but, in fact, quite distinct from that which arises in models of
hyperbolic discounting. Hyperbolic discounting was, of course first considered
by Strotz [49] and recently reconsidered in the work of Laibson [30], Harris and
Laibson [21] and Luttmer and Marrioti [34] and [35]. In that literature, future
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utility is discounted differently as time passes and this gives rise to the dynamic
inconsistency. In the case we consider of investors who have "forward looking"
von Neumann-Morgenstern preferences, it is the fact that past consumption is
ignored that gives rise to the dynamic inconsistently. As described in Proposi-
tion 1 of [22], this has the effect of changing the risk-aversion of the investor as
time passes.
In analyzing the generalized expected utility maximizing model we propose,

we do follow the “consistent planning”approach of Strotz [49] and assume that,
when making his current choice, the consumer will “take account of future
disobedience.”This consistent planning approach was also used in some of the
later literature cited above on hyperbolic discounting as well as by Pollak [43]
and by Phelps and Pollak [42]. In the dynamic consumption-savings, portfolio
model we consider, when the consumer makes his current choices he recognizes
that his future choices will not be the ones he would currently like to commit
himself to make in the future. Thus, the consumer chooses a consumption plan
for the future that is, as Strotz asserted, “the best plan among those he will
actually follow.”Our approach can also be interpreted from the perspective of
Peleg and Yaari [41] and is similar to that taken in the literature on durable
goods monopoly and the Coase conjecture; see, for example, Coase [9], Stokey
[48] and Bulow [6]. In following Peleg and Yaari and the durable goods monopoly
literature, we view the current consumer as a leader in a leader-follower game in
which the followers are the same consumer at future time periods. His current
choices are a best response to the choices he knows he will want to make in
the future. The result is a Nash equilibrium of a Stackleberg game in which
each “player”is the consumer at a particular consumption period. We refer to
our approach as one of “consistent planning”by a “forward looking”expected
utility maximizing consumer.
As in our earlier paper, we investigate the asset pricing implications of this

generalized expected utility model by deriving the equity premium in a Lucas
asset pricing equilibrium. In the earlier paper, we limited attention to the case
in which consumption growth was i.i.d. In the present paper we derive the
asset pricing equilibrium for the case in which consumption growth is markov.
This extension makes it possible for us to calibrate the model and examine
the extent to which it might be able to improve on the additively separable
model as calibrated by Mehra and Prescott, [40]. We chose to calibrate the
model in this way to focus on the comparison of the results obtained from our
generalization of the canonical additively separable model with those obtained
from the alternative EZW generalization. Each of these generalizations allows
the intertemporal elasticity of substitution and the risk aversion measure to be
chosen independently. As mentioned above, the generalizations differ in that
our approach retains the assumption of expected utility maximization but is
not dynamically consistent while the EZW approach is dynamically consistent
but does not retain expected utility maximization. In light of these differences it
seems quite surprising that the calibration results obtained using the generalized
expected utility preferences are virtually the same as those obtained assuming
EZW preferences with the same parameter values.
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We have remarked on the tractability of the EZW generalization and this
feature makes it a useful general framework for analysis and starting point for
empirical work. While the generalized expected utlity maximizing model we
propose is less tractable than the EZW generalization, [22] did obtain, for the
case of i.i.d. consumption growth, explicit solutions for the risk-free rate and
the equity premium in the Lucas asset pricing equilibrium. In the present paper,
we are also able to derive explicit conditions, for the case in which consumption
growth is markov, that enable us to easily compute the steady state equity
premium and risk-free rate in the Lucas asset pricing equilibrium.
As we have also mentioned [22] restricted attention to the case of i.i.d. con-

sumption growth. This turns out to be a case in which the EZW generalization
adds little in explanatory power to the additively separable model. Weil [51]
for example noted that “the solution to the equity premium puzzle documented
by Mehra and Prescott [40] cannot be found by simply separating risk aversion
(from) intertemporal substitution. If the dividend growth process is i.i.d., the
risk-premium, when appropriately defined, is independent of the intertemporal
elasticity of substitution, and thus is the same whether or not the time-additive,
expected utility restriction is imposed. When the dividend growth process is
non-i.i.d., relaxing the parametric restriction adds, for plausible parameter val-
ues, a risk free rate puzzle to Mehra and Prescott’s equity premium puzzle.”
Kocherlakota [25] demonstrates an even stronger result. In analyzing the Lucas
asset pricing model he assumes EZW preferences and that “the growth rate of
the aggregate endowment is i.i.d.”Using this model he demonstrates that “an
econometrician with data on asset prices and aggregate consumption cannot
separately identify”the elasticity of substitution and the relative risk aversion.
He concludes that the EZW preferences have “no more explanatory power than”
the additively separable preferences. The inability of the EZW framework to
add explanatory power beyond that of the additively separable model in the
i.i.d. case is rooted in the observation made in a number of papers that, when
the returns to the risky assets are i.i.d., the EZW optimal portfolio depends only
on the risk aversion measure and is independent of the elasticity of substitution.
See for example, Swensson [50] and Bhamra and Uppal [4].
In our earlier paper we found that, in contrast to the EZW generalization,

the risk premium obtained from our generalized expected utility maximization
approach is affected by the elasticity of substitution as well as the risk aversion
measure and this is true for the case of i.i.d. consumption growth. It thus does
not suffer from the criticism of Kocherlakota and of Weil himself. In fact, one
of the main results of our 2009 paper is that, in the case of i.i.d. consumption
growth, our generalized expected utility model yields a higher risk premium than
the standard additively separable model when and only when the elasticity of
substitution in our model is exceeded by that of the additively separable model.
This result had been pointed out by Kocherlakota.
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1.1 Outline of the Paper and Preview of the Results

Throughout the paper we attempt to relate the formal development of our ap-
proach, which takes full advantage of the homotheticity of the preferences, to
the standard development of the additively separable case and also to the EZW
approach. Our development of the EZW approach, which will also make use
of the homotheticity of the preferences, will differ from the usual development
so that we can highlight the relationship of that approach to ours. Our theo-
retical development of the Lucas asset pricing equilibrium is, again somewhat
different from the usual discussion because of the simplifications introduced by
the homotheticity of the preferences. We have also chosen to present a separate
development of what I refer to as the Cobb-Douglas case in which the elasticity
of substitution is one. In the additively separable case, the Cobb-Douglas case
is commonly refered to as the "the log case."
We begin Section 2 with a brief description of an infinite horizon consumption

savings problem faced by a consumer for whom the return to saving each period
is a stationary markov process. Section 2.1 describes how this consumption
savings problem would be solved by a consumer who, in each period, maximizes
the expected value of a CES utility function of current and future consump-
tion. The utility function is not assumed to be additively separable. We refer
to the consumer as having "forward looking" von Neumann Morgenstern pref-
erences. Because of the non-additive-separability of the utility function and the
fact that past consumption does not enter as an argument of the consumer’s
current utility function, this generalized expected utility model typically implies
a dynamic inconsistency. We assume that the consumer takes this into account
by choosing his current consumption to be a best response to the consumption
choices he will make in the future. As we note, the task of obtaining a solution
is simplified by the fact that the consumer faces the same problem each period.
We refer to this solution to the consumption-savings problem as the “consis-
tent planning” solution for a consumer with "forward looking" von Neumann
Morgenstern preferences.
In Section 2.1.1 we interpret the consumer as a representative agent in an

economy in which the return to savings is the return earned by real investments
in a production economy. In this setting, we permit trading in a riskless asset
that is in zero net supply, and derive an expression for the equilibrium riskless
return. As usual, the riskless rate equals the "risk-neutral expectation" of the
return earned by the real investment. Also, if we use the riskless rate to com-
pute the present value of the "risk-neutral expectation" of the real investment’s
return we get the present value of these returns computed using Arrow-Debreu
contingent claims prices which equal the ratio of the risk neutral density to
the riskless rate. This expression is a generalization of the standard expression
routinely obtained in the additively separable case.
The case in which the intertemporal elasticity of substitution is one, which

we refer to as the Cobb-Douglas case, is an important one that must be dealt
with separately and that is done in Section 2.1.2. In the extensive literature that
has developed assuming additively separable preferences it is quite common to
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restrict attention to this case. This is often done because, in this case, the
consumer’s optimal consumption-savings decision is unaffected by the return to
savings and hence by the risk of that return. This, of course, means that the
optimal consumption-savings decision is the same whether the return to sav-
ings is risky or not. The same result holds when the consumer has "forward
looking" von Neumann Morgenstern preferences and the elasticity of substi-
tution is one. This implies that, in this important case, there is no dynamic
inconsistency. Specifically, a consumer with "forward looking" von Neumann
Morgenstern preferences and an elasticity of substitution of one makes dynam-
ically consistent choices because his optimal consumption-savings decision is
unaffected by the return to savings and hence by the risk of that return and
by the consumer’s risk aversion measure. In fact, in this case, the optimal
consumption-savings decision is the same as in the additively separable case.
Even in the Cobb-Douglas case, the consumer’s portfolio choices are, of course,
affected by his risk aversion measure as is the expression derived in Sections
2.1.2 for the equilibrium riskless return. In Section 4, which presents the simu-
lation results, we discuss the extent to which the Cobb-Douglas case can provide
an explanation for the historical equity premium and the average riskless rate.
Section 2.1.3 briefly describes two important special cases. The first is the

case in which the returns to savings are i.i.d. Since this is the case studied in
Kihlstrom, [22], the discussion is quite brief. The other special case is the one
commonly analyzed in which the utility function is additively separable so that
the elasticity of substitution is the inverse of the risk aversion measure. Since
this latter case has been exhaustively studied, we focus on demonstrating that,
in this special case, the optimal consumption choice for the problem described in
Section 2.1 is a solution to the standard dynamic programming problem typically
solved in the additively separable case. The “Bellman Value Function”of this
dynamic programming problem is related to the concepts introduced in Section
2.1. For each of these special cases, the expression for the equilibrium riskless
return simplifies dramatically and the simplified versions are described. We
observe that when, in the i.i.d. case, utility is non-additively separable, the
expression for the riskless rate differs from the one obtained in the additively
separable case.
Section 2.2 describes how this consumption savings problem would be solved

by a consumer with EZW preferences. Following Kreps and Porteus, Epstein-
Zin and Weil demonstrated that the optimal consumption strategy could be
obtained as the solution to a generalized dynamic programming problem. The
Epstein-Zin value function is defined to be linear in wealth and, in general,
the marginal value of wealth is a function of the return to savings. Following
the discussion in Epstein-Zin, [12], we derive functional equations that must
be satisfied by the Epstein-Zin marginal value of wealth function and by the
optimal consumption strategy. In the process, a simple relationship between
the marginal value of wealth and the optimal consumption strategy is obtained.
In Section 2.2.1 we obtain an expression for the riskless rate that generalizes
the expression obtained in the additively separable case. This expression once
again equals a redefined "risk-neutral expectation" of the return earned by the
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real investment. The present value of the redefined "risk-neutral expectation"
of the real investment’s return again equals the present value of these returns
computed using Arrow-Debreu contingent claims prices, which equal the ratio of
the redefined risk neutral density to the riskless rate. The equation that yields
the expression for the riskless rate is also shown to be equivalent to Epstein and
Zin’s "generalized Euler equation" which is equation (6.6) in Epstein and Zin,
[12] and equation (16) in Epstein and Zin, [14].
With EZW preferences, the Cobb Douglas case must again be treated sep-

arately and that is done in Section 2.2.2. Again, in this case, the optimal
consumption savings decision is unaffected by the return to savings. Hence, as
is true with the generalized expected utility maximizing preferences treated in
Section 2.1.2, the consumption savings decision is the same as that made by the
consumers with additively separable preferences. The expression for the equilib-
rium riskless return obtained for EZW consumers does, however, differ from the
expression obtained in Section 2.1.2 for the case of generalized expected utility
maximizing preferences.
Section 2.2.3 describes the special case in which the return to savings are

i.i.d. In that case, the expression for the equilibrium riskless return obtained
for EZW consumers is, as Weil noted, the same as that for the case of additively
separable preferences.
Section 3 begins with Section 3.1 that presents an introductory general dis-

cussion of the Lucas asset pricing equilibrium for the case in which the growth
rates of the dividends paid by the Lucas tree are a stationary markov process.
In Section 3.1 properties of the equilibrium are derived under general assump-
tions that are satisfied when the consumer has "forward looking" von Neumann
Morgenstern preferences and "plans consistently" and when the consumer has
EZW preferences. In particular, we derive a simple expression for the equilib-
rium price of the Lucas tree and for the price dividend ratio. The price dividend
ratio is, in fact, easily seen to equal the ratio of the fraction of wealth saved to
the fraction of wealth consumed. In the markov case, the fractions of wealth
saved and consumed fluctuate with the consumption growth rate and, as a con-
sequence, the price dividend ratio also fluctuates with this growth rate. These
expressions can also be used to derive an expression that relates the equilib-
rium return on an investment in the Lucas tree to the consumption growth
rate. Section 3.1.1 briefly describes the simplifications that emerge when the
consumption growth rate process is i.i.d. In that case, which was analyzed in
Kihlstrom, [22], the fractions of wealth saved and consumed are constant and as
a result, the price dividend ratio is also constant. Also in this case, the price of
the Lucas tree is simply the present value of a growing perpetuity that initially
pays a dividend equal to the current dividend times the expected growth rate
and then continues to grows at the expected growth rate. The discount rate
used in computing the value of this perpetuity is the expected return on the
Lucas tree.
Section 3.2 interprets the results of Sections 2.1 and 3.1 to describe the Lucas

Asset Pricing Equilibrium in which the representative consumer has "forward
looking" von Neumann Morgenstern preferences and "plans consistently." We
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substitute the expression for the return on the Lucas tree obtained in Section 3.1
in the first order conditions satisfied by the optimal fraction of wealth consumed
by a consumer who maximizes expected utility and plans consistently; i.e., who
solves the problem described in Section 2.1. The result is explicit expressions
for the price dividend ratio, the fraction of wealth consumed, the fraction of
wealth saved and for the return on the Lucas tree. In Section 3.2.1 we use
the expression for the return on the Lucas tree obtained in Section 3.1 in the
expression for the riskless rate obtained in Section 2.1.1. to obtain an expression
for the riskless rate in the Lucas model. Using this expression and the expression
for the return on the Lucas tree we calculate the equity premium. Section 3.2.2
briefly considers the Cobb Douglas case. Again the riskless rate and the equity
premium are obtained for the Lucas Asset Pricing Equilibrium. Section 3.2.3
describes the special cases in which the consumption growth rates are i.i.d. and
the case of additively separable preferences.
Section 3.3 interprets the results of Sections 2.2 and 3.1 to describe the

Lucas Asset Pricing Equilibrium in which the representative consumer has EZW
preferences. In Section 3.3.1 we use the expression for the return on the Lucas
tree obtained in Section 3.1 in the expression for the riskless rate obtained in
Section 2.2.1. to obtain an expression for the riskless rate in the Lucas model.
Using this expression and the expression for the return on the Lucas tree we
calculate the equity premium. Section 3.3.2 describes the special case in which
the consumption growth rates are i.i.d.
Calibrations using our "generalized expected utility" preferences and using

EZW preferences are described in Section 4. The calibrations are carried out
using the binomial approach of Mehra and Prescott [40]. That is we assume that
the only consumption growth rates are the two rates assumed by Mehra and
Prescott. We also use the same transition probabilities that are used in their
paper. Using the expressions derived in Section 3.2.1, we calculate the riskless
rate and equity premium obtained when we assume that the representative
consumer has forward looking von Neuman Morgenstern preferences and plans
consistently. It is still true that it is necessary to assume a high measure of
relative risk aversion to obtain a simulated equity premium that comes close to
matching the 6.98% paid by Standard and Poor’s 500 Composite Stock Index
over the ninety years period considered by Mehra and Prescott. In the additively
separable case when the risk aversion measure is high enough to come close to
explaining the equity premium, the elaticity of substitution is of necessity low
and the riskless rate is, as a result, much higher than the historical average of
just under 1%. When the elasticity of subsitution can be chosen to be high at
the same time that the risk aversion measure is high, it is possible to come close
to matching both the riskless rate and the equity premium. Similar conclusions
emerge if we use the expressions derived in Section 3.3.1, to calculate the riskless
rate and equity premium obtained and assume that the representative consumer
has EZW preferences. With these preferences, and only two possible growth
rates, the riskless rate and the equity premium can, in fact, be computed quite
simply using a calculation that is described in Section 4.1. The theoretical equity
premia that we simulate are those paid by unlevered investments in the Lucas
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tree. In Section 4.2 we indicate how those premia can be adjusted for leverage.
Using this leverage adjustment, it is possible to obtain realistic equity premia
and riskless rates by assuming that the representative consumer has forward
looking von Neuman Morgenstern preferences and plans consistently as well as
by assuming EZW preferences. One case for which this is true is the one we
have called the "Cobb-Douglas" case and which is commonly referred to as the
"log case." We noted earlier that, in that case, our approach does not imply a
dynamic inconsistency.

2 The Infinite Horizon Consumption Savings Prob-
lem

We suppose that the consumer looks forward to an infinite lifetime. He begins
period t with initial wealth, Wt. His consumption in period t is Ct. The frac-
tion of Wt consumed in period t is ct. In each period, savings, which equal
(1− ct)Wt, can be invested only in a risky asset. The realized return on the
risky asset is rt. The random variable of which rt is the realization is r̃t. Period
t+ 1 wealth is

Wt+1 = Wt [1− ct] r̃t
and consumption in period t is

Ct = ctWt.

We assume that {r̃t} is a markov process and that the transition probabilities
Pr (r̃t > 0 |rt−1 ) are constant over time.

2.1 "Consistent Planning" with "Forward Looking" von
Neumann Morgenstern Preferences

In discussing forward looking preferences in this infinite horizon setting, we
are going to assume that, in each period, the preferences are CES and exhibit
constant relative risk aversion CRRA in the Kihlstrom-Mirman [24] sense. Fur-
thermore, the elasticity of substitution and the level of relative risk aversion are
the same each period. Thus, in period t, the forward looking von Neumann-
Morgenstern consumer maximizes

EU
(
Ct,
{
C̃t+τ

}∞
τ=1

)
=

1

1− αE

(Cρt +

∞∑
τ=1

βτ C̃ρt+τ

) 1−α
ρ

|rt−1

 , (1)

where β < 1, ρ < 1, ρ 6= 0, α ≥ 0 and α 6= 1. The cases in which ρ = 0 and/or
α = 1 require special treatment and we briefly deal with them separately in
Section 2.1.2 below. Following Kihlstrom-Mirman [24] we say that relative risk
aversion of

U (Ct, {Ct+τ}∞τ=1) =
1

1− α

(
Cρt +

∞∑
τ=1

βτCρt+τ

) 1−α
ρ

(2)
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is α. The "risk neutral" case is that in which α = 0. Note when α = 0, the utility
function is homogeneous of degree one and it is also the least concave represen-
tation, in the sense defined by Debreu [10], of the implied ordinal preferences.
For all α, the elasticity of substitution of (2) is

σ =
1

1− ρ .

The additively separable case arises when 1−α = ρ so that σ = 1
α . In this case,

dynamic programming arguments imply that the consumer’s choices exhibit
dynamic consistency. Specifically, the plan for consumption at time t + τ that
is optimal at time t is also optimal when time t+ τ arrives.

When
1− ρ 6= α,

the consumer’s preferences are non-additively separable and his choices do not
exhibit dynamic consistency. Specifically, the plan for consumption at time
t+ τ that maximizes (1) at time t is no longer optimal when time t+ τ arrives.
This is true because at time t + τ consumption at time t does not enter the
utility function of the forward looking consumer. In the present discussion we
will not elaborate further on this dynamic inconsistency. In Kihlstrom, [22], it is
discussed further, although the discussion is limited to the case of three periods.
If, at time t, the consumer could commit himself to carry out the plan

for consumption at time t + τ that maximizes (1), the dynamic inconsistency
would not cause a problem. We assume, however, that such commitments are
impossible. We thus follow Strotz [49] and assume that the consumer’s plans for
future consumption are "consistent;" viz, they are ones he will actually carry
out. This means that the consumer is sophisticated and anticipates his future
behavior. In the game theoretic view taken by Peleg and Yaari [41] of the
situation considered by Strotz, the consumer at time t is a first mover in a
game in which the other players are himself at later periods. In our setting,
we implement Strotz’s "consistent planning" approach by adopting the game
theoretic view and assuming that the consumer’s consumption choice at time t
is a best response to the consumption choices he expects to make in the future.
Thus, when the consumer chooses ct, in period t he anticipates his future choices
{ct+τ}∞τ=1 . Because the consumer faces the same problem in every period, the
equilibrium is one in which his choice startegy in every period is the same. Thus,
for all t, ct,= ĉ (rt−1) where ĉ (rt−1) is a best response to the fact that for all,
τ > 0, ct+τ ,= ĉ (rt+τ−1) . Specifically,

ĉ (rt−1) (3)

= arg max
c

(
E
[
(cρ + β [1− c]ρ r̃ρt ṽ)

1−α
ρ |rt−1

]) 1
1−α

where,

ṽ = v ({r̃t+τ , ĉ (r̃t+τ−1)}∞τ=1) (4)

= [ĉ (r̃t)]
ρ

+ β [1− ĉ (r̃t)]
ρ
r̃ρt+1v ({r̃t+1+τ , ĉ (r̃t+τ )}∞τ=1) .
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It is easy to verify that

v ({rt+τ , ĉ (rt+τ−1)}∞τ=1) (5)

=

[
[ĉ (rt)]

ρ
+

∞∑
τ=1

βτ [ĉ (rt+τ )]
ρ

τ∏
s=1

[1− ĉ (rt+s−1)]
ρ
rρt+s

]
.

2.1.1 The Riskless Rate

We now interpret the consumer as a representative agent in an economy in which
r̃t is the rate of return earned by real investments in a production economy. We
also assume that a riskless asset is traded but in zero net supply. In this setting,
when r̃t−1 = rt−1, the equilibrium period t riskless return, rf (rt−1) , can be
obtained from the consumer’s first order condition.
If we let

x̃t (rt−1) = (r̃t − rf (rt−1))

and define γ̂ by letting

γ̂

= arg max
γ

(
E
[
(ĉ (rt−1)

ρ
+ β [1− ĉ (rt−1)]

ρ
(rf (rt−1) + γx̃t (rt−1))

ρ
ṽ)

1−α
ρ |rt−1

]) 1
1−α

then in equilibrium γ̂ = 1.The first order condition satisfied at γ̂ = 1 is

E
[
(ĉ (rt−1)

ρ
+ β [1− ĉ (rt−1)]

ρ
r̃ρt ṽ)

1−α
ρ −1 ṽr̃ρ−1t [r̃t − rf (rt−1)] |rt−1

]
(6)

= 0.

So the riskless rate is
rf (rt−1) = E∗ [r̃t |rt−1 ] (7)

where we define

E∗ [r̃t |rt−1 ] (8)

=
E
[
(ĉ (rt−1)

ρ
+ β [1− ĉ (rt−1)]

ρ
r̃ρt ṽ)

1−α
ρ −1 ṽr̃ρt |rt−1

]
E
[
(ĉ (rt−1)

ρ
+ β [1− ĉ (rt−1)]

ρ
r̃ρt ṽ)

1−α
ρ −1 ṽr̃ρ−1t |rt−1

] .
Remark 1 If we let

f (rt |rt−1 )

denote the conditional probability density of r̃t when r̃t−1 = rt−1, then we can
define the "risk-neutral density" to be

f∗ (rt |rt−1 ) (9)

=
E
[
(ĉ (rt−1)

ρ
+ β [1− ĉ (rt−1)]

ρ
rρt ṽ)

1−α
ρ −1 ṽrρ−1t |rt

]
f (rt |rt−1 )

E
[
(ĉ (rt−1)

ρ
+ β [1− ĉ (rt−1)]

ρ
r̃ρt ṽ)

1−α
ρ −1 ṽr̃ρ−1t |rt−1

]
13



where, it will be recalled that ṽ is defined in (4) and (5). Note that f∗ (rt |rt−1 )
is, indeed, a density and

f∗ (rt |rt−1 )

rf (rt−1)

is the period t−1 price of an Arrow-Debreu claim to a dollar paid at time t con-
tingent on r̃t = rt. These Arrow-Debreu contingent claims prices are normalized
to sum to

1

rf (rt−1)
,

the period t − 1 value of a period t dollar, when the dollar is discounted at
the riskless rate. The expectation E∗ [r̃t |rt−1 ] defined in (8) is the conditional
"risk-neutral expectation" of r̃t and it is simply the expected value of r̃t computed
using the distribution f∗ (rt |rt−1 ) . Note that,

E∗ [r̃t |rt−1 ]

rf (rt−1)
,

the present value of the "risk-neutral expectation" of r̃t is simply the period t−1
value of the possible returns r̃t earned by a dollar invested in the available real
investment when the Arrow Debreu prices are used to compute the value of the
investment. Since a dollar invested in the available real investment could also be
invested in the riskless asset the period t− 1 value, computed using the riskless
rate rf (rt−1) as the discount rate, of the returns earned on the real investments
must be one. That is we must have

1 =
E∗ [r̃t |rt−1 ]

rf (rt−1)
,

which is true because of (7).

2.1.2 The Cobb Douglas Case

This is the case in which ρ = 0 and the intertemporal elasticity of substitution
is one. In this case, when, α 6= 1 and β < 1,

Uα (Ct, {Ct+τ}∞τ=1)

=

(
1

1− α

)
C
(1−α)(1−β)
t

∞∏
τ=1

.C
(1−α)(1−β)βτ
t+τ .

The "risk neutral" case is again that in which α = 0. Once again, when α =
0, the utility function is homogeneous of degree one and it is also the least
concave representation of the implied ordinal preferences. In this case, there is
no dynamic inconsistency and, if we let

Λ (rt−1)

= E

[ĉ (r̃t)
(1−β)

r̃t

](1−α)β ∞∏
τ=1

[
ĉ (r̃t+τ )

τ∏
s=1

[1− ĉ (r̃t+s−1)] r̃t+s

](1−α)(1−β)βτ+1
|rt−1

 ,

14



then

ĉ (rt−1)

= arg max
c

(
c(1−α)(1−β) [1− c](1−α)β Λ (rt−1)

) 1
1−α

= ĉ = arg max
c

c(1−β) [1− c]β

= (1− β)

so that ĉ (rt−1) is independent of α and of rt−1.This is also the solution in the
additively separable case in which 1− α = ρ = 0 and

U (Ct, {Ct+τ}∞τ=1) = log (Ct) +

[ ∞∑
τ=1

βτ log (Ct+τ )

]
.

Note that when
ĉ (rt−1) = (1− β) ,

Λ (rt−1) reduces to

Λ (rt−1)

=
[
(1− β)β

β
1−β

](1−α)β
E

r̃(1−α)βt

∞∏
τ=1

[
τ∏
s=1

r̃t+s

](1−α)(1−β)βτ+1
|rt−1


=

[
(1− β)β

β
1−β

](1−α)β
E

(
r̃
(1−α)β
t

∞∏
τ=1

r̃
(1−α)βτ+1
t+τ |rt−1

)

To obtain the riskless rate in the Cobb-Douglas case, we again let

x̃t (rt−1) = (r̃t − rf (rt−1)) .

and use
ĉ (rt−1) = (1− β) .

Now

γ̂

= arg max
γ

E

(
(rf + γx̃t (rt−1))

(1−α)β
∞∏
τ=1

r̃
(1−α)βτ+1
t+τ |rt−1

)

and the first order condition satisfied at γ̂ = 1 is

E

(
r̃
(1−α)β−1
t [r̃t − rf (rt−1)]

∞∏
τ=1

r̃
(1−α)βτ+1
t+τ |rt−1 |rt−1

)
= 0.
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So the riskless rate is
rf (rt−1) = E∗ [r̃t |rt−1 ] (10)

where now

E∗ [r̃t |rt−1 ] =

E

( ∞∏
τ=1

r̃
(1−α)βτ
t+τ−1 |rt−1

)
E

(
r̃−1t

∞∏
τ=1

r̃
(1−α)βτ
t+τ−1 |rt−1

) .
Although the form of the expression for E∗ [r̃t |rt−1 ] changes when α = 0,
the discussion in Remark 1 continues to apply to this case if we also redefine
f∗ (rt |rt−1 ) to equal

f∗ (rt |rt−1 )

=

E

( ∞∏
τ=2

r̃
(1−α)βτ
t+τ−1 |rt

)
r
(1−α)β−1
t f (rt |rt−1 )

E

(
r̃−1t

∞∏
τ=1

r̃
(1−α)βτ
t+τ−1 |rt−1

) .

2.1.3 Two Special Cases

In this section, we briefly discuss two important special cases. One is the case
of i.i.d. returns considered in Kihlstrom. [22]. The other case is the additively
separable case.

The Case of iid Returns In each period t, ct,= ĉ where ĉ is a best response
to the fact that for all, τ > 0, ct+τ ,= ĉ. Thus,

ĉ

= arg max
c

(
E
[
(cρ + β [1− c]ρ r̃ρt ṽ)

1−α
ρ

]) 1
1−α

where now

ṽ = v ({r̃t+τ , ĉ}∞τ=1)
= ĉρς̃

and

ς̃ =

[
1 +

∞∑
τ=1

(β [1− ĉ]ρ)τ
τ∏
s=1

r̃ρt+s

]
.

In this case, when ρ 6= 0, the riskless rate reduces to

rf =
E
[
(1 + β [1− ĉ]ρ r̃ρt ς̃)

1−α
ρ −1 ς̃ r̃ρt

]
E
[
(1 + β [1− ĉ]ρ r̃ρt ς̃)

1−α
ρ −1 ς̃ r̃ρ−1t

] .
In the Cobb-Douglas case,

rf = E∗r̃t
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where now

E∗r̃t =
Er̃(1−α)β

Er̃(1−α)β−1

The Additively Separable Case For this case, we demonstrate that prob-
lem (3) solved by the consumer of our model reduces to the one solved by a
consumer who solves the standard “dynamic programming" problem. In the
process we demonstrate how the “Bellman value function” is related to the
function v (·) described in (5).
Recall that in this case, 1− α = ρ so that (3) reduces to

ĉ (rt−1)

= arg max
c

(
c1−α + β [1− c]1−αE

[
r̃1−αt ṽ |rt−1

]) 1
1−α

where is as described in (4) and (5). In this case, we can define

ω (rt)

= (E [v ({r̃t+τ , ĉ (r̃t+τ−1)}∞τ=1) |rt ])
= [ĉ (rt)]

1−α

+β [1− ĉ (rt)]
1−α

E
[
r̃1−αt+1 E [v ({r̃t+1+τ , ĉ (r̃t+τ )}∞τ=1) |r̃t+1 ] |rt

]
= [ĉ (rt)]

1−α
+ β [1− ĉ (rt)]

1−α
E
[
r̃1−αt+1 ω (r̃t+1) |rt

]
and let the “Bellman Value Function”equal

V (Wt+1, rt) = ω (rt)W
1−α
t+1 . (11)

With this notation

ĉ (rt−1) (12)

= arg max
c

(
c
1−α

+ β [1− c]1−αE
[
r̃1−αt ω (r̃t) |rt−1

]) 1
1−α

where the coeffi cient of the Bellman equation solves the functional equation

ω (rt)
1

1−α (13)

= max
c

(
c1−α + β [1− c]1−αE

[
r̃1−αt+1 ω (r̃t+1) |rt

]) 1
1−α

.

Thus, it is indeed true that, in the additively separable case, the consump-
tion choice that solves the problem (3) is a solution to the standard dynamic
programming problem typically solved in that case where the “Bellman Value
Function”is as defined in (11) and (13).
In this case, the riskless rate reduces to

rf (rt−1) = E∗ [r̃t |rt−1 ]
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where

E∗ [r̃t |rt−1 ] =
E
[
ω (r̃t) r̃

1−α
t |rt−1

]
E
[
ω (r̃t) r̃

−α
t |rt−1

] .
When the returns are iid,

ω

= ĉ1−α + βω [1− ĉ]1−αE
[
r̃1−α

]
= ĉ−α

where
ĉ = 1−

(
βE
[
r̃1−αt+1

]) 1
α .

In this case, the risk free rate reduces to

rf = E∗r̃t

where

E∗r̃t =
E
[
r̃1−α

]
E [r̃−α]

.

2.2 Epstein-Zin Weil Preferences

The formal descriptions of these preferences by Epstein-Zin and by Weil differ
slightly. The current exposition follows that in Section 5 of Epstein and Zin,
[12]. We begin by obtaining the Epstein-Zin value function as the solution to a
functional equation that is the analog of (13). The value function is

V (W, rt−1) = ξ (rt−1)W

where ξ (·) is a solution to the functional equation

ξ (rt−1) (14)

= max
c

[(
cρ + β [1− c]ρ

[
E
(

[ξ (r̃t) r̃t]
1−α |rt−1

)] ρ
1−α
) 1
ρ

]
.

We let

ĉ (rt−1)

= arg max
c

[(
cρ + β [1− c]ρ

[
E
(

[ξ (r̃t) r̃t]
1−α |rt−1

)] ρ
1−α
) 1
ρ

]
.

Clearly, when 1− α = ρ,(14) reduces to (13) and

ξ (rt−1) = ω (rt−1)
1

1−α .

The first order condition satisfied at ĉ (rt−1) is

[ĉ (rt−1)]
ρ−1 − β [1− ĉ (rt−1)]

ρ−1
[
E
(

[ξ (r̃t) r̃t]
1−α |rt−1

)] ρ
1−α

= 0

18



and the solution is

ĉ (rt−1) =
1

1 +

(
β
[
E
(

[ξ (r̃t) r̃t]
1−α |rt−1

)] ρ
1−α
) 1

1−ρ
. (15)

This implies that

1− ĉ (rt−1)

ĉ (rt−1)
=

1

β

([
E
(

[ξ (r̃t) r̃t]
1−α |rt−1

)] 1
1−α
) ρ
ρ−1

. (16)

Substituting the expression (15) for ĉ (rt−1) in

ξ (rt−1)

=

(
[ĉ (rt−1)]

ρ
+ β [1− ĉ (rt−1)]

ρ
[
E
(

[(ξ (r̃t) r̃t)]
1−α |rt−1

)] ρ
1−α
) 1
ρ

allows us to replace the functional equation (14) by the functional equation

ξ (rt−1) =

(
1 +

[(
β
[
E
(

[ξ (r̃t) r̃t]
1−α |rt−1

)] ρ
1−α
) 1

1−ρ
]) 1−ρ

ρ

. (17)

Clearly, (15) and (17) combine to imply

ξ (rt−1) = [ĉ (rt−1)]
ρ−1
ρ . (18)

Using (18), the expression (15) for ĉ (rt−1) becomes

ĉ (rt−1) =
1

1 +

(
β

[
E

([
[ĉ (rt)]

ρ−1
ρ r̃t

]1−α
|rt−1

)] ρ
1−α
) 1

1−ρ
, (19)

a functional equation that can be used to obtain ĉ (·) . Alternatively the func-
tional equation (17) can be used to obtain ξ (·) .

2.2.1 The Riskless Rate

To obtain the riskless rate with Epstein-Zin preferences, we once again let

x̃t (rt−1) = (r̃t − rf (rt−1))

and derive the first order condition satisfied at γ̂ = 1,where now

γ̂ = arg max
γ

[
E
(

[ξ (r̃t) (rf + γx̃t (rt−1))]
1−α |rt−1

)] 1
1−α

.
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The first order condition is

E
(
ξ (r̃t)

1−α
r̃−αt (r̃t − rf (rt−1)) |rt−1

)
= 0.

So the riskless rate is
rf (rt−1) = E∗ (r̃t |rt−1 ) (20)

where now

E∗ (r̃t |rt−1 ) =
E
(

[ξ (r̃t) r̃t]
1−α |rt−1

)
E
(
ξ (r̃t)

1−α
r̃−αt |rt−1

) . (21)

It will be noted that, because the coeffi cient ξ (rt) is a solution to the functional
equation (17), it depends on the parameter ρ that determines the intertemporal
elasticity of substitution. Thus, the equity premium is affected by ρ as well as
the risk aversion measure α. The dependence on ρ, becomes more explicit if we
use (18) and (21) to rewrite (20) as

rf (rt−1) =
E
(

[ĉ (r̃t)]
(1−α) ρ−1ρ r̃1−αt |rt−1

)
E
(

[ĉ (r̃t)]
(1−α) ρ−1ρ r̃−αt |rt−1

) .
Remark 2 If we let

f (rt |rt−1 )

denote the conditional probability density of r̃t when r̃t−1 = rt−1, then we can
redefine the "risk-neutral density" to be

f∗ (rt |rt−1 )

=
ξ (rt)

1−α
r−αt |rt−1 f (rt |rt−1 )

E
(
ξ (r̃t)

1−α
r̃−αt |rt−1

)
We again note that f∗ (rt |rt−1 ) is, indeed, a density and

f∗ (rt |rt−1 )

rf (rt−1)

is again the period t−1 price of an Arrow-Debreu claim to a dollar paid at time
t contingent on r̃t = rt. As before, these Arrow-Debreu contingent claims prices
are normalized to sum to

1

rf (rt−1)
,

the period t − 1 value of a period t dollar, when the dollar is discounted at
the riskless rate. The expectation E∗ [r̃t |rt−1 ] as redefined in (21) is again the
conditional "risk-neutral expectation" of r̃t and it is simply the expected value
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of r̃t computed using the redefined distribution f∗ (rt |rt−1 ) . The interpretation
of

E∗ [r̃t |rt−1 ]

rf (rt−1)
,

is as in Remark 1. Thus, we must again have

1 =
E∗ [r̃t |rt−1 ]

rf (rt−1)
,

and now this is true because of (20).

Remark 3 This expression (20) for the riskless rate can be shown to be equiv-
alent to equation (6.6) in Epstein and Zin, [12]. To see this note that we can
rewrite (20) as

1 =

E
(
ξ (r̃t)

1−α
r̃−αt rf (rt−1) |rt−1

)
E
(

[ξ (r̃t) r̃t]
1−α |rt−1

)


1
(1−α)

.

Also using (16) we get

β
1
ρ

(
1− ĉ (rt−1)

ĉ (rt−1)

) ρ−1
ρ

=
1[

E
(

[ξ (r̃t) r̃t]
1−α |rt−1

)] 1
(1−α)

.

Combining these expressions we get

1 = β
1
ρ

(
1− ĉ (rt−1)

ĉ (rt−1)

) ρ−1
ρ [

E
(
ξ (r̃t)

1−α
r̃−αt rf (rt−1) |rt−1

)] 1
(1−α)

We can once again use (18) and rewrite this expression to get

1 = β

[
E

((
[1− ĉ (rt−1)]Wt−1ĉ (r̃t) r̃t

ĉ (rt−1)Wt−1

)(1−α) ρ−1ρ
r̃
1−α−ρ

ρ

t rf (rt−1) |rt−1

)] ρ
1−α

which is the same as equation (6.6) in Epstein and Zin, [12]. This expression
is also that same as equation (1) in Bansal Yaron [3]

2.2.2 The Cobb Douglas Case

In this case, the Epstein-Zin value function is

V (W, rt−1) = ξ (rt−1)W

where now ξ (·) is a solution to the functional equation

ξ (rt−1)

= max
c
c(1−β) [1− c]β

[
E
(

[(ξ (r̃t) r̃t)]
1−α |rt−1

)] β
1−α
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The solution for ĉ (rt−1) is again the same as in the additively separable case.
Specifically,

ĉ (rt−1)

= arg max
c

c(1−β) [1− c]β
[
E
(

[(ξ (r̃t) r̃t)]
1−α |rt−1

)] β
1−α

= ĉ = arg max
c

c(1−β) [1− c]β

= (1− β)

The expression for the riskless rate is again given by (20) where now ξ (·) in
equation (21) is the solution to

ξ (rt−1) (22)

= (1− β)
(1−β)

ββ
[
E
(

[(ξ (r̃t) r̃t)]
1−α |rt−1

)] β
1−α

.

2.2.3 The Case of iid Consumption Growth

In this case, the solution to the functional equation simplifies to

V (W ) = ξW

where

ξ

= max
c

[(
cρ + βξρ [1− c]ρ

[
E
(

[r̃t]
1−α

)] ρ
1−α
) 1
ρ

]

and

ĉ

= arg max
c

[(
cρ + βξρ [1− c]ρ

[
E
(

[r̃t]
1−α

)] ρ
1−α
) 1
ρ

]
.

The solutions simplify to

ĉ = 1−
(
β
[
E
(
r̃1−αt

)] ρ
1−α
) 1
1−ρ

.

and

ξ =

[
1−

(
β
[
E
(
r̃1−αt

)] ρ
1−α
) 1
1−ρ
] ρ−1

ρ

.

Because the coeffi cient ξ is a constant, the expression for the riskless rate reduces
to

rf = E∗r̃t
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E∗r̃t =
E
[
r̃1−α

]
E [r̃−α]

(23)

which is not only independent of ρ, it is the same as that obtained in the addi-
tively separable case. This result is the basis for the observation in Kocherlakota
[25] that the EZW preferences have “no more explanatory power than”the ad-
ditively separable preferences. It also underlies the similar point made by Weil
[51].

3 The Infinite Period Lucas Asset Pricing Equi-
librium

3.1 Some Simple Introductory Results

We denote the Lucas tree dividend at time t by st. It is the realization of a
random variable s̃t. Between periods t and t + 1 the dividend grows at rate gt
which is the realization of the random variable g̃t.We thus, have

s̃t+1 = g̃tst.

We assume that the dividend growth rate process is markov and that the tran-
sition probabilities Pr (g̃t > 0 |gt−1 ) are constant over time. We also assume
that

Pr (g̃t > 0 |gt−1 ) = 1.

Let P (st) be the period t price of the Lucas tree. Then the return on savings
invested at time t is

r (st+1, st) =
st+1 + P (st+1)

P (st)
. (24)

In equilibrium, wealth in period t is

Wt (st) = st + P (st) ,

consumption in period t is st and savings in period t is P (st) .
When, for all t, ct = ĉ (gt−1) , then

ĉ (gt−1) =
st

st + P (st)

and

1− ĉ (gt−1) =
P (st)

st + P (st)
.

This implies that the price dividend ratio is

P (st)

st
=

1− ĉ (gt−1)

ĉ (gt−1)
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and that

P (st) =
1− ĉ (gt−1)

ĉ (gt−1)
st. (25)

Substituting (25) in (24) we get that

rt = r (st+1, st) (26)

=
st+1 + P (st+1)

P (st)

=
st+1 + 1−ĉ(gt)

ĉ(gt)
st+1

1−ĉ(gt−1)
ĉ(gt−1)

st

=
ĉ (gt−1)

ĉ (gt) [1− ĉ (gt−1)]

st+1
st

=
ĉ (gt−1)

[1− ĉ (gt−1)]

gt
ĉ (gt)

Note that (26) implies that the expected return on the Lucas tree each period
is

E [r̃t |gt−1 ] =

[
ĉ (gt−1)

[1− ĉ (gt−1)]

]
E

[
g̃t

ĉ (g̃t)
|gt−1

]
. (27)

It should be pointed out that the equilibrium results just described are all
a consequence of the assumptions made about the growth rate process and the
fact that, for all t, ct = ĉ (gt−1) . They do not depend on any other assumption
about preferences. This will imply that these results apply when we assume
consistent planning by a forward looking expected utility maximizing consumer
as well as in the case of Epstein-Zin and Weil preferences.

3.1.1 The Case of i.i.d. Returns

As noted, this is the case dealt with in Kihlstrom [22]. In each period t, ct,= ĉ
where ĉ is a best response to the fact that for all, τ > 0, ct+τ ,= ĉ.Thus, for all
t,

ĉ =
st

st + P (st)

and

1− ĉ =
P (st)

st + P (st)
.

This implies that the price dividend ratio is constant and is given by

P (st)

st
=

1− ĉ
ĉ

.

As a result (25) becomes

P (st) =
1− ĉ
ĉ

st (28)
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and (26) reduces to

rt = r (st+1, st) =
gt

[1− ĉ] (29)

Thus, in this case, the expected return on the Lucas tree each period is simply

Er̃t =
Eg̃t

[1− ĉ] . (30)

Also (28) can be rewritten as

P (st) =
1

1
1−ĉ − 1

st. (31)

Using (29), (31) reduces to

P (st) =
Eg̃

Er̃ − Eg̃ st. (32)

Thus, in this case, the equilibrium value of the Lucas tree at time t is the present
value of a dividend stream that starts at st and grows at the expected rate Eg̃.
The discount rate used to compute the present value is the expected return on
the Lucas tree.

3.2 The "Consistent Planning" Approach with "Forward

Looking" von Neumann Morgenstern Preferences

Substituting

rt =
ĉ (gt−1)

ĉ (gt) [1− ĉ (gt−1)]
gt (33)

in the expression (5), we get

v ({rt+τ , ĉ (rt+τ−1)}∞τ=1) = [ĉ (gt)]
ρ
θ ({gt+τ}∞τ=1) (34)

where

θ ({gt+τ}∞τ=1) =

[
1 +

∞∑
τ=1

βτ
τ∏
s=1

gρt+s

]
. (35)

Using (34), the maximand in (3) becomes

E
[
(cρ + β [1− c]ρ r̃ρt ṽ)

1−α
ρ |rt−1

]
(36)

= E

[(
cρ + β [1− c]ρ

[
ĉ (gt−1)

1− ĉ (gt−1)

]ρ
g̃ρt θ̃

) 1−α
ρ

|gt−1

]

where
θ̃ = θ ({g̃t+τ}∞τ=1) . (37)
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Remark 4 To interpret (35), note that

[θ ({gt+τ}∞τ=1)]
1
ρ =

[
1 +

∞∑
τ=1

βτ
τ∏
s=1

gρt+s

] 1
ρ

is the utility of the consumption stream

{Ct+1+τ}∞τ=0 =

{
1,

{
τ∏
s=1

gt+s

}∞
τ=1

}
.

This is the consumption stream obtained when consumption at time t + 1 is
one and the subsequent consumption growth path is {gt+τ}∞τ=1 . The utility is
computed using the homogeneous of the degree one representation.
Also note that

θ ({gt−1+τ}∞τ=1) = 1 + gρt θ ({gt+τ}∞τ=1) .

The first order condition satisfied at

ĉ (gt−1)

= arg max
c

(
E

[(
cρ + β [1− c]ρ

[
ĉ (gt−1)

1− ĉ (gt−1)

]ρ
g̃ρt θ̃

) 1−α
ρ

|gt−1

]) 1
1−α .

.

is

E

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1

(
1− β

[
ĉ (gt−1)

1− ĉ (gt−1)

]
g̃ρt θ̃

)
|gt−1

]
= 0.

Solving this first order condition, we get the following expression for the price
dividend ratio

P (st)

st
=

[
1− ĉ (gt−1)

ĉ (gt−1)

]
(38)

=

βE

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1

g̃ρt θ̃ |gt−1
]

E

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1 |gt−1

] .

Thus,

ĉ (gt−1) =

E

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1 |gt−1

]
E

[(
1 + βg̃ρt θ̃

) 1−α
ρ |gt−1

] (39)

and

1− ĉ (gt−1) =

βE

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1

g̃ρt θ̃ |gt−1
]

E

[(
1 + βg̃ρt θ̃

) 1−α
ρ |gt−1

] . (40)
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3.2.1 The Riskless Rate and The Equity Premium

The equilibrium return on a riskless asset in zero net supply is rf (gt−1) . It’s
obtained as the solution to the first order condition

E

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1

g̃ρ−1t θ̃

[
ĉ (gt−1)

[1− ĉ (gt−1)]
g̃t − rf (gt−1)

]
|gt−1

]
= 0,

which is the same as (6) when we use (33), (34), (35) and (37). Solving the
first order condition for rf (gt−1) , we get

rf (gt−1) =
ĉ (gt−1)

[1− ĉ (gt−1)]

E

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1

g̃ρt θ̃ |gt−1
]

E

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1

g̃ρ−1t ĉ (g̃t) θ̃ |gt−1
] . (41)

The expression (41) is the same as (7) when we use(8), (33), (34), (35) and
(37).
If we let

E∗
[

g̃t
ĉ (g̃t)

|gt−1
]

=

E

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1 g̃ρt

ĉ(g̃t)
ĉ (g̃t) θ̃ |gt−1

]
E

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1

g̃ρ−1t ĉ (g̃t) θ̃ |gt−1
] , (42)

we can rewrite the expression for the riskless rate as

rf (gt−1) =
ĉ (gt−1)

[1− ĉ (gt−1)]
E∗
[

g̃t
ĉ (g̃t)

|gt−1
]
. (43)

Since

E [r (g̃t) |gt−1 ] =
ĉ (gt−1)

[1− ĉ (gt−1)]
E

[
g̃t

ĉ (g̃t)
|gt−1

]
(44)

we have

E [r (g̃t) |gt−1 ]

rf (gt−1)
=

E
[

g̃t
ĉ(g̃t)
|gt−1

]
E∗
[

g̃t
ĉ(g̃t)
|gt−1

] . (45)

We can also rewrite the expression (41) for rf (gt−1) , as

rf (gt−1) =

E

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1 |gt−1

]
βE

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1

g̃ρ−1t ĉ (g̃t) θ̃ |gt−1
] (46)
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Then the expression for the equity premium becomes

E [r (g̃t) |gt−1 ]− rf (gt−1) (47)

=
ĉ (gt−1)

[1− ĉ (gt−1)]

(
E

[
g̃t

ĉ (g̃t)
|gt−1

]
− E∗

[
g̃t

ĉ (g̃t)
|gt−1

])
=

(
ĉ (gt−1)

[1− ĉ (gt−1)]

)
E

[
g̃t

ĉ (g̃t)
|gt−1

]

−
E

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1 |gt−1

]
βE

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1

g̃ρ−1t ĉ (g̃t) θ̃ |gt−1
] .

3.2.2 The Cobb Douglas Case

In this case, we have noted that

ĉ (rt−1)

= (1− β) .

Thus, the expression (38) for the price dividend ratio reduces to

P (st)

st
=

[
1− ĉ
ĉ

]
=

β

(1− β)
.

Also (26) reduces to

Er̃t =
E [g̃t |gt−1 ]

β
.

The expression (10) for the riskless rate becomes

rf (gt−1) =
E∗ [g̃t |gt−1 ]

β

where

E∗ [g̃t |gt−1 ] =

E

( ∞∏
τ=1

g̃
(1−α)βτ
t+τ−1 |gt−1

)
E

(
g̃−1t

∞∏
τ=1

g̃
(1−α)βτ
t+τ−1 |gt−1

) .
Thus,

rf (gt−1) =

E

( ∞∏
τ=1

g̃
(1−α)βτ
t+τ−1 |gt−1

)
βE

(
g̃−1t

∞∏
τ=1

g̃
(1−α)βτ
t+τ−1 |gt−1

) .
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3.2.3 Some Special Cases

In this section, we briefly return to the special cases of i.i.d. returns and of
additively separable preferences. Here when the returns are i.i.d. it is because
consumption growth is i.i.d.

The Case of iid Consumption Growth Now (38) reduces to

P (st)

st
=

[
1− ĉ
ĉ

]

=

βE

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1

g̃ρt θ̃

]
E

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1

] .

Thus, (39) and (40) reduce to

ĉ =

E

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1

]
E

[(
1 + βg̃ρt θ̃

) 1−α
ρ

]
and

1− ĉ =

βE

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1

g̃ρt θ̃

]
E

[(
1 + βg̃ρt θ̃

) 1−α
ρ

] .

In Kihlstrom [22] the following proposition was proved. This generalizes a result
obtained in Kihlstrom and Mirman [23].

Proposition 5 1 − ĉ is a decreasing (increasing) function of α if ε = 1
1−ρ >

(<) 1.

We then have the obvious corollary.

Corollary 6

Er̃t =
Eg̃t

[1− ĉ]

is an increasing (decreasing) function of α if ε = 1
1−ρ > (<) 1.

In this case, the riskfree rate is

rf =
E∗g̃t

[1− ĉ]
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where

E∗g̃t =

E

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1

g̃ρt θ̃

]
E

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1

g̃ρ−1t θ̃

] . (48)

Thus, (45) simplifies to
Er̃t
rf

=
Eg̃t
E∗g̃t

.

Also (46) reduces to

rf =

E

[(
1 + βg̃ρt θ̃

) 1−α
ρ

]
βE

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1

g̃ρ−1t θ̃

] . (49)

So the expression (47) for the equity premium becomes

Er̃t − rf

=

(
1

[1− ĉ]

)
(Eg̃t − E∗g̃t)

=

 E

[(
1 + βg̃ρt θ̃

) 1−α
ρ

]
βE

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1

g̃ρt θ̃

]
Eg̃t

−
E

[(
1 + βg̃ρt θ̃

) 1−α
ρ

]
βE

[(
1 + βg̃ρt θ̃

) 1−α
ρ −1

g̃ρ−1t θ̃

]
In the Cobb-Douglas case, the expression for the riskless rate becomes

rf =
E
(
g̃
(1−α)β
t

)
βE
(
g̃
(1−α)β−1
t

)
So the equity premium becomes

Er̃t − rf =
Eg̃t
β
−

E
(
g̃
(1−α)β
t

)
βE
(
g̃
(1−α)β−1
t

)
The Additively Separable Case Using the expression (34), and the condi-
tion

1− α = ρ
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that holds in the additively separable case, we observe that (36) becomes

ĉ (gt) (50)

= arg max
c

(
c1−α + β [1− c]1−α

[
ĉ (gt)

1− ĉ (gt)

]1−α
E
[
g̃1−αt+1 θ̃ |gt

]) 1
1−α .

where θ̃ is defined by (37) and (35) also holds.

Remark 7 If we define

ω (gt) = [ĉ (gt)]
1−α

ϕ (gt) (51)

where

ϕ (gt) = E [θ ({g̃t+τ}∞τ=1) |gt ] (52)

= 1 + E

[( ∞∑
τ=1

βτ
τ∏
s=1

g̃1−αt+s

)
|gt

]
= 1 + βE

[
g̃1−αt+1 ϕ (g̃t+1) |gt

]
.

Then, the maximand in (50) becomes

c1−α + β [1− c]1−α
[

ĉ (gt)

1− ĉ (gt)

]1−α
E
[
g̃1−αt+1 θ̃ |gt

]
= c1−α + β [1− c]1−α

[
ĉ (gt)

1− ĉ (gt)

]1−α
E
[
g̃1−αt+1 ϕ (g̃t+1) |gt

]
= c

1−α
+ β [1− c]1−αE

[
r̃1−αt ω (g̃t+1) |gt

]
.

where r̃t is as in (26). Thus, when we use the notation introduced in (26), (51)
and (52), the maximand in (50) reduces to the maximand in (13) as it must.

In this case, the expression (38) for the price dividend ratio reduces to

P (st)

st
=

[
1− ĉ (gt)

ĉ (gt)

]
(53)

= βE
[
g̃1−αt+1 ϕ (g̃t+1) |gt

]
.

As a consequence, (39) and (40) reduce to

ĉ (gt) =
1

1 + βE
[
g̃1−αt+1 ϕ (g̃t+1) |gt

] (54)

=
1

ϕ (gt)

and

1− ĉ (gt) =
βE
[
g̃1−αt+1 ϕ (g̃t+1) |gt

]
1 + βE

[
g̃1−αt+1 ϕ (g̃t+1) |gt

] . (55)
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Also (42)

E∗
[

g̃t+1
ĉ (g̃t+1)

|gt
]

=
E
[

g̃t+1
ĉ(g̃t+1)

g̃−αt+1ĉ (gt+1)ϕ (g̃t+1) |gt
]

E
[
g̃−αt ĉ (g̃t+1)ϕ (g̃t+1) |gt

] (56)

=
E
[
g̃1−αt+1 ϕ (g̃t+1) |gt

]
E
[
g̃−αt |gt

] .

Using (53) and (56) in (43) we get

rf (gt) =
1

βE
[
g̃−αt+1 |gt

] . (57)

We also have

E

[
g̃t+1

ĉ (g̃t+1)
|gt
]

= E [g̃t+1ϕ (g̃t+1) |gt ]

which together with (53) implies that (44) reduces to

E [r̃ (gt, g̃t+1) |gt ] =
E [g̃t+1ϕ (g̃t+1) |gt ]
βE
[
g̃1−αt+1 ϕ (g̃t+1) |gt

] .
We then have expressions for the equity premium. Specifically,

E [r̃ (gt, g̃t+1) |gt ]
rf (gt)

=
E
[

g̃t+1
ĉ(g̃t+1)

|gt
]

E∗
[

g̃t+1
ĉ(g̃t+1)

|gt
] (58)

=
E [g̃t+1ϕ (g̃t+1) |gt ]E

[
g̃−αt+1 |gt

]
E
[
g̃1−αt+1 ϕ (g̃t+1) |gt

]
and

E [r̃ (gt, g̃t+1) |gt ]− rf (gt)

=

[
E [g̃t+1ϕ (g̃t+1) |gt ]
βE
[
g̃1−αt+1 ϕ (g̃t+1) |gt

]]− 1

βE
[
g̃−αt+1 |gt

]
The Case of iid Consumption Growth and Additively Separable Pref-
erences In this case (53) becomes simply

P (st)

st
=

[
1− ĉ
ĉ

]
= βE

[
g̃1−αt θ̃

]
.
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where

βE
[
g̃1−αt θ̃

]
=

∞∑
τ=1

βτ
τ∏
s=1

Eg̃1−αt+s

= .

∞∑
τ=1

[
βEg̃1−α

]τ
=

βEg̃1−α

1− βEg̃1−α .

Combining these observations (53) becomes

P (st)

st
=

[
1− ĉ
ĉ

]
=

βEg̃1−α

1− βEg̃1−α .

Also (54) and (55) reduce to

ĉ = 1− βEg̃1−α

and
1− ĉ = βEg̃1−α.

Also (48) and (56) reduce to

E∗g̃ =
Eg̃1−α

Eg̃−α

So the expressions (49) and (57) for the riskless rate simplify to

rf =
1

[1− ĉ]E
∗g̃

=
1

βEg̃−α
.

This implies that

Er̃

rf
=

Eg̃

E∗g̃

=
Eg̃Eg̃1−α

Eg̃−α

and the equity premium is

Er̃ − rf

=
Eg̃

βEg̃1−α
− 1

βEg̃−α
.

Kocherlakota has noted that the following result holds. The result and its proof
appear in Kihlstrom [22].
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Proposition 8

E∗g̃ =

E

[(
1 + βg̃ρθ̃

) 1−α
ρ −1

g̃ρθ̃

]
E

[(
1 + βg̃ρθ̃

) 1−α
ρ −1

g̃ρ−1θ̃

] < Eg̃1−α

Eg̃−α

Iff

ε =
1

1− ρ <
1

α

This implies that
Er̃

rf
=

Eg̃

E∗g̃

is larger in the non-additively separable case than in the additively separable case
when and only when the elasticity of substitution is larger in the non-additively
separable case than in the additively separable case with the same α.

3.3 Epstein-Zin Weil Preferences

Substituting (26) in the functional equation (19) yields

ĉ (gt−1) =
1

1 + β

[
E

([(
g̃1−αt

[ĉ(g̃t)]
1−α
ρ

)]
|gt−1

)] ρ
1−α

(59)

and
ĉ (gt−1)

[1− ĉ (gt−1)]
=

1

β

[
E

([(
g̃1−αt

[ĉ(g̃t)]
1−α
ρ

)]
|gt−1

)] ρ
1−α

(60)

Using (18), (59) becomes

ξ (gt−1) =
1[

1 + β
[
E
([
ξ (g̃t)

1−α
1−ρ g̃1−αt

]
|gt−1

)] ρ
1−α
] ρ−1

ρ

which is the form taken by the functional equation (17) in the Lucas asset pricing
equilibrium.

3.3.1 The Riskless Rate and The Equity Premium

Again using (26) in the expression (20) for the riskless rate, the expression
becomes

rf (gt) =
ĉ (gt)

[1− ĉ (gt)]
E∗
[

g̃t+1
ĉ (g̃t+1)

|gt
]

(61)
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where

E∗
[

g̃t+1
ĉ (g̃t+1)

|gt
]

=

E

([
ξ (g̃t)

g̃t
ĉ(g̃t)

]1−α
|gt−1

)
E

(
[ξ (g̃t)]

1−α
[

g̃t
ĉ(g̃t)

]−α
|gt−1

) (62)

Using (18), (62) and (60) the expression (61) for the riskless rate becomes

rf (gt−1) =
E
(

[ĉ (g̃t)]
− 1−α

ρ g̃1−αt |gt−1
)1− ρ

1−α

βE
(

[ĉ (g̃t)]
− 1−ρ−α

ρ g̃−αt |gt−1
) (63)

Also (60) implies that

Er̃t (gt−1) =
ĉ (gt)

[1− ĉ (gt)]
E

[
g̃t

ĉ (g̃t)
|gt−1

]
(64)

=
E
[

g̃t
ĉ(g̃t)
|gt−1

]
β
[
E
(

[ĉ (g̃t)]
− 1−α

ρ g̃1−αt |gt−1
)] ρ

1−α
.

We, therefore, have

Er̃t (gt−1)

rf (gt−1)
=

E
[

g̃t
ĉ(g̃t)
|gt−1

]
E

(
[ξ (g̃t)]

1−α
[

g̃t
ĉ(g̃t)

]−α
|gt−1

)
E

([
ξ (g̃t)

g̃t
ĉ(g̃t)

]1−α
|gt−1

)

=
E
[

g̃t
ĉ(g̃t)
|gt−1

]
E
(

[ĉ (g̃t)]
− 1−ρ−α

ρ g̃−αt |gt−1
)

E
(

[ĉ (g̃t)]
− 1−α

ρ g̃1−αt |gt−1
) .

The equity premium is

Er̃t (gt−1)− rf (gt−1) (65)

=
E
[

g̃t
ĉ(g̃t)
|gt−1

]
β
[
E
(

[ĉ (g̃t)]
− 1−α

ρ g̃1−αt |gt−1
)] ρ

1−α

−
E
(

[ĉ (g̃t)]
− 1−α

ρ g̃1−αt |gt−1
)1− ρ

1−α

βE
(

[ĉ (g̃t)]
− 1−ρ−α

ρ g̃−αt |gt−1
)

3.3.2 The Cobb-Douglas Case

Since
ĉ (gt−1) = (1− β) ,
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Er̃t =
E [g̃t |gt−1 ]

β

and (22) becomes

ξ (gt−1)

= (1− β)
(1−β)

[
E
(

[(ξ (g̃t) g̃t)]
1−α |gt−1

)] β
1−α

.

Also (21) reduces to

E∗ (r̃t |gt−1 ) =
E
(

[ξ (g̃t) g̃t]
1−α |gt−1

)
βE
(
ξ (g̃t)

1−α
g̃−αt |gt−1

)
and the expression for the riskless rate becomes

rf (gt−1) =
E∗ (g̃t |gt−1 )

β

where

E∗ (g̃t |gt−1 ) =
E
(

[ξ (g̃t) g̃t]
1−α |gt−1

)
E
(
ξ (g̃t)

1−α
g̃−αt |gt−1

) .
3.3.3 The Case of iid Consumption Growth

In this case, (59) becomes

ĉ =
1

1 + βĉ−1 [E (g̃1−α)]
ρ

1−α

and the solution is
ĉ = 1− β

[
E
(
g̃1−α

)] ρ
1−α . (66)

Using (29), the expression (23) for the riskless rate reduces to

rf =
1

[1− ĉ]E
∗g̃ (67)

where

E∗g̃ =
E
(
g̃1−α

)
βE (g̃−α)

(68)

Taken together, (66), (67) and (68) imply that the riskless rate is

rf =

[
E
(
g̃1−α

)]1− ρ
1−α

βE (g̃−α)
.

36



Also, (30) and (67) imply that

Er̃

rf
=

Eg̃

E∗g̃

=
Eg̃Eg̃1−α

Eg̃−α

and this expression is therefore the same in the case of EZW preferences as in
the case of additively separable preferences.

4 Calibrations

In the calibrations, we initially follow exactly the approach taken by Mehra-
Prescott [40] in Section 4 of their paper. That is we assume that two rates of
real consumption growth are possible. The high growth rate is

gH = 1.054 (69)

and the low growth rate is
gL = .982. (70)

The transition probabilities are

pHH (71)

= Pr (g̃t = gH |gt−1 = gH )

= Pr (g̃t = gL |gt−1 = gL )

= pLL

= .43

and

pLH (72)

= Pr (g̃t = gL |gt−1 = gH )

= Pr (g̃t = gH |gt−1 = gL )

= pHL

= .57

Thus, in the steady state stationary distribution

Pr (g̃ = gH) = .5,

Eg̃ = 1.018,

σg̃ = .036

and the serial correlation of the growth rates is −.14. Mehra and Prescott
note that "The parameters were selected so that the average growth rate of per
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capita consumption, the standard deviation of the growth rate of per capita
consumption and the first-order serial correlation of this growth rate, all with
respect to the model’s stationary distribution, matched the sample values for
the U.S. economy between 1889-1978. The sample values for the U.S. economy
were 0.018, 0.036 and -0.14, respectively."1 The data used to obtain these sample
values is described in Section 3 of their paper. Mehra and Prescott assume that,
in the Lucas asset pricing model, the representative consumer’s preferences are,
in our terminology, additively separable. In the notation of their paper, as in
ours when the utility function is additively separable, α measures the relative
risk aversion as well as the inverse of the intertemporal elasticity of substitution
and β is the discount rate. Mehra and Prescott then assume that in the Lucas
model consumption growth is as specified in (69), (70) , (71) and (72) and they
"search for parameters α and β for which the model’s averaged risk-free rate
and equity risk premium match those observed for the U.S. economy over this
ninety-year period."2 They note that "The average real return on relatively
riskless, short-term securities over the 1889-1978 period was 0.80 percent."3

They also note that "The average real return on the Standard and Poor’s 500
Composite Stock Index over the ninety years considered was 6.98 percent per
annum. This leads to an average equity premium of 6.18 percent (standard
error 1.76 percent)."4

The simulation results for the riskless rate, equation (46), and the equity
premia, equation (47), obtained by assuming consistent planning by consumers
with forward looking von Neuman Morgenstern preferences are as described
in Tables 1 and 2. Note that in these tables the diagonals correspond to the
additively separable cases in which α = 1 − ρ. When α = 15 = 1 − ρ, σ =
1/15 = .067 and the simulated equity premium equals 4.9% . For this case,
the simulated riskless rate is, however, 17%. If we drop the assumption that
α = 1 − ρ, we can raise the risk aversion measure to α = 25 while keeping the
elasticity of substitution at a higher level of σ = .5 by choosing ρ = −1. In that
case we get a lower simulated equity premium of 2.6% but the simulated riskless
rate is 3%. In the Cobb-Douglas case, for which ρ = 0 and σ = 1, the equity
premium falls to 2.5% and the riskless rate is also 2.5%.

Table1
Riskfree Rates:

Computed Using Equation (46) and β = .97
Consistent Planning with Forward Looking von Neuman Morgenstern

Preferences
1Mehra-Prescott [40], p. 154.
2Mehra-Prescott [40], p. 154.
3Mehra-Prescott [40], p. 155.
4Mehra-Prescott [40], p. 155-6.
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ρ 1/3 0 −1 −4 −9 −14 −19 −24
σ 1.5 1 .5 .2 .1 .067 .05 .04
α
2 1.0414 1.0471 1.0645 1.1178 1.2083 1.2969 1.3806 1.4583
5 1.0386 1.0439 1.0593 1.1069 1.1876 1.2674 1.3426 1.4587
10 1.0347 1.0386 1.0506 1.0889 1.1544 1.2182 1.278 1.3314
15 1.0296 1.0341 1.0438 1.0735 1.1223 1.1719 1.2179 1.2599
20 1.027 1.0296 1.0368 1.0574 1.0939 1.1296 1.162 1.1912
25 1.024 1.0247 1.0304 1.0454 1.0671 1.0899 1.1116 1.1297

Table 2
Equity Premia:

Computed Using Equation (47) and β = .97
Consistent Planning with Forward Looking von Neuman Morgenstern

Preferences

ρ 1/3 0 −1 −4 −9 −14 −19 −24
σ 1.5 1 .5 .2 .1 .067 .05 .04
α
2 .0022 .0024 .0029 0.005 .0112 .0217 .0347 .0458
5 .0055 .0056 0.0066 0.0098 0.0177 .0277 0.0398 0.0582
10 .0101 .011 0.0128 0.0173 0.0269 0.0395 0.0543 0.0718
15 .015 .0154 0.0194 .0233 0.0362 0.0492 0.0653 0.0804
20 .019 .02 0.0219 0.0320 0.0424 0.0556 0.072 0.0913
25 .023 .0249 0.026 .0325 0.0474 0.0611 0.08 0.0976

For purposes of comparison we have also computed (using a calculation de-
scribed in the next section) the riskless rates and the equity premia assuming
EZW preferences. With EZW preferences the riskless rate and the equity premia
can be easily computed when there are only two possible consumption growth
rates. The results of these computations appear in Tables 3 and 4. For the
case, in which α = 25, ρ = −1 and σ = .5, EZW preferences yield an equity
premium of 2.7% and a riskless rate of 2.9%. For the Cobb Douglas case in
which α = 25, ρ = 0 and σ = 1, the EZW equity premium is 2.4% and the
riskless rate is 2.5%. For these cases the EZW riskless rates and equity premia
are virtually the same as those obtained with consistent planning and forward
looking von Neumann Morgenstern preferences. In fact, it is somewhat strik-
ing that, for all of the parameter pairs reported, similar results are obtained
from the EZW preferences and from the assumption of consistent planning with
forward looking von Neumann Morgenstern preferences.

Table 3
Riskfree Rates:
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Computed Using Equation (63) and β = .97
EZW Preferences

ρ 1/3 0 −1 −4 −9 −14 −19 −24
σ 1.5 1 .5 .2 .1 .067 .05 .04
α
2 1.0413 1.0471 1.0645 1.1186 1.2153 1.3210 1.4369 1.5639
5 1.0386 1.0437 1.0591 1.1069 1.1917 1.2836 1.3834 1.4918
10 1.0343 1.0383 1.0506 1.0882 1.1544 1.2250 1.3005 1.3815
15 1.0303 1.0334 1.0426 1.0709 1.1201 1.1719 1.2266 1.2845
20 1.0268 1.0289 1.0355 1.0553 1.0894 1.1250 1.1620 1.2008
25 1.0238 1.0252 1.0292 1.0415 1.0624 1.0841 1.1065 1.1297

Table 4
Equity Premia:

Computed Using Equation (43) and β = .97
EZW Preferences

ρ 1/3 0 −1 −4 −9 −14 −19 −24
σ 1.5 1 .5 .2 .1 .067 .05 .04
α
2 .0023 .0024 .0029 0.0047 .0082 .0125 .0174 .0227
5 .0055 .0058 0.0067 0.0098 0.0158 .0225 0.0299 0.0379
10 0.0106 .0011 0.0128 0.0179 0.0272 0.0373 0.0482 0.0598
15 0.0154 .0161 0.0183 0.0250 0.0368 0.0495 0.0628 0.0769
20 0.0197 .0205 0.0231 0.0309 0.0444 0.0587 0.0735 0.0890
25 0.0234 .0243 0.0271 0.0355 0.0500 0.0650 0.0805 0.0965

4.1 Computing the Riskless Rate and the Equity Pre-
mium with Epstein-Zin, Weil Preferences

When the consumer has EZW preferences and only two rates of real consumption
growth are possible, the riskless rate and the equity premium can be computed
quite simply . In particular we let

ĉ (gt−1) =

{
ĉ (gH) , if gt−1 = gH
ĉ (gL) , if gt−1 = gL

.

Then (59) becomes

ĉ (gH) =
1

1 + β

[
pHH

[(
gH

[ĉ(gH)]
1
ρ

)]1−α
+ pLH

[(
gL

[ĉ(gL)]
1
ρ

)]1−α] ρ
1−α

(73)
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when gt−1 = gH and

ĉ (gL) =
1

1 + β

[
pHL

[(
gH

[ĉ(gH)]
1
ρ

)]1−α
+ pLL

[(
gL

[ĉ(gL)]
1
ρ

)]1−α] ρ
1−α

(74)

when gt−1 = gL.
If we let

x =
ĉ (gH)

ĉ (gL)

then (73) becomes

ĉ (gH) = 1− β
[
pHHg

1−α
H + pLHx

1−α
ρ g1−αL

] ρ
1−α

(75)

and (74) becomes

ĉ (gL) = 1− β
[
pLLg

1−α
L + pHLx

α−1
ρ g1−αH

] ρ
1−α

. (76)

Then (75) and (76) combine to imply that

x =
1− β

[
pHHg

1−α
H + pLHx

1−α
ρ g1−αl

] ρ
1−α

1− β
[
pLLg

1−α
L + pHLx

α−1
ρ g1−αH

] ρ
1−α

.

This can be solved for x and the result can be substituted in (75)and (76) to
get ĉ (gH) and ĉ (gL) . We can then use ĉ (gH) and ĉ (gL) and (63) to compute
rf (gH) and rf (gL) where for α = H and α = L,

rf (gα) =
E
(

[ĉ (g̃t)]
− 1−α

ρ g̃1−αt |gt−1 = gα

)1− ρ
1−α

βE
(

[ĉ (g̃t)]
− 1−ρ−α

ρ g̃−αt |gt−1 = gα

) .

Similarly we can use ĉ (gH) , ĉ (gl) and (65) to compute Er̃t (gH) and Er̃t (gL)
where for α = H and α = L,

Er̃t (gα) =
E
[

g̃t
ĉ(g̃t)
|gt−1 = gα

]
β
[
E
(

[ĉ (g̃t)]
− 1−α

ρ g̃1−αt |gt−1 = gα

)] ρ
1−α

.

In the steady state,
rf = .5 (rf (gH) + rf (gL))

and
Er̃t = .5 (Er̃t (gH) + Er̃t (gL)) .
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4.1.1 The Cobb-Douglas Case

In this case, we let

ξ (gt−1) =

{
ξ (gH) , if gt−1 = gH
ξ (gL) , if gt−1 = gL

.

substituting gt−1 = gH and gt−1 = gL in

ξ (gt−1)

= (1− β)
(1−β)

[
E
(

[(ξ (g̃t) g̃t)]
1−α |gt−1

)] β
1−α

we get

ξ (gH)
1−α
β = [1− β]

(1−β)(1−α)
β

[
[ξ (gH) gH ]

1−α
pHH + [ξ (gL) gL]

1−α
pLH

]
(77)

and

ξ (gL)
1−α
β = [1− β]

(1−β)(1−α)
β

[
[ξ (gH) gH ]

1−α
pHL + [ξ (gL) gL]

1−α
pLL

]
. (78)

Letting

x =

(
ξ (gH)

ξ (gL)

)1−α
(77) and (78) combine to imply that

x
1
β =

xg1−αH pHH + g1−αL pLH

xg1−αH pHL + g1−αL pLL
.

Then (77) implies that

ξ (gH)
1−α

= [1− β]
1−α [

g1−αH pHH + x−1g1−αL pLH
] β
1−β

and (78) implies that

ξ (gL)
1−α

= [1− β]
1−α [

xg1−αH pHL + g1−αL pLL
] β
1−β .

Using these expressions, the risk free rate

rf (gt−1) =
E∗ (g̃t |gt−1 )

β

can be obtained for gt−1 = gH and gt−1 = gL by computing

E∗ (g̃t |gt−1 ) =
E
(

[ξ (g̃t) g̃t]
1−α |gt−1

)
βE
(
ξ (g̃t)

1−α
g̃−αt |gt−1

)
for each of these two possible gt−1 values.
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4.2 Adjusting for Leverage

In the section of their paper [40] entitled "The effects of firm leverage", Mehra
and Prescott point out that

"The security priced in our model does not correspond to the
common stocks traded in the U.S. economy. In our model there is
only one type of capital, while in an actual economy there is virtually
a continuum of capital types with widely varying risk characteristics.
The stock of a typical firm traded in the stock market entitles its
owner to the residual claim on output after all other claims including
wages have been paid. The share of output accruing to stockholders
is much more variable than that accruing to holders of other claims
against the firm. Labor contracts, for instance, may incorporate
an insurance feature, as labor claims on output are in part fixed,
having been negotiated prior to the realization of output. Hence, a
disproportionate part of the uncertainty in output is probably borne
by equity owners.
The firm in our model corresponds to one producing the entire

output of the economy. Clearly, the riskiness of the stock of this firm
is not the same as that of the Standard and Poor’s 500 Composite
Stock Price Index."5

We can adjust for the fact that the firms whose shares enter the S & P 500
Index are levered by computing the equity premium of a levered investment
in the Lucas tree whose return we have calculated. In doing this we make an
adjustment for leverage that is consistent with one made in Abel, [2]. In his
paper, Abel calibrated a version of the continuous time Lucas asset pricing model
in which consumers preferences have a “catching up with the Jones feature"
which had been introduced in an earlier paper Abel, [1]. In the simple two
state discrete time model calibrated here the adjustment for leverage is done by
letting the return on the levered firm’s equity be given by rL where

rL =
D + E

E
rU −

D

E
rD,

rU is the return on the unlevered firm, rD is the return on the firm’s debt, D
is the market value of the firm’s outstanding debt and E is the market value of
the firm’s outstanding equity. If we assume that the risk of default on a levered
investment in the Lucas tree is zero we can let

rD = rF .

Thus, the return on a levered investment in the Lucas tree is

rL = rU +
D

E
(rU − rF )

5Mehra-Prescott [40], p157.
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while the equity premium paid by this levered investment is

rL − rF =

(
D + E

E

)
(rU − rF ) .

Abel [2] noted that Masulis [36] had reported market debt to value ratios for
US corporations in the range of .13 to .44 during the period from 1929 to
1986. We noted earlier that when we assume consistent planning by consumers
with forward looking von Neuman Morgenstern preferences and let α = 25 and
σ = .5, we get a simulated unlevered equity premium of 2.6% and a simulated
riskless rate of 3%. With a debt to value ratio of .4, the levered equity premium
is

2.6%

.6
= 4.33%.

When α = 25 and σ = 1, the unlevered equity premium was 2.5% and the
riskless rate was also 2.5%. With a debt to value ratio of .4 the levered equity
premium is

2.5%

.6
= 4.2%.

As noted EZW preferences yield virtually the same results in both of these cases.

5 Summary

This paper extends the generalized expected utility model of the 2009 Journal
of Mathematical Economics paper, [22], to the case in which the returns to in-
vestment follow a Markov process. Using this generalization of the additively
separable model, we derive the equity premium in a Lucas asset pricing equi-
librium for the case in which consumption growth is Markov. The derivation
of the equity premium in our earlier paper restricted attention to the case in
which consumption growth was i.i.d. The extension to markov consumption
growth makes it possible to extend the Mehra and Prescott, [40] calibration
to the non-additively separable case. With additively separable preferences an
equity premium close to the historical premium of just over 6% can be obtained
with a relative risk aversion measure of 15. But in the additively separable case,
the elasticity of substitution is the inverse of the relative risk aversion. So in
that case, when the relative risk aversion is high, the elasticity of subsitution is,
of necessity, low. As a consequence with additively separable preferences and a
relative risk aversion measure of 15, the calibrated riskfree rate is 17% which is
well above the historical average. When we calibrate the generalized expected
utility model, riskfree rates and equity premia near the historical averages can
be obtained by combining the assumption of a relatively high elasticity of sub-
stitution with the assumption that the relative risk aversion measure is also
high. For example, with a relative risk aversion measure of 25 and an elasticity
of substitution of .5 the simulated unlevered equity premium is 2.6% and the
simulated riskless rate is 3%. With a debt to value ratio of .4 (which is in the
range of the historical average), the unlevered equity premium of 2.6% becomes
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a levered equity premium of 4.33%. If, as is commonly done, we assume an
elasticity of substitution equal to one, a relative risk aversion measure of 25
implies that the unlevered equity premium is 2.5%, the levered equity premium
(again with a debt to value ratio of .4) is 4.2% and the simulated riskless rate is
2.5%. The case in which the elasticity of substitution is one is the case in which
our generalized expected utility approach It is, of course, also true that, with
EZW preferences, the assumption of a relatively high elasticity of substitution
can be combined with the assumption that the relative risk aversion measure is
also high and the same calibration can be done with those preferences. What is
striking is that the calibration results just described for the generalized expected
utility preferences are virtually the same as those obtained assuming EZW pref-
erences with the same parameter values. As we have repeatedly noted, the EZW
generalization of the additively separable preferences does not assume expected
utility maximization but is dynamically consistent while our generalization does
retain the assumption of expected utility maximization but is not dynamically
consistent.
Throughout the paper we have attempted to relate the formal development

of our approach, which relies heavily on the homotheticity of the preferences,
to the standard development of the additively separable case and also to the
EZW approach. Our development of the EZW approach differs from the usual
development so that we can highlight the relationship of that approach to ours.
It has also been necessary to present a separate development of what I refer to
as the Cobb-Douglas case in which the elasticity of substitution is one. In the
additively separable case, the Cobb-Douglas case is commonly called the "the
log case."
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