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Introduction

A very basic empirical question in industrial organization is the following: which products in a

differentiated product market are close competitors with one another. This closeness of competition

between two products is determined by the degree of consumer substitutability between them.

Thus substitution patterns are the key to many supply side questions of interest. For example,

the variation in substitution patterns among the products in a market can be used to study firm

“conduct”: if there is a high degree of substitutability between the products of rival firms, then

markups (and hence prices) should be systematically lower for these products when firms are

competing as compared to colluding (Bresnahan 1981, Bresnahan 1987). Furthermore, for any

particular hypothesis about firm conduct, substitution patterns drive the effect of counter-factual

policy changes on market outcomes, such as mergers, new product introductions, etc.

Although substitution patterns are central to empirical work in imperfectly competitive mar-

kets, identifying these substitution patterns from market price and quantity data has proven very

challenging. The mixed-logit model of demand made famous by Berry et al. (1995) (henceforth

BLP for short) can in principle approximate very rich substitution patterns by relaxing the strong

ex-ante restrictions that the simple logit places on cross price elasticities (most notably the in-

dependence of irrelevant alternatives, aka IIA). This is achieved by allowing consumers to have

unobserved taste heterogeneity for observed product characteristics, i.e., random coefficients in

utility. While their approach has been hugely influential in providing a framework for studying dif-

ferentiated product markets, there are very few direct applications (known to us) that have found

statistically and/or economically significant departures from the simple logit in practice. The most

prominent applications that have successfully recovered non-trivial substitution patterns either use

information that is ”external” to the mixed logit demand structure, such as supply restrictions (see

e.g., Berry et al. (1995), Berry et al. (1999), Eizenberg (2014)), micro moments (see e.g., Petrin
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(2002), Nielson (2013)), or second choice data (see e.g., Berry et al. (2004), Hastings et al. (2009)),

or use restrictive special cases of the model such as nested logit.

This basic user experience has led to a growing questioning of whether consumer heterogeneity

in mixed-logit demand systems is even identified with market level data on prices and quantities

(see e.g., Metaxoglou and Knittel (2008)). A related challenge for empirical work is that, given

the inherent non-linearity of the model, it has been difficult to pinpoint the fundamental variation

in the data that drive estimates of substitution patterns in applications. Thus policy conclusions

drawn from the model cannot be directly linked to moments in the data that are driving those

conclusions (see e.g., Angrist and Pischke (2010)). This has led some to abandon structural demand

models altogether in favor of natural experiments to study policy questions in differentiated product

markets (see e.g., Ashenfelter et al. (2009)).

In this paper we provide a novel empirical strategy for estimating substitution patterns in dif-

ferentiated product markets that solves these aforementioned difficulties. Our main result shows

that there exists an ideal set of instruments in mixed logit demand systems that have been unex-

ploited in empirical work and provide the fundamental source of variation in the data that identifies

substitution patterns. We refer to these instruments as “Differentiation IV’s” which can be directly

constructed in the data and have an intuitive interpretation as measures of the “local market struc-

ture” facing a product. We show Differentiation IV’s are optimal both consistency and efficiency

of measuring substitution patterns in the data. Differentiation IV’s enable researchers to clearly

and credibly estimate substitution patterns without having to make supply assumptions or appeal

to special data sources (such as micro moments, second choice data etc).

We arrive at Differentiation IV’s by first isolating the variation in the data that is relevant for

identifying structural demand parameters, which builds closely on the recent insights of Berry and

Haile (2014) (henceforth BH for short). A folk wisdom that has been “in the air” since BLP is that

the correlation between a product’s market share and the entry and exit of products with more or

less similar characteristics provide the identifying variation for substitution patterns in mixed logit

models. We formalize this idea using an intuitive reduced form regression that captures the how

the relative market share between two products changes as a function of competing products in the

market. We refer to this reduced form object as the IIA regression because it provides a test of the

IIA prediction of the simple logit. If the IIA regression exhibits a departure from the simple logit in

the data, then the form of the departure is sufficient to non-parametrically identify the parameters

governing substitution patterns in the mixed logit using the identification argument in Berry and

Haile (2014).

Thus the IIA regression is the fundamental source of variation in the data that identifies con-

sumer heterogeneity and hence substitution patterns. However this also reveals the key challenge

for empirical work. The IIA regression requires in principle a very large number of observations

on the same product facing exogenously different market structures. This places major burden
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on the data because market structure is typically a very high dimensional random vector in real

applications. Thus the identification strategy in BH can be difficult to apply for market structures

with more than just a few products.

Our main result shows that the “characteristics approach” underlying preferences in BLP, which

BH do not exploit, gives rise to a sufficient statistic for market structure that preserves the iden-

tifying power of the IIA regression yet feasible to apply in the data. We refer to this sufficient

statistic as the “local market structure” facing a product, which takes the form of the empirical

distribution of differences in product characteristics between a given product and its competitors.

Its key advantage for empirical work that it provides a lower dimensional summary of total market

structure that is sufficient for identifying the IIA regression (and hence consumer heterogeneity),

but does not suffer from a curse of dimensionality as the number of products in a market grows

large.

If we take a parametric approach and approximate the IIA regression with flexible class of

basis functions, this gives rise to a set of transformations of local market structure that precisely

correspond to the relevant instruments for identifying demand in parametric applications. We refer

to these transformations as Differentiation IV’s. They correspond to intuitive measures of isolation

in product space and can be constructed directly in the data but have not yet been systematically

used in empirical work. Differentiation IV’s are optimal for both constructing consistent and

efficient estimators of demand and can be incorporated readily into standard GMM estimation

that is already familiar in empirical practice.

We illustrate the usefulness of Differentiation IV’s using a series of Monte-Carlo simulations,

and by revisiting the car application first studied by Berry et al. (1995). Our results show that the

use of Differentiation IVs reduce the small sample bias by a factor of 10, relative to the moment

conditions most commonly used in the literature. In addition, we show that similar efficiency gains

can be obtained in the context of the U.S. car market, without relying on a particular supply-side

assumption, as it is commonly done in the literature.

Related Literature

Our Differentiation IV’s are a natural complement to the large literature on price instruments in

differentiated product markets. Price endogeneity is a familiar problem in the literature with a long

history, and a variety of instruments have now been proposed to address it, i.e, BLP instruments,

Haussman instruments, Waldfogel instruments, etc.1 However a key point in Berry and Haile

1Price endogeneity is linked directly to the classic simultaneous equations problem of prices and quantities being
simultaneously determined in market equilibrium and is common to both homogenous good and differentiated product
markets. A natural instrument for prices is to use a cost side instrument, but such cost instruments are often not
immediately available. The well known “BLP instruments” provide an alternative source for variation in prices in
differentiated product settings that is based on a first order approximation of the equilibrium pricing function. BLP
IV’s comprise of sums of product characteristics of competing products interacted with ownership structure, and are
the standard instruments used in mixed logit demand applications.
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(2014) is that the identification of substitution patterns poses a distinct empirical problem from

price endogeneity.2 This is because there are in fact two different sets of endogenous variables in

the model - prices and market shares - which require different sources of exogenous variation for the

model to be identified. However the literature has been virtually silent about the appropriate form

of the instruments for market share? We believe the root of the problems encountered in empirical

practice is that there does not exist any formal discussion of how to construct such instruments, and

thus researchers have used a single set of instruments, namely price instruments - i.e., instruments

constructed on the basis of what should vary price in the model - as instruments for both prices

and markets shares. This rather naturally has led to a situation where substitution patterns are

likely to be at best weakly identified and potentially non-identified.3 Unfortunately, the parameters

governing substitution patterns in the model are non-linear, which makes the issue of constructing

strong instruments difficult in general. Our Differentiation IV’s can be understood as providing an

answer to this issue.

It is important to mention two important exceptions in the literature that have connections to

our approach. The first exception are papers that employ a nested logit specification. Nested logit

is a special case of the mixed logit model where the problem of endogenous shares is especially clear

because shares enter the model takes a linear form, and thus allows for a straightforward application

of linear instrumental variable techniques (see e.g., Berry (1994)). Nested logit is however a very

strong functional form restriction on substitution patterns, and it is desirable to allow for more

flexible patterns of consumer heterogeneity in applications. Unfortunately, the linearity of the

nested logit is lost in the general mixed logit model. Our Differentiation IV’s can be seen as

generalizing the instrumental variable strategy for nested logit models to the larger class of mixed

logit models, and in fact collapse back to the standard instruments for market shares in the special

case of nested logit (i.e., number of products in the nest). The other exception are papers that

estimate spatial demand models where consumers and products are distributed in physical space and

the parameter that governs substitution pattens are travel costs (Davis (2006) and Houde (2012)).

These papers often employ a measure of the number of local competitors as the instrument to

identify travel costs using aggregate market share data. These are types of Differentiation IV’s

and our main results shows that their effectiveness extends beyond spatial environments to general

product characteristic settings.

2Although they consider a non-parametric form of the model, this conclusion applies with equal force to the
standard parametric specification used in practice.

3See the Stock and Wright (2000) for a discussion of a related weak identification problem in the Euler equations
literature.
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1 Identification of the random-coefficient model

We briefly review the random coefficients utility model that is widely used as a foundation for

differentiated product demand. Our presentation of the model largely follows the setup in Berry,

Levinsohn, and Pakes (1995) and Berry and Pakes (2002). The key difference is that we intentionally

exclude an endogenous price from the model in order to isolate the problem of identifying and

estimating substitution patterns. Endogenous prices do not fundamentally change the main results

of our analysis, and we discuss the case with endogenous product attributes in Section 1.2.

Consider market t with Jt+1 differentiated products. Each product j = 0, . . . , Jt is characterized

by a vector of observed (to the econometrician) product characteristics xjt = (xjt,1, . . . , xjt,K) ∈ RK

and an unobserved characteristic ξjt. The utility of consumer i for product j is

uijt =
K∑
k=1

bikxjt,k + ξjt + εijt (1)

where bik is consumer i’s taste for the kth characteristic and εijt is an idiosyncratic taste for product

j. Given the linearity of consumer utility we can normalize the characteristics of an outside good

0 such that x0t = 0 and ξ0t = 0.4

Consumers have heterogeneous tastes in the population and we assume this heterogeneity takes

a mixed-logit form. Thus we have that the idiosyncratic taste is distributed εij
iid∼ T1EV (0, 1), and

the taste for characteristics bi = β+vi, where vi = (vi1, . . . , viK)
iid∼ Fv is the heterogenous part of

the random coefficient. Let
(
β0, F 0

v

)
denote the true distribution of consumer tastes.

Notice that we assume that the distribution of random-coefficients is common across markets.

We do so in order to focus on the variation generated by having different menus of products across

markets. In Section 1.2, we discuss how to adapt our results to the case in which market-specific

consumer characteristics are the main source of variation (e.g. Nevo (2001)).

If each consumer i chooses the product j ∈ {0, . . . , Jt} that maximizes his/er utility, then we

can integrate over the distribution of consumer choices to yield a market share for each product j

that is given bysj =

σj (Xt, δt;Fv) =

ˆ
exp (

∑
k vikxjt,k + δjt)

1 +
∑Jt

j′=1 exp
(∑

k vikxj′t,k + δj′t
)dFv(vi) (2)

where Xt = (x1t, . . . ,xJtt) and δt = (δ1t, . . . , δJtt). We will refer to Xt as a summary of market

structure - the number of products and their locations in characteristic space - and will refer to

δt = xjtβ + ξjt as the average product qualities.

Our empirical problem is to estimate the distribution of consumer taste (β, Fv) from an observed

4Thus each characteristic can be interpreted in terms of differences relative to the outside good.
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panel of shares and product characteristics, i.e.,

Data =
{
{sjt,xjt}Jtj=1

}T
t=1

, (3)

Let n =
∑T

t=1 Jt denotes the sample size.

An identification problem arises because for any hypothetical distribution (β, Fv) there exists

a unique unobserved quality vector for products j = 1, . . . , J that rationalizes the market shares,

i.e.,

sjt = σj (X, δt;Fv) ⇐⇒ fjt (β, Fv) = σ−1j (st,Xt;Fv)− xjtβ

where the inverse σ−1j uniquely exists following Berry, Gandhi, and Haile (2013). The inverse

mapping function fjt corresponds to the structural residual of the model. When evaluated at the

true distribution parameters, it is equal to true unobserved quality of products: fjt
(
β0, F 0

v

)
= ξjt.

5

Notice that the additive structure of the model implies that the quality assignment function is only

function of the distribution of idiosyncratic taste differences, and not of the mean valuations β.

This indeterminacy implies that (β, Fv) cannot be estimated using standard maximum-likelihood

techniques. Instead, the econometric problem corresponds to a non-linear instrumental variable re-

gression. Consider the following structural regression equation:

ln(sjt/s0t) = xjtβ + hj (st,Xt;Fv) + ξj (4)

where hj (st,Xt;Fv) = ln(sjt/s0t)− σ−1j (st,Xt;Fv) is a quality assignment function adjusting the

average value of products to reflect heterogeneity in the taste of consumers for product attributes.6

This equation makes it clear that a simultaneity problem arises because of the simultaneous

determination of market shares. The identification of substitution patterns therefore relies of the

ability of the researcher to identify the causal effect of competing product market shares, on the

products’ own relative shares. Since market shares appear on both sides of equation (4), we will

refer to this simultaneity problem as a reflection problem (Manski 1993). This will allow us to

differentiate the standard price simultaneity problem discussed in Berry, Levinsohn, and Pakes

(1995), with the endogeneity of market shares limiting our ability to identify Fv.

Equation 4 nests two important cases. When F 0
v is a degenerate mass distribution at vi = 0, the

quality assignment function is zero for all (j, t): ln(sjt/s0t) = xjtβ + ξjt. This prediction is driven

by the central economic feature of logit preferences - the independence of irrelevant alternatives

5In order to alleviate the notation burden, we omit the dependence of the residual function on the vector of market
shares and product characteristics: fjt (β, Fv) ≡ fj (st,Xt;β, Fv).

6Berry and Haile (2014) consider a different representation of the structural equation. In particular, they consider
estimating an inverse demand function where the value of each product is expressed in units of a “special regressor”.
In our context, this would amount to estimate: x1 = 1

β1
σ−1 (s,X;Fv)−X−1

β
β1
− 1

β1
ξj , where σ−1 (s,X;Fv) = δ.

Equation 4 is more representative of the specification used in applied work.
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(IIA) - which implies that the relative market share between two products is independent of the

presence and characteristics of competing products. Because of this relation, we can interpret the

quality assignment function, hj (st,Xt;Fv), as measuring the adjustment of product quality away

from IIA.

When the random-coefficients interact a series dummy variables representing independent seg-

ments, and vik is distributed according to a type-1 extreme-value distribution, the choice-probabilities

take the familiar nested-logit form. In this case, the quality assignment function takes as a closed-

form expression:

hj (st,Xt;Fv) = λ log(sjt|k(j)),

where sjt|k is the observed market share of product j in segment k (Berry 1994).

For more general distributional assumptions, the quality assignment function does not have a

closed-form expression, but the reflection problem remains. Thus, identifying the true distribution

of consumer heterogeneity from the data requires a restriction on the assignment of qualities ξjt.

We follow Berry, Levinsohn, and Pakes (1995), and employ a restriction with a long history in

empirical industrial organization (see e.g., Rosse (1970), Bresnahan (1981, 1987)): we assume that

the unobserved quality ξjt is independent of the market structure Xt, i.e.,

(CMR) E [ξjt |Xt] = 0. (5)

Although it has a variety of economic motivations (such as common view in the literature that

non-price product attributes are fixed in the short run and are costly to adjust), our purpose here

is not to justify the assumption, but rather to extract its empirical usefulness. Towards this end

we now ask the following central questions:

– What is the variation in the data that identifies the heterogeneity of consumer tastes under

the moment restriction (5)?

– How can we use this variation to estimate the distribution both consistently and efficiently

from the data (3)?

To answer these two questions, we first discuss the conditions necessary to achieve non-parametric

identification of Fv, and then we characterize the construction of valid and relevant instrumental

variables required for the estimation of parametric distribution functions.

1.1 Non-parametric identification

When the distribution of the random-coefficients is not specified parametrically, the estimation

of equation (4) corresponds to a non-parametric instrumental-variable regression. The structural

function hj (st,Xt;Fv) is an unknown function of market shares st, which are an endogenous

variable in the model determined by ξjt.
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The potential instrumental variables are given by the market structure variablesXt, as assumed

by the CMR (5). In particular, applying the CMR to both sides of equation (4) leads to a reduced-

form regression function:

E [ln(sjt/s0t) |Xt] = xjtβ
0 + E

[
hj
(
st,Xt;F

0
v

)
|Xt

]
= xjtβ

0 + gj (Xt) . (6)

This reduced-form equation summarizes the variation in the data available to identify Fv. Im-

portantly, if gj (Xt) can be identified, then Fv is also non-parametrically identified. In particular,

there exists a unique F 0
v in the model that is consistent with the reduced-form of equation. This

can be shown by adopting the same conditions and proof technique as Theorem (1) in Berry and

Haile (2014), which we state for completeness and prove in Appendix A. I

This identification result is dependent on our ability to consistently estimate the reduced-form

function. Unfortunately, without further restrictions, this task is feasibly only when the number

of products is small, relative to the number of markets.7

The source of the problem is that the non-parametric estimation of equation 6 suffers from

a curse of dimensionality: the number polynomial basis terms necessary to approximate gj (Xt)

grows exponentially with the number of characteristics and the number of products per market. To

see this, note that each product j, the non-parametric regression tracks the variation in its relative

market across different market structures Xt, which can be a very high dimensional vector.

Even for moderately small markets with ten products and five characteristics, the number of in-

dependent markets required is several times larger than what is conceivably available to researchers.

When the number of products grows with the number of markets, the reduced-form of the model

is not identified. Since identification of gj(Xt) is a necessary and sufficient condition to identify

F 0
v , this requires the number of products to be small and finite, and the number of markets grows

to infinity.

To get around this problem, we now show the the reduced-form of the model as a symmetric

function of market-structure. This is not the case for the general preferences studied in Berry and

Haile (2014). In their model, there is nothing that ties together different products, and hence each

each product j in principle can have its own regression function gj(Xt).

Fortunately, this problem is not present in the “characteristics model” described in equation (1).

When preferences can be described by a linear function of characteristics and random-coefficients,

the reduced-form regression (6) takes an analytically simplified form that can be identified within

a single cross section of products. The key feature of the characteristics model that we exploit is

7This identifying problem is relevant in practice, since many important applications use fairly large J and small T .
For example in the case of the original automobile data (which we will analyze later) we have roughly 100 products in
a market with 5 product characteristics, making Xt a 500 dimensional object. Estimating a non-parametric function
of 500 variables would require an inordinate number of markets - in the BLP context there are only 20 markets
(corresponding to 20 different years) and thus not even as many observations as variables.
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the existence of an exchangeable aggregate demand function, for which the product index j itself is

not informative once we condition on the product’s characteristic xjt. The next result makes this

feature precise.

Let us define djt,k = xjt − xkt to be the vector of characteristic differences between product

j and product k in market t, and let djt = (djt,0, . . . ,djt,j−1,djt,j+1, . . . ,djt,J) be the matrix of

differences relative to product j. Let us define an ordered pair ωjt,k = (skt,djt,k) associated with

each product k = 0, . . . , Jt in the market (including the outside good) for a given inside product

j > 0, and let ωjt = (ωjt,0, . . . ,ωjt,j−1,ωjt,j+1, . . . ,ωjt,J). We now have the following result which

is proven in the Appendix.

Proposition 1. Under the linear in characteristics random utility model the quality assignment

hj
(
st,Xt;F

0
v

)
= h

(
ωjt;F

0
v

)
+ ct, j = 1, . . . , Jt

where ct is a market-specific constant and hjt is a symmetric function of ωjt.

There are two key implications of Proposition 1. The first is that the quality assignment

function hj
(
st,Xt;F

0
v

)
can be expressed in a fashion where it is no longer product j specific, once

we condition on a vector of state variables ωjt of the products competing with j in a market.8

The second key implication is that product invariant h is a symmetric function of the states of the

competing products. Both of these implications give rise to the following key consequence for the

reduced-form equation.

Corollary 1. The function gjt in the reduced-form equation is such that

E
[
h
(
ωjt;F

0
v

)
|Xt

]
= g (djt) + ct

where g is a symmetric function of djt and ct is a market specific constant.

This corollary shows how we can alleviate the curse of dimensionality in the estimation of

the reduced-form. In particular, because the function gj (Xt) has reduced to a product invariant

function g, this allows us to pool different products together in the data to identify a single function.

Most importantly, because g is symmetric in djt the dimension of the function does not grow

unmanageably with the number of products Jt. This implies that the reduced-form of the model

is identified under general data-generating processes (DGPs) than the one considered in Berry

and Haile (2014). Therefore, this allows to conclude, in Thereom 1, that the the distribution of

consumer taste is non-parametric identified. The proof is included in Appendix.

8Observe that the state ,ωjt,k of a rival k 6= j does not contain its own product characteristic ,xkt but rather the
difference ,xjt−,xkt relative to j.
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Theorem 1. If the CMR holds and preferences can be described by a linear-in-characteristics

function (such as in equation 1), the distribution of consumer tastes (β, Fv) is non-parametrically

identified from data on market shares and product attributes when
∑T

t=1 Jt = n→∞.

The symmetry property allows us to take the reduced-form function to the data, and estimate

the model in a fashion that is consistent with the non-parametric source of identification. For

instance, consider the following two-step minimum distance estimator.

First, estimate the reduced-form function g (dj), by regressing the log market-share ratios

log(sjt/s0t) on a polynomial basis of degree λ describing the joint distribution of product char-

acteristic differences and product j’s own characteristics. Let gλ(xjt,djt) ≈ xjtβ0 + g(djt) + ct

denotes this flexible polynomial approximation.

The second step is to estimate a non-parametric distribution of consumer tastes (β, Fv) that

minimizes the distance between the reduced-form and the predicted quality assignment function:

Eλ [gλ (djt)− xjtβ − hj (st,Xt;Fv)|xjt,djt] = 0, (7)

where Eλ[·] is the linear projection of the model predictions on a polynomial basis of degree λ.

In practice, it is common to use a parametric distribution of consumer heterogeneity. For

instance, a standard approach is to let vik = σkνik where νik
iid∼ N (0, 1) for k = 1, . . . ,K, but

more flexible parametric models could be employed given the non-parametric identification of the

underlying distribution. The key simplification of the parametric model is that sufficiently rich

degree λ polynomial suffices to identify θ0 = (β,σ0). Since, we do not know ex-ante how large

λ will need to be and hence it could be important to be as rich as possible. In particular, we

propose to approximate the local market structure facing each product using N(λ) moments of the

empirical distribution of characteristic differences. Let zjt,1 = m1 (djt) , . . . zjt,N(λ) = mN(λ) (djt)

be the basis functions of this flexible polynomial approximation.

Importantly, the ability of zλjt =
(
zjt,1, . . . ,zjt,N(λ)

)
to identify the parameter vector can be

evaluated by measuring its predictive power in the first-stage of the minimum-distance estimation

procedure. Corollary 1 makes it clear that if the polynomial basis is not a sufficiently rich description

of the local market structure facing each product, it will be uncorrelated with the quality assignment

function hj
(
st,Xt;σ

0
)
. When this happens, the minimum distance estimator is unable to reject

the null hypothesis that the distribution of consumer tastes is degenerate at 0, implying that

preferences are consistent with the IIA property. As a result, if the true data-generating process

has σ0 6= 0, the parameters are only weakly identified by zλjt.

Since the polynomial approximation of the reduced-form model takes a linear form, the identi-

fying power of a candidate basis function can easily be evaluated.

Definition 1. [IIA Test] A vector of characteristics zjt weakly identifies the distribution of con-

sumer tastes if it fails to reject the joint hypothesis that zjt does not explain the quality assignment
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function. This hypothesis can be tested using a standard specification test:

ln(sjt/s0t) = xjtβ̂ + zjtγ̂ + Residual (8)

Wn(z) = γ̂T V̂
−1
γ γ̂

′

where (β̂, γ̂) are obtained via OLS, Wn(z) ∼ χ2(L) is a Wald test measuring the departure of γ̂

from zero, L is the dimension of the basis vector zjt, and n =
∑T

t=1 Jt is the sample size.

This specification test is easy to implement, and has an important economic interpretation:

failing to find a vector zjt that rejects the null hypothesis that γ = 0 implies that the data is

consistent with the IIA hypothesis (i.e. σ0 = 0). Moreover, since this test measures the strength of

the correlation between zjt and the (unobserved) quality assignment function, the value of W (z)

has an analogous interpretation to a “first-stage regression” test commonly used to evaluate the

relevance of instruments in linear instrumental variable regression problems. That is, the smaller

is the p-value associated with the null hypothesis H0 : γ = 0, the stronger are going to be the

excluded market-structure variables at identifying σ0.

1.2 Differentiation IVs and GMM

It can be shown that the minimum distance estimator described in the previous section is asymp-

totically equivalent to the GMM estimator proposed by Berry, Levinsohn, and Pakes (1995), where

zλjt is used as an excluded instrument vector. We label these transformations of each local market

structure as Differentiation IV’s. Differentiation IV’s are statistics of the market structure facing

a product, and hence intuitively measure a product’s relative isolation in product space.

To see why these variables are valid instruments to identify the parameters, observe that the

CMR implies that the following unconditional moment restriction is satisfied:

E [ξjtwjt] = 0 (9)

where wjt = (xjt, z
λ
jt).

Since the model is non-linear, it is harder to evaluate the relevance of the instruments. Cham-

berlain (1987) shows that the most efficient instrument associated with non-linear parameter σk is

defined as the conditional expectation of the Jacobian function:

z∗jt,k = E
[
Hjt,k(σ

0)|Xt

]
. (10)

A simple corollary of Proposition 1 above confirms that this conditional expectation can be written

as a symmetric function of the empirical distribution of characteristic differences.
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Corollary 2. The expectation

E

[
∂

∂σ
hj
(
s,Xt;σ

0
)
|Xt

]
= H (djt) + ct

where H is a symmetric function and ct is a market specific constant.

This corollary implies that the optimal instruments for σ are (unknown) functions of the em-

pirical distribution of characteristic differences relative to each product. In principle, if the true

parameters were known, we could therefore approximate this function flexibly using a finite number

of moments describing the local market structure around each product (i.e. djt), similar to the

minimum distance estimator discussed above.

The corollary also implies that we can use we use these Differentiation IVs directly as instru-

ments. This is analogous to the suggestion in Berry et al. (1995) of using the basis function as

instruments, rather than computing the conditional expectation of the gradients, E
[
H(θ0)|djt

]
,

using a two-stage approach.

How does this differ from the existing literature? The original instruments proposed by Berry

et al. (1995) measure the sum of competing product characteristics, and thus correspond to the

first moment of the empirical distribution of characteristic differences. As we will illustrate in the

Monte-Carlo section below, these instruments lead to a weak identification of the random-coefficient

parameters, because they fail to predict the cross-sectional dispersion in market share. In other

words, these variables are essentially uncorrelated with the quality assignment function.

A more successful approach to constructing strong instruments is the optimal IV approximation

proposed by Berry et al. (1999). Rather than constructing the conditional expectation in equation

(10) via regressions methods, this approach evaluates the Jacobian of the model residual at the

unconditional mean of residual (i.e. ξjt = 0), using preliminary estimates of the parameters.

Reynaert and Verboven (2013) show that this heuristic method tends to work well in practice,

by creating the “right” kind of cross-sectional variation in the instruments. However, it relies

on having a consistent initial estimate of the model parameters, which can be problematic when

the instrument vector is weak. For instance, the jacobian of the residual function is zero when

evaluated at σ̂ = 0 (i.e. instruments are singular), which is a common realization of GMM with

weak instruments as we will in the Monte-Carlo simulations below.

1.3 Extensions and examples

In this section, we illustrate the construction for Differentiation IVs for series of common examples

found in the empirical literature. We partition the characteristics vector in two groups: x1
jt includes

K1 variables that are not interacted with a random coefficient, and x2
jt is a K2 dimension vector

for which consumers have heterogenous tastes.
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Panel data with continuous characteristics For this standard case, we consider two types

of moments to approximate the empirical distribution djt. The first one uses a series of discrete

histograms measuring the distribution of the non-linear characteristics. For each characteristic

x ∈ x2, let Cx = {cx1 , . . . , cxλ} denotes λ equally spaced percentiles of the entire distribution of

dxij,t = xit − xjt, i 6= j pooled across all markets t.9 For non-linear characteristic x, we construct

λ×K2 excluded instrumental variables:

zxjt =


Jt∑
i 6=j

1(dxij,t < cxk) · xit


k=1,...,λ

(11)

where xjt = (x1
jt,x

2
jt), and · is the element-by-element product indicator. These IVs measure the

number and characteristics of competitors located to the left of product j along the x dimension.

Note, that these measures of differentiation can also be interacted with product j’s own charac-

teristic, to capture the notation that the strength of the correlation between z and the quality

assignment varies based on each product’s position in the product space.

Depending on the application, it might also be more convenient to characterize the distribution

of characteristic differences using continuous moment functions. This is especially relevant when

the number of products per market is fairly small, so that the above histograms have little variation.

We construct λ×K2 × (K1 +K2) differentiation measures:

zxjt =


Jt∑
i 6=j

(
dxij,t · (xit − xjt)

)k
k=1,...,λ

(12)

Panel data with discrete characteristics In many examples, products are described by a series

of discrete product attributes or market segments. This is the case for instance of the nested-logit

model discussed in Berry (1994). In this classic example, the quality assignment function takes an

analytical form, and the differentiation IVs take the firm of a series of moments characterizing the

products available within the same segment:

zNL
jt =


Jt∑
i 6=j

(
1
(
x2
jt = x2

it

)
· (xit − xjt)

)k
k=1,...,λ

(13)

where 1(·) is an indicator function equal to one if the two products are part of the same nest.

For more general random-coefficient models with discrete attributes, we can similarly construct

measures of product differentiation among products sharing the same attributes. This analogous

to the histograms defined above, where there is only one distance category: dij,t = 1 if xit = xjt.

9We construct λ uniform the percentiles between 1/λ and (λ− 1)/λ.
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Large cross-section of products The differentiation IVs defined above exploit the panel vari-

ation created by the entry and exit of “similar” products across markets. When the number of

products is very large relative to the number of markets, or when only a cross-section of products

is available, these variables do not exhibit enough variation.

In this cases, it is essential that the model implies that “local” variation in the characteristics

of nearby competitors is more relevant than the overall distribution of characteristic differences,

even when the number of products goes to infinity. This condition is satisfied for instance in the

nested-logit model, when the number of nests increases in the number of products.

With continuous characteristics, the pattern of differentiation must exhibit strong “local” com-

petition, and the variance of product characteristics must increase when J gets large. This is the

case for instance in the quality-ladder model (Bresnahan 1987), or in models of spatial differentia-

tion. Consider for instance the following Hotelling model with logit taste shocks:

uij = ξj − θ(ti − xj)2 + εij j = 0, . . . , J

where both products j = 1, . . . , J and consumers i have location xj , ti ∈ [0, 1] on a Hoteling line.

In this example, like in the general random-coefficient model, the quality assignment function is

non-linear.

The main prediction of this model is that the market share of products is increasing in the

distance to rivals, everything else being equal. This feature implies that the observed degree of

spatial differentiation is a good predictor of the quality assignment away from the true distance cost

parameter θ0. In particular, if we evaluate the residual quality fj(θ) at a value of θ that understates

the disutility of distance for consumers, products that are located in relative crowded space will

be assigned low quality levels, while products that are isolated will be assigned high quality levels.

This argument implies that the number of local competitors is a good predictor of the slope of the

quality assignment function:

zcj =
J∑
k=1

1 (| djk |< c)

where c is a distance cutoff. These variables satisfy our definition of Differentiation IV, and vary in

the cross-section even when the number of products gets large. These variables correspond to the

instruments used in Davis (2006) and Houde (2012) to identify travel costs using aggregate market

share data.

Demographic variation In many applications, the number and characteristics of products avail-

able in each market is fixed, but the distribution of consumer characteristics vary across markets

(e.g. Nevo 2001). While this might at first imply that a different of instruments must be use, we

show that under fairly general conditions, it is feasible to transform the model so that Differen-

tiation IVs analogous to the one defined above can be used to identify the non-linear preference
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parameters.

Consider the following indirect utility function:

uijt = δjt +

K2∑
k=1

vit,kxj,k + εijt (14)

where vit = (vit,1, . . . , vit,K2) is distributed in the population according to a market-specific distri-

bution function. If the heterogeneity across markets is such that it is possible to “standardize” the

distributions such that vit,k = µt,k +st,kνik, where vi ∼ Fν , then we can write the predicted market

shares as homogenous functions of market-structure:

σj

(
X̃t, δt;Fν

)
=

ˆ
exp (

∑
k νikx̃jt,k + δjt)

1 +
∑Jt

j′=1 exp
(∑

k νikx̃j′t,k + δj′t
)dFv(νi) (15)

where x̃jt,k = st,kxj is the standardized characteristic of product product j, and δjt = xjtβ +∑
k µt,kxj,k+ξjt. Notice that with this transformation, the standardized characteristics vary across

markets, and we can construct Differentiation IVs as described above.

Endogeneous product attributes Lastly, Incorporating endogenous prices into the model does

not fundamentally change the identification problem of θ, but adds an additional simultaneity

problem: in equilibrium prices are correlated with the unobserved quality of products (Berry et al.

1995). We make two observations in this subsection.

Our first observation is that detecting deviations from IIA is not feasible without a separate

price instrument. In particular, consider the following linear regression:

ln sjt/s0t = xjtβ + αpjt + zjtγ + ejt (16)

where ejt is a composite error term. Since prices are correlated both with the residual and the

degree of differentiation (i.e. zjt), we can consistently estimate γ only using an excluded price

instrument.

Two sources of variation have been exploited in the literature: (i) ownership structure (i.e.

Berry et al. 1995), and (ii) cost-shifters (i.e. Nevo 2001). Both cases are valid, since they are

independent of the quality assignment, and correlated with price. We can therefore measure the

strength of Differentiation IVs by estimating γ via 2SLS instead of OLS.

Our second observation, is that it is possible to compute exogenous measures of differentiation

using a reduced-form pricing equation, rather than observed price levels. This is important since

many models used in the literature incorporate a random coefficient on prices to measure for

instance income effects.

In this context, our results show that it is important to measure the degree of differentiation

along the price dimension in order to predict the quality assignment function. This can be done
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in two stages. First, estimate a reduced form pricing equation using observed characteristics, i.e.

p̂j = E(pj |xj , wj) where wj is are cost and/or ownership instruments. Second, compute L moments

of the joint distribution of product characteristic differences by replacing observed prices with p̂,

i.e. dpjk = p̂j − p̂k.

2 Monte-Carlo Simulations

In this section we perform a series of Monte-Carlo experiments to illustrate the construction and

performance of Differentiation IVs. We focus in particular on the consistency and efficiency prob-

lems associated with using weak instruments, or with ignoring entirely the simultaneity problem.

In the next subsection we quantify the bias associated with simultaneity of competitors’ market

shares, in the context of a model with exogenous characteristics. Then, in the following subsection,

we incorporate endogenous prices into the model, and illustrate the need for two separate sources

of exogenous variation.

In all simulations, we consider the following mixed-logit model:

uijt = β0 + βppjt + βxxjt + ξjt︸ ︷︷ ︸
=Xjtβ+ξjt

+σxηixjt + εijt = δjt + σxηixjt + εijt, (17)

where ηi ∼ N(0, 1) and εij
iid∼ T1EV(0, 1). The common value of option 0 is normalized to zero (i.e.

δ0t = 0). We refer to xjt as the attribute with heterogenous tastes, and pjt as the attribute with

homogenous tastes.10

These distributional assumptions lead to the following expressions for the market share and

quality assignment function of product j:

πjt(δt, Xt;σx) =

ˆ
exp (δjt + σxηixjt)

1 +
∑Jt

k=1 exp (δkt + σxηixkt)
φ(ηi)dηi (18)

hjt(σx) = π−1jt (st, Xt;σx) (19)

fjt(θ) = hjt(σx)−Xjtβ (20)

where θ = {β0, βx, βp, σx} is the vector of parameter, and δt and st are Jt × 1 vectors of product

quality and observed market shares in market t. The model residual, equation 20, is equal to ξjt

when evaluated at the true parameter vector θ0.

We generate the data-sets as follows. The number of products per market, Jt, varies across

markets according to a poisson distribution: Jt ∼ Poisson
(
J̄
)
. Product characteristics are normally

distributed: xjt ∼ N(0, v2x), pjt ∼ N(0, v2p), ξjt ∼ N(0, v2ξ ). Except where indicated, the true

10The presence of this latter special regressor is not crucial to our results and meant here for illustration. This
stands in contrast to the crucial role played by the special regressor in Berry and Haile (2014) who don’t exploit the
same structure of the characteristics model as we do here.
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parameter values are: β00 = −5, β0x = 1, β0p = 1, σ0x = 2. At those parameters, approximately

15% of consumers have a negative marginal utility for xjt, and therefore, everything else being

equal, would ideally prefer the product with the smallest available xjt. This is a form of market

segmentation that is commonly assumed by empirical researchers.

2.1 Exogenous product characteristics

Quantifying the simultaneity bias We start by illustrating the simultaneity bias in σx asso-

ciated with the reflection problem discussed above. To do this, we write the non-linear regression

problem using its artificial regression form. An artificial regression is a linear regression in which

the regressand and regressors are constructed as functions of the data and parameters of a nonlinear

model (Davidson and MacKinnon 2001). In our context, this corresponds to a regression of the

model residual on its gradients’ vector:

fjt(θ) = Fjt(θ)b+ Residual = Xjtb1 +Hjt(σx)b2 + Residual (21)

where Hjt(σx) =
∂hjt(σ)
∂σx

is the derivative of the quality assignment function.

Equation 21 nests two natural estimators of θ: (1) the non-linear least-square (NLS) estimator

is defined as the value of θ = θ̂nls such that the OLS estimate of b is equal to zero, and (2) the GMM

estimator is defined as the value of θ = θ̂gmm such that the IV regression estimate of b is equal to

zero. This equivalence comes from the fact that linear regression coefficient vector b corresponds

to the score of each non-linear optimization problem, NLS and GMM respectively.11

As we discussed in the Identification section, instruments are necessary to correct for the reflec-

tion problem. The artificial regression clarifies the existence of this simultaneity problem. Consider

estimating the linear regression above by OLS at the true parameter vector (i.e. θ = θ0). If the

NLS estimator is unbiased, the OLS estimate of b should be zero in expectation. However, since the

gradient of the quality assignment is function of the entire vector of market shares, this expectation

in general will not be equal to zero:

E
[
b̂ols
∣∣θ0] = E

[
(F T (θ0)F (θ0))−1

]
E
[
F T (θ0)ξ

]
6= 0 (22)

where Fjt(θ
0) =

{
Xjt, Hjt(σ

0
x)
}

. The source and strength of this bias depend on the correlation

between the slope of the quality assignment and the model residual: Corr
(
Hjt(σ

0
x), ξjt

)
6= 0.

Moreover, this correlation depends on wether the quality assignment function is heavily influenced

by the market share of a small number of close-by competitors (big bias), or instead mostly a

function of products’ own attributes (small bias). As we illustrate below, the bias therefore depends

11The generalized 2SLS estimate of b is given by: b̂2sls =
(
F ′(θ)WΣ−1W ′F (θ)

)−1
F ′(θ)WΣ−1W ′f(θ). The second

term corresponds to the estimating equation associated with instrument matrix W and weighting matrix Σ, and is
therefore equal to zero at θ = θ̂gmm.
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on the degree of substitution between products.

Figure 1 plots the distribution of the log difference between the true value of the random-

coefficient parameter and the NLS estimate, across different data-generating processes. Each kernel

density is constructed using the 1, 000 Monte-Carlo replications.

Figure 1a shows that the size of the bias depends intuitively on the variance of the model

residual. When the standard-deviation of ξjt is equal 0.5, the least-square estimate of σx essentially

unbiased. As we increase vξ, the average bias increases almost linearly, and reaches −45% when

vξ = 3.5. As expected, increasing the variance of the model residual also greatly reduces the

precision of the estimates.

Interestingly, the sign of the average bias is negative across all of our simulations. In other words,

the reflection problem systematically leads to an underestimate of the amount of the heterogeneity

in taste, in favor of the pure logit model.

The next two subfigures vary the degree of substitution between products. Figure 1b simulates

identical panels with 10 products (on average) and 50 markets, while increasing the value of the

outside option; measured by the model intercept β0. When β0 = −15, the outside option is the

“closest” substitute of every products, as measured by the diversion-ratio. This is standard feature

of mixed-logit models: despite the presence of large heterogeneity in the taste of consumers for

observed characteristics, the presence of an idiosyncratic “logit” error implies that elasticity of

substitution between products is very sensitive the relative magnitude of the average quality index

δjt. When the quality of products is very small (relative to the outside option), products compete

mostly with the outside good, and the derivative of the quality assignment function with respect

to σx is nearly independent of the characteristics of other products.

To better understand the relationship between the derivative of the quality assignment and the

elasticity of substitution, recall that Hjt is defined using the implicit function theorem:

Hjt(σx) =
∂π−1jt (δt, Xt;σx)

∂σx
= −

[
∂πt(δt, Xt;σx)

∂δ′t

]−1
j,·

[
∂πt(st, Xt;σx)

∂σx

]
. (23)

Although the last term term varies across products based on σx, the Jt × Jt matrix determining

elasticity of demand with respect to the average quality of products contains off-diagonal elements

that quickly go to zero when the market share of the outside good increases. When this happens,

in our simulation exercise, the variance in Hjt across products can be fully explained but the

product’s own observed non-linear characteristics (i.e. xjt). For instance when β0 = −15, Hjt is

nearly independent of own and competing product market shares, and therefore uncorrelated with

the model residual.

As a result, the simultaneity bias from estimating σx by least-square is very small when the

share of the outside good is large. The the four densities confirm that as we increase the average

quality of products, the simultaneity bias increases monotonically. When β0 = −6, the share of the
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Figure 1: Distribution of simultaneity bias
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(a) Variance of the residual
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(b) Variance of the model intercept
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(c) Panel structure

Each figure plots the Kernel density of the log-difference between the least-square estimate of σx and the true
parameter value. Each density is estimated using 1,000 Monte-Carlo replications. The default values of the data-
generating processes are: vξ = 4, J̄ = 10, T = 50, β0 = −10.
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outside option is about 5%, and the average bias approaches −40%. In contrast, when β0 = −15,

the share of the outside option is about 90%, and the average bias is less than 5% in absolute value.

Figure 1c illustrates a related implication of the mixed-logit model. When the number of prod-

ucts in each market is small, the degree of “local” substitution is important, and the simultaneity

bias is large. This is consistent with the previous discussion. When the number of products grows

large, the elasticity of substitution between products become increasingly diffused, and the Jaco-

bian of the quality assignment is nearly independent of products’ market shares. In our smallest

cross-section example (i.e. J̄ = 5), the average bias reaches −55%. In contrast, when the number

of products is equal to 100 on average, the the average bias is less than 10% in absolute value.

This last result is similar in spirit to the negative identification results obtained by ?) in the

context of the identification of the price coefficient with weak differentiation IVs.

Eliminating the simultaneity bias The previous section highlights the source of the simultane-

ity bias in σx. To eliminate this bias, it is essential to construct instrumental-variables that are

correlated with the slope of the quality assignment, and independent of each product unobserved

product quality, ξjt.

Let wjt = {xjt, zjt} denotes a vector of predetermined variables satisfying the conditional inde-

pendence restriction: E(ξjt|wjt) = 0. It is easy to see that the 2SLS estimate of b is equal to zero

in expectation when evaluated at the true value of the parameter vector:

E
[
b̂2sls

]
= E

[(
F ′(θ0)WΣ−1W ′F (θ0)

)−1]
E
[
F ′(θ0)WΣ−1W ′ξ

]
= 0. (24)

Since the GMM estimate of θ is defined such that b2sls = 0, it is a consistent estimate of the

preference parameter vector. However, like any IV estimator, this consistency result crucially

depends of the strength of the correlation between wjt and Hjt. When wjt is only weakly correlated

with the slope of the quality assignment function, standard asymptotic theory results break down,

and in general θ̂gmm is not consistent and has a non-standard asymptotic distribution (Staiger and

Stock (1997), Stock and Wright (2000)).

Recall, that the best predictor of the slope of the quality assignment function is an unknown

function of the empirical distribution of characteristic differences between products. Rather than

approximating the optimal IV directly, we use a finite number of moments of these differences as

instruments. This is analogous to the suggestion in Berry et al. (1995) of using the basis func-

tion as instruments, rather than directly computing the conditional expectation of the gradients,

E
[
Hjt(θ

0)|wjt
]
.

We consider two types of moments to approximate Fj(d). The first one uses a series of discrete

histograms measuring the distribution of the non-linear characteristic, xjt. Let Cx = {cx1 , . . . , cxK}
denotes K equally spaced percentiles of the entire distribution of dxij,t = xit − xjt, i 6= j across
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Figure 2: Simulated distribution of the random-coefficient parameter for three estimating methods

0
1

2
3

K
er

ne
l d

en
si

ty

0
.0

5
.1

.1
5

Fr
ac

tio
n

0 2 4 6
Random coefficient

Market IV Least-Square Diff. IV

all markets t.12 For each non-linear characteristic, we construct K × |Xjt| excluded instrumental

variables:

zxjt,k =

xjt ·
 Jt∑
i 6=j

1(dxij,t < cxk) ·Xit

 (25)

where Xjt = {1, pjt, xjt}. These IVs measure the number and characteristics of competitors located

to the left of product j along the x dimension. We include the interaction with product j’s non-

linear characteristic because we found in our simulations that the strength of the correlation varies

based on each product position in the product space. In the Monte-Carlo simulations, this approach

leads to K × 6 instrumental variables.

In addition, we characterize the distribution of characteristic differences using continuous mo-

ment functions. Let l denotes the lth element in vector Xjt, and k denotes the power of the function.

We construct K × |Xjt| × 2 instrumental variables:

zxjt,k =


Jt∑
i 6=j

xjt(d
x
ij,t × dlij,t)k


l=1,...,|X|

(26)

In the Monte-Carlo simulations we use the second and third moments (i.e. k = 2, 3). While higher-

order moments can yield more precise approximations, they quickly become co-linear when the

12We construct K uniform the percentiles between 1/K and (K − 1)/K.
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number of products per market is small.

In order to illustrate the consequences of using weak instruments, we construct a third set of

instrumental variables that vary only at the market-level. In particular, following Berry, Levinsohn,

and Pakes (1995), we use the number of products and the sum of product characteristics within

each market:

zMarket IV
jt =

Jt∑
j=1

Xjt. (27)

These variables exploit variation in the number and composition of each simulated markets, but

fail to exploit differences across products within each market.

In Table 1 we evaluate the weakness of the differentiation and market IVs. To test the weakness

each instrument vector, we construct estimate the “first-stage” of the artificial regression evaluated

at the true parameter value:

Hjt

(
σ0x
)

= Xjtc1 + Zjtc2 + ejt (28)

where Zjt is an excluded instrument vector (i.e. Market-IVs or Differentiation-IVs).

In practice, this test cannot easily be evaluated since Hjt does not have a closed-form expression,

and the true parameters are unknown. However, there exists a close relationship between this Weak-

IV test, and the IIA-test discussed above. Recall, that we can test the null-hypothesis that σx = 0

estimating the following linear regression:

ln (sjt/s0t) = xjtβ + zjtγ + Residual (29)

and testing the validity of the exclusion restriction of zjt: H0 : γ = 0. This specification test is

easy to implement, and has an important economic interpretation: failing to find a vector zj that

rejects the null hypothesis that γ = 0 implies that the data is consistent with the IIA hypothesis

(i.e. θ = 0).

There exists a close relationship between the two specification tests. In the one-dimension case,

the IIA-test is analogous to the first-stage regression in which we replace the partial derivative of

the quality assignment, with the discrete change from σx = σ0x to σx = 0. In general, this results

in a “larger change” in the quality assignment, implying that the IIA null hypothesis is easier to

reject. The results confirm this intuition. The p-values are on average about twice as large with

the first-stage test, as with the IIA-test.

The results also confirm that the Market IVs are very weak instruments. The average p-values in

the first column are equal to 0.25 for the first-stage test, and 0.48 for the IIA test. Therefore, in the

average simulated sample, we cannot reject the null hypothesis that σx = 0 using the Market-IVs.

The three Differentiation IVs are highly correlated with the quality assignment. The first-stage

and IIA tests p-values are extremely close to zero in every simulated samples. Both the histogram

and the continuous moment specifications appear to explain the quality assignment very well. In
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Table 1: Average Weak-IV and IIA specification tests across 1,000 Monte-Carlo simulated sample

Market IVs Differentiation IVs
Moments Histogram (K = 5) Histogram (K = 10)

IIA-test p-value 0.48 4.42e-13 1.46e-13 5.05e-14
First-stage p-value 0.25 5.33e-18 0 0

Each entry corresponds to the average p-value estimated using 1,000 Monte-Carlo replications. The samples are
generated at the default values of the data-generating processes: vξ = 4, J̄ = 10, T = 50, β0 = −10.

the results that we discuss below, we report the GMM estimates obtained with the continuous

moments. The results obtained with the histograms yield very similar results, but tend to produce

slightly larger biases. We think that this is due to the fact that we use fairly small cross-sections

of products, for which the histograms might not produce very accurate approximation of Fj(d).

Figure 2 plots the density of the simulated parameter estimates across three estimators: (i)

non-linear least square (long-dash), (ii) GMM with weak instruments (histogram), and (iii) GMM

with strong instruments (solid). All three densities are constructed using our baseline specification:

J̄ = 10, T = 50, vξ = 3 and β0 = −10. The density of the least-square estimates reflect the

simultaneity bias of approximately −40% discussed previously. In contrast, the density of the

GMM estimates obtained with our Differentiation IVs is centered around the truth (σ0x = 2), and

has a bell shape consistent with a normal distribution. Notice, that the dispersion of the GMM

estimates is slightly larger than the least-square, suggesting that the Differentiation IVs produce

very precise estimates.

The histogram in 2 confirms that “market-level” instruments produce inconsistent estimates of

the random-coefficient parameter. As predicted by the aforementioned econometrics literature on

weak IVs, we find that the limiting distribution of θ̂gmm is highly non-standard, and produces very

imprecise estimates. As the figure suggest, nearly 15% of the simulated samples produce estimates

equal to zero. When we estimate the log of σx, to take into account the corner solution, the average

simulated bias is around −200% and the median is −20%; consistent with the presence of a large

number of outliers.

Table 2 report the full set of Monte-Carlo results across the same specifications presented in

Figure 1. As before each entry is computed over the same 1,000 simulated samples. For each

specification and estimator, we report the median bias and the root-mean-square-error (RMSE) of

the log difference between the estimated parameter and the true σx.13

Consistent with Figure 2, the results clearly show that the Differentiation IVs successfully

eliminate the simultaneity bias in σx. The least-square estimator produces median biases that

range between −2% and −55%, while the median biases obtained with the strong IVs are all less or

13We report the median instead of the mean bias because the average GMM estimate with weak instruments is too
much affected by the presence of outliers.
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Table 2: Monte-Carlo simulation results with exogenous characteristics

Least-Square Market IV Diff. IV
Med. bias RMSE Med. bias RMSE Med. bias RMSE

Residual variance (σξ):
.5 -0.017 0.022 -0.018 0.137 0.000 0.017
1.5 -0.147 0.153 -0.135 4.541 -0.002 0.053
2.5 -0.321 0.328 -0.278 7.252 -0.008 0.088
3.5 -0.448 0.454 -0.332 10.563 -0.018 0.116

Intercept (β0):
−15 -0.072 0.077 -0.125 3.820 -0.001 0.037
−12 -0.115 0.121 -0.157 4.826 -0.001 0.047
−9 -0.205 0.211 -0.196 6.034 -0.003 0.064
−6 -0.351 0.359 -0.287 8.055 -0.010 0.093

Panel structure:
(J̄ = 5, T = 100) -0.552 0.557 -0.207 7.317 -0.031 0.110
(J̄ = 10, T = 50) -0.394 0.399 -0.265 9.015 -0.014 0.101
(J̄ = 50, T = 10) -0.150 0.174 -0.006 7.890 -0.007 0.113
(J̄ = 100, T = 5) -0.094 0.136 -0.004 6.504 -0.009 0.121

Each entry corresponds to median and RMSE of the log-difference between the estimate of σx and the true
parameter value, over 1,000 Monte-Carlo replications. The default values of the data-generating processes are:
vξ = 4, J̄ = 10, T = 50, β0 = −10.

equal to 4% in absolute value (and most less than1%). The RMSE column also confirms that the

Differentiation IVs produce remarkably precise estimates, even when the variance of the residual

is more than three times the variance of product characteristics.

The middle panel summarizes the results obtained with the weak IVs. Consistent with Figure

2, the Market IVs produce estimates that are inconsistent and highly dispersed. The median

biased are of similar magnitude to the ones found with non-linear least-square. More strikingly, the

RMSE of the GMM estimates with weak IVs are about nearly 10 times larger than the RMSE of

the estimates obtained with the Differentiation IVs. This large efficiency gain results from better

exploiting the cross-sectional variation in the characteristics of products available in each market.

2.2 Endogenous Prices

We now turn to the more realistic setting in which one of the product attribute is correlated with

the unobserved quality of products.14 In particular, we assume that the linear characteristic x2j

measures the price of each product, and is endogenously determined through a Bertrand-Nash

pricing game. This model corresponds to a quasi-linear utility function, in which the quality index

of product j is defined as:

δj = β0 + β1x1j + βppj + ξj . (30)

14Preliminary and incomplete. This section needs to be revised.

24



If mcj denotes the constant marginal cost of product j, the price vector is implicitly defined by the

following system of first-order conditions:

σj(δ, θ) + (pj −mcj)
∂σj(δ, θ)

∂pj
= 0, ∀j = 1, . . . , J. (31)

We will assume that the econometrician observes a cost-shock ωj that enters the cost function of

product j:

ln mcj = c0 + c1x1j + ωj , (32)

where ωj ∼ N(0, σ2ω). In the Monte-Carlo simulations below, we set c00 = 0, c01 = 1 and σω = 0.1.

As discussed in Berry et al. (1995), this equilibrium condition implies that prices are correlated

with ξj , which tends to bias upward our estimate of βp if we do not instrument for price or impose

additional restrictions. The strength of this correlation, and therefore the magnitude of the bias,

depends on multiple factors, including the elasticity of the residual demand of each good, and the

variance of the unobserved quality of products. In the Monte-Carlo simulations below, we vary

σξ to amplify or attenuate the simultaneity bias (i.e. the larger is σξ, the more serious is the

simultaneity bias).

Natural instrument for price is the cost shock ωj . In order to construct separate instrumental

variables to identify θ, as before we construct measures of differentiation along the x1j dimension.

In addition, to capture the joint distribution of product attributes, we replace d2i,j with a measure

of cost differential, using the cost shifter of competition products. Using the histogram instrument

as an example, our second set of instruments become:

ω̄kj =
∑
j′ 6=j

1
(
d1j,j′ < ck

)
× dωj,j′ , ∀k = 1, . . . ,K, (33)

where dωj,j′ = ωj−ωj′ is a cost differential measure between product j and j′. Intuitively, this second

instrument measures the cost cost of competitors located in different distance bins of product j.

The presences of an endogenous characteristics changes the GMM estimator as follows:

min
θ≥0

mJ(θ)A−1mJ(θ) (34)

s.t. mJ(θ) =
∑
j

(δj(s, θ)− xjβ(θ))× IVj

δj(s, θ) = σ−1j (s, θ)

β(θ) =
(
x′Pwx

)−1
xTPwδ(s, θ)

where Pw is the projection matrix using the price instruments. This estimator nests two cases. In

the first one, the price instrument vector wj is a subset of instrument vector IVj , and includes only

the exogenous characteristic and the cost shifter ωj . In the second case, both instrument vectors

25



are equal (i.e. IVj = wj). As we discuss below, the first case is our favorite estimator, and tends

to provide better results in our simulations, and in the car application.

Table 3 summarizes the Monte-Carlo simulation results for a cross-section and panel data-

generating process (DGP). The cross-section example is similar to the one considered in ?? with 500

products. The panel example also contains 500 observations on average, but products are divided in

25 independent markets. The number of products per market is distributed according to a poisson

process with an average of 20 products, and the characteristics of products are independently

distributed within and across markets.

Both Tables are divided in three panels, each representing a different combination of moment

conditions. In the first two columns, the instrument vector includes the differentiation IVs and the

cost shifter, and the linear price coefficients β(θ) are estimated using the cost-shifter as excluded

instrument.15 The second and third columns use only the histogram of characteristic differences

as excluded instruments: IVj = wj = (1, x1j , n
1
j , . . . , n

K
j ). Finally, in the third panel, prices are

assumed to be exogenous and the instrument vector corresponds to the differentiation instruments:

IV + j = (1, x1j , n
1
j , . . . , n

K
j ) and wj = (1, x1j , pj). Within each specification we consider two

DGPs: (i) σξ = 1/4 is associated with a very small correlation between ξj and pj , and (ii) σξ = 1

is associated with a strong and positive correlation between pj and ξj .

Consider first the simulation results in the cross-sectional example (Table 3a). The first four

rows are consistent with the results obtained in the simulations with exogenous characteristics.

Across all specifications, the random-coefficient are consistently and precisely estimated. The only

specification to yield a somewhat biased estimate of θ is the middle panel in which we do not

use a cost-shifter instrument, and the variance of ξj is large (i.e. σξ = 1). This suggests that

even when the moment conditions fail to correct for the simultaneity bias in the price coefficient,

the differentiation IVs consistently identify the heterogenous taste parameter. In other words, the

simultaneity bias appears to be somewhat independent of the reflection problem.

The second section of Table 3a summarizes the results associate with the price coefficient. The

main takeaway from this exercise is that having two independence sources of exogenous variation

appears to be critical to consistently estimate the price coefficient. The first two columns use the

cost shifter to correct for the simultaneity problem, which produces estimates of βp that are very

close to the parameter (i.e. β0p = −2). This is not the case in the second and third panels, in

which the model is estimated solely using the differentiation IVs. With a small σξ, the correlation

between pj and ξj is almost zero, and the estimates are close to truth with or without using an

instrument for price. With a large σξ, the simultaneity bias is very severe, and the price coefficient

is biased upwards with or without using the differentiation IVs to control for simultaneity.

Table 3b shows that the conclusions reached with a cross-section DGP remain valid in the panel.

The main difference is that the correlation between pjt and ξjt is exacerbated with the panel, which

15The differentiation IVs include the histogram of characteristic differences nkj , and the cost-differential of com-
petitors ω̄kj . We set the number of grid points to 10.
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Table 3: Monte-Carlo simulation results with endogenous prices

(a) Cross-section

IVs: Diff. + Cost IVs: Diff. No Price IVs
σξ = 1/4 σξ = 1 σξ = 1/4 σξ = 1 σξ = 1/4 σξ = 1

Random coef. (θx)
Estimate 0.999 0.997 0.991 0.951 1.001 0.995
Std-error 0.013 0.025 0.054 0.107 0.019 0.077
RMSE 0.019 0.028 0.077 0.134 0.023 0.094
MAE 0.015 0.022 0.062 0.103 0.019 0.075

Price coef. (βp)
Estimate -1.993 -1.975 -1.970 -1.239 -1.965 -1.370
Std-error 0.229 0.234 0.926 0.875 0.209 0.838
RMSE 0.226 0.487 0.910 2.173 0.217 1.057
MAE 0.182 0.374 0.735 1.648 0.171 0.853
J p-value 0.478 0.482 0.478 0.471 0.479 0.478
IIA p-value 0.000 0.000 0.001 0.005 0.000 0.014

True parameters: θ = 1, β0 = 1, βx = 1, βp = −2. Monte-Carlo simulation parameters: nb. simulations =
1,000, σx1 = 1, σx2 = 0, σξ = 1/4 or 1, σω = 0.05, number of products = 500. Instrumental variables: Histogram
of characteristic differences with K = 10 grid points (percentiles), Price IV = ωj . Estimates and standard-errors
correspond to the median across all simulated samples.

(b) Panel

IVs: Diff. + Cost IVs: Diff. No Price IVs
σξ = 1/4 σξ = 1 σξ = 1/4 σξ = 1 σξ = 1/4 σξ = 1

Random coef. (θx)
Estimate 1.002 1.005 1.000 0.979 0.988 0.812
Std-error 0.019 0.076 0.034 0.137 0.017 0.067
RMSE 0.023 0.093 0.038 0.158 0.022 0.201
MAE 0.018 0.074 0.029 0.120 0.018 0.186

Price coef. (βp)
Estimate -1.991 -1.962 -1.909 -0.572 -1.770 1.447
Std-error 0.222 0.889 0.808 3.267 0.140 0.516
RMSE 0.213 0.853 1.625 6.723 0.297 3.537
MAE 0.168 0.671 1.240 5.122 0.249 3.457
J p-value 0.484 0.484 0.514 0.513 0.453 0.290
IIA p-value 0.000 0.013 0.000 0.014 0.000 0.005

True parameters: θ = 1, β0 = 1, βx = 1, βp = −2. Monte-Carlo simulation parameters: nb. simulations =
1,000, σx1 = 1, σx2 = 0, σξ = 1/4 or 1, σω = 0.05, number of products = 20, number of markets = 25. Instrumental
variables: Histogram of chracteristic differences with K = 10 grid points (percentiles), Cost IV = ωj .
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leads to more severe upward biases in the price coefficient. This is because with a smaller choice-set,

equilibrium prices exhibit a stronger correlation with the number and characteristics of products.

As the number of products increase, the mixed-logit model implies a close to constant markup,

which explains most of the differences between Table 3a and 3b.

The presence of this stronger correlation between prices and the unobserved product attribute

in the panel case, highlight the importance of instrumenting for prices, for the identification of the

random coefficient parameter. The last column shows that treating prices as an exogenous attribute

leads to a positive price coefficient, which in turns produce a sizable bias in the estimate of θ. The

fourth column shows that this bias in θ is almost entirely eliminated using the differentiation IVs,

but the price coefficient is still severely biased (i.e. −0.572 > −2).

To better understand the source of the bias in the price coefficient, it is useful to consider

the estimation of the linear coefficients β(θ) is GMM problem. Recall, that the empirical mo-

ment conditions mJ(θ) are evaluated by decomposing the quality index using the following 2SLS

regression:

δj(s, θ) = β2sls0 + β2sls1 x1j + β2slsp pj + ξ2slsj (θ). (35)

Recall that for any value of θ 6= θ0, the unobserved quality ξj(θ) contains a “specification” error

associated the quality assignment and denoted by ∆ξj(θ). By construction, the differentiation IVs

are correlated with ∆ξj . Therefore, while the characteristics of similar competing products are

relevant instrument for price, they do not satisfy the exclusion restriction, unless the quality index

is evaluated at the true parameter. This discussion suggests that any bias in θ can invalidate the

use of differentiation IVs as price instruments, and therefore highlight the importance of exploiting

two independent sources of exogenous variation to tackle the reflection and simultaneity problems.

Our simulation results suggest this bias can arise even from a well specified econometrics model.

Our interpretation of the results in Table 3a and 3b is that the small-sample bias in θ invalidates

the exclusion restriction, and creates a systematic upward bias in βp. In principle this bias should

therefore be eliminated asymptotically as the number of products per market or as the number of

markets goes to infinity. The results presented in this section exploit fairly large sample, suggesting

that the rate at which this bias is eliminated can be very slow.

Finally, Figures 3a and 3b report the distribution of the two key parameter estimates using weak

and strong differentiation IVs. In particular, we construct a weak instrument using the number

of products and the sum of competing product characteristics. These instruments are labelled

“Market IVs” in Figure 3, and correspond to the same instrument proposed by Berry et al. (1995).

In the panel-data case, the Market IVs exploit variation in the number and characteristics of

products across markets. Importantly, these variables do not exploit variation in the degree of

differentiation between products, and are therefore weakly correlated with the quality assignment

function. Similarly to the random product attributes used to construct the weak instrument in

Figure ??, we fail to reject the null hypothesis of IIA with the Market IVs.
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Figure 3: Distribution of parameter estimates with weak and strong IVs in the panel case

Figure 3a confirms that failing to reject the null hypothesis of IIA leads to very imprecise

estimates of θ. The distribution of θ̂ is very dispersed, and exhibit the same departures from

normality documented in the previous section: (i) nearly 15% of estimates are equal to 0, and (ii)

the distribution is highly skewed to the right. The dashed line clearly shows that these two features

are not present when the model is estimated using the histogram of characteristics differences.

Finally, Figure 3b shows that the price coefficient is largely unaffected by the choice of differ-

entiation IV, as long as the instrument vector contains a cost-shifter.

3 Empirical Application: Demand for Cars

In this section, we revisit the application of Berry et al. (1995), and measure the degree of differ-

entiation between new cars. Our objective is to illustrate the ability of our differentiation IVs in

precisely estimating the parameters of a mixed-logit model without relying on a particular equilib-

rium model.

Table 4 summarizes the data. The first column shows that the number of models has been

steadily increasing between 1971 and 1990, from 92 to a peak of 150 in 1988. The sample size

is therefore larger than the ones used in our Monte-Carlo simulation. However, the presence of

multiple dimensions of heterogeneity makes the estimation more challenging.

Columns (3) to (8) report the sales weighted average of the main characteristics. This period

exhibit important changes in the characteristic and price of new cars. In the particular, while the

first oil shock led to a rapid increase in the cost per mile, the second oil shock led to a complete

reshuffling of new cars available in the US. This is characterized by a rapid increase in the market

share and number of models offered by Asian manufacturers, and a steep decline in the size of

cars purchased. The steady decline in oil prices and economic growth in the 1980s contributed
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Table 4: Summary statistics of the car data

Year Models Price Euro. Asia HP/WT Size $/Miles
× 1,000 / 100 × 10,000 /10

1971 92 7.87 0.08 0.06 4.90 1.50 5.60
1972 89 7.98 0.07 0.04 3.91 1.51 5.63
1973 86 7.53 0.03 0.04 3.64 1.53 5.77
1974 72 7.51 0.06 0.05 3.47 1.51 7.26
1975 93 7.82 0.06 0.08 3.37 1.48 7.06
1976 99 7.79 0.04 0.08 3.38 1.51 6.55
1977 95 7.65 0.05 0.11 3.40 1.47 6.03
1978 95 7.64 0.04 0.11 3.46 1.40 5.52
1979 102 7.60 0.04 0.16 3.48 1.34 6.36
1980 103 7.72 0.04 0.19 3.50 1.30 7.16
1981 116 8.35 0.05 0.21 3.49 1.29 6.77
1982 110 8.83 0.05 0.23 3.47 1.28 5.77
1983 115 8.82 0.05 0.21 3.51 1.28 5.08
1984 113 8.87 0.04 0.18 3.61 1.29 4.95
1985 136 8.94 0.05 0.19 3.72 1.26 5.15
1986 130 9.38 0.05 0.22 3.79 1.25 3.67
1987 143 9.97 0.05 0.25 3.95 1.25 3.72
1988 150 10.07 0.05 0.24 3.96 1.25 3.55
1989 147 10.32 0.05 0.26 4.06 1.26 3.71
1990 131 10.34 0.04 0.28 4.19 1.27 4.09

to a reversal of these trends, characterized by increasing real prices, lower fuel efficiency, and the

popularity of more powerful engines.

The original model considered by Berry et al. (1995) is a mixed-logit random utility model with

standard-normal random coefficients.16 To illustrate the performance of our Differentation IVs

relative to other IVs considered in the literature, we consider the following relatively parsimonious

specification of the indirect utility of consumers:

uijt = xjtβx + µj + τt + pjt · (βp + σpyit) +
K∑
k=1

σkηikx
k
jt + ξjt + εijt, (36)

where xkjt ∈ {HP/WT,DFI,Four cyl,AT}, yit ∼ N(ȳt, σ
2
t ) denotes the log annual income of house-

hold i, and (µj , τt) measures company and period fixed-effects. In addition to the price variable,

we allow four variables to exhibit heterogenous tastes: hp/wt, diesel engine, four-cylinder, and

automatic transmission.

We consider the same continuous product attributes to describe the willingness to pay of con-

16The distribution of the random taste parameter associated with the price variable corresponds to a log-normal
distribution estimated using the year-specific income distribution.
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sumers: list price ($1983/1,000), car size (i.e. width × length /10,000), horsepower to weight ratio,

and the number of miles per dollar. We augment the model with additional discrete character-

istics: air-conditioning, automatic transmission, power-steering, front-wheel drive, four-cylinder,

diesel engine. In addition, we estimate a log-linear indirect utility function, rather than expressing

product characteristics in levels.

3.1 Identifiation and Instruments Choice

The main identifying assumption is that the unobserved quality index of products is conditionally

independent of the characteristics of products available in the market:

E(ξjt|τt, µj , x1t, . . . , xJt,t) = 0 (37)

where τt and µj are year and company fixed-effects respectively, and xjt is a vector of pre-determined

characteristics of product j.

Our estimation strategy is to construct two sets of instrumental variables consistent with this

conditional moment restriction, in order to identify the non-linear parameters θ = {σp, σ1, . . . , σK , }
determining the degree of differentiation between products, and the linear price coefficient βp al-

lowing us to decompose the average valuation of consumers into a quality and a price effects.

As discussed above, the challenge is to exploit exogenous variation in the characteristics of

products to solve a reflection and a simultaneity problem. We describe in turn the three class

of instrumental variables that we use in the empirical analysis: (i) within firm sum of product

characteristics, (ii) product-level cost shifter, and (iii) differentiation IVs.

Berry et al. (1995) consider two types of excluded instrumental variables to get around both

problems:

x̄own
jt =

∑
k∈Fkt

xkt, x̄otherjt =
∑
k/∈Fkt

xkt

where Fjt denotes the set of competing products sold by the same manufacturer as product j in

period t. These two variables are defined over the main discrete and continuous characteristics:

hp/wt, size, air-conditioning, and the intercept. Since our econometric specifications include year

fixed-effects, we cannot use both variables (i.e. x̄own
jt + x̄otherjt + xjt does not vary within each year).

We therefore use x̄own
jt as excluded instruments to contrast our results with Berry et al. (1995)’s

specification. These variables exploit variation in ownership structure across brands and time.

Intuititively, this source of variation is more relevant for the price simultaneity problem, than for

the endogeneity of market shares. We label those instruments BLP-IVs.

In addition, we construct a series of variables that we think are correlated with cost differences

across cars. In particular, we exploit variation induced by the differential impact common cost
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shocks on the relative price of cars with different product attributes. Since most Asian and European

cars were produced abroad during this time period, changes in the price oil and in exchange rates

lead to changes in the marginal cost of selling cars to the US. Similarly, the relative price of bauxite

and iron differentially affect large and small cars.17 We exploit these sources of variation as follows:

wjt =

(
(∆Gas pricet,∆Exchange ratet)× Country of originj

Bauxite price/Iron pricet × Car sizejt

)

We label those instrumental variables Cost-IVs. We use these IVs to estimate the following hedonic

price index by OLS:

p̂jt = xjtπ̂1 + wjtπ̂2. (38)

This predicted price corresponds to a price index ranking car values based solely on their own

observed attributes. We use the results of this first stage regression for two purpose: (1) to re-

cover our estimate of the linear price coefficient βp, and (2) to construct exogenous measures of

differentiation.

To construct the Differentiation IVs, we extend the approach developed in the Monte-Carlo

simulations to account for the multi-dimensional nature of product differentiation. In particular, for

each continuous characteristic yjt ∈
{
p̂jt,HP/WTjt

}
, we construct the histogram of characteristic

differences, and the sum of competing product characteristics along six dimensions. More formally,

for each nominal difference grid cyk,t ∈ {c
y
1,t, . . . , c

y
K,t}:

zyjt,k =
∑
i 6=j

1(dyji,t < ck,t) · xit

where dyji,t = yjt − yit, and xjt includes continuous and discrete product characteristics.

To account for the change over time in the distribution of characteristics, we define the histogram

cutoffs as the within year percentiles of the distribution of dxji,t, between 1/(K+ 1), . . . ,K/(K+ 1).

In addition, for discrete characteristics such as the A/C and automatic (AT) indicators, we replace

the cutoffs with indicator variables equal to one for product sharing the same attribute (e.g.,

d
a/c
ij,t = 0).

Finally, we construct an approximation of the optimal IV of Chamberlain (1987) similar to the

one used in Berry et al. (1999) (see also Reynaert and Verboven (2013)). Recall, that the optimal IV

for parameter θ is defined as the conditional expectation of the gradient of the quality assignment

function with respect to θ. Berry et al. (1999) approximate this instrument by evaluating the

gradients at a preliminary estimate of the parameter value, and replacing each product unobserved

product quality by zero. Since this gradient is also function of prices, Berry et al. (1999) replace

each product’s price by the Bertrand-Nash equilibrium price evaluated at ξjt = 0. Rather than

17To account for the fact that car makers are not price takers in the steel or aluminum market, we replace the two
input prices with predicted prices using current and lag oil prices.

32



imposing this type of supply-side assumption, we instead replace prices by the hedonic price index

p̂jt, as defined in equation 38. Our approximation of the optimal IVs for non-linear parameter θk

is therefore defines as:

zθkjt =
∂fjt(ξ = 0, p = p̂|θ = θ̂)

∂θk
(39)

where θ̂ is a preliminary GMM estimate of the preference parameter vector obtained using either

BLP-IVs or Differentiation-IVs.

If IVjt denotes the entire vector instrumental variables, either BLP-IVs, Differentiation-IVs, or

Optimal-IVs, the GMM estimator of the non-linear parameter vector is defined as the following

nested fixed-point algorithm:

min
θ≥0

mn(θ)A−1mn(θ) (40)

s.t. mn(θ) = (δ(s, θ)− xβ(θ))T IV

δjt(s, θ) = σ−1jt (st, θ)

β(θ) =
(
x′Pwx

)−1
xTPwδ(s, θ)

where n denotes the number of car × periods pairs, and Pw is the projection matrix using the

Cost-IVs as price instruments.

Notice that our favorite estimator uses only a subset of instrument vector to estimate β(θ),

rather than the entire vector IVjt. We find that this approach yields more reasonable estimates

of the price elasticity. In particular, using the entire vector differentiation IVs leads to estimates

of βp that are comparable to the OLS estimates, suggesting that some of these variables are not

valid excluded variables. As we will see below, this is consistent with our over-identifying tests

results. This suggests that the demand system is mis-speciffied. In particular, the model residuals

evaluated at the GMM estimate contains measures of product differentiation not captured by our

random-coefficient model.

3.2 Estimation results

Table 5 presents the results of a series of specification tests associated with the joint hypothesis that

the random coefficients are equal to zero (i.e. IIA tests). Recall, that under the null hypothesis,

the market share of each product relative to the outside good, is function only of the produts’ own

characteristics. Moreover, if the data-generating process does not exhibit this IIA property, the best

preditor of quality-assignment function at θ = 0 is a function of the empirical distribution product

characteristic differences relative to product each car’s characteristics. Since our Differentiation

IVs are constructed to approximate this empirical distribution, we can test the IIA hypothesis by

testing the validity of the exclusion restriction that competitor products’ attributes are uncorrelated

with the average quality of products, evaluted at θ = 0.
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Table 5: Car demand: IIA specification tests results

(1) (2) (3) (4) (5) (6)
Multi. Price HP/WT DFI FWD Four cyl.

χ2 209.9 82.65 73.29 1.737 24.08 10.59
P-Value 1.61e-07 0.00251 0.0176 0.884 0.000210 0.0602
DF 115 50 50 5 5 5

We implement this test by regressing the log share ratios on products’ own characteristics, and

different combinations of the Differentiation IVs, denoted by zjt:

ln sjt/s0t = pjtβp + xjtβx + µj + τt + zjtγ + ejt. (41)

The null hypothesis that γ = 0 is tested by estimating β and γ by 2SLS, using our exlcuded cost

shifters to instrument for price.

Each column corresponds to a different combination of the Differentiation IVs. Columns (2)

through (6) calculates the distribution of competing product attributes separately for each of our

five main differentiation variables: hedonic price index, hp/wt, diesel engin (DFI), FWD, and four-

cylinders. Column (1) combines all five dimension. To compute the differentiation histograms,

we use a 10 uniformly-spaced grid, and interact each indicators with the five characteristics. The

three discrete attributes are therefore associated with five instrumental variables (i.e. characteristic

of products within the same segment), and the two continuous variables lead to 50 instrumental

variables.

The results of the specification tests lead us to easily reject the IIA hypoethesis, especially

when we include all five differentiation measures. The tests are less conclusives when looking at

each dimension of differentiation indidiually, especially in the case of the diesel and four-cylinder

segments. The price index and horse-power measures on the other hand lead to stronger rejections

of the IIA hypothesis, at the 1% and 5% significance levels respectively.

Taken together, these results confirm that our Differentiation IVs are jointly able to detect

deviations from the IIA property. We interpret this as a evidence that the Differentiation IVs are

strong instruments to identify the random-coefficient parameters. This is because the instruments

measure moments of the empirical distribution Fjt(d) that are correlated with the quality assignment

function. The ability of the instruments to explain the quality assignment away from the true

parameter values, is a necessary condition to identify the model non-linear parameters.

Table 6 present our main set of results. Each entry in Table 6b correspond to a separate single-

dimension random-coefficient model. In columns (1) and (2) we compare the parameter estimates

obtained with the instrumental variables used in Berry et al. (1995), and with the differentiation

IVs defined above. The results are consistent with the Monte-Carlo simulations. The within-firm
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Table 6: GMM estimation results for the car application

(a) Single dimension models

(1) (2) (3)
BLP-IV Diff. IV BLP (1999)

θ̂
Price 2.075 1.373 1.254

(1.36) (0.25) (0.3)
HP/WT 2.916 2.611 2.531

(6.73) (0.55) (0.85)
DFI 25.35 2.472 3.2

(6.83) (0.55) (0.23)
FWD 0 1.896 1.823

– (0.23) (0.25)
Four cyl. 0 2.433 2.523

– (0.38) (0.39)

β̂p -3.909 -3.801 -3.796
(0.75) (0.77) (0.65)

(b) Multi dimension models

Diff. IVs BLP (1999)
Est. S.E. Est. S.E.

θ̂
Price 1.11 0.29 1.12 0.31
HP/WT 1.47 0.43 1.53 0.48
DFI 1.21 0.73 1.01 1.57
FWD 1.34 0.18 1.04 0.17

β̂
Price -16.04 0.75 -15.48 0.40
HP/WT -0.03 0.35 -0.39 0.22
DPM -0.14 0.20 -0.16 0.19
Car Size 1.38 0.73 1.79 0.50
DFI -0.36 0.19 0.18 0.14
FWD 0.05 0.08 0.06 0.07

summation of product characteristics lead to very imprecise results, similar to the Market-IVs

discussed in the Monte-Carlo simulations. This is not surprising since those variables only vary at

the market/firm level, and are uncorrelated with the degree of differentiation of products.

In column (3), we report the results of each model estimated separately using an approximation

of the optimal IV of Chamberlain (1987) proposed by Berry et al. (1999) (see also Reynaert and

Verboven (2013)). For each specification we use the first-column results as starting values for θ̂.18

The use of those instruments successfully eliminate the weakness problem found in column (1).

Importantly, parameter estimates and standard-errors are nearly equivalent to the ones found

with the Differentiation IVs. This is not surprising, since our main theoretical result suggest that

these instruments contain the same information as the optimal IV discussed in Chamberlain (1987).

More specifically, we can use Theorem ?? to show that the conditional expectation of the derivative

of the quality assignment is an unknown function of the distribution of the characteristic differences:

E

(
∂ξj(θ)

∂θk

∣∣∣X) = E

(
∂ξj(θ)

∂θk

∣∣∣Fj(d)

)
= gk(Fj(d)) (42)

Table 6b confirms this results in the multi-dimensional case. In this specification, we estimate

a model with four normally distributed random coefficients. The parameters are very precisely

estimated for three of the four variables, and are comparable across both sets of of instruments.

Notice that the optimal IV specification is estimated using column (1) as starting values, rather

than using the market-level IVs results. Therefore, we do not find efficiency gains associated with

using the two-stage approach proposed by Berry et al. (1999)

18The optimal IV approximation relies on evaluating the derivative of the quality assignment at ξj = 0. Since this
derivative is zero at θ = 0, we use starting values equal to min(0.1, θ̂) to construct the moment conditions.
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A Proof

We make the following regularity assumptions to prove the result.

Assumption 1. (i) For some j ∈ {1, . . . , J} we have that F 0
b 6= F̃b implies ξj

(
·;F 0

b

)
6= ξj

(
·; F̃b

)
(ii) There exists a characteristic xj1 that does not admit a random coefficient, i.e., bi1 = β1

The condition (i) is a weak regularity conditions that is clearly a minimal necessary conditions

for identification. If it fails then the moment restriction (5) would clearly have no identifying power

to discriminate between F 0
b 6= F̃b. The condition (ii) is a restriction that Berry and Haile (2014)

use in a more general preference settings and is sensible for many applications. We adopt it here

for convenience, but could potentially relax it (as the next section will make more clear) given that

we are working in a more specialized environment.

Part (ii) of Assumption 1 implies that vi1 = 0. We can partition market structure into X =(
X1, X(2)

)
where X1 = (xj1, . . . , xJ1) ∈ RJ are the market structure variables that do not admit

random coefficients, and X(2) =
(
x1(2), . . . xJ(2)

)
∈ RJ(K−1) for xj(2) = (xj2, . . . , xJK) are the

market structure variables that do potentially admit random coefficients. Then it is clear that for

any F 0
v the quality assignment will be such that hj

(
s,X;F 0

v

)
= hj

(
s,X(2);F

0
v

)
. However gj (X)

will nevertheless generally depend upon the entire market structure X (because markets shares s

will still depend upon X1). Thus we have JK potential instruments X for JK potential arguments(
s,X(2)

)
in hj . Assuming that the instruments X are complete for

(
s,X(2)

)
in the sense of ?), then

the observational equivalence between two models F 0
v and F̃v would imply gj (X) =

E
[
hj
(
s,X;F 0

v

)
| X
]

= E
[
hj

(
s,X; F̃v

)]
⇐⇒

E
[
hj
(
s,X;F 0

v

)
− hj

(
s,X; F̃v

)
| X
]

= 0 ⇐⇒

hj
(
s,X;F 0

v

)
= hj

(
s,X; F̃v

)
⇐⇒

F 0
v = F̃v

where the third line follows from the completeness assumption, and the fourth line follows from (i)

of Assumption (1).

B Inverse demand representation

Consider the following quasi-linear model:

uijt = δ̃jt − αpjt +
∑
k

σkvikxjt,k + εijt = δjt +
∑
k

σkvikxjt,k + εijt (43)

36



The demand function is given by:

σjt(δt,Xt;Fv) =

ˆ
exp(δjt +

∑
k σkvikxjt,k)

1 +
∑Jt

j′=1 exp(δj′t +
∑

k σkvikxj′t,k)
dFv (44)

The inverse-demand function is given by:

pjt = xjtβ −
1

α
σ−1jt (Xt, st;Fv) = xjtβ −

1

α
hjt(Xt, st;Fv) + ξjt (45)

Consider the following minimum distance estimator:

1. Excluded instruments: zjt = H(Xt)

2. Hedonic regression:

pjt = xjtγ̂x + zjtγ̂z + µt + Residual

3. Willingness to pay regression: For a given guess of the preference parameters θ

E

(
xjtβ −

1

α
hjt(Xt, st;Fv) + ξjt

∣∣∣Xt

)
= xjtγx(θ) + zjtγz(θ) + µt(θ)

4. Norm:

min
θ
||γ̂ − γ(θ)||

where γ = (γx,γz).
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