Motivation	Model	Individual banks	Equilibrium	Financial (in)stability	Welfare analysis	Conclusion
00000	00000	00000	0000000000	0000	00000	00

Bank Capital and Credit Cycles

Nataliya Klimenko Sebastian Pfeil Jean-Charles Rochet (UZH) (GUF) (UZH, SFI and TSE)

January 2015

< □ > < @ > < E > < E > E のQ@

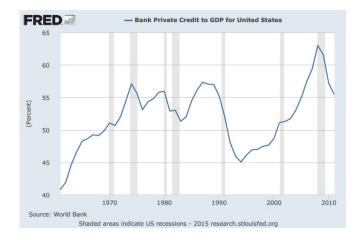
Motivation	Model	Individual banks	Equilibrium	Financial (in)stability	Welfare analysis	Conclusion
0000	00000	00000	0000000000	0000	00000	00

MOTIVATION

- Policymakers need macro-models that are specifically tailored to financial stability analysis (in the same way DSGE models were designed for guiding monetary policy).
- ► Necessary to guide macro-prudential policy decisions.
- For example, counter-cyclical banking regulations are implemented in some countries, without a clear understanding of the macroeconomic impact of bank capital requirements.
- ► In fact, very little is known about the determinants of aggregate bank lending, and the mechanism behind credit cycles.

MotivationModelIndividual banksEquilibriumFinancial (in)stabilityWelfare analysisConclusion○●○○

CREDIT CYCLES: EVIDENCE



Schularik-Taylor (2012) data set: credit booms and leverage cycles in 12 countries over 1870-2008.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

CREDIT CYCLES: THEORIES

- Fluctuations of collateral prices for constrained borrowers (Bernanke-Gertler (1989,1990), Kiyotaki-Moore(1997))
- ► Loans officers relax credit standards when things go well (*Ruckes 2004*)
- Strategic complementarities in risk taking between banks due to anticipated bail outs (*Farhi-Tirole 2012*), relative performance evaluation of bank managers (*e.g.*, *Rajan 1994*, *Aitken et al. 2012*)
- Pecuniary externalities (Lorenzoni (2008), Bianchi (2011), Jeanne-Korinek (2011), Gersbach and Rochet (2013, 2014))

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Motivation	Model	Individual banks	Equilibrium	Financial (in)stability	Welfare analysis	Conclusion
00000	00000	00000	0000000000	0000	00000	00

OUR CONTRIBUTION

- General equilibrium model with financial frictions in the spirit of Brunnermeier & Sannikov (2014).
- ► Simpler than BS model and allows for closed-form solutions.
- Banks are explicitly modeled and bank capital dynamics plays a crucial role.
- ► Model lends itself to simple comparative statics and welfare analysis.

Motivation	Model	Individual banks	Equilibrium	Financial (in)stability	Welfare analysis	Conclusion
00000	00000	00000	0000000000	0000	00000	00

Related literature

1. Bank capital channel:

- ► Meh & Moran (2010)
- Blum & Hellwig (1995), Van den Heuvel (2008), Nguyen (2013)

2. Macro-finance in a continuous-time framework:

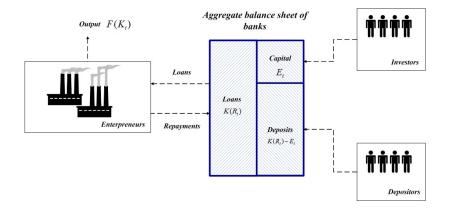
- Brunnermeier & Sannikov (2014), He & Krishnamurthy (2012, 2013, 2014), Adrian & Boyarchenko (2014)
- 3. Corporate cash management
 - Decamps et al. (2011) Isohätälä, Milne & Robertson (2014), Barth & Moreno (2014), Bolton et al (2011)

Motivation 00000	Model ●○○○○	Individual banks 00000	Equilibrium 0000000000	Financial (in)stability 0000	Welfare analysis 00000	Conclusion 00

The model

- Dynamic general equilibrium model with a banking sector.
- One physical good, can be consumed or invested. Complete depreciation of capital at each period.
- ► Firms' investments can only be financed by bank loans (investment = credit K_t).
- Three types of agents: entrepreneurs and investors (both risk neutral) and depositors (infinitely risk-averse).
- Banks are financed by risky equity and riskless deposits.
- ► Depositors are less impatient (discount factor *r*) than investors (discount factor *ρ* > *r*).
- We focus on the case r = 0.

GLOBAL PICTURE



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 − 釣へ⊙

Motivation	Model	Individual banks	Equilibrium	Financial (in)stability	Welfare analysis	Conclusion
00000	00000	00000	0000000000	0000	00000	00

ENTREPRENEURS

- have individual projects of duration Δt .
- if successful: return $1 + x\Delta t$, repay $1 + R\Delta t$.
- *x* is heterogenous (density g(x)) and private information.
- ► if not successful: default (limited liability) repay nothing.
- ▶ entrepreneurs have no funds: borrow iff *x* > *R*. Demand for credit

$$K(R) = \int_{R}^{\infty} g(x) dx$$

- ϵ_t : aggregate shock ± 1 with probability $\frac{1}{2}$.
- probability of default: $p_t = p\Delta t + \sigma_0 \sqrt{t}\epsilon_t$.
- return on loans for banks (continuous time limit):

$$(R_t-p)dt-\sigma_0 dZ_t,$$

where Z_t is Brownian motion. First best allocation $R_t \equiv p$.

Motivation	Model	Individual banks	Equilibrium	Financial (in)stability	Welfare analysis	Conclusion
00000	○○○●○	00000	0000000000	0000	00000	00
Bank	S					

- ► *k*_t denotes lending volume of a bank (aggregate *K*_t) at time *t*
- Equity of the bank follows:

- Recapitalizations involve proportional costs *γ* (MAIN FRICTION: if *γ* = 0 equilibrium: first best).
- ► Focus on Markov equilibria: loan rate *R*^{*t*} follows:

 $dR_t = \mu(R_t)dt + \sigma(R_t)dZ_t,$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

where $\mu(R_t)$ and $\sigma(R_t)$ are to be determined.

Motivation Model	Individual banks	Equilibrium	Financial (in)stability	Welfare analysis	Conclusion
00000 00000	00000	0000000000	0000	00000	00

ROADMAP

- 1. Optimal decisions of individual banks.
- 2. Equilibrium.
- 3. Credit cycles and financial (in)stability.
- 4. Welfare analysis.

THE OPTIMAL DECISIONS OF A BANK

Maximization problem of an individual bank:

$$v(e_0, R_0) = \max_{k_t, d\delta_t, di_t} \quad \underbrace{\mathbb{E}\left[\int_0^{+\infty} e^{-\rho t} d\delta_t\right]}_{\text{dividends}} - \underbrace{(1+\gamma)\mathbb{E}\left[\int_0^{+\infty} e^{-\rho t} di_t\right]}_{\text{recapitalizations}}$$

$$de_t = k_t [(R_t - p)dt - \sigma_0 dZ_t] - d\delta_t + di_t$$

 $dR_t = \mu(R_t)dt + \sigma(R_t)dZ_t$

THE OPTIMAL DECISIONS OF A BANK

Value function of the bank satisfies:

$$\rho v = \max_{k,d\delta,di} \left\{ d\delta(1-v_e) - di(1+\gamma-v_e) + \frac{k\sigma_0^2}{2}v_{ee} - \sigma_0\sigma(R)v_{eR} \right] + \mu(R)v_R + \frac{\sigma^2(R)}{2}v_{RR} \right\}$$

► Homogeneity of *v*(*e*, *R*) in *e* implies:

$$v(e,R) = eu(R),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where u(R): market-to-book ratio (same for all banks).

Motivation N	Model I	ndividual banks	Equilibrium	Financial (in)stability	Welfare analysis	Conclusion
00000 0	00000	0000	0000000000	0000	00000	00

THE OPTIMAL DECISIONS OF A BANK

Homogeneity of v(e, R) leads to:

$$\rho u(R) = \max_{k, d\delta, di} \left\{ \frac{d\delta}{e} [1 - u(R)] - \frac{di}{e} [1 + \gamma - u(R)] + \frac{k(e, R)}{e} [(R - p)u(R) - \sigma_0 \sigma(R)u'(R)] + \mu(R)u'(R) + \frac{\sigma^2(R)}{2} u''(R) \right\}$$

< □ > < @ > < E > < E > E のQ@

 Motivation
 Model
 Individual banks
 Equilibrium
 Financial (in)stability
 Welfare analysis
 Conclusion

 00000
 00000
 00000
 0000
 0000
 00
 00
 00

THE OPTIMAL DECISIONS OF A BANK

► FOC for *k* implies:

$$\frac{u'(R)}{u(R)} = \frac{R-p}{\sigma_0 \sigma(R)},$$

• FOC for $d\delta$ implies that dividends are paid whenever R_t reaches barrier R_{min} such that

$$u(R_{min})=1$$

• Similarly, FOC for *di* implies a recapitalization barrier R_{max} such that

$$u(R_{max}) = 1 + \gamma$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

THE OPTIMAL DECISIONS OF A BANK

Proposition 1

Let the loan rate process R_t be defined by $dR_t = \mu(R_t)dt + \sigma(R_t)dZ_t$ on $[R_{min}, R_{max}]$ (reflected at both ends). Decision problem of individual banks has a solution iff market-to-book value

$$u(R) = \int_{R_{min}}^{R} \frac{(s-p)}{\sigma_0 \sigma(s)} ds$$

satisfies $u(R_{max}) = 1 + \gamma$ and

$$\rho u(R) = \mu(R)u'(R) + \frac{\sigma^2(R)}{2}u''(R).$$

This determines $\mu(R)$:

$$\mu(R) = \frac{\sigma(R)}{2} \left[\sigma'(R) - \frac{\sigma(R) - 2\rho\sigma_0}{R - p} - \frac{R - p}{\sigma_0} \right]$$

Competitive equilibrium

▶ In the region $R \in (R_{min}, R_{max})$, **aggregate bank capital** evolves according to

$$dE_t = K(R_t)[(R_t - p)dt - \sigma_0 dZ_t]$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- ▶ **Equilibrium** is characterized by two processes : loan rate *R*^{*t*} and aggregate bank capital *E*^{*t*} such that lending market clears.
- In a Markov equilibrium, one must have $E_t = E(R_t)$.

Competitive equilibrium

► By Itô's lemma, we have:

$$dE_t = \left(\mu(R_t)E'(R_t) + \frac{\sigma^2(R_t)}{2}E''(R_t)\right)dt + \sigma(R_t)E'(R_t)dZ_t$$

► Matching the drift and volatility terms of *E*^{*t*} yields:

$$(R-p)K(R) = \mu(R)E'(R) + \frac{\sigma^2(R)}{2}E''(R),$$

$$-\sigma_0 K(R) = \sigma(R) E'(R)$$

• We obtain a second relation between μ and σ :

$$\mu(R) = \frac{\sigma(R)}{2} \left[\sigma'(R) - \frac{\sigma(R)K'(r)}{K(R)} - \frac{2(R-p)}{\sigma_0} \right]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Competitive equilibrium

Proposition 2

There exists a unique Markov competitive equilibrium characterized by

$$\sigma(R) = \frac{(R-p)^2 + 2\rho\sigma_0^2}{\sigma_0 \left[1 + (R-p)\left(-\frac{K'(R)}{K(R)}\right)\right]}$$

$$R_{min} = p$$
, and $log(1 + \gamma) = \int_{p}^{R_{max}} \frac{(R-p)}{\sigma_0 \sigma(R)} dR$.

Aggregate bank capital satisfies

$$E'(R) = -\frac{\sigma_0 K(R)}{\sigma(R)} < 0,$$

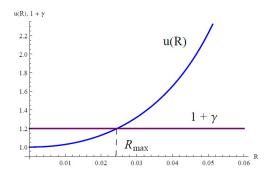
$$E(R_{max}) = 0.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − ����

Competitive equilibrium

• R_{max} is determined by:

$$u(R_{max}) = \exp\left(\int_{p}^{R_{max}} \frac{(s-p)}{\sigma_0 \sigma(s)} ds\right) = 1 + \gamma$$



Motivation Model	Individual banks	Equilibrium	Financial (in)stability	Welfare analysis	Conclusion
00000 00000	00000	0000000000	0000	00000	00

GENERAL PROPERTIES OF EQUILIBRIUM

- γ only impacts R_{max} but not μ, σ, u .
- $\sigma(p) = 2\rho\sigma_0 > 0$. Moreover $\sigma'(p) < 0$.
- $\mu(p) = 0$. Moreover $\mu'(p) < 0 \Leftrightarrow K'' < 0$.
- For most specifications, the drift μ is very small compared with the volatility σ.
- When γ is small, σ is almost constant and μ is almost zero on $[p, R_{max}]$. Thus R_t behaves like a Brownian motion without drift that is reflected at both ends of an interval.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

CAPITAL TRANSMISSION CHANNEL

Bank capital transmission channel:

- An adverse shock depletes bank capital.
- In order to reduce the probability of costly recapitalizations and to avoid delays in dividend payments, banks reduce their risk exposure, by cutting down credit supply.
- Credit supply $\downarrow \Rightarrow R_t \uparrow \Rightarrow K(R_t) \downarrow \Rightarrow \text{output} \downarrow$
- When γ is high, banks cannot quickly rebuild capital and the economy slides into a long phase of credit crunch.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

NUMERICAL ILLUSTRATION

• Consider the following specification of loan demand:

$$K(R) = (\overline{R} - R)^{\beta}$$
 where $\beta > 0$, $\overline{R} > p$

We have

$$\frac{-K'(R)}{K(R)} = -\frac{\beta}{\overline{R} - R}$$

Volatility of the loan rate:

$$\boldsymbol{\sigma}(\boldsymbol{R}) = \frac{(\overline{R} - R) \left(2\rho\sigma^2 + (R - p)^2\right)}{\sigma_0(\overline{R} + (\beta - 1)R - \beta p)}$$

Drift of the loan rate:

$$\boldsymbol{\mu}(\boldsymbol{R}) = \sigma(R) \frac{\beta(R-p) \left[(1-\beta)((R-p)^2 - 2\rho\sigma_0^2) - 2(R-p)(\overline{R}-p) \right]}{2\sigma_0(\overline{R} + (\beta-1)R - \beta p)^2}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

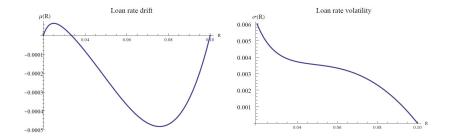
NUMERICAL ILLUSTRATION

- When $\beta < 1$, $\mu(R) < 0$ for all $R \in (p, R_{max})$.
- When $\beta > 1$, $\mu(R)$ is first positive then negative. It vanishes for $R = R^*$, the positive root of

$$Q(R) = (1 - \beta)((R - p)^2 - 2\rho\sigma_0^2) - 2(R - p)(\overline{R} - p)$$

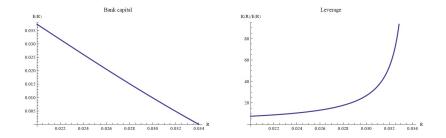
<ロト < 同ト < 三ト < 三ト < 三ト < 回 < つ < ○</p>

NUMERICAL ILLUSTRATION



Remark: $\mu(R)$ is typically very small w.r.t. $\sigma(R)$

NUMERICAL ILLUSTRATION



Aggregate bank capital and leverage ($\rho = 0.05, p = 0.02, \overline{R} = 0.1, \sigma_0 = 0.1, \beta = 2, \gamma = 0.1$)

MotivationModelIndividual banksEquilibrium
00000Financial (in)stabilityWelfare analysis
00000Conclusion
00000

IMPULSE RESPONSE ANALYSIS

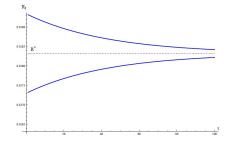
- classical methodology in DSGE models: start at the deterministic steady state R = p
- assume $dZ_0 > 0$ but $dZ_t \equiv 0$ for $\forall t > 0$.
- ► $dZ_0 > 0$ induces a drop in bank capital \Rightarrow loan rate rises to R_0 . Then R_t evolves according to ODE:

$$dR_t = \mu(R_t)dt$$

- If $\beta < 1$, $\mu < 0$ and DSS R = p is "stable".
- If β > 1, µ is first positive then negative. There are two DSS: R = p (instable) and R = R* (locally stable).
- However we have seen that μ is typically very small w.r.t. σ. Thus this impulse response analysis can be very misleading!

Motivation Model Individual banks Equilibrium	Financial (in)stability	Welfare analysis	Conclusion
00000 00000 00000 000000	0000	00000	00

IMPULSE RESPONSE ANALYSIS



Dynamics of loan rate after a single unexpected shock ($\rho = 0.05$, p = 0, $\overline{R} = 0.1$, $\sigma_0 = 0.2$, $\beta = 2$)

STATIONARY DISTRIBUTION

Proposition 3

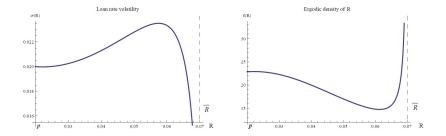
- There is a unique stationary distribution, which is ergodic.
- ► Its density *f* solves the ODE

$$\frac{f'(R)}{f(R)} = \frac{2\mu(R)}{\sigma^2(R)} - \frac{2\sigma'(R)}{\sigma(R)}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• γ only impacts the support of the ergodic distribution.

STATIONARY DISTRIBUTION



Remark: the economy spends most of the time at the states with the lowest endogenous volatility

ヘロト 人間 ト イヨト イヨト

3

Motivation	Model	Individual banks	Equilibrium	Financial (in)stability	Welfare analysis	Conclusion
00000	00000	00000	0000000000	0000	●0000 ·	00

WELFARE ANALYSIS

- Take aggregate bank capital *E* as the state variable
- Assume that loan demand is linear ($\beta = 1$):

$$K(E) = \overline{R} - R(E)$$

Aggregate welfare in the economy:

$$W(E) = \underbrace{\mathbb{E}\left[\int_{0}^{+\infty} e^{-\rho t} \Pi(E_t) dt\right]}_{\text{Firms' value}} + \underbrace{\mathbb{E}\left[\int_{0}^{+\infty} e^{-\rho t} (d\Delta_t - (1+\gamma) dI_t)\right]}_{\text{Banks' value}},$$

where firms' expected profits at time *t* are given by:

$$\Pi(E_t) = F(K(E_t)) - K(E_t)F'(K(E_t)) = \frac{[K(E_t)]^2}{2}$$

< □ > < @ > < E > < E > E のQ@

WELFARE ANALYSIS

• Equity value at the competitive equilibrium satisfies:

$$E'(R) = -\frac{\sigma_0 K(R)}{\sigma(R)} = -\frac{(\overline{R} - p)\sigma_0^2}{(R - p)^2 + 2\rho\sigma_0^2},$$

$$E(R_{max}) = 0.$$

$$E(R) = -\frac{1}{\sqrt{2\rho}}(\overline{R} - p)\sigma_0 \arctan\left(\frac{R - p}{\sqrt{2\rho}\sigma_0}\right) + E_0$$

Credit volume at the competitive equilibrium:

$$K(E) = \overline{R} - R(E) = \overline{R} - p - \sqrt{2\rho}\sigma_0 \tan\left(\frac{\sqrt{2\rho}}{(\overline{R} - p)\sigma_0}(E_0 - E)\right)$$

Motivation
00000Model
00000Individual banks
00000Equilibrium
00000000000Financial (in)stability
0000Welfare analysis
00000Conclusion
00

WELFARE ANALYSIS

► Welfare function satisfies:

$$\rho W(E) = \frac{K^2(E)}{2} + K(E)(\overline{R} - p - K(E))W'(E) + \frac{\sigma_0^2}{2}K^2(E)W''(E),$$

where K(E) is credit volume at the competitive equilibrium

Boundary conditions:

$$W'(E_{max}) = 1$$
$$W'(0) = 1 + \gamma$$

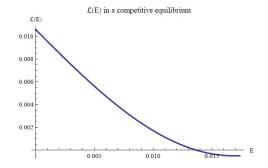
► Differentiating this equation with respect to *K*(*E*) yields:

$$\mathcal{L}(E) := K(E)[1 - 2W'(E) + \sigma_0^2 W''(E)] + (\overline{R} - p)W'(E)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation	Model	Individual banks	Equilibrium	Financial (in)stability	Welfare analysis	Conclusion
00000	00000	00000	0000000000	0000	00000	00

WELFARE ANALYSIS



Remarks:

- $\mathcal{L}(E) > 0$: social welfare can be increased by expanding lending
- $\mathcal{L}(E) < 0$: social welfare can be increased by reducing lending

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

	Welfare analysis	Conclusion
00000 00000 00000 00000 0000	00000	00

WELFARE ANALYSIS

Private cost of lending:

$$R_c(E) - p = \sigma_0^2 K_c(E) \Big[-\frac{\hat{u}'(E)}{\hat{u}(E)} \Big],$$

where $\hat{u}(E) \equiv u[R(E)]$.

$$R(E) - p = \sigma_0^2 K_c(E) \left[-\frac{W''(E)}{W'(E)} \right] + \underbrace{R'(K_c(E))K_c(E) \left[\frac{1}{W'(E)} - 1 \right]}_{>0, \text{ since } R'(K) < 0 \text{ and } W'(E) > 0}$$

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Motivation 00000	Model 00000	Individual banks 00000	Equilibrium 0000000000	Financial (in)stability 0000	Welfare analysis 00000	Conclusion ●○

CONCLUSION

- Simple dynamic macro model where bank capital impacts credit volume.
- Closed form solutions.
- Asymptotic behavior given by ergodic distribution (also explicit).
- Impact of bank crises can be fully analyzed without having to linearize around the DSS.
- ► Financing frictions + elastic loan demand may give rise to credit cycles
- Competitive equilibrium leads to too much lending when things go well, and too little when they go badly.
- Model can be extended in many directions.

Motivation	Model	Individual banks	Equilibrium	Financial (in)stability	Welfare analysis	Conclusion
00000	00000	00000	0000000000	0000	00000	0

Thank you!