
Bank Capital and Credit Cycles

Nataliya Klimenko∗ Sebastian Pfeil † Jean-Charles Rochet ‡

January 20, 2015

PRELIMINARY AND INCOMPLETE

Abstract

This paper proposes a simple theory of credit cycles that focuses on the role

of bank capital and �nancing frictions. We build a continuous time general equi-

librium model of an economy in which banks �nance their loans by deposits and

equity, while facing issuance costs when they raise new equity. The dynamics of

the loan rate and the volume of lending in the economy are driven by the level

of aggregate bank capitalization. The model has a unique Markov competitive

equilibrium that can be solved in closed form. The explicit solutions facilitate

the analysis of the full dynamics of the stochastic equilibrium. This dynamics is

ergodic and typically exhibits quasi-cyclical patterns depending on the elastici-

ties of credit demand, the fundamental volatility and the magnitude of issuance

costs. We also perform a welfare analysis and show that lending decisions made

by banks in a competitive equilibrium are socially ine�cient.
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1 Introduction

Credit cycles, i.e., periodic variations of credit to GDP ratios, are a well documented

phenomenon in many countries.1 They di�er from business cycles, and have in general

a higher amplitude and a lower frequency. Credit booms (the upward sloping parts of

the credit cycles) are sometimes followed by crises and recessions. Credit crunches (the

downward sloping parts of the credit cycles) typically follow such recessions and crises.

These credit cycles seem to be associated with an intertemporally ine�cient allocation

of capital to the productive sector.

Several theories have been put forward as potential explanations for credit cycles.

The famous debt de�ation mechanism identi�ed by Fisher (1933) has been formalized

by Bernanke et al. (1996) and Kiyotaki and Moore (1997). It attributes the origin of

credit cycles to the �uctuations of the prices of the assets that are used as collateral

by borrowers. Recent contributions by Lorenzoni (2008), Bianchi (2011), Jeanne and

Korinek (2011) showed that collateral price �uctuations can be the source of welfare de-

creasing pecuniary externalities, which could justify countercyclical public policies. Such

pecuniary externalities can also be generated by agency problems (see e.g. Gersbach and

Rochet (2014)). Another strand of literature emphasizes the role of �nancial interme-

diaries, by pointing out that credit expansion is often accompanied by a loosening of

lending standards and "systemic" risk-taking, whereas materialization of risk accumu-

lated on the balance sheets of �nancial intermediaries leads to the contraction of credit

(see e.g. Aitken et al. (2013), Dell'Ariccia and Marquez (2006), Jimenez and Saurina

(2006)).

We propose an alternative but complementary explanation of the emergence of credit

cycles that is rooted in external �nancial frictions faced by �nancial intermediaries. In

our model, banks optimally adjust their lending volumes conditional on the level of equity

capital. However, their capacity to adjust the level of equity is more limited, because

1See e.g. the recent contributions of Schularick and Taylor (2012), Jorda, Schularick and Tay-
lor (2011a,b), Aikman, Haldane and Nelson (2013), Claessens, Kose and Terrones (2008, 2011a,b),
Drehmann, Borio and Tsatsaronis (2012).



banks incur issuing costs when undertaking recapitalizations. As a result, temporary

losses on lending activities may have a persistent impact on a bank's capital and, there-

fore, on credit supply.

Following Brunnermeier and Sannikov (2014) and He and Krishnamurthy (2013), we

use a continuous time stochastic set-up. We model an economy where �rms borrow from

banks, and banks �nance themselves by deposits and equity. Banks have diversi�ed

portfolios of loans, so that they are only a�ected by aggregate shocks that a�ect the

average probability of default of the borrowers. These aggregate shocks are i.i.d. and

represent the only source of risk in the economy. Bankers continuously adjust lending

so as to maximize shareholder value. They also decide when to distribute dividends and

when to issue new equity. The aggregate supply of bank credit is confronted with the

�rms' demand for credit, which decreases with the nominal loan rate. Credit supply and

demand are equalized by the equilibrium loan rate.

In the absence of �nancial frictions (i.e., zero issuing cost of equity for banks) the

equilibrium volume of lending and the nominal loan rate would be constant. The spread

between the loan and deposit rates would equal the break-even rate re�ecting the uncon-

ditional average of the �rms' default probability. Aggregate risk would entirely be borne

by the banks' shareholders: they would immediately distribute all pro�ts as dividends

and would inject new equity to o�set losses. As a result, in this frictionless environment,

there would be no aggregate �uctuations of credit and only small, i.i.d. �uctuations of

output due to aggregate shocks.

In our model with �nancial frictions, the story is much more interesting. We are

able to establish the existence of a unique competitive equilibrium, where the loan rate

follows a Markov di�usion process re�ected at two boundaries. At the lower boundary

banks distribute dividends, whereas at the upper boundary they issue new equity. The

equilibrium loan rate is a su�cient statistics for all relevant macro and �nancial variables:

credit, output, bank leverage, bank equity (both book and market values) are determin-

istic functions of the equilibrium loan rate. We are able to obtain surprisingly simple
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explicit or quasi explicit expressions for all these functions, which substantially facilitates

the analysis of the long-run behavior of the economy. For the most parameter values, the

loan rate exhibits a quasi-cyclical behavior, which essentially comes from its re�ection on

both ends of its support. The frequency of the cycles depends on the banks' exposure

to aggregate shocks and the magnitude of �nancing frictions. Moreover, the volatility of

the loan rate (endogenous volatility) turns out to be the main determinant of the long

run behavior of the economy. In particular, in the long run, the economy spends most of

the time at the states with the lowest endogenous volatility, which under some parameter

values gives rise to the persistent credit crunches.

The rest of the paper is structured as follows. Section 2 presents the model. In

Section 3 we solve for the equilibrium. Section 4 illustrates the long run behavior of the

economy and the role of bank capital in the propagation of aggregate shocks. In Section

5 we perform a welfare analysis. Section 6 concludes. All proofs are relegated to the

Appendix.

2 The model

We consider a general equilibrium model in continuous time. There is only one physical

good, taken as a numeraire, which can be consumed or invested. There are three types of

agents: (i) depositors, who only play a passive role, (ii) investors, who own and manage

the banks, and (iii) entrepreneurs, who manage the productive sector. Depositors are

in�nitely risk averse and discount the future at rate r. Investors and entrepreneurs are

more impatient (their discount rate is ρ > r) but they are risk neutral.

2.1 Productive sector

The productive sector consists of a continuum of entrepreneurs controlling invest-

ment projects that are parametrized by a productivity parameter x. The productivity

parameter x is privately observed by each entrepreneur and is distributed according to a
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continuous distribution with density g(x).

Although our model is in continuous time, we will start by presenting the production

technology in discrete time set-up and then let the length ∆t of each period go to zero.

Entrepreneurs' projects are short lived and each of them requires an investment of one

unit of good. If successful, a project yields (1 + x∆t) units of good in the next period

and zero otherwise. Entrepreneurs have no own funds and thus must borrow from banks.

They are protected by limited liability and default when their projects are not successful.

Given a nominal loan rate R∆t (for a loan of duration ∆t), only the projects such that

x > R will be �nanced. Thus, the total volume of bank credit in the economy (that is

also equal to the total volume of investment) will be

K(R) =

∫ ∞
R

g(x)dx.

The probability of default of a project of productivity x is given by

π(x, εt) ≡ p(x)∆t+ ∆p(x)
√

∆tεt,

where εt represents an aggregate shock faced simultaneously by all �rms. For simplicity εt

is supposed to take only two values +1 (recession) and−1 (boom) with equal probabilities.

Conditionally on the realization of εt, the net expected return per loan for a bank is

E[R∆t(1− π(x, εt))− π(x, εt)|x > R]− r∆t =

(R− r)∆t− (1 +R∆t)(E[p(x)|x > R]∆t+ E[∆p(x)|x > R]
√

∆tεt).

Taking the continuous time limit of the above expression, we obtain the net income

per loan:

(R− r − E[(p(x)|x > R])dt− E[∆p(x)|x > R]dZt, (1)

where
{
Zt, t ≥ 0

}
is a standard Brownian motion, the �rst term re�ects the expected
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earnings per unit of time and the second term captures the exposure to aggregate shocks.

Throughout the paper, we will focus on the simple case where p(x) ≡ p and ∆p(x) ≡

σ0, so that the unconditional probability of default and the exposure to aggregate shocks

are the same for all �rms. The net total output per period is then

dYt = F (K(R))dt− σ0K(R)dZt, (2)

where the aggregate production function F (K) is de�ned implicitly by

F (K(R)) =

∫ ∞
R

xg(x)dx− pK(R).

Notice that F ′(K(R)) = R− p so that total surplus F (K(R))− rK(R) is maximized

for RFB = r + p. Thus, in the �rst best allocation of credit, the cost of funding for

�rms has two components: the riskless rate and the unconditional probability of default.

Consequently, banks make zero expected pro�t and the total volume of credit in the

economy is given by K(RFB).

2.2 Banking sector

Banks behave competitively and �nance loans to businesses by a combination of de-

posits and equity. Since we focus on credit, we do not introduce explicit liquidity provision

activities associated with bank deposits. These deposits are modeled in a parsimonious

fashion: depositors are in�nitely risk averse and have a constant discount factor r. This

implies two things: �rst, deposits must be absolutely riskless (all the risks will thus be

borne by bank shareholders); second, depositors are indi�erent to the level of deposits

and timing of withdrawal provided that they receive an interest rate r. In sum, banks

can collect any amount of deposits (i.e., deposits represent an in�nitely inelastic source

of funding) provided they pay the interest rate r and fully guarantee their value.

The main �nancial friction in the model is that banks face a proportional issuance cost
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γ when they want to issue new equity.2 Because of this deadweight issuance cost, banks

will be reluctant to issue new equity too often and will mostly rely on retained earnings

as a way to accumulate capital. For simplicity, we will neglect other external frictions

such as adjustment costs for loans or �xed costs of issuing equity.3 This implies that

our economy exhibit a homotheticity property: all banks' decisions (lending, dividends,

recapitalization) will be proportional to their equity levels. In other words, all banks will

make the same decisions at the same moment, up to a scaling factor equal to their equity

level. This entails an important simpli�cation: only the aggregate size of the banking

sector re�ected by the aggregate bank capitalization will matter for our analysis, whereas

the number of banks and their individual sizes will not play any role.

In this context, it is legitimate to anticipate the existence of a Markovian competitive

equilibrium, where all aggregate variables depend on a single state variable, which itself

follows a Markov di�usion process. In such an equilibrium, aggregate bank credit Kt,

aggregate bank equity Et and the loan rate Rt are perfectly correlated. It turns out that

it is convenient to use the loan rate Rt as the state variable, and look for the deterministic

function Et = E(Rt) and a Markovian dynamics:

dRt = µ(Rt)dt+ σ(Rt)dZt, (3)

that are compatible with the equilibrium conditions.

3 The competitive equilibrium

Our objective in this section is to characterize the competitive equilibrium by mapping

the history of fundamental shocks {dZs, s ≤ t} into the dynamics of the risk-adjusted

spread Rt and aggregate bank capital Et. We start by characterizing the optimal policies

2For the empirical estimates of the proportional equity issuance costs see e.g. Hennessy and Whited
(2007).

3We also disregard any frictions caused by governance problems inside the banks or government
explicit/implicit guarantees.
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of an individual bank, while taking the loan rate Rt as given. Then, we proceed with

aggregation and determine the equilibrium dynamics of the loan rate and its mapping

into the value of aggregate bank capital. For the rest of the paper we assume that r = 0

and treat the case r > 0 in Appendix B.

3.1 Pro�t-maximization problem of an individual bank

Consider �rst the optimal decision problem of a bank as a function of its level of equity

et and loan rate Rt. In a competitive equilibrium, bank shareholders take the loan rate

Rt as given and choose lending kt ≥ 0, dividend dδt ≥ 0 and recapitalization dit ≥ 0

policies so as to maximize the market value of equity:4

v(e, R) = max
kt,dδt,dit

E
[∫ +∞

0

e−ρt (dδt − (1 + γ)dit)

]
, (4)

where Rt evolves according to (3) and the equity value follows

det = kt[(Rt − p)dt − σ0dZt]− dδt + dit. (5)

The following proposition formalizes the conditions under which the above problem

has a non-degenerate solution.

Proposition 1 Consider the Markov process Rt, de�ned implicitly by the di�usion equa-

tion

dRt = µ(Rt)dt+ σ(Rt)dZt,

on the interval [Rmin, Rmax], where both boundaries are re�ecting, µ(.) and σ(.) are con-

tinuously di�erentiable and σ(.) > 0.

The maximization problem of an individual bank has a non-degenerate solution if and

4Throughout the paper, we use lower case letters for individual variables and upper case letters for
aggregate variables.
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only if: ∫ Rmax

Rmin

R− p
σ0σ(R)

dR = log(1 + γ) (6)

and

µ(R) =
σ(R)

2

(
2ρσ0 − σ(R)

R− p
− R− p

σ0

+ σ′(R)

)
. (7)

A fundamental property of the individual decision problem of a bank is that the feasi-

ble set, in terms of trajectories of (kt, dδt, dit), and the objective function are homogenous

of degree one in et. Therefore, the value function itself must satisfy:

v(e, R) = eu(R),

where u(R) can be thought of as the market-to-book value of equity for banks.

Using the above property and applying standard dynamic programming methods (see

Appendix), it can be shown that the optimal lending policy of the bank is indeterminate,

i.e., bank shareholders are indi�erent with respect to the volume of lending. The latter

is entirely determined by the �rms' demand for credit. This situation if analogous to

the case of an economy with constant returns to scale, where the equilibrium price of

any output is only determined by technology (constant marginal cost) and the volume of

activity is then determined by the demand side.

The optimal dividend and recapitalization policies are of the so-called "barrier type"

and depend uniquely on the market-to-book value u(R), which re�ects the marginal value

of equity capital. In particular, dividends are distributed only when Rt = Rmin, where

Rmin is such that u(Rmin) = 1. In other words, distribution of dividends only takes place

when the market-to-book ratio equals one. Recapitalizations occur only when Rt = Rmax,

where Rmax satis�es u(Rmax) = 1 + γ, i.e., when the marginal value of equity equals the

marginal cost of equity issuance. As long as the loan rate R lies strictly in between Rmin

and Rmax, bank equity only changes due to retained earnings/absorbed losses.
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Note that the loan risk-adjusted spread5 R − p, is strictly positive in the region

(Rmin, Rmax). To see the intuition for this property, it is instructive to consider the

marginal impact of lending on expected shareholder value:

E
[
d(etu(Rt))

dkt

]
= E

[
u(Rt)det + etu

′(Rt)dRt + u′(Rt)dRtdet
dkt

]
, (8)

which, after easy computations, reduces to

[(Rt − p)u(Rt)− σ0σ(Rt)u
′(Rt)]dt. (9)

The �rst-order condition with respect to kt thus implies that

Rt − p = σ0σ(Rt)
u′(Rt)

u(Rt)
. (10)

The left-hand side of expression (10) captures the expected pro�t from lending,

whereas its right-hand side can be interpreted as the marginal cost of lending. In fact,

even though shareholders are risk-neutral, they recognize that aggregate shocks have an

impact on Rt and thus on the value-to-book ratio. As can be easily seen from the expres-

sions describing the dynamics of et and Rt, a loss (dZt > 0) depletes bank equity et, while

pushing up the loan rate Rt and thus the value of u(Rt). As a result, the adverse impact

of a loss on shareholder value is magni�ed. Symmetrically, a gain (dZt < 0) translates

into a reduction of u(Rt), which reduces the impact of positive pro�ts on shareholder

value. This mechanism gives rise to a kind of induced risk aversion, which actually ex-

plains why bankers require a positive spread for accepting to lend, even though they are

risk-neutral.

The market-to-book ratio function can be easily computed by integrating relation (10)

5In the general case where r > 0, the loan risk-adjusted spread is given by R− p− r.

9



between Rmin and R, while using the boundary condition u(Rmin) = 1. This yields:

u(R) = exp
(∫ R

Rmin

s− p
σ0σ(s)

ds
)
. (11)

3.2 Equilibrium

Having determined the optimal policies of an individual bank, we are now ready to

proceed with aggregation. In the region R ∈ (Rmin, Rmax), aggregate bank capital evolves

according to

dEt = K(Rt)[(Rt − p)dt− σ0dZt], (12)

where K(Rt) is the aggregate demand for bank loans.

An equilibrium is characterized by two stochastic processes: a loan rate Rt and ag-

gregate bank capital Et such that the lending market clears. We focus on equilibria that

are Markovian with a single state variable Rt. If such an equilibrium exists, one must

have Et = E(Rt). From Itô's lemma, it follows that:

dEt =

(
µ(Rt)E

′(Rt) +
σ2(Rt)

2
E ′′(Rt)

)
dt+ σ(Rt)E

′(Rt)dZt. (13)

Matching the drift and volatility terms of Et de�ned by (12) and E(Rt) de�ned by

(13) yields a system of two equations:

(R− p)K(R) = µ(R)E ′(R) +
σ2(R)

2
E ′′(R), (14)

− σ0K(R) = σ(R)E ′(R). (15)

Moreover, recall that, from Proposition 1, we know the expression of µ(R) as a function

of σ(R). Solving the system of equations (14)-(15), while taking into account expression

(7), enables us to obtain the explicit characterization of the equilibrium (see Appendix

for the details).

Proposition 2 For any given loan demand function K(.), there exists a unique Markov
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equilibrium characterized by a volatility function

σ(R) =
[2ρσ2

0 + (R− p)2]K(R)

σ0[K(R)− (R− p)K ′(R)]
. (16)

The drift function is de�ned by

µ(R) =
σ(R)

2

(
σ(p)− σ(R)

R− p
− R− p

σ0

+ σ′(R)

)
. (17)

Re�ecting boundaries are given by Rmin = p and Rmax such that

∫ Rmax

p

R− p
σ0σ(R)

dR = log(1 + γ). (18)

The aggregate bank capital function E(R) is given by6

E(R) =

∫ Rmax

R

σ0K(s)

σ(s)
ds. (19)

Thus, the dynamics of Rt and Et depend on the credit demand functionK(R) and four

parameters: exposure to aggregate shocks (or fundamental volatility) σ0, the uncondi-

tional probability of default p, discount factor ρ and �nancing frictions γ. In equilibrium,

the loan rate �uctuates in between its �rst-best level p and Rmax that is increasing with

the magnitude of �nancing frictions, γ.7 Observe that bank capital is also increasing

with Rmax. Thus, stronger �nancing frictions will induce banks to hold more capital for

any given level of R.8 In the absence of �nancing frictions, i.e., when γ = 0, the recap-

italization barrier would coincide with the payout barrier, so that the loan rate will be

permanently �xed at Rt ≡ p implying the �rst-best allocation of credit.

6Note that E(Rmax) = 0.
7Interestingly, �nancing frictions only a�ect Rmax, without having any impact on µ(R) and σ(R).
8It also follows that market capitalization of the banking sector, V (R) = u(R)E(R), is increasing

with the magnitude of �nancing frictions.
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4 Credit cycles and �nancial (in)stability

In this section we discuss the properties of the equilibrium and the behavior of the

economy in the long run. We start by applying the impulse response methodology to study

the stability of the deterministic steady state. Then, we discuss the ergodic properties of

the system, showing that the system behavior in a stochastic environment can be in sharp

contrast to the behavior predicted by the analysis conducted in a deterministic setting.

4.1 Impulse response analysis

The usual methodology to analyze the long-term behavior of macro-variables in a

DSGE model is to linearize around the deterministic steady-state and perturb the system

by a single unanticipated shock. The equivalent here would be to look at the case where

dZt ≡ 0 for t > 0. The system then becomes deterministic:

dRt = µ(Rt)dt,

and the initial shock determines R0 > p.

For the purpose of our analysis, it is useful to rewrite the general expression of µ(R)

stated in Proposition 2 in the following way:

µ(R) ≡ σ(R)H(R), (20)

where

H(R) =
(R− p)2K ′(R)

σ0[K(R)− (R− p)K ′(R)]
+

(R− p)[(R− p)2 + 2ρσ2
0]K ′′(R)

2σ0[K(R)− (R− p)K ′(R)]2
. (21)

It is easy to see from expression (21) that µ(p) = 0. Hence, the frictionless loan rate

(Rt ≡ p) is an equilibrium of the deterministic system that is further referred to as the

deterministic steady-state (DSS). It is locally stable when µ′(p) < 0 and is globally stable
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when µ(R) < 0 for all R. In the neighborhood of the DSS, µ′(R) can be approximated

by

µ′(R) ≈ µ(p) + µ′(p)(R− p) = 2ρ2σ2
0

K ′′(R)

K(R)
(R− p).

Hence, the DSS is locally stable when K ′′(R) < 0. Moreover, it also follows from (21),

that condition K ′′(R) < 0 ensures global stability.

Proposition 3 a) When K ′′(R) < 0, the DSS is globally stable. b) When K ′′(R) > 0,

the DSS is locally unstable and the trend µ(R) has at least one change of sign over the

interval [p,Rmax].

To illustrate the properties of the equilibrium, consider the following speci�cation of

the loan demand function:

K(R) = (R−R)β, (22)

where β > 0 and p < R.

Under the above speci�cations, the volatility of the loan rate is

σ(R) =
[2ρσ2

0 + (R− p)2] (R−R)

σ0[R + (β − 1)R− βp]
. (23)

The drift of the loan rate is given by

µ(R) = σ(R)
β(R− p)Q(R)

2σ0[R + (β − 1)R− βp]2
, (24)

where Q(R) is a quadratic polynomial:

Q(R) = (1− β)((R− p)2 − 2ρσ2
0)− 2(R− p)(R− p). (25)

With the above speci�cation, it is easy to see that, in the neighborhood of p, µ′(R)

has the same sign as the polynomial Q(R). It can be shown that Q(R) is increasing with

p for any level of R ∈ [p,R] and p < R. For R = p and p → R, we have limQ(p) →
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−2ρσ2(1−β). Hence, it follows that, when β < 1 (which is equivalent to K ′′(R) < 0), we

have µ′(p) < 0 and thus the DSS is locally stable. It is also easy to see that, when R = R

and p→ R, we have limQ(R) = Q(p) < 0, which guarantees that µ(R) < 0 in the entire

interval [p,R].9 Thus, the DSS is also globally stable when β < 1, which corresponds to

a low elasticity of credit demand.

Consider now the case in which β > 1 (which is equivalent to K ′′(R) > 0). In this

case µ′(p) > 0 (i.e., the DSS is locally unstable), and there exists a unique R∗ ∈ (p,R)

such that µ(R) is positive in the region (0, R∗) and negative in the region (R∗, R).

4.2 Long run behavior in the stochastic set-up

After studying the properties of the deterministic equilibrium, we consider the full

dynamics of the stochastic equilibrium. It turns out that the system is ergodic and thus

the long run behavior of the economy can be described by the ergodic density function.

The ergodic density measures the average time spent by the economy in the neighborhood

of each possible loan rate R: the states with lower R can be interpreted as "boom" states

and the states with higher R can be thought of as "bust" states.

Proposition 4 If σ(R) > 0 for ∀R ∈ [p,Rmax], there exists a unique ergodic distribution

of R characterized by the density function

f(R) =
C0

σ2(R)
exp
(∫ R

p

2µ(s)

σ2(s)
ds
)
, (26)

where the constant C0 is such that
∫ Rmax

p
f(R)dR = 1.

It can easily be seen from the expression of σ(R) provided in Proposition 2 that,

for any loan demand speci�cations such that K ′(R) < 0 and K(R) > 0 in the region

[p,Rmax], the volatility of the loan rate remains strictly positive. Thus there exists an

ergodic distribution of R. By di�erentiating the logarithm of the ergodic density de�ned

9Note that the interval [p,R] comprises the interval [p,Rmax].
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in (26), we obtain:

f ′(R)

f(R)
=

2

σ(R)

(
µ(R)

σ(R)
− σ′(R)

)
. (27)

By using the general formulas for σ(R) and µ(R) de�ned in Proposition 2, it can be

shown that σ(p) = 2ρσ0, σ
′(p) = 2ρσ0

K′(R)
K(R)

< 0 and µ(p) = 0. Hence, f ′(p) > 0, which

means that the state R = p corresponding to the DSS is de�nitely not the one at which the

economy spends most of the time in the stochastic set up. To get a deeper understanding

of the determinants of the system behavior in the long run, we resort to the numerical

example. Figure 1 reports the typical patterns of the endogenous volatility σ(R) (left

panel) and the ergodic density f(R) (right panel) for the loan demand speci�cation de�ned

in (22).
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Figure 1: Endogenous volatility and ergodic density functions

Figure 1 shows that the extrema of the ergodic density almost coincide with those

of the endogenous volatility function, i.e., the economy spends most of the time at the

states with the lowest endogenous volatility. Intuitively, the economy can get "trapped"

in the states with low endogenous volatility because the endogenous drift is generally too

small to move it away from these states. In fact, σ(R) turns out to be several times larger

than µ(R) for any level of R.10

Note that functions σ(.) and f(.) must be truncated (and, in the case of the ergodic

density, rescaled) on [p,Rmax], where Rmax depends on the magnitude of issuing costs γ.

For the chosen speci�cation of the loan demand function, K(R) = (R − R)β, we always

10Formally, this can be observed from the expression (24): in fact, µ(R) ≡ σ(R)H(R), where H(R) is
typically very small.
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have Rmax < R. However, Rmax can be arbitrary close to R. In that case the economy

will spend quite some time in the region where the loan rate is close to Rmax. We interpret

this situation as a persistent "credit crunch": it manifests itself via scarce bank equity

capital, high loan rates and low volumes of lending.

This "credit crunch" scenario is reminiscent to the "net worth trap" documented by

Brunnermeier and Sannikov (2014) and Isohätälä, Milne and Roberston (2014). However,

the existence of the slow-recovery region in our setting has a di�erent "raison d' être"

than in the above-mentioned papers. Speci�cally, when adverse shocks deplete bank

capital, banks reduce their risk exposure by cutting down credit supply. In fact, scaling

down operations enables banks to manage their risk so as to reduce the probability of

costly recapitalizations. However, in the environment with high aggregate risk σ0 and

low elasticity of loan demand, banks will struggle for a long time to rebuild equity, so

that the economy may be locked in a long phase of recession.

To sum up, the analysis conducted in this section suggests that the long run behavior

of the economy in the stochastic environment are determined by the endogenous volatility,

rather than the endogenous drift. Thus, relying on the results of the impulse response

analysis in order to draw the insights about the long-run behavior of the economy in the

stochastic environment might be misleading.

4.3 Cycles

Besides the ergodic distribution, which describes the long term average behavior of the

economy, it is also important to look at the spectral distribution of Rt, which provides

information about the cyclical behaviors of the economy. To get an intuition about the

determinants of these cyclical behaviors, we use the observation made in the previous

section that, for most parameter values, the ratio µ(R)
σ(R)

is close to zero and σ(R) is almost

constant. Thus, the cyclical behaviors of Rt can be approximated by the di�usion process

with a constant volatility σ = E[σ(R)], which is re�ected at the both ends of the interval

[p,Rmax]. It turns out that the spectral behavior of this re�ected Brownian motion is
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entirely determined by the ratio σ
Rmax−p . Indeed, the eigenvalues of the associated Sturm-

Liouville operator (see Linetsky (2005)) are given by

λn =
1

2

( πnσ

Rmax − p

)2

, n = 1, 2, .... (28)

When the ratio σ
Rmax−p is small, these eigenvalues are clustered around zero, and the

process Rt resembles a pure white noise. However, when σ
Rmax−p is large, the eigenvalues

are more spread out and the system exhibits quasi-cycles of frequency

√
λ

2π
=

1

2
√

2

σ

Rmax − p
.

5 Welfare analysis

In our simple set-up where deposit taking does not generate any surplus, social welfare

can easily be computed as the sum of the market value of the �rms (i.e., the expected

discounted pro�t of the productive sector) and the market value of the banks' equity. In

this section, we show that the competitive allocation of credit does not maximize social

welfare, under the constraint that the government is subject to the same frictions as

the private investors. This means that the government cannot directly transfer wealth

(through taxes and subsidies) between the productive and the banking sectors. In this

set up, it is natural to take as a state variable the total capitalization Et of the banking

sector, rather than the loan rate Rt. We begin by reformulating our characterization of

the competitive equilibrium by using Et as a state variable. We then show how social

welfare can be increased by modifying the competitive allocation of credit Kc(Et).
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5.1 Competitive equilibrium with aggregate equity as the state

variable

Suppose we want to characterize directly the competitive allocation of credit Kc(E)

and the loan rate Rc(E) as functions of aggregate equity E, which of course implies

Kc(E) = K[Rc(E)]. Let Emin = E(Rmax) ≡ 0 and Emax = E(p) denote respectively the

minimum and the maximum leves of aggregate bank equity in the economy. In the region

[Emin, Emax], the dynamics of aggregate equity Et satis�es

dEt = Kc(Et)[(Rc(Et)− p)dt− σ0dZt], (29)

whereas the equity of a particular bank et follows

det = kt[(Rc(Et)− p)dt− σ0dZt], (30)

as a function of its lending volume kt.

Using et and Et as the state variables in the maximization problem of an individual

bank and applying the same arguments as before, yields the condition

û′(E)

û(E)
= −Rc(E)− p

σ2
0Kc(E)

, (31)

where û(E) = u(Rc(E)).

Observe that û′(E) = u′(Rc(E))R′c(E) and from (10) we have u′(R) = u(R) R−p
σ0σ(R)

.

Hence, it follows that

R′c(E) = − σ(R)

σ0Kc(E)
= − (Rc(E)− p)2 + 2ρσ2

0

σ2
0[K(Rc)− (Rc(E)− p)K ′(Rc)]

. (32)

Note that, when E is used as the state variable, the equilibrium loan rate Rc(E)

cannot be determined explicitly. This is precisely the reason why we have chosen to use

R as the state variable in our core analysis. However, for the welfare analysis, the former
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approach is more natural. Moreover, it also allows us to express the marginal (private)

cost of lending as a function of the aggregate capitalization of the banking sector. Indeed,

condition (31) can be rewritten as

Rc(E)− p = σ2
0Kc(E)

[
− û′(E)

û(E)

]
, (33)

where the left-hand and the right-hand sides capture the marginal bene�t and the marginal

cost of lending for the bank respectively.11 Notice that û′(E) = u′(Rc(E))R′c(E) < 0, so

that the right-hand side of (33) is positive. As will be shown in the sequel, the private

marginal cost of credit in a competitive equilibrium diverges from the social marginal

cost of credit.

5.2 Computing social welfare

For E ∈ [Emin, Emax], the social welfare function at the competitive equilibrium,

W (E), satis�es the following di�erential equation

ρW (E) = πF

[
Kc(E)

]
+ πB

[
Kc(E)

]
W ′(E) +

σ2
0

2
K2
c (E)W ′′(E), (34)

where πF (Kc) = F (Kc) −KcF
′(Kc) is the expected pro�t of the �rms per unit of time

and πB(Kc) = KcF
′(Kc) is the expected pro�t of the banks per unit of time.

Note that dividend distribution and bank recapitalizations have no immediate impact

on the �rms' pro�t. This consideration yields us two boundary conditions, W ′(Emin) =

V ′(E(Rmax)) = 1 + γ and W ′(Emax) = V ′(E(Rmin)) = 1. Thus, the welfare function can

be computed numerically. To illustrate the relation between the level of the aggregate

bank capitalization and welfare, we compute W (E) in the simple case where β = 1 (see

Appendix C for the details). The knowledge of W (E) enables us to easily compute the

11This condition is analogous to condition (10) obtained in Section 3.1.
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expected social welfare loss as a function of the bank capital loss, i.e.,

W (E0)−W (E0 −∆E)

W (E0)
100%,

where ∆E > 0 is the loss of bank capital and E0 is the level of bank capital before the

loss.

The left panel of Figure 2 shows that social welfare is an increasing function of aggre-

gate bank capitalization.12 The right panel of Figure 2 reports the expected welfare loss

as the function of bank capital loss, where E0 = Emax and ∆E ∈ [0, Emax − Emin].
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Figure 2: Social welfare and the welfare cost of banking crises (ρ = 0.05, β = 1, p = 0.02,
R = 0.12, σ0 = 0.1, γ = 0.2)

5.3 Market failure

Consider now a small variation of lending around Kc(E), given the aggregate bank

equity level E. Its impact on social welfare is given by the �rst derivative of the right-hand

side of equation (34) with respect to Kc(E):

L(E) = π′F

[
Kc(E)

]
+ π′B

[
Kc(E)

]
W ′(E) + σ2

0Kc(E)W ′′(E) =

= −Kc(E)F ′′(Kc(E)) + [Kc(E)F ′′(Kc(E)) +Rc(E)− p]W ′(E) + σ2
0Kc(E)W ′′(E),

(35)

12Note that the maximum level of capitalization is attained for R = p and the maximum variation of
welfare depends on the magnitude of �nancing costs.
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where F ′′(Kc(E)) = R′c(Kc(E)). The right-hand side of the above expression vanishes

when the loan spread is equal to the social costs of lending, i.e., when

Rc(E)− p = σ2
0Kc(E)

[
− W ′′(E)

W ′(E)

]
+R′c(Kc(E))Kc(E)

[
1− 1

W ′(E)

]
. (36)

Comparing expressions (36) and (33) suggests that the allocation of credit in the

competitive equilibrium is distorted in two ways: �rst, because of the di�erence in the

private and social induced risk aversion, i.e., IRAp(E) = − û′(E)
û(E)

and IRAs(E) = −W ′′(E)
W ′(E)

;

second, because an increase in lending decreases the loan spread (recall that R′c(Kc) < 0)

and thus reduces the marginal earnings of banks. Indeed, since W ′(E) > 0, the second

term at the right-hand side of expression (36) is negative.

In the particular case where β = 1, we are able to compute IRAp(E) and IRAs(E)

and numerically compare the private and social cost of lending. The left panel of Figure

3 depicts the di�erence between the coe�cients of the private and the social induced risk

aversion, i.e., IRAp(E) − IRAs(E). It turns out that the private induced risk aversion

is lower than the social induced risk aversion when the aggregate bank equity is low and

vise versa when the aggregate level of equity is high. However, the negative e�ect of the

second term in (36) dominates, so that the private cost of lending is always higher than

the social cost of lending (see the right panel of Figure 3).
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Figure 3: Private vs social costs of lending for β = 1

We are also able to estimate the sign of L(E) and thus to have a precise picture of the

relation between the levels of bank capitalization and welfare distortions. It turns out that
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L(E) is positively signed for the lower levels of bank capitalization and becomes negative

for the higher level of capitalization (see Figure 4). This suggests that, for the lower

levels of bank capital, welfare can be improved by increasing credit to the productive

sector, whereas for the higher level of bank capitalization welfare can be improved by

reducing credit. Put di�erently, competitive banks lend too much when things go well

(high equity), and too little when things go badly (low equity).
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Figure 4: Market failure

6 Conclusion [To be completed]
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Appendix A. Proofs

Proof of Proposition 1. By the standard dynamic programming arguments, v(e, R)
must satisfy the Bellman equation:13

ρv = max
k,dδ,di

{
dδ(1− ve)− di(1 + γ − ve)+

+ k[(R− p)ve − σ0σ(R)veR] +
k2σ2

0

2
vee

+ µ(R)vR +
σ2(R)

2
vRR

}
.

(A1)

Using the fact that v(e, R) = eu(R), one can rewrite the Bellman equation (A1) as
follows:

ρu(R) = max
k,dδ,di

{dδ
e

[1− u(R)]− di

e
[1 + γ − u(R)] +

k

e
[(R− p)u(R)− σ0σ(R)u′(R)]+

+ µ(R)u′(R) +
σ2(R)

2
u′′(R)

}
(A2)

A solution to the maximization problem in k only exists when

u′(R)

u(R)
=

R− p
σ0σ(R)

. (A3)

It follows from the above expression that u(R) is increasing with R. Then, the optimal
payout policy maximizing the right-hand side of (A2) is characterized by a critical barrier
Rmin satisfying

u(Rmin) = 1, (A4)

and the optimal recapitalization policy is characterized by a barrier Rmax such that

u(Rmax) = 1 + γ. (A5)

In other words, dividends are only distributed when Rt reaches Rmin, whereas recap-
italization occurs only when Rt reaches Rmax.

Conditions (A3), (A4) and (A5) can be summarized in a single condition:∫ Rmax

Rmin

R− p
σ0σ(R)

dR = log(1 + γ). (A6)

To obtain the second condition stated in the Proposition 1, notice that in the region
R ∈ (Rmin, Rmax), market-to-book value u(R) satis�es:

ρu(R) = µ(R)u′(R) +
σ2(R)

2
u′′(R). (A7)

13For the sake of space, we omit the arguments of function v(e,R).
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Taking the �rst derivative of (A3), we can compute u′′(R). Plugging u′′(R) and u′(R)
into (A7) and rearranging terms yields:

µ(R) =
σ(R)

2

(
2ρσ0 − σ(R)

R− p
− R− p

σ0

+ σ′(R)

)
. (A8)

Proof of Proposition 2. First, we derive the expression of σ(R). From (15), we have

E ′(R) = −σ0(R)

σ(R)
K(R). (A9)

By di�erentiating the above equation, we obtain E ′′(R). Plugging E ′(R) and E ′′(R)
into (14) and solving it with respect to µ(R) yields:

µ(R) =
σ(R)

2

(
−2(R− p)

σ0

− σ(R)
K ′(R)

K(R)
+ σ′(R)

)
(A10)

Recall that we have another expression for µ(R) resulting from the individual bank's
maximization problem (see (A8)). Equilibrium implies the existence of a unique µ(R).
Equating the right-hand sides of (A10) and (A8) yields the expression for σ(R). Note
that σ(p) = 2ρσ0.

Second, from the maximization problem of the individual bank, we know that the
maximum value of loan rate, Rmax, is the solution of equation u(Rmax) = 1 + γ, which
can be rewritten as follows: ∫ Rmax

Rmin

R− p
σ0σ(R)

dR = log(1 + γ). (A11)

To �nalize the characterization of the equilibrium, it remains to determine Rmin and
E(Rmax). To this purpose, consider �rst derivative of the market value of the entire bank-
ing sector, V (R) ≡ E(R)u(R). At Rmin and Rmax, we must have V

′(Rmin) = E ′(Rmin)
and V ′(Rmax) = (1 + γ)E ′(Rmax). This implies respectively that u′(Rmax)E(Rmax) = 0
and u′(Rmin)E(Rmin) = 0. Notice that u′(Rmax) > 0 and E(Rmin) > 0 (the latter must
hold because the value equity is decreasing with R). These considerations yield us two
conditions: E(Rmax) = 0 and u′(Rmin) = 0.

From equation (A3) it immediately follows that u′(Rmin) = 0 if and only if Rmin = p.
Solving (A9) under the boundary condition E(Rmax) = 0 yields the equity value function
stated in (19).

Appendix B. Solving for the equilibrium when r > 0

In this subsection, we solve for the equilibrium in the set up where r > 0. In this case,
the dynamics of equity value of an individual bank follows:

det = d(kt −Dt) = ret + kt[(R− p− r)dt − σ0dZt]− dδt + dit. (A12)
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Solving the shareholders' maximization problem in the same way as we did in the
proof of Proposition 1 yields two equations:

u′(R)

u(R)
=
R− p− r
σ0σ(R)

, (A13)

(ρ− r)u(R) = µ(R)u′(R) +
σ2(R)

2
u′′(R). (A14)

Substituting u′(R) and u′′(R) in (A14) enables us to express µ(R) as a function of
σ(R):

µ(R) =
σ(R)

2

(
2σ0(ρ− r)
R− p− r

− σ(R)

R− p− r
− (R− p− r)

σ0

+ σ′(R)

)
. (A15)

In the region R ∈ (Rmin, Rmax), the aggregate equity of the banking sector follows:

dEt = [K(Rt)(Rt − p− r) + rEt]dt− σ0K(Rt)dZt. (A16)

Applying Itô's lemma to E(Rt) and matching the drift and volatility terms with those
from expression (A16), we get the system of equations:

K(R)(R− p− r) + rE = µ(R)E ′(R) +
σ2(R)

2
E ′′(R), (A17)

− σ0K(R) = σ(R)E ′(R). (A18)

Proceeding in the same way as in the proof of Proposition 2, we obtain the expression
for σ(R):

σ(R) =
K(R)[(R− p− r)2 + 2σ2

0(ρ− r)] + 2r(R− p− r)E(R)

σ0 [K(R) + (R− p− r)K ′(R)]
. (A19)

Substituting σ(R) into (A18) yields the �rst-order di�erential equation:

E ′(R) = − σ2
0 [K(R) + (R− p− r)K ′(R)]

K(R)[(R− p− r)2 + 2σ2
0(ρ− r)] + 2r(R− p− r)E(R)

, (A20)

that can be solved numerically under the boundary condition E(Rmax) = 0.
The recapitalization barrier Rmax must be computed numerically by solving equation∫ Rmax

Rmin

E ′(s)
(s− p− r)
σ2

0K(s)
ds = log(1 + γ). (A21)

Note that the left-hand side of the above expression is increasing in Rmax. Hence,
there exists a unique solution to (A21). The minimum loan rate is given by Rmin = r+p.
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Appendix C. Computing social welfare

Consider the simple case where β = 1. The credit demand is then K(R) = R−R and
the equity value function can be computed explicitely:

E(R) = −(R− p)σ0√
2ρ

arctan

(
R− p√

2ρσ0

)
+ E0, (A22)

where the constant E0 is given by

E0 =
(R− p)σ0√

2ρ
arctan

(
Rmax − p√

2ρσ0

)
. (A23)

The maximum level of equity is given by Emax = E(p).
Rewriting the loan rate R as a function of E yields

Rc(E) = p+
√

2ρσ0 tan

( √
2ρ

σ0(R− p)
(E0 − E)

)
, (A24)

and thus

Kc(E) = R− p−
√

2ρσ0 tan

( √
2ρ

σ0(R− p)
(E0 − E)

)
. (A25)

To recover the production function, F (K), recall that F ′(K) = R− p. Using the fact
that R = R−K, we obtain F ′(K) = (R− p−K) and, thereby,

F (K) = (R− p)K − K2

2
. (A26)

The expected pro�t of �rms is then

πF (Kc(E)) = F (Kc(E))−Kc(E)F ′(Kc(E)) =
[Kc(E)]2

2
,

and the expected pro�t of banks is

πB(Kc(E)) = Kc(E)F ′(Kc(E)) = R− p−Kc(E).

Then, for β = 1, social welfare follows ODE:

ρW (E) =
K2
c (E)

2
+Kc(E)(R− p−Kc(E))W ′(E) +

σ2
0

2
[Kc(E)]2W ′′(E), (A27)

given that W ′(0) = 1 + γ and W ′(Emax) = 1.
Di�erentiating the above expression with respect to E and solving the obtained equa-

tion numerically with respect to W ′(E) enables us uncover W (E).
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Appendix D. Leverage regulation

In the core of the paper we were focusing on the "laissez-faire" environment in which
banks face no regulation. Our objective here is to understand how does leverage regulation
a�ect the optimal banks' policies and the equilibrium behavior of the economy. Assume
that, under leverage regulation, each bank must maintain equity capital above a certain
fraction of loans, i.e.,

et ≥ Λkt,

where Λ is a leverage ratio.
Notice that banks have two options to comply with leverage ratio. The �rst option

involves costly recapitalization. The second option consists in cutting on lending and
paying back debt. Anecdotal evidence suggests that, in practice, bank shareholders prefer
to use the latter option, rather than to undertake recapitalizations. As will become
apparent below, consistent with anecdotal evidence, in our model, bank shareholders will
also prefer to control their leverage by cutting on lending and will use recapitalizations
as a last resort.

Maximization problem of a representative bank. Under leverage regulation, the
maximization problem of a representative bank is similar to the one considered in the
unregulated environment, except the fact that now lending decisions are subject to the
leverage constraint:

vΛ(e, R) = max
kt≥ e

Λ
,dδt,dit

E
[∫ +∞

0

e−ρt (dδt − (1 + γ)dit)

]
. (A28)

Exploiting the homogeneity property of the value function, we can rewrite the maxi-
mization problem as follows:

ρu(R) = max
k≥ e

Λ
,dδ,di

{dδ
e

[1− u(R)]− di

e
[1 + γ − u(R)] +

k

e
[(R− p)u(R)− σ0σ(R)u′(R)]+

+ µ(R)u′(R) +
σ2(R)

2
u′′(R)

}
.

(A29)
Recall that bank equity is decreasing in R. Then, there exists a critical level of the

loan rate RΛ such that constraint k ≥ e
Λ
binds for any R ∈ [RΛ, Rmax]. Then, we can

split the above maximization problem into the unconstrained problem, whose solution is
described in Section 2.1, and the constrained problem. Following the same arguments
as in the unregulated set up, the optimal recapitalization and payout policies will be of
the barrier type. Speci�cally, the optimal payout barrier Rmin is such that u(Rmin) = 1
and recapitalization barrier Rmax satis�es u(Rmax) = 1 + γ. To determine the market-to-
book value function u(R), notice that, in the unconstrained region [Rmin, RΛ], it can be
computed according to:

u(R) = exp

(∫ R

Rmin

s− p
σ0σ(s)

ds

)
.
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In the constrained region [RΛ, Rmax], function u(R) satis�es the di�erential equation

ρu(R) =
1

Λ
[(R− p)u(R)− σ0σ(R)u′(R)] + µ(R)u′(R) +

σ2(R)

2
u′′(R),

subject to the matching and smooth-pasting conditions u−(RΛ) = u+(RΛ) and u′−(RΛ) =
u′+(RΛ).

In order to solve the above equation (numerically), we must de�ne the law of motion
of R and determine the threshold RΛ.

Constrained equilibrium. We will further refer to the equilibrium emerging under
leverage regulation as to the constrained equilibrium. To solve for the constrained equi-
librium, consider �rst the region [RΛ, Rmax]. In this region, the leverage constraint is
binding, which immediately yields the value of equity:

E(R) = ΛK(R).

Thus, plugging E ′(R) = ΛK ′(R) and E ′′(R) = ΛK ′′(R) into the system (14)-(15),
one can easily uncover the law of motion of R:

σΛ(R) = −σ0

Λ

K(R)

K ′(R)
, (A30)

µΛ(R) = σ(R)

(
−(R− p)

σ0

− σ(R)

2

K ′′(R)

K ′(R)

)
. (A31)

In the region [Rmin, RΛ), the law of motion of the loan rate is de�ned by the same
expressions as in the unregulated setting (see Proposition 2). However, the value of the
aggregate bank capital changes for:

E(R) = −
∫ R

Rmin

σ0K(s)

σ(s)
ds+ E0, (A32)

where constant E0 is chosen so as to ensure the value-matching condition E(RΛ) =
ΛK(RΛ) and σ(R) is de�ned in (16).

The last ingredient we need to complete the characterization of the constrained equi-
librium is the threshold RΛ. Its value can be inferred from the smooth-pasting condition
E ′−(RΛ) = E ′+(RΛ), which can be rewritten as follows:

− σ0

σ(R)

K(R)

K ′(R)
= Λ,

where σ(R) is de�ned in (16).

The impact of leverage regulation: numerical example. To illustrate the impact
of leverage regulation on bank policies, we resort to the numerical analysis. Table 1
reports the values of RΛ and Rmax computed for the di�erent levels of leverage ratio Λ.

The numerical analysis suggests that there exists a critical leverage ratio Λ, below
which leverage regulation does not a�ect the optimal bank policies, so that Rmax is the
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Table 1: Impact of leverage regulation

β = 2, σ = 0.1 β = 4, σ = 0.1 β = 2, σ = 0.05

RΛ Rmax RΛ Rmax RΛ Rmax

Λ = 0 ��� 0.11050.11050.1105 ��� 0.08590.08590.0859 ��� 0.07920.07920.0792
Λ = 0.05 ��� 0.1105 ��� 0.0859 ��� 0.0792
Λ = 0.10 ��� 0.1105 ��� 0.0859 0.0541 0.0723
Λ = 0.15 0.0938 0.1085 0.0794 0.0855 0.0420 0.0643
Λ = 0.20 0.0769 0.1023 0.0618 0.0812 0.0349 0.0582
Λ = 0.25 0.0657 0.0961 0.0500 0.0756 0.0300 0.0534

Table 1 reports the values of RΛ and Rmax for di�erent levels of Λ. Parameter values common to all scenarios

are: ρ = 0.05, R = 0.2, γ = 10, p = 0.

same as in the unregulated environment. However, for any Λ > Λ, both RΛ and Rmax

are decreasing in Λ. Thus, a tighter leverage ratio would induce banks to recapitalize
at a lower Rmax, thereby, reducing the maximum amplitude of the loan rate. Moreover,
when faced with leverage regulation, banks would maintain more equity capital even in
the region in which the leverage constraint is not binding (see Figure 5). It is also easy
to see that E(Rmax) > 0, i.e., in contrast to the unregulated setting, banks undertake
recapitalizations, while holding a strictly positive level of capital.

EL HRL

EHRL
RmaxRL

0.02 0.04 0.06 0.08 0.10
R

0.005

0.010

0.015

EL HRL,EHRL Equityin the unregulatedvs regulatedcase

Figure 5: Impact of leverage regulation on bank capital
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