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Abstract

We study a dynamic setting in which a firm chooses its debt maturity structure endogenously

over time without commitment. In our model, the firm keeps its promised outstanding bond

face-values constant, but can control the firm’s maturity structure via the fraction of newly

issued short-term bonds when refinancing its matured long-term and short-term bonds. As a

baseline, we show that when the firm’s cash-flows are constant then it is impossible to have

the shortening equilibrium in which the firm keeps issuing short-term bonds and default conse-

quently. Instead, when the cash-flows deteriorate over time so that the debt recovery value is

affected by the endogenous default timing, then a shortening equilibrium with accelerated de-

fault can emerge. Self-enforcing shortening and lengthening equilibria exist, and the shortening

equilibrium may be Pareto-dominated by the lengthening one.
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1 Introduction

The 2007/08 financial crisis has put debt maturity structure of financial institutions squarely in the

focus of both policy discussions as well as the popular press. However, dynamic models of debt ma-

turity structure are difficult to analyze, and hence academics are lagging behind in offering tractable

frameworks in which the firm’s debt maturity structure follows some endogenous dynamics. In fact,

a widely used framework for analyzing debt maturity structure is based on Leland [1994b, 1998]

and Leland and Toft [1996] who, for tractability’s sake, take the frequency of refinancing/rollover

as a fixed parameter. In that framework, equity holders are essentially able to commit to a policy

of a constant debt maturity structure, which equals the inverse of the debt rollover frequency, until

default. This stringent assumption is at odds with mounting empirical evidence that most firms

have time-varying debt maturity structure; for instance, Chen et al. [2013] document that firms

have pro-cyclical debt maturity structure; and Xu [2014] shows that speculative firms are actively

managing their debt maturity structure via early refinancing.

This paper relaxes the assumption of a constant debt maturity structure by removing the equity

holders’ ability to commit to a future debt maturity structure. This results in a novel dynamic model

that allows us to rigorously analyze how equity holders adjust the firm’s debt maturity structure

facing time-varying firm fundamentals and endogenous bond prices. In our model the firm has

two kinds of debt, long and short term bonds, that mature with constant but different Poisson

intensities. As the main innovation relative to the existing literature, we allow equity holders to

control the firm’s debt maturity structure endogenously by changing the maturity composition of

current (rollover) debt issuances. When equity holders replace just-matured long-term debt by

issuing short-term debt, the firm’s debt maturity structure shortens. To focus on endogenous debt

maturity dynamics only, we fix the firm’s book leverage policy, by following the Leland-type model

assumptions that the firm commits to maintaining a constant aggregate face-value of outstanding

debt. This treatment is consistent with the fact that in practice, most of bond covenants have some

restrictions regarding the firm’s future leverage policies, but rarely on the firm’s future maturity
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structures.

In refinancing their maturing bonds, equity holders are the claimants to the cash-flow gap

between the face value of matured bonds and the proceeds from selling newly issued bonds at

market price. When default is imminent, bond prices are low and equity holders are absorbing

rollover losses. This so-called rollover risk may feed back to earlier default, an effect that emerged

in a variant of the classic Leland model that involved finite maturity debt (Leland and Toft [1996]

and Leland [1994b]). More importantly, as shown by He and Xiong [2012] and Diamond and He

[2014], all else equal, equity holders are more likely to default if the firm has more a shorter debt

maturity structure and thus needs to refinance more maturing bonds. The more debt has to be

repriced, the heavier the rollover losses are for the firm when fundamentals deteriorate, thereby

pushing the firm closer to default.

What is the equity holders’ trade-off involved in shortening the maturity structure by issuing

more short-term bonds today? The presence of default risk implies that “going short” offers higher

issuance proceeds today. This is because short-term bonds fetch higher valuations relative to long-

term bonds, as the former has a higher likelihood of maturing before the default event. Thus, the

benefit of maturity shortening is to reduce the firm’s rollover losses today.

However, as short-term debt comes due faster, shortening increases the future rollover frequency.

Equity holders’ exposure to future rollover increases, leading to earlier default and thus to lower

equity value. This is the cost side of shortening maturity, and equity holders are cognizant of this

negative long-term effect when deciding the optimal issuance policy. Combining both the benefit

and cost gives rise to the equity holders’ incentive compatibility condition for issuing short-term

bonds, which plays a key role in our analysis. Our main research question is: Can situations arise

in which this trade-off favors maturity shortening, so that, even though going short hastens default

and thus hurts the social value of the firm, in equilibrium equity holders keep issuing short-term

bonds due to an inability to commit?

As a benchmark, we first consider the case in which a firm produces constant cash flows but is

waiting for an upside event (at which point the model ends). We show that there is never any slow
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drift towards inefficient default via shortening the firm’s maturity structure, if there is a strictly

positive loss-given-default for bond investors. Either the firm defaults immediately, or the firm

lengthens its debt maturity structure by issuing long-term bonds and thus never defaults. This

result of “no shortening equilibrium” is robust to various generalizations.

We establish the result of “no shortening equilibrium” by analyzing the equity holders’ incentive

compatibility condition in the vicinity of the default boundary. Interestingly, we show that the

incentive compatibility condition is solely determined by the sign of the marginal impact of maturity

shortening on the value of short-term bonds. More specifically, equity holders would like to issue

more short-term bonds, if shortening the firm’s debt maturity structure raises the market value of

short-term bonds. Intuitively, right before default, the savings on today’s rollover losses by issuing

more short-term bonds just offset the increase of tomorrow’s rollover losses; and the only effect at

work is that maturity shortening edges the firm closer to default and hence affects the market value

of bonds. However, given a positive loss-given-default, a lower distance-to-default drives down the

market value of short-term bonds. As a result, the equity holders’ incentive compatibility constraint

is always violated in the vicinity of default, and the “no shortening equilibrium” result emerges.

This “no shortening equilibrium” is in sharp contrast to Brunnermeier and Oehmke [2013] who

show that equity holders might want to privately renegotiate the bond maturity down (toward zero)

with each individual bond investor. The key difference is on who bears the rollover losses when there

is arrival of unfavorable news in an interim period. In Brunnermeier and Oehmke [2013], there is

no covenants about the firm’s aggregate face value of outstanding bonds, and after negative interim

news the rollover losses of short-term bonds are absorbed by promising a sufficiently high new

face-value to keep the short-term bond-holders in the firm. This increase in face-value dilutes the

(non-renegotiating) existing long-term bond holders. In contrast, in our model equity holders are

absorbing rollover losses through their own deep pockets (or through equity issuance), as increasing

face value to dilute existing bond holders is prohibited by the assumption of a constant aggregate

face value. By shutting down the interim dilution channel that drives the result in Brunnermeier

and Oehmke [2013], we identify a new economic force that impacts maturity choice.
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We then move on to show that for firms whose cash flows are deteriorating over time, it is possible

to construct an equilibrium where equity holders shorten the firm’s debt maturity structure and the

firm drifts slowly towards inefficient early default. As in the constant cash-flow case, equity holders

find it optimal to issue short-term bonds if maturity shortening increases the value of short-term

bonds. However, there is a crucial difference between deteriorating cash flows and constant cash

flows. For firms whose cash flows are deteriorating over time, all else equal debt values may be

higher under an earlier default time. This is because bond holders will take over the firm earlier,

at a higher fundamental level, resulting in higher debt recovery. This force, which is absent in

the setting with constant cash flows, can entice equity holders to shorten the firm’s debt maturity

structure ex post, although committing to long debt maturity ex ante maximizes total welfare.

Indeed, in the case with deteriorating cash flows, starting at some initial state–i.e., current

cash flows and maturity structure–that is sufficiently far away from bankruptcy, one can construct

two equilibrium paths toward default, one with maturity shortening and the other with maturity

lengthening. In the lengthening equilibrium, the firm’s debt maturity structure grows longer and

longer over time, as equity holders keep issuing long-term bonds to replace maturing short-term

bonds. In our example, the firm in the lengthening equilibrium survives longer, resulting in higher

overall welfare and even Pareto dominance over the shortening equilibrium.

A multiplicity of equilibria emerges in our model without much surprise. If bond investors expect

equity holders to keep shortening the firm’s maturity structure in the future, then bond investors

price this expectation in the bond’s market valuation, which can self-enforce the optimality of issuing

short-term bonds only. Similarly, the belief of issuing long-term bonds always can be self-enforcing

as well. However, we prove that when the firm is sufficiently close to default then the model has a

unique equilibrium; intuitively, any future benign (malign) expectation of lengthening (shortening)

maturity is “too late” to be self-enforcing.

There are two simplifying assumptions, however, that are crucial to the tractability of our model;

they also may play some role in driving our main results. First, our analysis rules out Brownian cash-

flow shocks, which are common in the existing Leland-type models. It is unclear how postponing
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default around the bankruptcy boundary due to Brownian uncertainty affects the clean relation

between the equity holders’ incentive compatibility of going short and its marginal impact on the

value of short-term bonds. Allowing for Brownian shocks will necessarily involve a nontrivial two-

dimensional analysis, and we await future research to consider this possibility. Second, in our model

the firm cannot change the aggregate amount of face-value outstanding, which rules out diluting

existing bond holders by promising higher face value to new incoming bond holders. Based on

this dilution effect, Brunnermeier and Oehmke [2013] show that in a Merton-type model without

endogenous default timing decisions, the firm might want to privately renegotiate the bond maturity

down (toward zero) with each individual bond investor. To some extent, we rule out changes in

face-value to purposefully isolate our effect from the effect of Brunnermeier and Oehmke [2013].

Having said that, it is interesting for the future research to study endogenous dynamic maturity

structure and dynamic leverage simultaneously in the Leland-type model; see DeMarzo and He

[2014] for some recent progress in modeling endogenous leverage dynamics without commitment.

Debt maturity is an active research area in corporate finance, and most of the early theoretical

models were static models. Calomiris and Kahn [1991] and Diamond and Rajan [2001] emphasize

the disciplinary role played by short-term debt, a force absent from our model. The repricing of

short-term debt given news in Flannery [1986], Diamond [1991] and Flannery [1994] is related to

the endogenous rollover losses of our paper. For dynamic corporate finance models with finite debt

maturity, almost the entire existing literature is based on a Leland-type framework in which a

firm commits to a constant debt maturity structure.1 To the best of our knowledge, our model is

the first that investigates the endogenous debt maturity dynamics. Our model nests the Leland

framework (without Brownian shocks) if we assume that both long-term bonds and short-term

bonds have the same maturity. In Leland [1994a] the firm is unable to commit not to default.

Introducing a fixed rollover term in Leland [1994b] makes the outcome of this inability to commit

worse as default occurs earlier the higher the rollover. We show that introducing a flexible maturity
1For more recent development, see He and Xiong [2012], Diamond and He [2014], Chen et al. [2014], He and

Milbradt [2014], and McQuade [2013].
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structure with an inability to commit might further worsen this default channel, even though a

priori the added flexibility would seem work in equity holder’s favor to move closer to the first-best

welfare maximizing strategy.

Our paper is also related to the study of debt maturity and multiplicity of equilibria in the

sovereign debt literature (e.g., Cole and Kehoe [2000]). Arellano and Ramanarayanan [2012] provide

a quantitative model where the sovereign country can actively manage its debt maturity structure

and leverage, and show that maturities shorten as the probability of default increases; a similar

pattern emerges in Dovis [2012]. As typical in sovereign debt literature, one key motive for the

risk-averse sovereign to borrow is for risk-sharing purposes in an incomplete market. Because debt

maturity plays a role in how the available assets span shocks, the equilibrium risk-sharing outcomes

are affected by debt maturity. This force is absent in most corporate finance models which are

typically cast in a risk-neutral setting. A more related paper is Aguiar and Amador [2013] who,

like us, provide a transparent and tractable framework for analyzing maturity choice in a dynamic

framework without commitment. They study a drastically different economic question, however:

there, a sovereign needs to reduce its debt and the debt maturity choices matter for the endogenous

speed of deleveraging. In contrast, in our model the total face value of debt is fixed at a constant,

and the maturity choice trades off rollover losses today versus higher rollover frequencies tomorrow.

We start by laying out our model generally in Section 2. We then solve the base model with

constant cash flows in Section 3, and compare it with the setting where the firm’s cash flows are

decreasing over time in Section 4. We provide a numerical example in Section 4 to illustrate the

nature of multiple equilibria in our model. Section 5 considers the possibility of interior equilibria,

and Section 6 concludes. All proofs are in Appendix.
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2 The Setting

2.1 Firm and Asset

All agents in the economy, that is equity and debt-holders, are risk-neutral with a constant discount

rate r. The firm has assets-in-place generating cash flows at a rate of yt, whose evolution will be

specified later. There is a Poisson event arriving with a constant intensity ζ > 0; at this event,

assets-in-place pay off a sufficiently large constant X and the model ends. This event can also be

interpreted as the realization of growth options, and throughout we call it the “upside event.”

We allow the cash-flow rate yt to be negative (e.g., operating losses). As yt can take negative

values, it might be optimal to abandon the asset at some finite time, denoted by Ta. We assume

that abandonment is irreversible and costless. Given the cash-flow process yt, the unlevered firm

value (or asset value) is given by

A (y) = E

[ˆ min(Ta,Tζ)

0
e−rtytdt+ 1{Tζ<Ta}e

−rTζX

]
, (1)

The firm is financed by debt and equity. When equity holders default, debt holders take over

the firm with some bankruptcy cost (to be specified later), so that the asset’s recovery value from

bankruptcy is B (y) < A (y). We assume that B′ (y) > 0, i.e., the firm’s liquidation value is

increasing in the current state of cash-flows.

2.2 Dynamic Maturity Structure and Debt Rollover

2.2.1 Assumptions

We study the dynamic maturity structure of the firm. To this end, we assume that the firm has

two kinds of bonds outstanding: long-term bonds whose time-to-maturity follows an exponential

distribution with mean 1/δL, and short-term bonds whose time-to-maturity follows an exponential

distribution with mean 1/δS , where δi’s are positive constants with i ∈ {S,L} and δS > δL. Thus,

bonds mature in an i.i.d. fashion with Poisson intensity δi. An equivalent interpretation is that of
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a sinking-fund bond as discussed in Leland [1994b, 1998].

Maturity is the only characteristic that differs across these two bonds. Both bonds have the

same after-tax coupon rate c and the same principal normalized to 1. To avoid arbitrary valuation

difference between two bonds, we set the before-tax coupon rate equal to the discount rate, i.e.

ρc = r where ρ ≥ 1 stands for a tax benefit per unit of coupon. This way, without default both

bonds have a unit value, i.e., Drf
L = Drf

S = 1. We also assume both bonds have the same seniority

to rule out trivial dilution motives. In bankruptcy, both bond holders receive, per unit of face-value,

B (y) as the asset’s liquidation value. Throughout, we assume that

B (y) < Drf
i = 1, for i ∈ {S,L} . (2)

This empirically relevant condition simply says that the loss-given-default for bond investors is

strictly positive.

To focus on maturity structure only, throughout we assume that the firm commits to a constant

“book leverage” policy. Specifically, following the canonical assumption in Leland [1998], the firm

rolls over its bonds in such a way that the total promised face-value is kept at a constant normalized

to 1 (hence, the total measure of these two bonds is 1).

We emphasize that this assumption can be motivated by bond covenants on future leverage

policies taken by the firm. Essentially, this assumption rules out the “indirect” dilution effect caused

by future net debt issuance in response to the firm’s fundamental news, which is the economic force

behind Brunnermeier and Oehmke [2013]. There, short-term bond holders have the advantage of

repricing their individual bond face values given new information; since all bonds have the same

seniority, a higher face value following negative news dilutes the existing long-term bond holders.

Our constant face-value assumption explicitly rules out this indirect dilution effect, highlighting a

complementary channel to Brunnermeier and Oehmke [2013], as discussed in Section 3.4.2.

Taking our assumptions together, we implicitly assume that debt covenants, while restricting

the firm’s future leverage policies, do not impose restrictions on a firm’s future maturity. This
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assumption is realistic, as debt covenants often specify restrictions on firm leverage but rarely on

debt maturity.

2.2.2 Maturity structure and its dynamics

The face value of short-term bonds at time t, denoted by φt ∈ [0, 1], gives the fraction of short-

term bonds outstanding. We call φt the current maturity structure of the firm. Given the current

maturity structure φt, during [t, t+ dt] there are m (φt) dt dollars of bonds maturing, where

m (φt) ≡ φtδS + (1− φt) δL. (3)

The more short-term the current maturity structure is, the more the debt is rolled over each instant,

as we have m′ (φ) = δS − δL > 0.

Recall that the constant book-leverage assumption implies that equity holders are issuingm (φt) dt

units of new bonds to replace those maturing bonds. The main innovation of the paper is to allow

equity holders to endogenously choose the proportion of newly issued short-term bonds, which we

denote by ft ∈ [0, 1].2 Hence, the dynamics of maturity structure φt are given by

dφt
dt

= −φt · δS︸ ︷︷ ︸
Short-term maturing

+ m (φt) ft︸ ︷︷ ︸
Newly issued short-term

. (4)

Most of our analysis focuses on constant issuance policies that take corner values 0 or 1, i.e.

f ∈ {0, 1}. Suppose that f = 1 always, so that the maturity structure is shortened; then

dφt = δL (1− φt) dt > 0, i.e., the maturity structure φt increases at the fraction of long-term

debt multiplied by its maturing speed. Over time, the firm’s maturity structure φt monotonically

rises toward 100% of short-term debt. Similarly, if the firm keeps issuing long-term bonds so that

f = 0, then dφt = −φtδSdt < 0 and thus the maturity structure φt monotonically falls toward 0%

of short-term debt.
2We assume that there is no debt buybacks, call provisions do not exist, and maturity of debt contracts cannot

be changed once issued. We discuss the robustness of our result with respect to these assumptions in Section 3.5.3.
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2.3 Rollover Losses and Default

2.3.1 Bond market prices

Given the equilibrium default time Tb (if Tb = ∞ then the firm never defaults), competitive bond

investors price long-term and short-term bonds at DS (yt, φt) and DL (yt, φt) respectively. Even if

Tb is deterministic, since we model bond maturity as a Poisson shock, bond holders are still exposed

to the risk of default. Since we set ρc = r, and the recovery value B (·) is below the face value 1,

in general we have DL ≤ DS ≤ 1 (for the exact argument, see Section 3.2.1). This immediately

implies the firm is incurring certain rollover losses, a topic we turn to now.

2.3.2 Rollover losses and default boundary

In Leland [1994b, 1998], equity holders commit to roll over (refinance) the firm’s maturing bonds

by re-issuing bonds of the same type. In our model, the firm can choose the fraction of short-term

bonds f amongst the total of newly issued bonds. Per unit of face value, by issuing an ft fraction

of short-term bonds, the equity’s net rollover cash-flows are

ftDS (yt, φt) + (1− ft)DL (yt, φt)︸ ︷︷ ︸
proceeds of newly issued bonds

− 1︸︷︷︸
payment to maturing bonds

.

We call this term “rollover losses.”3 Each instant there are m (φt) dt units of face value to be rolled

over, hence the instantaneous expected cash flows to equity holders are

yt︸︷︷︸
operating CF

− c︸︷︷︸
coupon

+ ζErf︸ ︷︷ ︸
upside event

+m (φt) [ftDS (yt, φt) + (1− ft)DL (yt, φt)− 1]︸ ︷︷ ︸
rollover losses

. (5)

Here, the third term “upside event” is the expected cash flows to equity of this event multiplied by

its probability, where we define Erf ≡ X −Drf = X − 1 > 0.
3Equity holders are always facing rollover losses as long as ρc = r and B (yTb) < 1, which imply that Di < 1.

When ρc > r, rollover gains occur for safe firms who are far from default. As emphasized in He and Xiong [2012],
since rollover risk kicks in only when the firm is close to default, it is without loss of generality to focus on rollover
losses only.
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When the above cash flows in (5) are negative, these losses are covered by issuing additional

equity, which dilutes the value of existing shares.4 Equity holders are willing to buy more shares

and bail out the maturing bond holders as long as the equity value is still positive (i.e. the option

value of keeping the firm alive justifies absorbing these losses). When equity holders—protected by

limited liability—declare default, equity value drops to zero, and bond holders receive the firm’s

liquidation value B (yTb).

There are two distinct channels that expose equity holders to heavier losses, leading to default.

The first, the cash-flow channel, has been studied extensively in the literature. When yt deteriorates

(say, yt turns negative), equity holders are absorbing operating losses (the first term in (5)). Also,

because a lower yt leads to more imminent default (say, default occurs once yt hits some lower

boundary), bond prices DS and DL drop as well, leading to heavier rollover losses in the third term

in (5) for any given m (φ).

The second channel, which is novel, is through the endogenous maturity structure φt. Fixing the

issuance policy f , the greater φt, the higher the rollover frequency m (φt). Later we show that bond

valuations Di’s are decreasing in φ as well, leading to heavier rollover losses. Both effects imply

that given a shorter maturity structure φ, equity holders face worse rollover losses in (5) and are

thus more prone to default, all else equal. Importantly, equity holders pick the path of the future

maturity structure {φs : s > t} via equation (4) by choosing ft endogenously subject to an incentive

compatibility condition to be discussed shortly.

The above discussion suggests that there exists a default curve (Φ (y) , y), where the increasing

function Φ (·) gives the threshold maturity structure given cash-flow y. In equilibrium, the firm

defaults whenever the state lies in

B = {(φ, y) such that φ ≥ Φ (y)} .
4This assumption highlights the so-called “endogenous” default in that equity holders default when the are unwilling

rather than unable to absorb the loss. The underlying assumption is that either equity holders have deep pockets or
the firm faces a frictionless equity market.
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Consistent with this observation, throughout we make the following assumption on off-equilibrium

beliefs regarding default. When the firm stays alive at time t even though creditors expected it to

be in default, new bond investors expect the firm to default as long as the (φs, ys)∈ B for s > t.

This implies that if in the next instant (φt+dt, yt+dt) ∈ B, either because cash flow yt is decreasing

over time or the firm keeps issuing short-term debt so that φt+dt > φt, then bond investors apply

the lowest possible bond value given by DL = DS = B (yt+dt).

3 Baseline Model: Constant Cash-Flows

We first show a negative result for the constant cash-flow setting: There does not exist an equilibrium

path in which equity holders keep shortening the firm’s debt maturity structure and eventually

default in the face of larger and larger rollover losses.

3.1 Setting

Consider the simplest setting with constant cash-flows, i.e., yt = y. We denote by DS (φτ ; y),

DL (φt; y), and E (φt; y) the short-term bond, long-term bond, and equity value, respectively. We

explicitly write the cash-flow y into security valuations to emphasize their dependence on y.

Given maturity structure φt and issuance policy ft, the expected cash-flows of equity is

y − c+ ζErf +m (φt) [ftDS (φt; y) + (1− ft)DL (φt; y)− 1] . (6)

The following Lemma characterizes two polar cases.

Lemma 1 Default occurs immediately if y − c + ζErf < 0, and equity never defaults if y − c +

ζErf + δS [B (y)− 1] ≥ 0.

Intuitively, the rollover term in (6) at best is bounded above by zero, but at worst is δS [B (y)− 1]

under the shortest maturity structure (φ = 1) and the lowest debt price B (y). Hence if y−c+ζErf <

0 then the equity’s cash flows in (6) are always negative, leading to immediate default. On the other
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hand, if y−c+ζErf +δS [B (y)− 1] > 0, then even under the most pessimistic beliefs equity holders

never make losses and thus never default.

3.2 Shortening Equilibrium

When 0 ≤ y − c + ζErf < δS [1−B (y)], there exist some nontrivial equilibria. We are interested

in so-called “shortening” equilibria. Specifically, do there exist equilibria, in which equity holders

setting f = 1 (i.e., issuing short-term debt) from then on, so that φ increases over time and the

firm eventually defaults in the face of larger and larger rollover losses?

3.2.1 Debt valuations

Bond holders are taking equity holders’ policy f = 1 as given. We treat the maturity structure φ

as the state variable, which follows dφt = (1− φτ ) δLdt where we use (4) with f = 1. Hence, the

bond valuation equation with i ∈ {S,L} is5

rDi (φ; y)︸ ︷︷ ︸
required return

= ρc︸︷︷︸
pre-tax coupon= r

+δi [1−Di (φ; y)]︸ ︷︷ ︸
maturing

+ζ [1−Di (φ; y)]︸ ︷︷ ︸
upside event

+(1− φ) δLD
′
i (φ; y)︸ ︷︷ ︸,

state change

(7)

and by equal seniority we have the boundary condition

Di (Φ (y) ; y) = B (y) . (8)

Later analysis involves the price wedge between short-term and long-term bonds, which is defined

as

∆ (φ; y) ≡ DS (φ; y)−DL (φ; y) .

Applying δS and δL to (7) and taking differences, we obtain

(r + δL + ζ) ∆ (φ) = (δS − δL) [1−DS (φ)] + (1− φ) δL∆′ (φ) , and ∆ (Φ (y) ; y) = 0 (9)
5Bond holders get paid Drf = 1 in both the bond maturing event (occurring with intensity δ) and upside option

event (occurring with intensity ζ).
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As 1−DS (φ; y) > 0 if default is ever possible, we have

∆ (φ) > 0 for φ < Φ (y) , (10)

i.e., short-term bonds have a higher price than long-term bonds. Intuitively, short-term bonds are

paid back sooner and hence less likely to suffer default losses. Hence, short-term bonds are preferred

if equity holders try to minimize the firm’s current rollover losses.

3.2.2 Equity valuation and optimal issuance policy

Equity holders are not only minimizing the firm’s current rollover losses; they also take into account

any long-run effect brought on by issuing more short-term bonds. By issuing more short-term bonds

today, it shortens the firm’s future maturity structure going forward, aggravating future rollover

losses and thus affecting possible default decisions.

Formally, equity holders are controlling the firm’s dynamic maturity structure as in (4). The

standard Hamilton-Jacobi-Bellman (HJB) equation for equity, with the choice variable f , can be

written as

rE (φ; y)︸ ︷︷ ︸
required return

= y − c+ ζ
[
Erf − E (φ; y)

]
︸ ︷︷ ︸

upside event

+

max
f∈[0,1]



m (φ) [fDS (φ; y) + (1− f)DL (φ; y)− 1]︸ ︷︷ ︸
rollover losses

+ [−φδS +m (φ) f ]E′ (φ; y)︸ ︷︷ ︸
impact of maturity shortening


. (11)

Here, by choosing the fraction f of the newly issued short-term bonds, equity holders are balancing

today’s “rollover losses” against the “impact of maturity shortening” on the future equity value.
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Due to linearity, the optimal incentive compatible issuance policy f is given by

f =


1 if ∆ (φ; y) + E′ (φ; y) > 0,

0 if ∆ (φ; y) + E′ (φ; y) < 0,

[0, 1] if ∆ (φ; y) + E′ (φ; y) = 0.

(12)

We call ∆ (φ; y) + E′ (φ; y) > 0 the incentive compatibility condition for equity issuing short-term

debt, later IC for short. Issuing more short-term bonds lowers the firm’s rollover losses today, as

short-term bonds have higher prices (∆ (φ; y) > 0). However, issuing more short-term bonds today

(higher f) makes the firm’s future maturity structure more short-term (higher φ) and thus increase

the rollover flow (higher m (φ)). As we show next, this brings the firm closer to default and hurts

equity holders’ continuation value, leading to E′ (φ; y) < 0. The optimal issuance policy in (12)

illustrates this trade-off faced by equity holders.

3.2.3 Endogenous default

Equity holders also choose when to default optimally. Since we are working with φ as the state

variable, at the default boundary Φ we have these two standard value-matching and smooth-pasting

conditions:

E (Φ; y) = 0, and E′ (Φ; y) = 0. (13)

The second smooth-pasting condition in (13) reflects the optimality of the default decision: The

optimal default must occur when the change in equity value is zero.6 Applying conditions in (13)

to the equity equation (11), the equity’s expected flow payoff at φ = Φ equals to zero:

y − c+ ζErf + max
f∈[0,1]

m (Φ) [fDS (Φ; y) + (1− f)DL (Φ; y)− 1] = 0. (14)

6Rigorously, we should have the change of equity value with respect to time to be zero. Because φ and time have
a one-to-one mapping given by dφt = (1− φt) δLdt, the smooth-pasting condition in (13) follows.
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In other words, in our model without diffusion terms, equity holders default exactly at the point

when expected cash-flows turn negative.

Equation (14) pins down the default boundary Φ (y) as a function of the constant cash-flow

y. At default, both bond values are given by DS (Φ (y) ; y) = DL (Φ (y) ; y) = B (y), leading to

a rollover term m (Φ) [B (y)− 1] in (14) independent of the optimal issuance policy f . Plugging

m (Φ) in (3), we have

Φ (y) =
1

δS − δL

[
y − c+ ζErf

1−B (y)
− δL

]
. (15)

Because the recovery value B (y) is increasing in y, one can verify that Φ (y) is increasing in y, as

conjectured in Section 2.3.2.

3.3 Impossibility of Shortening Equilibria

We now give the formal definition for a shortening equilibrium.

Definition 1 The equilibrium concept is that of subgame perfect equilibrium. Given an initial ma-

turity structure φt=0, a shortening equilibrium is a path of {φt=0 → Φ (y)} with ft = 1, so that (11)

holds with boundary conditions (13); (7) holds with boundary conditions (8); and, the equity holders’

incentive compatibility condition (12) holds with ft = 1. Off equilibrium beliefs are assumed to treat

any deviations by the equity holders as mistakes, and continue to believe in the closest equilibrium

in terms of default time to the one before the deviation.

Off-equilibrium beliefs here treat deviations as mistakes. For example, if everyone expected the

firm to shorten the maturity structure, and then to default at a certain time, a deviation today

of the shortening assumption does not alter the belief of investors that in the future the company

will shorten the maturity structure and default. Another example would be that if the firm was

supposed to default today, but did not, then investors assume it will default in the next instant.

Essentially, sub-game perfection requires that after a deviation investor beliefs for future play have

to be an equilibrium. To select amongst the possible multiple equilibria present after deviation, we
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impose the additional refinement that they “pick” the equilibrium that is closest to the one they had

before in terms of ultimate default time. This is very much aking to a trembling-hand refinement.

To rule out any shortening equilibria, it is sufficient to analyze the equilibrium behavior imme-

diately before default, i.e., φ = Φ− ε for a sufficiently small ε > 0. In light of (12), we need to show

that ∆ (Φ− ε; y) +E′ (Φ− ε; y) < 0. Since at default we have ∆ (Φ; y) = 0 in (9) and E′ (Φ; y) = 0

in (13), the IC condition ∆+E′ is identically zero at Φ. The following lemma goes one order higher

to sign the IC condition in the vicinity of the default boundary Φ.

Lemma 2 It is never optimal to choose f = 1 right before default at Φ− ε if

∆′ (Φ; y) + E′′ (Φ; y) > 0. (16)

We first analyze the benefit of shortening ∆′ (Φ; y) in (16). From (9) we know that

∆′ (Φ; y) = − (δS − δL)

(1− Φ) δL
[1−B (y)] < 0, (17)

which says ∆ (Φ− ε; y) > 0. When the firm is a bit away from default, short-term bonds have the

advantage of maturing before default, leading to a strictly higher price than long-term bonds. This

is the benefit of issuing short-term bonds.

Equity holders have to balance this benefit with the cost of more imminent default; the latter

is captured by the second term E′′ (Φ; y) in (16). This term is always positive, establishing the

optimality of equity holders’ endogenous default decision. The proof of Proposition 1 shows that

E′′ (Φ) =
(δS − δL) [1−B (y)]

(1− Φ) δL︸ ︷︷ ︸
=−∆′(Φ;y)

− [ΦδS + (1− Φ) δL]

(1− Φ) δL
D′S (Φ; y)︸ ︷︷ ︸

impact on short-term bond

. (18)

Combining (17) and (18), we have

∆′ (Φ; y) + E′′ (Φ; y) = − [ΦδS + (1− Φ) δL]

(1− Φ) δL
D′S (Φ; y) .
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Since Φ ∈ [0, 1], the sign of IC condition ∆′ (Φ; y) + E′′ (Φ; y) is the opposite of the sign of impact

on short-term bond D′S (Φ; y).

Proposition 1 Consider the constant cash-flows setting. Right before default, given f = 1, the

equity holders’ incentive compatibility condition ∆′ (Φ; y) + E′′ (Φ; y) ≤ 0 holds if and only if

D′S (Φ; y) ≥ 0. (19)

Now we show that when yt is constant at y, the sign of D′S (Φ; y) is fully determined by the

(opposite) sign of loss-given-default for bond investors. Recall that we assume that B (y) < 1, i.e.,

default leads to value losses for bond holders. From (7) with ρc = r, we derive that7

D′S (Φ; y) = −(r + δS + ζ) [1−B (y)]

(1− Φ) δL
< 0.

In words, the shorter the firm’s maturity structure, the closer the default, and hence the lower the

bond value. The next corollary naturally follows from Lemma 2 and Proposition 1.

Corollary 1 There do not exist shortening equilibria where equity holders keep issuing short-term

bonds and then default at some finite future time in the constant cash-flow setting.

3.4 Discussions

3.4.1 Intuitions

When choosing the fraction of newly issued short-term bonds, equity holders are weighing the benefit

of reducing today’s rollover losses against the cost of increasing future rollover losses. The negative

result in Corollary 1 suggests that the cost of increasing future rollover losses always dominates the

gain from today. What is the intuition behind this result?

We have shown that right before default, the future losses caused by maturity shortening, i.e.,

(18), equal the gain from reducing today’s rollover loss, i.e., (17), plus the impact on the value of
7For the general case with ρc 6= r, for default being losses to bond values we require B (y) < Drf = ρc+δS+ζ

r+δS+ζ
.
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short-term bonds. Why is this so? Suppose we are at 2dt before default; the reason that we need

2dt in this thought experiment is that we want to compare today’s reduced rollover losses against

tomorrow’s heavier rollover losses, so we need at least one continuation period. More specifically,

equity holders will roll over the maturing bonds at the end of dt, at which point bond holders

have the chance of getting repaid fully. Between [dt, 2dt] bond holders receives nothing as the firm

defaults at the end of 2dt.8

The short-term (long-term) bond will get a full payment of 1 with a probability of δS ·dt (δL ·dt)

over [0, dt]; otherwise both get the bankruptcy payoutB (y). This value difference (δS − δL) [1−B (y)] dt

is reflected in the price wedge set by competitive bond investors. Hence, for equity holders who

are refinancing a measure of m (φ) dt of maturing bonds, the relative benefit of issuing short-term

bonds instead of long-term bonds (by setting f = 1 instead of f = 0) is

m (φ) dt · (δS − δL) [1−B (y)] dt > 0. (20)

However, given that short-term bonds have a higher intensity δS of coming due, equity holders

realize that the next instant (at the end of dt) they are facing heavier rollover losses. Because at

that time both bonds have the same price B (y) which implies a financing short-fall of B (y) − 1,

this effect equals

∂

∂f
[(φδS + (1− φ) δL) dt · (B (y)− 1)] =

∂φ

∂f
· ∂
∂φ

[(φδS + (1− φ) δL) (B (y)− 1) dt]

= m (φ) dt · (δS − δL) (B (y)− 1) dt, (21)

where ∂φ
∂f = m (φ) dt from (4) captures how today’s issuance policy f affects tomorrow’s maturity

structure φ. As a result, right before default so that only today and tomorrow count, the benefit

from saving today’s rollover losses in (20) exactly offsets the cost of having higher rollover losses

(21) in the next instant!
8For illustration purpose, we can think of the coupon payment and upper side event occurs right after the equity

holders’ default decision.
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In the above thought experiment we have kept bond prices unchanged, i.e. DS = DL = B (y), so

the rollover loss per unit of bond is always B (y)−1. Because ∂φ
∂f = m (φ) dt > 0, issuing short-term

bonds pushes the maturity structure φt toward the default threshold Φ. This in turn pushes the

firm closer to default, bringing about a first-order negative impact on bond prices and hence future

rollover losses. Equity holders internalize this negative effect, which is captured by the second term

in (18).9 Consequently, Proposition 1 holds due to this additional negative effect on bond prices

when shortening the firm’s maturity structure.

3.4.2 Comparison to Brunnermeier and Oehmke (2013)

Our results highlight an economic mechanism that is different from Brunnermeier and Oehmke

[2013]. In that paper, the firm with a long-term asset is borrowing from a continuum of identical

creditors. Only standard debt contracts are considered with promised face value and maturity, and

covenants are not allowed. News about the long-term asset arrives at interim periods, so that a

debt contract maturing on that date will be repriced accordingly, as in Diamond [1991]. Under

certain situations regarding interim news (e.g., whether it is about profitability or recovery value),

Brunnermeier and Oehmke [2013] show that, given other creditors’ debt contracts, equity holders

find it optimal to deviate by offering any individual creditor a debt contract that matures one period

earlier, so that it gets repriced sooner. In equilibrium, equity holders will offer the same deal to

every creditor, and the firm’s maturity will be “rat raced” to zero.

The repricing mechanism constitutes the key difference between Brunnermeier and Oehmke

[2013] and our model. In their model, after negative interim news, a relative short-term bond

gets repriced by adjusting up the promised face value to renegotiating bond holders. Because all

bonds have the same seniority in sharing the positive recovery, including the repriced ones, repricing

causes dilution of those relative long-term bonds without repricing opportunities. Put differently,

the rollover losses are absorbed by the promised higher face values, which dilutes existing long-term
9The reason that only the short-term bond price DS shows up is that equity is only issuing short-term bonds in

the hypothetical shortening equilibrium. When we focus on lengthening equilibrium, only the long-term bond price
DL shows up; see Corollary 3.
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bond holders, relieving equity from having to inject cash into the firm.

As emphasized in Section 2.2.1 when we lay out the assumptions, in our model the firm commits

to maintain a constant total outstanding face value when refinancing its maturing bonds. This

amounts to a bond covenant about the firm’s “book leverage,” so that equity holders cannot simply

issue more bonds to cover the firm’s rollover losses. Instead, equity holders in our model are

absorbing these losses through their own deep pockets (or through equity issuance), and existing

long-term bonds remain undiluted. Interestingly, once we shut down the interim dilution channel

that drives the result in Brunnermeier and Oehmke [2013], we identify a new economic force not

present in their paper.

We make the constant face-value assumption for two reasons. First, as it is a standard assump-

tion in the dynamic structural corporate finance models starting from Leland and Toft [1996], our

analysis represents the minimum departure from the literature. More importantly, the full commit-

ment on the firm’s book leverage policies isolates the standard dilution issues (via promised face

values) from the firm’s endogenous maturity decisions, which is the focus of our paper. Besides, in

practice, most of bond covenants have some restrictions regarding the firm’s future leverage policies,

but rarely on the firm’s future maturity structures. This empirical observation lends support to our

premise of a full commitment on the firm’s book leverage policy but no commitment on its debt

maturity structure policy.

3.5 Robustness of Corollary 1

Before we move on to the next section, we demonstrate that Corollary 1 is robust to several natural

extensions, including exogenous default. Readers may skip this section without loss of understanding

of the rest of the paper.

3.5.1 Exogenous default boundary

We have so far followed the Leland tradition by assuming that either equity holders have deep

pockets or can issue equity in a frictionless fashion. Hence, the default boundary is determined
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endogenously when the equity’s option value of keeping the firm alive is zero, leading to the smooth-

pasting condition E′ (Φ) = 0. This condition implies a zero IC condition ∆ (Φ; y) + E′ (Φ; y) = 0

at default, and we need the help of Lemma 2 by going one order of derivative higher.

Suppose instead that equity holders are forced to default before they are willing to; this can

happen for liquidity reasons if equity holders do not have deep pockets, or financial markets become

illiquid due to information-driven problems. Say that the default boundary is Φ̂ with E
(

Φ̂
)

= 0.

Then, we must have E′
(

Φ̂
)
< 0 as equity holders always have the option to default earlier than

Φ̂; the fact that they hang on during the process φ ↑ Φ̂ and strictly prefer to hang on at Φ̂ implies

that E (φ) > E
(

Φ̂
)

= 0 for φ < Φ̂. In other words, Φ̂ matters only when Φ̂ < Φ (y). On the other

hand, equal seniority implies a zero debt price wedge ∆
(

Φ̂
)

= 0. As a result, ∆
(

Φ̂
)

+E′
(

Φ̂
)
< 0

right before default, and equity holders always want to issue long-term bonds (f = 0). This rules

out the possibility of shortening equilibria.

3.5.2 Exogenous Poisson default event

In the baseline model the only way to generate a positive price wedge ∆ is by the endogenous default

decision of the equity holders. However, a positive bond price wedge exists if the firm experiences

some exogenous default events. Suppose that the firm is forced to liquidate exogenously after some

independent Poisson shock with intensity ξ > 0, with the same liquidation value B (y) as endogenous

default. Appendix A.5.1 shows that shortening equilibrium cannot exist either in the setting with

exogenous Poisson default events.

Moreover, one might think our result in Corollary 1 is partly driven by the particular “no-news-

is-bad-news” information setting in the baseline model. The introduction of downward negative

liquidation shock with interim bad news rules out this concern.

3.5.3 Relaxed reissuing strategy space

As suggested in (12), the key IC condition compares the pricing wedge to the long-run impact of

maturity shortening to equity. It turns out that only the valuation of short-term bonds DS matters
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in Corollary 1, although intuitively this condition should involve the valuation of long-term bonds

as well. As explained in footnote 9, this is because in shortening equilibria the firm is issuing

short-term bonds only, i.e., f is cornered to f = 1 given the allowable set of [0, 1].

The assumption of f ∈ [0, 1] might be violated, as firms can repurchase bonds, or may face

certain covenants restricting the firm to reissue certain long-term bonds at minimum. We hence

modify the allowable set for the fraction of newly short-term bonds to be f ∈ [fl, fh]. Under this

assumption, in shortening equilibria the firm takes the highest fraction fh, which can be either

below 1 so that the firm is issuing some mixture of short-term and long-term bonds, or above 1 to

accommodate repurchases. In Appendix A.5.1 we show that our result in Corollary 1 holds in this

relaxed stetting.

4 Maturity Shortening with Time-Decreasing Cash-Flows

In contrast to Corollary 1, shortening equilibria exist when the firm’s cash-flows are deteriorating

slowly over time. We show that the general intuition discussed in Section 3.4.1 yields a similar

necessary condition for shortening equilibria as in (19); time-varying cash-flows, however, have

profound implications which may overturn the negative result in Corollary 1. And, even though

lengthening the firm’s debt maturity structure can be the more efficient equilibrium, equilibria

involving maturity shortening and inefficient early endogenous default can exist.

4.1 Deterministic and Cornered Equilibria

In this section we focus on equilibria where equity holders are taking “deterministic” and “cornered”

issuance strategies. Section 5 considers deterministic equilibria with “deterministic” interior issuance

policies.

Definition 2 Equilibria are considered “deterministic” if the firm’s issuance policy fτ is a deter-

ministic function of time-to-default. Equilibria are “deterministic” and “cornered” if the firm’s de-

terministic issuance policy takes a corner solution fτ ∈ {0, 1}.
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As an example, suppose that we are in the constant cash-flows case studied in Section 3. Proposi-

tion 1 and Lemma 1 together imply that there are two possible deterministic and cornered equilibria:

either the firm defaults immediately, or the firm keeps issuing long-term bonds and never defaults.

In contrast, we will show the equilibrium structure is much richer in the time-varying cash-flow case.

Because cash-flows depend on time-to-default deterministically and there are no other payoff-

relevant shocks in the model (other than the upside event shock), focusing on “deterministic” issuance

policies essentially rules out sun-spot type equilibria. Cornered strategies are in general optimal

for risk-neutral equity holders who are solving a linear problem, and note that the class of “de-

terministic” and “cornered” equilibria have not ruled out time-varying issuance polices.10 However,

cornered strategies indeed impose restrictions on the set of equilibria. Section 5 considers all possible

equilibria, including fτ ∈ (0, 1) for some τ .11

4.2 Setting and Valuations

In this section, illustration is more straightforward in terms of the dynamics of the firm’s time-

to-default τ ≡ Tb − t; recall Tb is the firm’s endogenous default time. Naturally, dτ = −dt, and

yτ and φτ are the cash-flow and the maturity structure with τ periods left until default. We call

the cash-flow when the firm defaults, i.e., yb = yτ=0, defaulting or ultimate cash-flow; it plays an

important role in later analysis.

Let us introduce a time-dependent cash-flow yτ with drift

dyτ = µy (yτ ) dτ, (22)

with µy (y) > 0. Here, yτ is increasing with time-to-maturity or yt is decreasing over time.
10For instance, we could have some issuance policy that jumps from fτ = 0 to fτ+ = 1 at certain pre-specified

time-to-default τ . However, Lemma 5 in the Appendix shows that this never holds on equilibrium paths.
11For instance, an interior issuance policy say f ∈ (0, 1) which affects bond valuations can make equity holders

indifferent between shortening (f = 1) or lengthening (f = 0), which in turn implies the optimality of an interior
policy f .
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4.2.1 Incentive compatibility and endogenous default

We now have both current cash-flow y and debt maturity φ as state variables. Bond values solve

the following Partial Differential Equation (PDE) where i ∈ {S,L}:

rDi (φ, y)︸ ︷︷ ︸
req return

= ρc︸︷︷︸
pre-tax coupon

+ δi [1−Di (φ, y)]︸ ︷︷ ︸
maturing

+ ζ [1−Di (φ, y)]︸ ︷︷ ︸
upside option

+[−φδS +m (φ) f ]
∂

∂φ
Di (φ, y)︸ ︷︷ ︸

maturity structure change

+ µy (y)
∂

∂y
Di (φ, y) ,︸ ︷︷ ︸

ychange

(23)

and equity value solves the following PDE

rE (φ, y)︸ ︷︷ ︸
req return

= y − c︸ ︷︷ ︸
CF net coupon

+ ζ
[
Erf − E (φ, y)

]
︸ ︷︷ ︸

upside event

+ µy (y)
∂

∂y
E (φ, y)︸ ︷︷ ︸

ychange

+ max
f∈[0,1]



m (φ) [fDS (φ, y) + (1− f)DL (φ, y)− 1]︸ ︷︷ ︸
rollover losses

+[−φδS +m (φ) f ]
∂

∂φ
E (φ, y)︸ ︷︷ ︸

maturity shortening


. (24)

The same argument as Section 3.2.2 leads to the same IC condition (12) for equity holders, with a

necessary modification to a partial derivative with respect to φ due to two-dimensional state space:

f =


1 if Eφ (φ, y) + ∆ (φ, y) > 0

[0, 1] if Eφ (φ, y) + ∆ (φ, y) = 0

0 if Eφ (φ, y) + ∆ (φ, y) < 0

, (25)

where throughout we use the subscript notation Eφ (φ, y) ≡ ∂
∂φE (φ, y) to indicate partial deriva-

tives. Let us define IC (φ, y) ≡ ∆ (φ, y) + Eφ (φ, y), so IC (φ, y) > 0 implies f = 1.

Similar to the discussion in Section 3.2.3, at the optimal default boundary equity holders’ in-

stantaneous expected flow payoff equals zero. This implies the same default boundary given in (15),
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which is reproduced here (recall yb = yτ=0 denotes the defaulting or ultimate cash-flow)

Φ (yb) =
1

δS − δL

[
yb − c+ ζErf

1−B (yb)
− δL

]
, with Φ′ (yb) > 0.

This gives the endogenous default boundary in the (y, φ) space. Lemma 3 gives the smooth pasting

property of E (·, ·) at the default boundary on the state space of (φ, y).

Lemma 3 At the endogenous default boundary we have value matching condition E (Φ (yb) , yb) = 0,

and two smooth-pasting conditions on each dimension Eφ (Φ (yb) , yb) = 0 and Ey (Φ (yb) , yb) = 0.

4.2.2 Time-to-default and valuations

In our deterministic model with only Poisson jumps, given the ultimate bankruptcy state ,

(φτ=0 = Φ (yb) , yτ=0 = yb)

the equilibrium path (φτ , yτ ) is essentially one-dimensional indexed by time-to-default τ , working

our way back from the boundary. Hence given any equilibrium path we can rewrite the bond and

equity values by Di (τ, yb) and E (τ, yb) respectively as a function of τ only, while treating the

defaulting cash-flow state yb as a parameter. Thus, we can rewrite the above two PDEs in their

ODE forms:

rDi (τ, yb) = ρc+ δi [1−Di (τ, yb)] + ζ [1−Di (τ, yb)]−
∂

∂τ
Di (τ, yb) , for i ∈ {S,L} , (26)

rE (τ, yb) = y (τ, yb)− c+ ζ
[
Erf − E (τ, yb)

]
+m (φ (τ, φb)) [fτDS (τ, yb) + (1− fτ )DL (τ, yb)− 1]− ∂

∂τ
E (τ, yb) . (27)

where y (τ, yb) is the cash-flow yτ given ultimate (defaulting) cash-flow yb and φ (τ, φb) is the maturity

structure φτ given ultimate (defaulting) maturity structure φb, and fτ is the optimal issuance
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strategy at time-to-default τ . The closed-form solutions for bond values are (recall ρc = r)

Di (τ, yb) = 1− e−(r+δi+ζ)τ [1−B (yb)] , for i ∈ {S,L} . (28)

For the solution to equity E (τ, yb), see Appendix A.1.3.

Effectively, we are working with the state space of (τ, yb) instead of the state space of (φ, y).

Given any (deterministic) equilibrium issuance policy {fτ}, there is a deterministic mapping between

these two state spaces.12 Consequently, via changing coordinates, one can translate Di (τ, yb) and

E (τ, yb) back to the form of Di (φ, y) and E (φ, y) by solving for τ as a function of (φ, y).

4.3 Can Shortening Equilibria Exist?

We revisit the possibility of shortening equilibria in this section, and show a positive result: short-

ening equilibria can occur in the setting with deteriorating cash flows.

4.3.1 Incentive compatibility condition right before default

As before, we postulate a shortening equilibrium, and evaluate the IC condition (25) right before

the default boundary Φ (yb). Again, we have a zero IC condition at default: Eφ (Φ (yb) , yb) = 0

(Lemma 3) due to the equity’s optimal default decision, and equal seniority implies a zero short-

long price wedge ∆ (Φ (yb) , yb) = 0. Hence we analyze the sign of Eφ (φ, y) + ∆ (φ, y) slightly

away from τ = 0 along the path of (φτ , yτ ), i.e., the path which originates at the default state

(φτ=0 = φb = Φ (yb) , yb). Differentiating the IC condition respect to τ , we need to evaluate the

sign of

ICτ (τ, yb)|τ=0 =
∂

∂τ
[Eφ (τ, yb) + ∆ (τ, yb)]

∣∣∣∣
τ=0

. (29)

If (29) is strictly positive, then Eφ (φ, y) + ∆ (φ, y) > 0 for τ > 0 right before default, implying

issuing short-term bonds right before default is incentive compatible. Similar to Proposition 1 with

constant cash-flows, the next proposition shows that a necessary condition for shortening equilibria
12For the technical details on this change of variables, see Appendix A.1.1.
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to exist is that shortening debt maturity has a strictly positive partial impact on the value of

short-term debt around the vicinity of default.

Proposition 2 The unique cornered shortening equilibrium, f = 1, occurs in the vicinity of τ = 0

if and only if
∂

∂φ
DS (Φ (yb) , yb) ≥ 0. (30)

Recall that Corollary 1 states that in the constant cash-flow case, we have D′S (Φ; y) < 0 given a

positive loss-given-default (B (y) < 1), which rules out the possibility of any shortening equilibria.

However, for deteriorating cash-flows the shortening equilibrium exists even with a positive loss-

given-default. The next section explains the economic intuition behind this difference.

4.3.2 How condition (30) differs from condition (19)

The condition (30) in Proposition 2 and the condition (19) in Corollary 1 are similar; but they differ

in one crucial aspect. Although both involve taking derivative with respect to φ, D′S (Φ; y) > 0 in

(19) has a “total” derivative while ∂
∂φDS (Φ (yb) , yb) > 0 in (30) has a “partial” derivative. This

difference is highlighted when cash-flows are deteriorating over time. In short, when yτ is time-

varying, the cash-flows at the time of default, yτ=0 = yb, and hence the bond recovery value B (yb),

become endogenous. The partial derivative in (30) exactly reflects this important effect.

We investigate the marginal impact of maturity shortening on bond values around the de-

fault boundary. Taking the partial derivative of DS (φ, y) at (Φ (yb) , yb) with respect to φ, i.e.,

∂DS(Φ(yb),yb)
∂φ , and translating everything into the (τ, yb) space, we have:

∂DS (τ (φ, y) , yb (φ, y))

∂φ

∣∣∣∣
τ=0

=
∂DS (τ, yb)

∂τ

∂τ

∂φ

∣∣∣∣
τ=0︸ ︷︷ ︸

time-to-default, (−)

+
∂DS (τ, yb)

∂yb

∂yb
∂φ

∣∣∣∣
τ=0︸ ︷︷ ︸

default CF level, (+)

. (31)

The first term captures how maturity shortening affects the firm’s time-to-default, which is present

in the constant cash-flow case. The novel second term captures the resulting change of default

cash-flow level yb, which directly affects the recovery value B (yb) received by bond investors. In
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Appendix A.1.1 we show the following intuitive results:

∂τ

∂φ

∣∣∣∣
τ=0

< 0, and
∂yb
∂φ

∣∣∣∣
τ=0

> 0. (32)

The first sign says that fixing the current cash-flow state, shortening maturity worsens rollover losses

and hence reduces the time-to-default τ . For the second sign, because cash-flows are decreasing over

time, the reduction of time-to-maturity increases the cash-flows at default.

We analyze the first term in (31). Using (28), we derive the impact of time-to-default on the

bond value as (recall B (yb) < 1 and ρc = r)

∂DS (τ, yb)

∂τ

∣∣∣∣
τ=0

= (r + δS + ζ) [1−B (yb)] > 0.

Together with ∂τ
∂φ < 0 in (32), we see that the first term in (31) is negative. Intuitively, shortening

the maturity structure edges the firm closer to default, hurting bond values. The same negative

force is present in the constant cash-flow case, which goes against condition (30).

In contrast to the constant cash-flow case, there is a second term present when cash-flows are

time varying. We derive ∂DS(τ,yb)
∂yb

using (28):

∂DS (τ, yb)

∂yb

∣∣∣∣
τ=0

= B′ (yb) > 0.

Here, the last inequality holds as the firm’s liquidation value is increasing in its profitability. Because

∂y
∂φ > 0 in (32), the second term in (31) is positive. Intuitively, by bringing the firm closer to default,

shortening the maturity structure allows the bond holders to take over the firm earlier with a better

fundamental yb, raising bond values. When the positive second term dominates the negative first

term, condition (30) holds and hence shortening equilibria may exist. Section 4.6 gives a numerical

example in which the firm follows the path of a shortening equilibrium.

For better illustration, Figure 1 schematically depicts potential paths of a shortening equilibrium

for both the case of constant cash-flows and that of time-decreasing cash-flows. In the left panel with
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Figure 1: Schematic graph of shortening equilibrium path. Left panel: constant cash-flows. Right
panel: time-decreasing cash-flows. The default boundary Φ (y) is the same for both settings. The key
difference is the impact of shortening maturity on cash-flows at default. In the left panel, the cash-flows at
default are fixed at yτ=0 = y irrespective of issuance policy. In contrast, in the right panel, shortening the
maturity structure leads to higher cash-flows yτ=0 at default.

constant cash-flows, when the firm issues more short-term bonds, the firm moves closer to default;

however, the equilibrium path, as well as the bond recovery value, are unchanged. In contrast, in

the right panel with time-decreasing cash-flows, issuing more short-term bonds shortens the firm’s

survival time, but the firm lands on a path sitting above the equilibrium one. As the second term

in (31) captures, this deviating path features greater cash-flows at default and hence a higher bond

recovery value.

4.4 Lengthening Equilibria

We now study the equilibria in which equity holders are lengthening the firm’s maturity structure.

Because of deteriorating cash-flows, equity will default eventually even if the firm keeps lengthening

its debt maturity, i.e., fτ = 0. Almost exactly the same analysis as in Proposition 2 applies in this

case. In words, we have a lengthening equilibrium if, at the default boundary, the value of long-term

bond gets hurt by maturity shortening.

Proposition 3 The unique cornered lengthening equilibrium, f = 0, occurs in the vicinity of τ = 0
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if and only if
∂

∂φ
DL (Φ (yb) , yb) ≤ 0. (33)

4.5 Multiple Equilibria and Uniqueness towards Bankruptcy

We have seen that either a unique shortening equilibrium or a unique lengthening equilibrium might

exist given the right ultimate bankruptcy state. But, can a cornered shortening equilibrium switch

to a lengthening equilibrium along the equilibrium path? Lemma 5 in the Appendix gives a negative

answer. It shows that, within the class of deterministic equilibria, there cannot be any jumps in

equilibrium issuance strategies–either from shortening to lengthening or vice versa. This property

helps greatly reduce the dimensionality of the multiplicity of equilibria. An immediate implication

is that given any initial state (φ, y) (different from the ultimate bankruptcy state), within the class

of deterministic cornered equilibria, there are at most two unique cornered paths leading to default,

either always shortening with f = 1 or always lengthening with f = 0.

This multiplicity of either shortening equilibrium or lengthening equilibrium emerges without

too much surprise, as the intuition is similar to the notion of self-enforcing default in the literature

of sovereign debt (e.g., Cole and Kehoe [2000]). More specifically, if bond investors expect equity

holders to keep shortening the firm’s maturity structure in the future, then bond investors price

this expectation in the bond’s market valuation, which can self-enforce the optimality of issuing

short-term bonds only. Similarly, the belief of issuing long-term bonds always can be self-enforcing

as well.

The next proposition shows the optimality of a cornered issuance strategies along the whole

path, if indeed such a strategy is optimal at the time of default. In other words, working backwards

from the boundary, if f0 ∈ {0, 1} then equity holders find it optimal to set fs = f0 for the whole

path traced out by s ∈ [0, τ ], i.e., cornered paths always stay cornered (i.e., never become interior)

away from the boundary. Combined with Lemma 5 in the Appendix, we also establish that there

exist at most two deterministic cornered equilibria.
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Proposition 4 Given the initial starting value (φ, y), there exist (at most) two deterministic cor-

nered equilibria: one with shortening always fs = 1 for s ∈
[
0, τS

]
such that y

(
τS , ySb

)
= y and

φ
(
τS , ySb

)
= φ, and the other with lengthening always fs = 0 for s ∈

[
0, τL

]
with y

(
τL, yLb

)
= y

and φ
(
τL, yLb

)
= φ. Moreover, for the continuous IC condition of either fs = 1 or fs = 0 along

the whole path s ∈
[
0, τ i

]
, it is sufficient to check the IC condition on the default boundary given

by either (30) or (33), respectively.

The dynamics embedded in our model allow us to say more. The existence of multiple equilibria

is not guaranteed, and for some initial state, either the shortening equilibrium or the lengthening

one becomes the unique equilibrium. Intuitively, if the firm starts off extremely close to the default

boundary satisfying (30) in Proposition 2, then the only equilibrium path is indeed the shortening

equilibrium, as a benign expectation of lengthening maturity in the future is “too late” to save the

firm. This intuition can also be expressed in a geometric way, because the respective regions on the

boundary for lengthening and shortening equilibria are non-overlapping. Hence, for points close to

the boundary, even if we change the issuance strategy arbitrarily, we cannot change the path fast

enough by
∣∣∣dφdt ∣∣∣ <∞ to avoid hitting the specific region, due to the bounded issuance strategy space

(here, f ∈ [0, 1]).13 The following proposition summarizes this observation:

Proposition 5 There exists a no-return region with positive measure, in which starting from there

either shortening equilibrium or lengthening equilibrium is the unique equilibrium.

4.6 An Example with Constant Negative Drift

We now consider the case in which the cash-flow drift is a negative constant, i.e., dyt = −µdt where

µ > 0 is a positive constant.
13If the issuance strategy space is unbounded, then the firm can change its maturity structure instantaneously so

that
∣∣ dφ
dt

∣∣ =∞, and hence this argument fails.
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4.6.1 Liquidation value B (y)

We now derive the firm’s liquidation value B (y). Motivated by bankruptcy cost, we assume that

debt holders are less efficient in running the liquidated firm, relative to equity holders. Specifically,

we assume that, post-default, the upside payoff X becomes αXX > 0 with αX ∈ (0, 1); and, given

the current cash-flow yτ , we assume that the cash-flow post-default becomes αyyτ . Since in our

numerical examples the defaulting cash-flows yb < 0, to capture the inefficiency we set αy > 1. This

specification is similar to Mella-Barral and Perraudin [1997].

For simplicity the liquidated firm is assumed to be unlevered. Also, debt holders will optimally

terminate the firm when the expected flow payoff αyyt + ζαXX hits zero from above, which implies

B (y) = 0 at y = −αX
αy
ζX. Given this boundary condition, the liquidation value B (y) which satisfies

rB (y) = αyy + ζ [αXX −B (y)]− µyB′ (y) can be solved as:

B (y) =


ζαXX+αyy

r+ζ +

(
exp
[
− (r+ζ)

µy
(ζαXX+αyy)

]
−1
)
µy

(r+ζ)2 for y > −αX
αy
ζX.

0 otherwise

(34)

By setting αX = αy = 1 we recover the unlevered asset value A (y) defined in (1). The difference

A (y)−B (y) > 0 is due to the inefficient management of debt holders and thus can be interpreted

as a bankruptcy cost.

4.6.2 Shortening and lengthening equilibria

Figure 2 shows the two unique cornered equilibrium paths starting from the same (φ, y) = (0, .99),

one a shortening equilibrium and the other a lengthening equilibrium, together with the default

boundary Φ (y). In the shortening equilibrium, the firm keeps issuing short-term bonds and defaults

at
(
φSb = Φ

(
ySb
)
, ySb
)
if the upside event fails to realize along the path. Since the defaulting cash-

flow ySb is negative, αy > 1 says that the firm is experiencing even worse (negative) cash-flows under

the debt holders’ management. The higher the αy, the greater the sensitivity of the recovery value

to cash-flows, i.e., B′ (yb). From (31) and the discussion afterward, we know that B′ (yb) contributes
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to the second positive term in (31), which is crucial to guarantee the equity’s incentive compatibility

condition in the shortening equilibrium.

As shown in Figure 2, there is another lengthening equilibrium given the same initial state, in

which equity holders find it optimal to keep issuing long-term bonds and default at
(
φLb = Φ

(
yLb
)
, yLb
)
.

The times of default, Tb, differ greatly across these two equilibria: TSb = 0.43 for the shortening

equilibrium while TLb = 1.55 for the lengthening equilibrium. In the next section we analyze the

welfare of these two equilibria in detail.

Suppose that we are in the shortening equilibrium, i.e., bond investors believe that equity holders

will keep shortening the firm’s maturity structure. As we mentioned in Section 4.5, if the belief of

bond investors switches to “equity holders will keep issuing long-term bonds” in an unanticipated

way, then we can switch to a lengthening equilibrium, provided that we are sufficiently far away

from default. Once we are too close to the default boundary, however, there cannot be such a

switch of belief any more, because the lengthening path would hit Φ (yb) in a shortening region. In

other words, lengthening beliefs are inconsistent by backward induction. In some sense, there is a

no-return region or “black hole” in the state space: there, the firm is absorbed into the shortening

equilibrium, without any hope of returning.

4.7 Welfare Analysis

We study the welfare question in this section. In the setting with time-deteriorating cash-flows,

there is a natural optimal stopping time even for unlevered firms. The welfare analysis becomes

interesting when we layer this optimal stopping problem on top of a standard equity-debt agency

frictions, in which equity is choosing the optimal debt maturity structure to maximize equity value

only. We base our analysis on the example in Section 4.6, but we will comment on the generality of

our results.
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Figure 2: Example with ρ = 1, c = r = 10%, Drf = 1, Erf = 12, µ = 2, ζ = .35, δS = 10, δL = 1,
αy = 3, αX = .95. The initial state is (y, φ) = (0, .99). Left panel: Default boundary (solid
line), shortening equilibrium path (dashed line), lengthening equilibrium path (dot-dashed line).
Right panel: Total firm value as a function of default time T . Here, the default time is TSb = 0.43
(TLb = 1.55) for the shortening (lengthening) equilibrium, and the first-best Ta = TFB = 2.28
(without tax benefit so ρ = 1).

4.7.1 Time of default and firm value

Take any arbitrary, not necessarily equilibrium, time of default denoted by T ; we investigate the

levered firm value as a function of T in general.

Each instant, in expectation the firm generates cash-flows [yt + ζX + (ρ− 1) c] dt. In default,

the firm recovers B (yT ). The cash-flows are discounted at a rate r+ ζ > r due to the upside event.

Hence, the levered firm value, given the default time T (we omit the dependence on the initial

cash-flow y), is

V (T ) ≡
ˆ T

0
e−(r+ζ)t [yt + ζX + (ρ− 1) c] dt+ e−(r+ζ)TB (yT ) . (35)

There are two differences when we compare the levered firm value (35) to the asset’s unlevered

value A (y) in (1). First, the levered firm receives a tax subsidy (ρ− 1) c. Second, the levered firm

defaults to induce bankruptcy costs, i.e, B (y) < A (y). Note that B (·) has taken into account the

potential optimal abandonment time after default in the setting of time-decreasing cash-flows.

Our discussion focuses on the inefficient default timing caused by the equilibrium debt maturity
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dynamics. For clarity of illustration, in the following analysis we eliminate the debt tax subsidy by

setting ρ = 1. This way, the only difference between (35) and (1) is the bankruptcy cost embedded

in the difference between B (y) and A (y).

Without tax subsidy ρ = 1, the optimal stopping time which maximizes (35), call it TFB =

arg maxT V (T ), is simple. Basically, we should set TFB to be Ta, i.e., the optimal abandonment

time of the unlevered firm (recall Section 2.1):

TFB = Ta = inf {t : yt < −ζX} .

This way, we maximize the firm value and minimize the bankruptcy cost to zero.14

Although the global optimum of V (T ) is trivial, the local behavior of V (T ) can be more

intriguing for the relevant region T < Ta = arg maxT V (T ) in which TSb and TLb lie. The right

panel of Figure 2 plots V (T ), which is non-monotone in T for T far less than Ta. This implies

that there is a region in which faster default, potentially due to shortening of debt maturity, can be

welfare enhancing locally!

To better understand the mechanism, we investigate V ′ (T ) which is the marginal impact of

delaying default on firm value (multiplying both sides by e(r+ζ)T ):

e(r+ζ)TV ′ (T ) = yT + ζX − (r + ζ)B (yT ) +B′ (yT )
dyT
dT

= yT + ζX − (r + ζ)A (yT ) +A′ (yT )
dyT
dT︸ ︷︷ ︸

first-best stopping problem, (0)

+(r + ζ) [A (yT )−B (yT )]︸ ︷︷ ︸
inefficient def. (+)

+
[
B′ (yT )−A′ (yT )

] dyT
dT︸ ︷︷ ︸ .

impact on liq. value, (?)

(36)

As standard in any frictionless optimal stopping problem, the first term is zero.15 The second term

captures the positive bankruptcy cost. The third term captures the impact of delaying default on
14At y = −ζX, both B (y) = A (y) = 0 because both equity and debt holders will terminate the firm immediately.

This implies a zero bankruptcy cost.
15This is because the unlevered firm value A (y) satisfies the differential equation rA (y) = y + ζ [X −A (y)] +

A′ (y) dy
dt
.
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the firm’s liquidation value. In our example with αy > 1, it is possible that B′ (yT ) − A′ (yT ) > 0

because of worsening cash-flows in default. Together with deteriorating cash-flows dyT
dT < 0, this

force can make the third term negative. As a result, V (T ) may not be always increasing in T , and

the right panel of Figure 2 shows that indeed at the shortening equilibrium we have V ′
(
TSb
)
< 0.

Here is another intuition. Recall that A (y)−B (y) captures the (endogenous) bankruptcy cost in

our model. When A′ (yT )−B′ (yT ) < 0, we have an endogenous bankruptcy cost that is decreasing

in the defaulting cash-flows. The earlier the default, the higher the defaulting cash-flows, and the

smaller the bankruptcy cost. This force contributes to the non-monotonicity of the levered firm

value as a function of the default time.

4.7.2 Inefficiency of shortening equilibrium: global versus local

We use the welfare function V (T ) to evaluate the welfare across two equilibria. For the example

considered in Section 4.6.2, we highlight the two equilibrium default times, TSb for shortening equi-

librium and TLb for lengthening equilibrium. By Φ′ (yb) > 0, shortening equilibria always have a

smaller default time than lengthening equilibria, i.e., TSb < TLb . This is indicated by the vertical

lines in the right panel of Figure 2. Further, at the initial point the shortening equilibrium is inferior

to the lengthening equilibrium, i.e., V
(
TSb
)
< V

(
TLb
)
.

The fact that V (T ) is downward sloping at TSb is intriguing, which indicates that equity holders

are maximizing the whole firm value by shortening the maturity structure if only local deviations

were allowed. It turns out that this is not a coincidence. To see this, let us take the derivative of

the firm value V = E + φDS + (1− φ)DL with respect to the maturity structure φ:

Vφ (φ, y) = ∆ (φ, y) + Eφ (φ, y)︸ ︷︷ ︸
Incentive compatibility

+ φ
∂

∂φ
DS (φ, y)︸ ︷︷ ︸

Impact on ST bonds

+ (1− φ)
∂

∂φ
DL (φ, y) .︸ ︷︷ ︸

Impact on LT bonds

(37)

Suppose that we can show that Vφ (φ, y) > 0 in any shortening equilibrium around (φ = Φ (y) , y).

Then, since maturity shortening leads to earlier default in an equilibrium with cornered strategies,

i.e. ∂Tb
∂φ < 0, we have V ′

(
TSb
)

= Vφ/
∂TSb
∂φ < 0 in the vicinity of the default boundary for shortening
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Initial (y, φ) = (0, .99) Tb V (Tb) E (φ, y) DS (φ, y) DL (φ, y)

Lengthening equilibrium TLb = 1.55 3.55 2.55 0.99 0.89

Shortening equilibrium TSb = 0.43 2.17 1.17 0.99 0.82

Table 1: Firm, equity, long-term bond, and short-term bond values for ρ = 1, c = r = 10%, Drf = 1,
Erf = 12, µ = 2, ζ = .35, δS = 10, δL = 1, αy = 3, αX = .95, and initial point (y, φ) = (0, .99).

equilibria, i.e., the firm value is higher by defaulting earlier locally.16

In (37), the first part is equity’s IC condition is non-negative in any shortening equilibrium;

and the second term is positive due to condition (30) near the bankruptcy boundary. For the

third term which is the impact on long-term bonds, under ρc = r one can show that ∂
∂φDL (φ, y) >

∂
∂φDS (φ, y) at the default boundary.17 Thus, in the vicinity of the boundary we have ∂

∂φDL (φ, y) >

∂
∂φDS (φ, y) > 0 in any shortening equilibrium, i.e., long-term bond holders also gains from the

earlier default caused by maturity shortening.

The above discussion implies that, in the shortening equilibrium, when the firm is close to default,

maturity shortening taken by equity holders improves the firm value locally. In other words, all

parties in the firm–right before default–will vote against lengthening the firm’s maturity structure

marginally! This holds despite the fact that, when the firm is far away from the default boundary,

all parties should be better off by taking the globally more efficient lengthening equilibrium. Indeed,

in our example, the lengthening equilibrium Pareto dominates the shortening equilibrium, as Table

1 reveals.18

We would like to point out that the local-efficiency property of the shortening equilibrium, while

intriguing, is less general. For instance, the result that ∂
∂φDL (φ, y) > ∂

∂φDS (φ, y) in the vicinity of

the bankruptcy boundary might change if we do not have ρc = r. Perhaps more empirically relevant

situations are that there are other stakeholders in the firm who may suffer from earlier default. In
16The opposite holds for lengthening equilibria, where we have V ′

(
TLb
)
> 0 in the vicinity of the bankruptcy

boundary. Because we know the first-best TFB = Ta has the longest survival, it is not that surprising to see that
lengthening improves the firm value.

17It is easy to show that
[
∂DL(Φ(yb),yb)

∂φ
− ∂DS(Φ(yb),yb)

∂φ

]
τ=0

= (δL − δS) [1−B (yb)]
∂τ
∂φ

> 0 because ∂τ
∂φ

∣∣∣
τ=0

< 0

and δS > δL. Intuitively, since short-term bonds are more likely to be paid in full, they depend less on the bankruptcy
recovery relative to their long-term counterpart.

18This property of Pareto dominance may not holds generally, and we find other numerical examples in which
relative to the shortening equilibrium, equity and short-term bond holders gain in the lengthening equilibrium while
long-term bond holders lose strictly.
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Appendix A.5.2 we consider the situation where the firm has another group of debt holders holding

consol bonds whose valuation does not enter the equity holders’ rollover decisions at all. Because

the value of consol bonds suffer losses due to earlier default, the maturity-shortening equilibrium

may become locally inefficient, in the sense that right before default the firm value is improved by

marginally lengthening the firm’s maturity structure.

5 Equilibria with Interior Issuance Policies

Our analysis has so far focused on deterministic cornered issuance policies, i.e., f ∈ {0, 1}. This

section extends our analysis to the class of all deterministic equilibria by allowing for the possibility

of interior issuance policies so that f ∈ [0, 1] and shows uniqueness of the equilibrium on the default

boundary.

5.1 Unique Equilibrium around Default Boundary

We work on the state space of (τ, yb), and denote the equilibrium issuance strategy by f (τ, yb) ∈

[0, 1]. Recall the equity’s IC condition IC (τ, yb) ≡ ∆ (τ, yb) + Eφ (τ, yb) with IC (0, yb) = 0. We

investigate ICτ (τ, yb), which is the partial derivative of IC condition along the direction of time-

to-default. Evaluating on the default boundary, i.e., τ = 0, we show in the Appendix that

ICτ (0, yb) = m (φb)

[
f (0, yb)

∂

∂φ
∆ (0, yb) +

∂

∂φ
DL (0, yb)

]
. (38)

Denote by fτ=0 the equilibrium issuance policy f (0, yb) at τ = 0. We have shown that, if fτ=0 takes

cornered values, we must have ICτ (0, yb)|fτ=0=1 > 0 ⇔ ∂DS(Φ(yb),yb)
∂φ > 0 or ICτ (0, yb)|fτ=0=0 <

0 ⇔ ∂DL(Φ(yb),yb)
∂φ < 0 so that equity finds it optimal to issue short-term or long-term debt right

before default, respectively. If f ∈ (0, 1) which is an interior value, then we must have ICτ (0, yb) = 0

in (38), i.e.,19

f = −
∂
∂φDL (0, yb)

∂
∂φ∆ (0, yb)

. (39)

19We show that the right hand side of (39) is independent of f in the proof of Proposition 6 in the Appendix.
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We now show generally that on the default boundary the equilibrium is unique, either interior or

cornered. Thus, there is no-return regions in which the multiplicity of equilibria vanishes to yield a

unique one when sufficiently close to the default boundary, as shown by Proposition 5.

Proposition 6 Focus on the class of deterministic equilibria. Then, if admissible as given by

(A.16), there exists a unique equilibrium fτ=0 on the default boundary. Further, if fτ=0 ∈ {0, 1}

and we are at the point where the constraint f ∈ [0, 1] is strictly binding, we have a unique equilibrium

also in the vicinity of the default boundary (Φ (yb) , yb).

The intuition is similar to the discussion at the end of Section 4.5. The source of multiplicity

comes from the self-enforcing expectations of future (issuance) policies. However, if the firm is

close to the default boundary, then there will be not enough room for future expectations to be

self-enforcing, and a unique equilibrium arises. Once we move further away from the boundary,

there might be enough time for self-enforcing expectations to introduce multiplicity. Geometrically,

this implies that sufficiently far away from the default boundary, paths can cross each other, and

hence multiple equilibria emerge (see Figure 2).

5.2 An Example of Equilibrium with Interior Issuance Policy

When we are away from default, the analysis becomes more complicated when allowing for interior

issuance polices. We show in the proof of Lemma 7 in the Appendix that along any path that has

IC (τ, yb) = 0 for τ ∈ [0, s] a unique fτ ∈ (0, 1) exists for every τ ∈ [0, s]. Further, we can derive the

unique interior issuance policy fτ at τ explicitly given the forward-looking endogenous equilibrium

objects.20 These endogenous equilibrium objects are essentially functions of the equilibrium path

{fs}τs=0, and together with fτ=0 given in (39) we can solve for fτ by backward induction. Thus,

in conjunction with Proposition 6 this implies that there exists a unique path to any admissible

bankruptcy point (Φ (yb) , yb).21 The idea is that if the equilibrium issuance policy fτ ∈ (0, 1) for
20That is, incorporating all times from today until the default time.
21Essentially, the bankruptcy point is admissible if the path is pointing away from the bankruptcy set B, not into
B, with respect to τ .
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Figure 3: Equilibrium with interior issuance policy. Left panel: Interior issuance policies
while also showing cornered strategy equilibria. Right panel: extended graph of interior issuance
equilibrium path with non-monotone path (first shortening, then lengthening when close to default).

τ > 0, then IC (τ, yb) has to remain at zero; and IC (τ, yb) becomes strictly positive (negative) if

fτ = 1 (fτ = 0).

Let us pick an ultimate point on the boundary that lies in the region of interior equilibria,

and work our way backward to trace out the path. Figure 3 maps one such path, first in the

left panel in relation to the previous analyzed corner equilibrium paths, and then in a zoomed-out

fashion in the right panel. In the left panel, sufficiently far away from the default boundary our

interior path crosses with our previous lengthening equilibrium path, leading to multiple equilibria

at that intersection point: one lengthening, and (at least) one interior equilibrium. The right panel

reveals that the firm’s maturity structure is no longer monotone in time (as implied by the cornered

equilibria) in this interior issuance equilibrium, i.e., dφ(t)
dt switches signs. For large y’s the firm

is shortening its maturity structure (high f , although not cornered), leading to a slow rise in φ.

However, once the firm is getting close enough to Φ (y), it will reverse course and start lengthening

its maturity structure (low f , although not cornered).
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6 Conclusion

We study a dynamic setting in which a firm can commit to keeping the overall face-value of debt

outstanding constant, but cannot commit to its future maturity structure. Instead, the firm chooses

its debt maturity structure optimally over time in response to observable firm fundamentals. It

controls its maturity structure via choosing the fraction of newly issued short-term bonds when

refinancing its matured bonds. As a baseline, we show that when the firm’s cash-flows are constant

then it is impossible to have the “shortening-to-death” equilibrium where the firm keeps issuing

short-term bonds and default consequently. This is because the recovery in default is constant, and

the maturity structure just imposes faster default which hurts bond-holders.

In contrast, when cash-flows deteriorate over time so that the debt recovery value is affected

by the endogenous default timing, then a shortening equilibrium can emerge. For a shortening

equilibrium to arise, from the perspective of bond holders, the benefit of a more favorable recovery

value by taking the firm over earlier must outweigh the increased expected default risk due to earlier

default. The shortening equilibrium can be locally efficient while being globally inefficient, relative

to the lengthening equilibrium. We further show that the model has a unique cornered equilibrium

when a firm is sufficiently close to default.
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A Appendix

A.1 Change of variables, value functions, recovery value and admissibility

A.1.1 Change of variables
We will solve the model in terms of (τ, yb), that is time to maturity and cash-flow at time of bankruptcy. This
makes the equations all ODEs that we have to consider on the equilibrium path. We then calculate separately the
IC conditions via the derivatives of Eφ under different assumptions of the issuance strategies. For the moment, fix
the issuance strategy f (τ).

The proportion of short-term debt φ (τ, yb). Recall that we have φ ≡ S
P

is the proportion of short-term
debt. Consider an arbitrary path f (τ) ∈ [0, 1] for the issuance strategy. Then, we have

φ′ (τ) = φ (τ) [δS (1− f (τ)) + f (τ) δL]− δLf (τ)

Integrating up, imposing φ (0) = φb = Φ (yb), we have

φ (τ, yb) = e
´ τ
0 [δS(1−fs)+fsδL]ds

[
Φ (yb)− δL

ˆ τ

0

e−
´ s
0 [δS(1−fu)+fuδL]dufsds

]
(A.1)

Taking derivatives, while keeping f (τ) fixed, we have

∂h1

∂τ
=
∂φ (τ, yb)

∂τ
= φ (τ, yb) [δS (1− f (τ)) + f (τ) δL]− δLf (τ) (A.2)

∂h1

∂yb
=
∂φ (τ, yb)

∂yb
= Φ′ (yb) e

´ τ
0 [δS(1−fs)+fsδL]ds (A.3)

The current cash-flow state y (τ, yb). Next, let us assume there exists h0 so that h0 (yτ ) = h0 (yb) + µτ .
In the linear growth specification, we have h0 (x) = x, whereas in the exponential growth specification we have
h0 (x) = log (x).

Derivatives w.r.t. φ. The ODEs are solved in terms of

z = (τ, yb) (A.4)

However, the incentives of the equity holders are derived from the Markov system

x = (φ, y) , (A.5)

as the optimal f requires the derivative Eφ. We are looking for points z = g (x) such that h (x, z) = h (x,g (x)) = 0
where

h (x, z) =

[
h1 (x, z)
h2 (x, z)

]
=

[
−φ+ φ (τ, yb)

−h0 (y) + h0 (y (τ, yb))

]
= 0 (A.6)

and where

g (x) =

[
τ (φ, y)
yb (φ, y)

]
(A.7)

To calculate the derivative of of for exampleE (τ, yb) = E (z) w.r.t. φ, we have to use

∂

∂φ
E (τ, yb) = Eτ (τ, yb)

∂τ

∂φ
+ Eyb (τ, yb)

∂yb
∂φ

=

[
∂

∂z
E (z)

]
·
[
∂z

∂φ

]
(A.8)

The Jacobian matrix is given by

J =
∂h (x, z)

∂z
=

[
∂h1
∂τ

∂h1
∂yb

∂h2
∂τ

∂h2
∂yb

]
(A.9)

Then, applying the chain rule when taking the derivative w.r.t. xi, ∂h
∂xi

+ ∂h
∂z

∂z
∂xi

= 0, we have for xi = φ,

∂z

∂φ
=
∂g (x)

∂φ
=

∂

∂φ

[
τ (φ, y)
yb (φ, y)

]
= −J−1 ∂

∂φ
h (x, z) (A.10)
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Let us calculate the different derivatives. First, we have

∂h1

∂φ
= −1 (A.11)

∂h2

∂φ
= 0 (A.12)

so that ∂
∂φ

h (x, z) = − [1, 0]>. Then, we have

∂z

∂φ
=

[
∂τ(φ,y)
∂φ

∂yb(φ,y)
∂φ

]
= −

[
∂h1
∂τ

∂h1
∂yb

∂h2
∂τ

∂h2
∂yb

]−1 [ ∂h1
∂φ
∂h2
∂φ

]

=
1

∂h1
∂τ

∂h2
∂yb
− ∂h1

∂yb

∂h2
∂τ

[
∂h2
∂yb

− ∂h1
∂yb

− ∂h2
∂τ

∂h1
∂τ

] [
1
0

]

=
1

∂h1
∂τ

∂h2
∂yb
− ∂h1

∂yb

∂h2
∂τ

[
∂h2
∂yb

− ∂h2
∂τ

]

=
1

h′0 (yb)
∂φ(τ,yb)
∂τ

− µ ∂φ(τ,yb)
∂yb

[
h′0 (yb)
−µ

]
(A.13)

Thus, we ultimately have[
∂τ(φ,y)
∂φ

∂yb(φ,y)
∂φ

]
=

1

h′0 (yb) {φ (τ, yb) [δS (1− f (τ)) + f (τ) δL]− δLf (τ)} − µΦ′ (yb) e
´ τ
0 [δS(1−fs)+fsδL]ds

[
h′0 (yb)
−µ

]
(A.14)

A.1.2 Admissible paths
The bankruptcy boundary and the change of variables interact in a specific way. Essentially, we cannot allow such
f ’s that will point inside the bankruptcy region B when increasing τ . To this end, we need to impose

Φ′ (yb) >
d
dτ
φ (τ, yb)

∣∣
τ=0

d
dτ
y (τ, yb)

∣∣
τ=0

=
Φ (yb) [δS (1− f) + fδL]− δLf

µ/h′0 (yb)
(A.15)

at τ = 0. Multiplying through by µ/h′0 (yb) > 0, and rearranging, we have the following inequality that defines
admissible f :

0 > h′0 (yb) {Φ (yb) [δS (1− f) + fδL]− δLf} − µΦ′ (yb) (A.16)

A.1.3 Debt and Equity solutions for Section 4.2
Next, let us derive debt and equity values for given paths of f for (τ, yb).

Debt. Debt has an ODE

(r + δi + ζ)Di (τ, yb) = (ρc+ δi + ζ)− ∂

∂τ
Di (τ, yb)

that is solved by

DS (τ, yb) =
ρc+ δS + ζ

r + δS + ζ
+ e−(r+δS+ζ)τ

[
B (yb)−

ρc+ δS + ζ

r + δS + ζ

]
(A.17)

DL (τ, yb) =
ρc+ δL + ζ

r + δL + ζ
+ e−(r+δL+ζ)τ

[
B (yb)−

ρc+ δL + ζ

r + δL + ζ

]
(A.18)

Importantly, for a given (τ, yb) debt values are independent of the path of f . Imposing ρc = 1 we get the result in
the main text.

Equity. Equity solves the ODE where y = y (τ, yb) and φ = φ (τ, yb)

(r + ζ)E (τ, yb) = y + ζErf − c+m (φ) [fDS (τ, yb) + (1− f)DL (τ, yb)− 1]− ∂

∂τ
E (τ, yb) (A.19)
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with boundary condition ∂
∂τ
E (τ, yb)

∣∣
τ=0

= 0. For future reference, we will differentiate w.r.t. φ to get

Eτφ (τ, yb) = m′ (φ) [fDS (τ, yb) + (1− f)DL (τ, yb)− 1]+m (φ)

[
f
∂DS (τ, yb)

∂φ
+ (1− f)

∂DL (τ, yb)

∂φ

]
−(r + ζ)Eφ (τ, yb)

(A.20)
where we abused notation for Eτφ. Differentiating w.r.t. yb, we have

(r + ζ)
∂E (τ, yb)

∂yb
=

∂y (τ, yb)

∂yb
+ (δS − δL) [fDS (τ, yb) + (1− f)DL (τ, yb)− 1]

∂φ (τ, yb)

∂yb

+m (φ)

[
f
∂DS (τ, yb)

∂yb
+ (1− f)

∂DL (τ, yb)

∂yb

]
− ∂

∂τ

(
∂E (τ, yb)

∂yb

)
(A.21)

with boundary condition ∂
∂τ

(
∂E(τ,yb)
∂yb

)∣∣∣
τ=0

= 0 and where we used m′ (φ) = δS− δL. Integrating up for a given path
of f , we have

E (τ, yb) =

ˆ τ

0

e(r+ζ)(u−τ)
{
y (u, yb) + ζErf − c

+m (φ (u, yb)) [fuDS (u, yb) + (1− fu)DL (u, yb)− 1]} du (A.22)

Here, we can see how f affects the value of equity even for a given (τ, yb). Integrating up ∂E(τ,yb)
∂yb

, we have

∂E (τ, yb)

∂yb
=

ˆ τ

0

e(r+ζ)(u−τ)

{
∂y (u, yb)

∂yb

+ (δS − δL) [fuDS (u, yb) + (1− fu)DL (u, yb)− 1]
∂φ (u, yb)

∂yb

+m (φ (u, yb))

[
fu
∂DS (u, yb)

∂yb
+ (1− fu)

∂DL (u, yb)

∂yb

]}
du (A.23)

A.2 Proofs of Section 3
Proof of Lemma 1. We use the fact that B (y) ≤ DS ≤ Drf = 1 and B (y) ≤ DL ≤ Drf = 1 to bound the rollover
term in (6):

0 ≥m (φt) [ftDS (φt; y) + (1− ft)DL (φt; y)− 1] ≥ m (φt) [ftB (y) + (1− ft)B (y)− 1]

=m (φt) [B (y)− 1] ≥ δS [B (y)− 1] ,

where we used δS = maxφ∈[0,1] m (φ). Hence if y − c + ζErf < 0 then the cash flows to equity are always negative,
leading to immediate default. On the other hand, if y − c + ζErf + δS [B (y)− 1] > 0, then even under the most
pessimistic beliefs equity holders never make losses and thus never default.
Proof of Lemma 2. We have shown that at default point Φ the incentive compatibility condition (12) just holds
with equality. If (16) holds, then ∆ (Φ− ε; y)+E′ (Φ− ε; y) is strictly negative. According to (12), it is never optimal
to choose f = 1 right before default at φ = Φ− ε.
Proof of Proposition 1. The equation of (11) for f = 1 is:

rE (φ; y) = y − c+ ζ
[
Erf − E (φ; y)

]
+ [φδS + (1− φ) δL] [DS (φ; y)− 1] + (1− φ) δLE

′ (φ; y) (A.24)

We then take the derivative with respect to φ of (A.24):

(r + ζ)E′ (φ; y) = (δS − δL) [DS (φ; y)− 1] + [φδS + (1− φ) δL]D′S (φ; y)− δLE′ (φ; y) + (1− φ) δLE
′′ (φ; y) .

Evaluating this equation at the default boundary Φ, together with E′ (Φ; y) = 0 and DS (Φ; y) = B (y), we have
equation (18) in the main text.

A.3 Proofs of Section 4
Proof of Lemma 3. E (Φ (yb) , yb) = 0 at default is obvious as equity defaults when their cash-flows turn exactly
zero in our deterministic setting. Plugging in E (Φ (yb) , yb) = 0 into the ODE for equity valuation, we see that
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Eτ (τ, yb)|τ=0 = 0. Change the coordinates of the state space to (φ, y), we have

Eφ (Φ (yb) , yb)|τ=0 = Eτ (τ, yb)
∂τ

∂φ

∣∣∣∣
τ=0

+ Eyb (τ, yb)
∂yb
∂φ

∣∣∣∣
τ=0

= Eyb (τ, yb)
∂yb
∂φ

∣∣∣∣
τ=0

, (A.25)

where we use Eτ (τ, yb)|τ=0 = 0. However, we have Eyb (τ, yb)|τ=0, because equity defaults at τ = 0 and yb only
affects the recovery value that bond holders receives and equity holders get nothing. (Note that Eyb (τ, yb) fixes τ
while changes yb; it differs from Ey (φ, y)). Similarly we can show Ey (Φ (yb) , yb) = 0.
Proof of Proposition 2. See proof of Proposition 6
Proof of Proposition 3. See proof of Proposition 6
Proof of Proposition 4. Combine proof of Proposition 6 with Lemma 4 below.

Lemma 4 For cornered equilibria, the IC condition on the default boundary is sufficient for the IC along the whole
path.

Proof of Lemma 4. We start with the following observation. Suppose the current state of the system is given by
(φ, y). Firm-value is then given by

V (φ, y) = E (φ, y) + φDS (φ, y) + (1− φ)DL (φ, y)

Suppose we consider an arbitrary equilibrium path (φ, y)→ (Φ (yb) , yb) where default occurs at the point (Φ (yb) , yb).
We know that the default time is

τ =
y − yb
µ

by the linear growth specification of y. That is, we fix the starting point and the end-point of the path, and thereby
the time to default, but leave the actual issuance strategy {fτ} and thus the actual path taken by φ undefined. Let
us sum up all the cash-flows to get an alternate expression for firm value,

V (τ, yb) =

ˆ τ

0

e(r+ζ)(s−τ) [yb + µs+ ζX + (ρ− 1) c] ds+ e−(r+ζ)τB (yb)

and we can thus define

E (τ, yb) = V (τ, yb)− φ (τ, yb)DS (τ, yb)− [1− φ (τ, yb)]DL (τ, yb)

Importantly, we see that equity value is invariant to the specific path of φ taken as long as yb and thus τ is held fixed.
However, incentives are not invariant to the path taken, as we will show below. Consider now

Eφ =
∂

∂φ
[V (φ, y)− φDS (φ, y)− (1− φ)DL (φ, y)]

=

{
∂

∂τ
V (τ, yb)− φ

∂

∂τ
DS (τ, yb)− (1− φ)

∂

∂τ
DL (τ, yb)

}
∂τ

∂φ

+

{
∂

∂yb
V (τ, yb)− φ

∂

∂yb
DS (τ, yb)− (1− φ)

∂

∂yb
DL (τ, yb)

}
∂yb
∂φ

−DS (φ, y) +DL (φ, y)

so that we have, after rearranging

IC (τ, yb) = ∆ (τ, yb) + Eφ (τ, yb)

=

{
∂

∂τ
V (τ, yb)− φ (τ, yb)

∂

∂τ
DS (τ, yb)− [1− φ (τ, yb)]

∂

∂τ
DL (τ, yb)

}
∂τ

∂φ

+

{
∂

∂yb
V (τ, yb)− φ (τ, yb)

∂

∂yb
DS (τ, yb)− [1− φ (τ, yb)]

∂

∂yb
DL (τ, yb)

}
∂yb
∂φ

Thus, importantly, we see that the path of f for a given φ (τ, yb) only is reflected in e
´ τ
0 [δS(1−fs)+δLfs]ds that enters
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through the change-of-variables. Note that

V (τ, yb) = [yb + ζX + (ρ− 1) c]
1− e−(r+ζ)τ

r + ζ
+ µ

e−(r+ζ)τ − 1 + (r + ζ) τ

(r + ζ)2 + e−(r+ζ)τB (yb)

∂

∂τ
V (τ, yb) = e−(r+ζ)τ [yb + ζX + (ρ− 1) c− (r + ζ)B (yb)] + µ

1− e−(r+ζ)τ

r + ζ

∂

∂yb
V (τ, yb) =

1− e−(r+ζ)τ

r + ζ
+ e−(r+ζ)τB′ (yb)

And thus, plugging in, we have{
∂

∂τ
(·)
}

= e−(r+ζ)τ [yb + ζX + (ρ− 1) c+B (yb)] + µ
1− e−(r+ζ)τ

r + ζ

+φ (τ, yb) (r + δS + ζ) e−(r+δS+ζ)τ

[
B (yb)−

ρc+ δS + ζ

r + δS + ζ

]
+ [1− φ (τ, yb)] (r + δL + ζ) e−(r+δL+ζ)τ

[
B (yb)−

ρc+ δL + ζ

r + δL + ζ

]
{

∂

∂yb
(·)
}

=
1− e−(r+ζ)τ

r + ζ
+B′ (yb)

{
e−(r+ζ)τ − φ (τ, yb) e

−(r+δS+ζ)τ − [1− φ (τ, yb)] e
−(r+δL+ζ)τ

}
We note that

{
∂
∂τ

(·)
}
τ=0

= 0 and
{

∂
∂yb

(·)
}
τ=0

= 0, so that indeed we have IC (0, yb) = 0.
In the linear specification, we note that

∂yb
∂φ

= −µ∂τ
∂φ

= − µ

φτ (τ, yb)− µφyb (τ, yb)

= − µ

{φ (τ, yb) [δS (1− f) + fδL]− fδL} − µΦ′ (yb) e
´ τ
0 [δS(1−f)+fδL]ds

> 0

as for f ∈ {0, 1} paths do not cross and we must have ∂τ
∂φ

< 0. As the IC(τ, yb) condition is not monotone in τ , we
use a scaled up version ekτIC (τ, yb) for a specific k. We can show that for shortening equilibria (i.e. f = 1)

∂

∂τ

[
e(r+ζ+δL)τIC

(
τ, ySb

)]
=

e−δSτ
{
δS − (δS − δL)

[
1− Φ

(
ySb
)]
eδLτ

}{
(δS + r + ζ)

[
1−B

(
ySb
)]
− µB′

(
ySb
)}

[δLΦ (ySb )− δL]− µΦ′ (ySb )

=
e−δSτ

{
δS − (δS − δL)

[
1− φ

(
τ, ySb

)]} {
(δS + r + ζ)

[
1−B

(
ySb
)]
− µB′

(
ySb
)}

[δLΦ (ySb )− δL]− µΦ′ (ySb )

= e−δSτm
(
φ
(
τ, ySb

)) (δS + r + ζ)
[
1−B

(
ySb
)]
− µB′

(
ySb
)

[δLΦ (ySb )− δL]− µΦ′ (ySb )

and for lengthening equilibria (i.e. f = 0) we have

∂

∂τ

[
e(r+ζ+δS)τIC

(
τ, yLb

)]
=

e−δLτ
[
δL + (δS − δL) Φ

(
yLb
)
eδSτ

] {
(δL + r + ζ)

[
1−B

(
yLb
)]
− µB′

(
yLb
)}

δSΦ (yLb )− µΦ′ (yLb )

=
e−δLτ

[
δL + (δS − δL)φ

(
τ, yLb

)] {
(δL + r + ζ)

[
1−B

(
yLb
)]
− µB′

(
yLb
)}

δSΦ (yLb )− µΦ′ (yLb )

= e−δLτm
(
φ
(
τ, yLb

)) (δL + r + ζ)
[
1−B

(
yLb
)]
− µB′

(
yLb
)

δSΦ (yLb )− µΦ′ (yLb )

Here, by φτ (τ, yb) = φ (τ, yb)−m (φ (τ, yb)) f in the the shortening equilibrium we have
[
1− φ

(
τ, ySb

)]
=
[
1− Φ

(
ySb
)]
eδLτ

and in the lengthening we have φ
(
τ, yLb

)
= Φ

(
yLb
)
eδSτ . We see that at τ = 0 these collapse to our boundary condi-

tions for shortening and lengthening equilibria, respectively. Note thatm (φ) ∈ [δL, δS ] as φ is bounded, we know there
is a maximal τ corresponding to any ultimate bankruptcy cash-flow yb (beyond this τ we would have φ (τ, yb) /∈ [0, 1];
recall we are reversing time and there is divergence!). Thus, the IC condition at 0 is sufficient for all paths.
Proof of Lemma 5. Let us first discuss admissibility: on the boundary, the path has to point away from the
default region B in terms of τ . Suppose then that we consider a point in the vicinity of τ = 0, say τ = 0+ε. We know
that there is a maximum adjustment speed of dφ

dτ
and that φ is continuous in τ . This implies that a point (φ, yb) that

is very close to the boundary where only a shortening equilibrium exists cannot change φ quickly enough to reach
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either the interior equilibrium or lengthening equilibrium. Similar reasoning applies for lengthening equilibria.

A.4 Proofs of Section 5
We will proof the main result, Proposition 6, in a sequence of lemmas. Lemma 5 establishes that there is continuity
of the issuance strategy f w.r.t. time-to-maturity τ . Lemma 6 establishes the uniqueness of fτ=0 if it is admissible
on the boundary. Lemma 7 provides the uniqueness of a path leading away from the boundary.

Lemma 5 There is no discontinuities in f on any equilibrium path, i.e.
∣∣∣ ft+dt−ftdt

∣∣∣ <∞ everywhere.

Proof of Lemma 5. Note that Eφ (φ, y) can be calculated as

∂

∂φ
E (φ, y) =

∂

∂φ
E (τ, yb) = Eτ (τ, yb)

∂τ

∂φ
+ Eyb (τ, yb)

∂yb
∂φ

. (A.26)

As before, the first term captures the effect of time-to-default τ , while the second term captures the effect of defaulting
cash-flows yb. Suppose now there exists a time-to-default τ̂ at which there is a jump in f , i.e., fτ̂− 6= fτ̂+. Equity
values and debt values (and thus the bond value wedge ∆) are continuous across τ̂ along the path (φτ , yτ ) by inspection
of (A.17), (A.18) and (A.22). However, equity’s derivative with respect to τ , i.e., Eτ , displays a discontinuity at the
policy switching point τ̂ . Plugging into (A.19), we have

Eτ̂− − Eτ̂+ = m (φ) ∆ · (fτ̂− − fτ̂+) = m (φ) ∆. (A.27)

Since m (φ) ∆ > 0, it implies that when equity switches to issuing more short-term bonds at τ̂ , i.e., fτ̂− − fτ̂+, the
equity value’s derivative with respect to τ jumps up, i.e., the benefit of surviving longer goes up.

In the original (φ, y) state space, denote the corresponding switching points to be
(
φ̂−, ŷ−

)
and

(
φ̂+, ŷ+

)
.

Equity’s incentive compatibility condition depends on ∂
∂φ
Eφ (φ, y) at these two points. By writing out the terms in

integral form, and noting that any f are bounded, we can show that in (A.26), both the ∂τ
∂φ

in the first term, and the
entire second term related to yb, i.e., Eyb (τ, yb)

∂yb
∂φ

, are continuous at the switching point. Hence, equation (A.27)
implies that

Eφ
(
φ̂−, ŷ−

)
− Eφ

(
φ̂+, ŷ+

)
= (Eτ− − Eτ+)

∂τ

∂φ
= m (φ) ∆ (fτ̂− − fτ̂+) · ∂τ

∂φ
.

Next, note that ∂τ
∂φ

< 0, i.e., shortening maturity gives rise to a shorter time-to-default. Following the intuition right
after (A.27), when equity switches to issuing short-term bonds, the benefit of surviving longer going up implies that
marginal negative impact of shortening maturity is more severe. To make the general point, let us write

IC
(
φ̂+, ŷ+

)
= ∆

(
φ̂, ŷ
)

+ Eφ
(
φ̂+, ŷ+

)
= ∆

(
φ̂, ŷ
)

+ Eφ
(
φ̂−, ŷ−

)
+

[
−m (φ) ∆ (fτ̂− − fτ̂+)

∂τ

∂φ

]
= IC

(
φ̂−, ŷ−

)
+

[
m (φ) ∆ (fτ̂− − fτ̂+)

(
−∂τ
∂φ

)]
Consider first the case when fτ̂− = 1 and fτ̂+ < 1. This implies that

[
m (φ) ∆ (fτ̂− − fτ̂+)

(
− ∂τ
∂φ

)]
> 0 and we imme-

diately have a violation: if fτ̂− = 1was optimal, then IC
(
φ̂+, ŷ+

)
> IC

(
φ̂−, ŷ−

)
≥ 0 and thus fτ̂+ < 1 violates the

IC condition. Next, consider the case when fτ̂− = 0 and fτ̂+ > 0. This implies that
[
m (φ) ∆ (fτ̂− − fτ̂+)

(
− ∂τ
∂φ

)]
<

0, which implies IC
(
φ̂+, ŷ+

)
< IC

(
φ̂−, ŷ−

)
≤ 0 and thus invalidates fτ̂+ > 0. Lastly, consider the case when

fτ̂− ∈ [0, 1] such that IC
(
φ̂−, ŷ−

)
= 0. Then we immediately see that any fτ̂+ 6= fτ̂− violates IC: (i) if fτ̂− ∈ (0, 1),

then we must have IC
(
φ̂+, ŷ+

)
= 0 as well, which is violated by

[
m (φ) ∆ (fτ̂− − fτ̂+)

(
− ∂τ
∂φ

)]
6= 0. (ii) if

fτ̂− ∈ {0, 1}, then we are in the above proofs, and see that the violation exactly runs counter to the IC condi-
tion.

Lemma 6 If an equilibrium fτ=0 exists on the boundary, it is unique. It might not exists due to the admissibility
condition.
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Proof of Lemma 6. First, let us concentrate on f on the boundary. Taking derivatives of (A.17) and (A.18) w.r.t.
φ via (A.14), and evaluating at τ = 0, we have

∂Di
∂φ

=
h′0 (yb) {(ρci − r) + (r + ζ + δi) [1−B (yb)]} − µB′ (yb)
h′0 (yb) {Φ (yb) [δS (1− f) + fδL]− δLf} − µΦ′ (yb)

(A.28)

Differentiating IC w.r.t. τ , we have ICτ = ∆τ (τ, yb)+Eφτ (τ, yb). Plugging in for Eφτ (τ, yb) from (A.20), evaluating
at τ = 0 so that IC = ∆ = Eφ = 0, and noting that ∆τ = (δS − δL) [1−B (yb)], we have

∂IC

∂τ

∣∣∣∣
τ=0

= m (Φ (yb))

[
f
∂DS (τ, yb)

∂φ
+ (1− f)

∂DL (τ, yb)

∂φ

]
τ=0

. (A.29)

= m (Φ (yb))
h′0 (yb) {[ρc− r] + [r + ζ + fδS + (1− f) δL] [1−B (yb)]} − µB′ (yb)

h′0 (yb) {Φ (yb) [δS (1− f) + fδL]− δLf} − µΦ′ (yb)
(A.30)

As m (φ) > 0, we can ignore this term for determining the sign. Next, let us collect all terms in the numerator
multiplying f , which are given by {h′0 (yb) (δS − δL) [1−B (yb)]}. Further, we know from condition (A.16) that for
all admissible f the denominator has to be negative. Thus, we can concentrate on the numerator to determine the
optimal f . We have

h′0 (yb) {[ρc− r] + [r + ζ + fδS + (1− f) δL] [1−B (yb)]} − µB′ (yb)
=

[
h′0 (yb) {(ρcL − r) + (r + ζ + δL) [1−B (yb)]} − µB′ (yb)

]
+f · h′0 (yb) (δS − δL) [1−B (yb)] (A.31)

and we see that we have a linear function in f , which is increasing by

(δS − δL) [1−B (yb)] > 0 (A.32)

Thus, we have at most one unique root in (A.31). Importantly, we also know that (A.31) crosses 0 from above if at
all. As the numerator is monotone, this implies a unique equilibrium. If the numerator is everywhere negative for
f ∈ [0, 1], then f = 1. If the numerator is everywhere positive for f ∈ [0, 1], then f = 0 if this is admissible. Lastly,
if there exits an admissible

f̂ =
µB′ (yb)− h′0 (yb) {(ρcL − r) + (r + ζ + δL) [1−B (yb)]}

h′0 (yb) (δS − δL) [1−B (yb)]
∈ (0, 1) (A.33)

then this is the unique equilibrium. We thus have

fτ=0 = min
[
1,max

[
f̂ , 0
]]

(A.34)

as the unique equilibrium subject to admissibility ().

Lemma 7 For a given point (Φ (yb) , yb) there exists a unique equilibrium path τ leading away from the boundary.

Proof of Lemma 7. Writing out IC (τ, yb), we have

IC (τ, yb) = ∆ (τ, yb) + Eφ (τ, yb)

= DS (τ, yb)−DL (τ, yb) +
∂yb
∂φ

{
∂

∂yb
E (τ, yb)

}
+
∂τ

∂φ

{
y (τ, yb)− c+ ζErf − (r + ζ)E (τ, yb)

+m (φ (τ, yb)) [fDS (τ, yb) + (1− f)DL (τ, yb)− 1]

}
(A.35)

Let us move things under the common denominator h′0 (yb) {φ (τ, yb) [δS (1− f) + fδL]− δLf} − µ ∂
∂yb

φ (τ, yb) that
comes from ∂yb

∂φ
and ∂τ

∂φ
. Plugging in for ∂yb

∂φ
and ∂τ

∂φ
, we have

IC (τ, yb) =
1

h′0 (yb) {φ (τ, yb) [δS (1− f) + fδL]− δLf} − µ ∂
∂yb

φ (τ, yb)

×


∆ (τ, yb)

[
h′0 (yb) {φ (τ, yb) [δS (1− f) + fδL]− δLf} − µ ∂

∂yb
φ (τ, yb)

]
− µ ∂

∂yb
E (τ, yb)

+h′0 (yb)

[
y (τ, yb)− c+ ζErf − (r + ζ)E (τ, yb)

+m (φ (τ, yb)) [fDS (τ, yb) + (1− f)DL (τ, yb)− 1]

] (A.36)
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Suppose we have an interior equilibrium. For interior equilibria we have IC (τ, yb) = 0, so that for non-zero denomi-
nators, we must have

0 = ∆ (τ, yb)

[
h′0 (yb) {φ (τ, yb) [δS − f (δS − δL)]− δLf} − µ

∂

∂yb
φ0 (τ, yb)

]
− µ ∂

∂yb
E (τ, yb)

+h′0 (yb)

{
y (τ, yb)− c+ ζErf − (r + ζ)E (τ, yb)

+m (φ (τ, yb)) [f∆ (τ, yb) +DL (τ, yb)− 1]

}
(A.37)

Plugging in, we see that f cancels out:

=h′
0(yb)[φ(δS−δL)+δL−m(φ)]=0︷ ︸︸ ︷{

h′0 (yb) [φ (τ, yb) (δS − δL) + δL]− h′0 (yb) ·m (φ (τ, yb))
}

∆ (τ, yb) f

= ∆ (τ, yb)

[
h′0 (yb) δSφ (τ, yb)− µ

∂

∂yb
φ (τ, yb)

]
− µ ∂

∂yb
E (τ, yb)

+h′0 (yb)

{
y (τ, yb)− c+ ζErf − (r + ζ)E (τ, yb)

+m (φ (τ, yb)) [DL (τ, yb)− 1]

}
(A.38)

Let us take the derivative with respect to τ of the RHS only, noting that the LHS is identically 0 across τ as long as
we have an interior equilibrium. We then have

0 =

[
h′0 (yb) δSφ (τ, yb)− µ

∂φ (τ, yb)

∂yb

]
∂∆ (τ, yb)

∂τ

+∆ (τ, yb)

[
h′0 (yb) δS

∂φ (τ, yb)

∂τ
− µ∂

2φ (τ, yb)

∂yb∂τ

]
− µ∂

2E (τ, yb)

∂yb∂τ

+h′0 (yb)

{
∂y(τ,yb)
∂τ

+m′ (φ (τ, yb)) [DL (τ, yb)− 1] ∂φ(τ,yb)
∂τ

+m (φ (τ, yb))
∂DL(τ,yb)

∂τ
− (r + ζ) ∂E(τ,yb)

∂τ

}
(A.39)

where bold-face functions indicate (linear) functions of contemporaneous f . Plugging in for the bold-face functions,
dropping (τ, yb) for brevity, we have

0 =

[
h′0 (yb) δSφ− µ

∂φ

∂yb

]
∂∆

∂τ

+∆

[
h′0 (yb) δS [f{−m (φ)}+ δSφ]− µ

[
f

{
(δL − δS)

∂φ

∂yb

}
+ δS

∂

∂yb
φ

]]

−µ


∂y
∂yb

+ (δS − δL) [DL − 1] ∂φ
∂yb

+f
{

(δS − δL) ∆ ∂φ
∂yb

+m (φ) ∂∆
∂yb

}
+m (φ) ∂DL

∂yb
− (r + ζ) ∂E

∂yb


+h′0 (yb)


∂y
∂τ

+m′ (φ) [DL − 1] [f{−m (φ)}+ δSφ]

+m (φ) ∂DL
∂τ
− (r + ζ)

[
y + ζErf − c+m (φ) [DL − 1]
+f · {m (φ) ∆}− (r + ζ)E

]  (A.40)

where we left terms multiplying f bold-face. Gathering terms as

0 = (numerator)− (denominator) f ⇐⇒ f =
(numerator)

(denominator)
(A.41)

we have

denominator = m (φ)

[
h′0 (yb) {∆ [δS + (r + ζ)]− (δS − δL) (1−DL)}+ µ

∂∆

∂yb

]
numerator =

[
h′0 (yb) δSφ− µ

∂φ

∂yb

]
∂∆

∂τ
+ ∆δS

[
h′0 (yb) δSφ− µ

∂φ

∂yb

]
−µ

[
∂y
∂yb

+ (δS − δL) [DL − 1] ∂φ
∂yb

+m (φ) ∂DL
∂yb
− (r + ζ) ∂E

∂yb

]

+h′0 (yb)

{
∂y
∂τ

+m′ (φ) [DL − 1] δSφ+m (φ) ∂DL
∂τ

− (r + ζ)
[
y + ζErf − c+m (φ) [DL − 1]− (r + ζ)E

] } (A.42)
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Thus, by linearity we have a unique candidate fτ . The bold terms feature contemporaneous f that is linear in all
cases:

m (φ) = δL + φ (δS − δL) (A.43)

y (τ, yb) =

{
yb + µτ linear
ybe

µτ exponential
(A.44)

∂

∂yb
y (τ, yb) =

{
1 linear
eµτ exponential

(A.45)

∂

∂τ
y (τ, yb) =

{
µ linear
µybe

µτ exponential
(A.46)

φ (τ, yb) = e
´ τ
0 [δS(1−fs)+fsδL]ds

[
Φ (yb)− δL

ˆ τ

0

e−
´ s
0 [δS(1−fu)+fuδL]dufsds

]
(A.47)

∂

∂yb
φ (τ, yb) = e

´ τ
0 [δS(1−fs)+fsδL]dsΦ′ (yb) (A.48)

∂

∂τ
φ (τ, yb) = f{−m (φ (τ, yb))}+ δSφ (τ, yb) (A.49)

∂

∂τ

∂

∂yb
φ (τ, yb) = f

{
(δL − δS)

∂

∂yb
φ (τ, yb)

}
+ δS

∂

∂yb
φ (τ, yb) (A.50)

DS (τ, yb) =
ρc+ δS + ζ

r + δS + ζ
+ e−(r+δS+ζ)τ

[
B (yb)−

ρc+ δS + ζ

r + δS + ζ

]
(A.51)

∂

∂τ
DS (τ, yb) = − (r + δS + ζ) e−(r+δS+ζ)τ

[
B (yb)−

ρc+ δS + ζ

r + δS + ζ

]
(A.52)

∂

∂yb
DS (τ, yb) = e−(r+δS+ζ)τB′ (yb) (A.53)

E (τ, yb) =

ˆ τ

0

e(r+ζ)(u−τ)
{
y (u, yb) + ζErf − c (A.54)

+m (φ (u, yb)) [fuDS (u, yb) + (1− fu)DL (u, yb)− 1]} du (A.55)
∂

∂τ
E (τ, yb) = y + ζErf − c+m (φ (τ, yb)) [DL (τ, yb)− 1] (A.56)

+f · {m (φ (τ, yb)) [DS (τ, yb)−DL (τ, yb)]}− (r + ζ)E (τ, yb) (A.57)
∂

∂yb
E (τ, yb) =

ˆ τ

0

e(r+ζ)(u−τ)

{
∂

∂yb
y (u, yb) (A.58)

+ (δS − δL) [fuDS (u, yb) + (1− fu)DL (u, yb)− 1]
∂

∂yb
φ (u, yb) (A.59)

+m (φ (u, yb))

[
fu

∂

∂yb
DS (u, yb) + (1− fu)

∂

∂yb
DL (u, yb)

]}
du (A.60)

∂

∂τ

∂

∂yb
E (τ, yb) =

∂y (τ, yb)

∂yb
+ (δS − δL) [DL (τ, yb)− 1]

∂φ (τ, yb)

∂yb

+f

{
(δS − δL) [DS (τ, yb)−DL (τ, yb)]

∂φ(τ,yb)
∂yb

+m (φ (τ, yb))
[
∂DS(τ,yb)

∂yb
− ∂DL(τ,yb)

∂yb

] }

+m (φ (τ, yb))
∂DL (τ, yb)

∂yb
− (r + ζ)

∂E (τ, yb)

∂yb
(A.61)

Note that the interior equilibrium path is unique for any ultimate bankruptcy state (Φ (yb) , yb) as it is stems from
a linear equation. Thus, suppose that fτ=0 ∈ {0, 1}. Then we know that ICτ (0, yb) ≷ 0 and fτ=0 stays cornered
until a time τ at which IC (τ, yb) = 0. Suppose fτ=0 ∈ (0, 1). Then immediately we have, by Lemma 5, as f is
continuous that the above determines the path of f uniquely as it is a linear equation, until a time τ at which f
becomes cornered. In this case, then, IC starts diverging from 0 and again f is uniquely determined by the sign of
IC. They key step here is to note that IC is continuous by the functions involved and by the continuity of f .
Proof of Proposition 6. Uniqueness of fτ=0 on the default boundary follows from Lemma 6. Continuity of φ follows
from Lemma 5. The existence of unique paths leading away from any admissible boundary point is established by
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Lemma 7. Finally, for cornered equilibria, the fact that they stay cornered for some distance away from the boundary
implies that paths cannot cross, and additionally we know that φ has a bounded rate of change. Thus, as Proposition 5
showed, the equilibrium stays unique for some distance away from the boundary for fτ=0 ∈ {0, 1} with the restriction
on f strictly binding.

A.4.1 Welfare
The total value of the firm is given by both (35) and

V = E + φDS + (1− φ)DL (A.62)

as there is no claimants to the cash-flow stream here besides debt and equity. Suppose that for the equilibrium we
are investigating, we have τ = Tb (φ, y) as the time-to-default. It is easy to show that for any cornered strategy we
have ∂Tb

∂φ
< 0 by Φ′ (yb) > 0 (for non-cornered strategies, this does not have to hold as f is free to adjust). We thus

have, by value equivalence,

V (φ, y) = E (φ, y) + φDS (φ, y) + (1− φ)DL (φ, y) = V (Tb (φ, y) , y)

Whether f is socially optimal depends on if Vφ has the appropriate sign. Taking derivatives w.r.t. φ, we have

Vφ (φ, y) = Eφ + ∆︸ ︷︷ ︸
IC

+

[
φ
∂DS
∂φ

+ (1− φ)
∂DL
∂φ

]
= VT (Tb (φ, y) , y)

∂τ

∂φ

∣∣∣∣
τ=Tb

(A.63)

There is some caution warranted here – away from τ = 0, the derivatives of the debt valuations w.r.t. φ has to include
changes in the policy functions ∂f(s)

∂φ
for s ≤ τ unless we are looking at corner paths only. Suppose we are looking at

a cornered equilibrium with f = 1. Then we know we must have IC ≥ 0. Next, when evaluating at τ = 0, we have
IC = 0 and thus the sign of Vφ and social optimality of f is determined by the sign of[

φ
∂DS
∂φ

+ (1− φ)
∂DL
∂φ

]
(A.64)

Suppose that on the boundary ∂DL
∂φ

> ∂DS
∂φ

> 0 so fτ=0 = 1 is both an equilibrium and locally socially optimal. By
f being cornered, we also know that f = 1 even for slight changes to φ, and by continuity of the value functions[
φ ∂DS

∂φ
+ (1− φ) ∂DL

∂φ

]
> 0 for some time even away from the boundary. This of course implies that

VT (Tb (φ, y) , y) =
IC (φ, y) + φ ∂DS

∂φ
+ (1− φ) ∂DL

∂φ

∂τ
∂φ

∣∣∣
τ=Tb

< 0

Thus, any shortening-only equilibrium has, at least in the vicinity of the default boundary, a local maximum to the
left. Note here the divergence of private incentives (which feature the full choice f of the proportions of short versus
long in the infinitesimal period) and the social incentives (which have to deal with aggregate proportions φ of short
versus long debt when f is changed).

A.5 Extensions

A.5.1 Extensions of Section 3
Exogenous default Poisson event. Most of derivation changes slightly; for instance, for bond valuations, in
contrast to (7) we have

rDi (φ; y)︸ ︷︷ ︸
required return

= ρc︸︷︷︸
coupon

+ δi [1−Di (φ; y)]︸ ︷︷ ︸
maturing

+ ζ [1−Di (φ; y)]︸ ︷︷ ︸
upside option

+ ξ [B (y)−Di (φ; y)]︸ ︷︷ ︸
exogenous default

+ (1− φ) δLD
′
i (φ; y)︸ ︷︷ ︸

state change

(A.65)

Corollary 2 Even with exogenous liquidation shocks ξ > 0, there does not exist equilibria in which equity holders
keep issuing short-term bonds and then default endogenously at some finite future time.
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Relaxed issuance space. We require the firm’s maturity structure is shortening at the hypothetical default
point Φ, i.e., we must have φ increasing

dφ

dt

∣∣∣∣
φ=Φ

= −ΦδS +m (Φ) fh > 0.

Equity solves

rE (φ; y) = y − c+ ζ
[
Erf − E (φ; y)

]
+ max
f∈[fl,fh]

{
m (φ) [fDS (φ; y) + (1− f)DL (φ; y)− 1] + [−φδS +m (φ) f ]E′ (φ; y)

}
.

Assuming f = fh is optimal, we have

rE (φ; y) = y − c+ ζ
[
Erf − E (φ; y)

]
(A.66)

+ [φδS + (1− φ) δL] [fhDS (φ; y) + (1− fh)DL (φ; y)− 1]

+ [−φδS + (φδS + (1− φ) δL) fh]E′ (φ; y)

Taking derivatives w.r.t. φ, we have

(r + ζ)E′ (φ; y) = (δS − δL) [fhDS (φ; y) + (1− fh)DL (φ; y)− 1]

+ [φδS + (1− φ) δL]
[
fhD

′
S (φ; y) + (1− fh)D′L (φ; y)

]
+ [−δS + (δS − δL) fh]E′ (φ; y) + [−φδS + (φδS + (1− φ) δL) fh]E′′ (φ; y)

Since E = 0, E′ = 0 at Φ, and equal seniority DS = DL = B (y), we have

0 = (δS − δL) [B (y)− 1] +m (Φ)
[
fhD

′
S (φ; y) + (1− fh)D′L (φ; y)

]
+ [−φδS +m (Φ) fh]E′′ (φ; y) .

Rearranging, we have

E′′ (φ, y) =
(δS − δL) [1−B (y)]

−φδS +m (Φ) fh
− m (Φ)

−φδS +m (Φ) fh

[
fhD

′
S (φ; y) + (1− fh)D′L (φ; y)

]
Recall that for shortening we require [−φδS +m (Φ) fh] > 0, which rules out fh < 0. Next, note that under this
assumption we have

∆′ (Φ; y) = − (δS − δL) [1−B (y)]

−ΦδS +m (Φ) fh
< 0

Plugging in, we have

∆′ (Φ; y) + E′′ (φ; y) = − m (Φ)

−φδS +m (Φ) fh

[
fhD

′
S (φ; y) + (1− fh)D′L (φ; y)

]
From the bond ODE we have

D′L (Φ; y) =
− (r + δL + ζ) [1−B (y)]

−ΦδS +m (Φ) fh

fh∆′ (Φ; y) +D′L (Φ; y) = − [fh (δS − δL) + r + δL + ζ] [1−B (y)]

−ΦδS +m (Φ) fh

= − [(fhδS + (1− fh) δL + r + ζ)] [1−B (y)]

−ΦδS +m (Φ) fh

so that finally

ICφ (Φ) = ∆′ (Φ; y) + E′′ (φ; y) =
m (Φ)

−φδS +m (Φ) fh

[(fhδS + (1− fh) δL + r + ζ)] [1−B (y)]

−ΦδS +m (Φ) fh
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We need ICφ (Φ) < 0 as we want IC (Φ− ε) > 0 as this implies f = 1 at Φ − ε. Using the approximation
IC (Φ− ε) ≈ IC (Φ)− ICΦε > 0, we see that we need so only when fh is so negative

[(fhδS + (1− fh) δL + r + ζ)] < 0 ⇐⇒ fh < −
r + δL + ζ

δS − δL
the firm might choose the highest fh and default slowly. But when fh < 0, the firm is repurchasing back short-term
debt!

A.5.2 Extensions of Section 4
Suppose that the firm borrows from another group of debt holders holding consol bonds with coupon cconsol a la
Leland (1994), which is absent from rollover concerns. To make the analysis stark and simple, we assume that these
consol bonds get zero payment in both the upper and the default events.22 As a result, the valuation formula for the
long-term and short-term bonds remain identical. The equity holder’s problem remains almost the same, with the
only adjustment of an additional coupon outflow of cconsol. The default boundary becomes

Φ (yb) =
1

δS − δL

[
yb − c− cconsol + ζErf

1−B (yb)
− δL

]
,

which affects the endogenous time-to-default τ . The value of consol bonds, denoted by Dconsol, is given by

Dconsol (τ, yb) =
ρcconsol
r + ζ

[
1− e−(r+ζ)τ

]
,

with ∂
∂φ
Dconsol (φ, y)

∣∣∣
τ=0

= ρcconsol
∂τ
∂φ

< 0. Intuitively, shortening maturity structure leads to an earlier default and
hence a lower value of consol bonds.

Now the firm value includes the value of consol bonds. As before, we can decompose the local effect of maturity
shortening on the firm value, i.e., Vφ (φ, y), into

Vφ (φ, y) = Eφ (φ, y) + ∆ (φ, y)︸ ︷︷ ︸
Incentive compatibility

+ φ
∂

∂φ
DS (φ, y) + (1− φ)

∂

∂φ
DL (φ, y)︸ ︷︷ ︸

Impact on ST & LT bonds

+
∂

∂φ
Dconsol (φ, y) .︸ ︷︷ ︸

Impact on consol bonds

(A.67)

The last negative term is increasing in cconsol and may dominate the second positive term in a maturity-shortening
equilibrium, leading to Vφ (Φ (yb) , yb) < 0.

22Zero recovery in the default event can be justified by the assumption that the consol bonds are junior to the term
bonds we analyzed so far.
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A.6 Additional Graphs

Figure 4: Default regions and default issuance policies. Left panel: Equilibrium default regions.
Blue solid is long-only equilibria, red dot-dashed is short-only equilibria, green dotted is interior equilibria,
and dashed are inaccessible parts of the boundary (no path starting from outside the bankruptcy region can
end here). Right panel: Issuance policies at default, fτ=0, as a function of default cash-flow yτ=0. The
blue solid segment of the left panel corresponds the issuance line flat at 0. The green dotted segment of the
left panel corresponds to the strictly increasing part of the issuance line. The red dot-dashed segment of the
left panel corresponds to the issuance line flat at 1. The dashed segment of the left panel corresponds to the
discontinuity in the issuance line.
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