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Abstract

Agri-environmental schemes (AES) are a central component of the environmental policy of

the European Union. Despite widespread interest and investment in AESs, few of these pro-

grams have been carefully evaluated and doubts are often expressed about the effectiveness

of voluntary programs. The purpose of this article is to estimate the additional effects of AESs

targeting nonpoint source pollution from pesticides, focusing on one emblematic case study:

herbicide use in vineyards. We use original data collected from winegrowers participating in

AESs in the south of France, and we use exogenous variation in the timing of the implemen-

tation of the AESs as a natural experiment. We show that the quantity of herbicides used by

participants in the program in 2012 was around 30% below what they would have used without

the program, while the impact was significantly higher in 2011 - around 50% - presumably be-

cause of higher weed pressure. Although significant, these impacts remain smaller than what

had been expected by policy makers. Focusing on the “zero herbicide between the vine rows”

option, which is both the most often chosen as well as the least stringent among the mea-

sures, we moreover show the presence of windfall effects. Simple extrapolation of these results

suggests that this level of effectiveness may not be sufficient to ensure water quality in the wa-

tersheds targeted by the AES.

Key words: Agri-environmental scheme, water quality, nonpoint source pollution, herbicides,

pesticides, natural experiment.
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1 Introduction

Increasing concern over the environmental impact of agriculture led to the introduction of agri-

environmental schemes (AESs) in the European Community in the mid-1980s. AESs are volun-

tary contracts under which farmers are offered payments for reducing the negative externalities

of agricultural production, and constitute a central component of the environmental policy of the

European Union.1 However, doubts are often expressed about the effectiveness of these programs.

Because AESs are voluntary programs whose requirements and per-hectare payments are generally

constant for all farmers, the potential for adverse selection is high (Fraser, 2009; Chabé-Ferret and

Subervie, 2013). Indeed, farmers receive payments in exchange for adopting certain agricultural

practices, ones that they may well have adopted even in the absence of these payments. In the

extreme case in which an AES attracts only farmers who would have behaved the same way in the

absence of payment, the additional effect of the AES is null, while the windfall effect is maximum.

Despite widespread interest and investment in AESs (Uthes and Matzdorf, 2013; Udagawa,

Hodge and Reader, 2014), few programs have been thoroughly evaluated. Chabé-Ferret and Subervie

(2013) show that French AESs that impose strong requirements, such as the AES subsidizing con-

version to organic farming, had large additional effects and almost non-existent windfall effects.

On the contrary, the authors find that AESs with modest aims, such as the AES only requiring farm-

ers to add one crop to the rotation, have generated very limited additional effects. Pufahl and

Weiss (2009) moreover show, from a non-representative sample of German farms, that benefiting

from AESs may significantly reduce the purchase of farm chemicals. To our knowledge, there has

been no evaluation of AESs specifically targeting the use of pesticides to date.

Contamination by pesticides from agriculture is a source of water quality degradation in sev-

eral countries in the European Union. This occurs when pesticides used in fields are picked up and

carried away by runoff and deposited into lakes, rivers, wetlands, coastal waters, and underground

sources of drinking water. These pollutants are of increasing concern because of their potential im-

pacts on the environment, wildlife, and human health. Within the context of the European Union

water framework directive, French AESs that aim to reduce pesticide runoff from fields have been

implemented in watersheds where water quality improvement has been identified as a priority.

Despite their importance, these AESs have received little attention with respect to their impacts on

agricultural practices. The purpose of this article is to estimate the additional and windfall effects of

AESs targeting nonpoint source pollution from pesticides, focusing on one emblematic case study:

herbicide use in French vineyards.

Of all the cropping systems in France, wine growing uses the most pesticides, with an average

application of 16 phytosanitary treatments per hectare in 2010. Indeed, growing wine grapes re-

quires high levels of protection against bio-aggressors and competitive weeds in order to ensure

adequate levels of production (Agreste, 2012). Among the chemicals used by winegrowers, her-

bicides are the most commonly detected in the ground and surface waters. Given the extent of

winegrowing and its heavily reliance on herbicides, incentivizing winegrowers to reduce their use

1The European Agricultural Fund for Rural Development (EAFRD) has been allocated a budget of EUR 96.3 billion for
the period 2007-2013 (20% of the funds dedicated to the CAP), of which EUR 1.8 billion has been allocated to French
AESs. Figures are available here: http://agriculture.gouv.fr/pac-developpement-rural-feader.
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of herbicides is a major challenge. Languedoc-Roussillon contains the most vineyards of any re-

gion in France, covering 236,500 ha and constituting 30% of the nation’s vineyards. Two out of

every three farms in the region grow wine grapes (Agreste, 2011). The AESs implemented here

are area-specific and designed to address specific environmental issues, including water pollution.

AESs targeting pesticide use were introduced in 2007 and include a major innovation compared to

previous AESs: they target the most environmentally-sensitive sites and are implemented by local

operators (hereafter referred to as site operators). These AESs are currently implemented in 29 wa-

tersheds in the Languedoc-Roussillon region, most of which exhibit levels of herbicide residues

exceeding the regulatory limit.

The main alternatives to using herbicides for weed control are mechanical methods such as

tillage, controlled grassing, and mowing. However, mechanized weeding under vine rows requires

specific investments, and farmers willing to reduce their use of herbicides without these further

investments usually combine the use of mechanical alternatives between the rows with chemical

weeding underneath the rows. Because these alternative techniques have been increasingly im-

plemented by farmers (19 percent of vineyards using no herbicides before the AESs were launched

(Agreste, 2012)), the additional impact of the monetary incentives offered to farmers for reducing

their use of herbicides deserves evaluation.

Previous work on the evaluation of AESs relies on non-experimental data and has relied on

identification strategies that address the issue of self-selection bias (Chabé-Ferret et Subervie, 2013;

Pufahl et al., 2009; Udagawa et al., 2014). To do so, these studies employed DID-matching meth-

ods, which eliminate selection bias by comparing participants in AESs to observationally-identical

non-participants, assuming that farmers’ self-selection into AESs is due to both observable and

unobservable factors that are constant through time (Heckman, Ichimura, and Todd, 1997). We

depart from the approach used in these studies by exploiting exogenous variation in the timing of

the implementation of the AESs. Because the process governing the eligibility of winegrowers for

an AES arguably resembles random assignment, we are able to circumvent the empirical issue of

self-selection and to estimate the causal effect of the AES on pesticides use. We are moreover able

to assess this effect over time because our dataset includes almost all participants in the AES un-

der study in two consecutive years: 2011 and 2012. We show that the quantity of herbicides used

by participants in the program in 2012 was around 30% below what they would have used with-

out the program, while this impact was significantly higher in 2011 - around 50% - presumably

because of higher weed pressure. Our results moreover show that the farmers who engaged in the

“zero herbicide between the rows” option, both the most often chosen as well as the least stringent

measure, would not have applied as much herbicides as expected in the absence of the AES, which

indicates the presence of a windfall effect. Although significant overall, the specific impacts we

find remain smaller than those initially expected by policy makers. Simple extrapolation of these

results moreover suggests that these AESs may not be sufficient to ensure improved water quality

in the watersheds targeted by the AES.

The remainder of this article is organized as follows. We first present the theoretical framework,

which allows us to define the parameter we aim to recover. We then present the data and the identi-

fication strategy used. Thereafter we present and discuss the results of the evaluation of the overall
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program and of one specific measure - the so-called “zero herbicides between the vine rows”. We

present results that are based on the natural experiment assumption, as well as those we obtain

from various matching estimators. We also present the results of several robustness checks and of

a sensitivity test. Finally, we present some illustrative figures in order to discuss the likely impact

of the AES on water quality.

2 Theoretical framework

In order to define the parameter that we aim to recover in the empirical analysis, we use the frame-

work provided by Chabé-Ferret and Subervie (2013). We model a winegrower who decides to par-

ticipate or not participate in the AES and chooses the level of herbicide use that maximizes his

utility given the AES requirements. Equation (1) assumes that the winegrower derives his utility

U from consumption C , leisure L, and on-farm work H . His utility also includes his taste or dis-

taste for herbicide use Y , as well as consumption shifters S (such as family size) and others that

are generally unobservable, such as ecological preferences (δ). The production function presented

in Equation (2) shows that the winegrower produces the quantity Q, whose price is pQ , using a

quantity of herbicides that we denote Y , labor (H), physical and human capital and land (I ), as

well as other unobservable factors, such as managerial ability, land quality, and climate conditions

(ε). If the winegrower enters the AES (AES = 1), he receives financial compensation P and must

restrict his use of herbicide Y , so that Y ≤ Ȳ (Equation 3). The winegrower derives income from

farming, from the AES if enrolled, and also from working H off hours off of the farm for a wage w

(Equation 4). Equation (5) describes the time constraint.

max
C ,L,H ,H off,Y

U (C ,L, H ,Y ,S,δ) (1)

subject to:

Q = F (Y , H , I ,ε) (2)

AES.(Y − Ȳ ) ≤ 0 (3)

C = pQQ −pY Y +w H off +AES.P (4)

L+H +H off = J (5)

The first order condition for the input level is:

∂U

∂C

(
pQ ∂F

∂Y
−pY

)
+ ∂U

∂Y
−λY AES = 0

where λY is the Lagrange multiplier. When AES = 0, the winegrower uses the quantity of herbicide

Y 0 that equalizes the marginal increase in utility, due to a marginal increase in agricultural profits,

with the marginal disutility of using inputs:

Y 0 = g0(pQ , pY , w, J , I ,S,ε,δ)

4



When AES = 1, the winegrower uses the quantity of herbicide Y 1:

Y 1 = g1(P, Ȳ , pQ , pY , w, J , I ,S,ε,δ)

The individual-level causal effect of the AES is thus equal to (Y 1 −Y 0) and is by definition un-

observable. The parameter of interest that we aim to estimate is the average causal effect of the

AES on the amount of herbicides used by those who actually participated in the AES, the so-called

Average Treatment effect on the Treated (ATT):

ATT = E [Y 1 −Y 0|AES = 1] = E(Y 1|AES = 1)︸ ︷︷ ︸
observable

−E(Y 0|AES = 1)︸ ︷︷ ︸
unobservable

As in most impact analyses, the average level of herbicide that would have been used by partici-

pants, had they not participated in the AES, E(Y 0|AES = 1), is unobservable in our data. The pur-

pose of the empirical analysis is precisely to estimate this level.

3 Sample and Data

Our sample includes winegrowers located in three counties of the Languedoc-Roussillon region in

the south of France - watersheds where water quality improvement has been identified as a prior-

ity by public authorities. Between 2007 and 2013, 414 farmers in this area engaged a total number

of 8,672 hectares of land in the AES pertaining to water quality. This amounted to a budget of

8.8 millions e.2 Winegrowers were given the opportunity to participate in AESs aiming to reduce

herbicide use, the main pesticide responsible for nonpoint source water pollution in the area. They

were able to choose one or more of four possible options: convert to organic wine growing in ex-

change for 350e/ha, eliminate all herbicide use for 243e/ha, reduce herbicides use by 40% of the

regional standard for 141e/ha, and eliminate herbicide use between vine rows only for 165e/ha.

Of the 4,268 ha of vineyards engaged in the scheme between 2007 and 2012, our database includes

3,390 ha, or approximately 80% of the total area under contract in the region.3 Table 1 shows that

the most frequently chosen option in our sample was eliminating herbicide use between the vine

rows only, chosen by 79% of farmers in the engaged areas. This proportion is very close to the

actual regional take-up of 72%.

The sample used for analysis includes exclusively participants in the AES (Table 2). These

winegrowers are expected to differ from other winegrowers in various dimensions. Indeed, many

individual-specific factors may determine participation in AESs that target pollution from herbi-

cides. For example, the size of the labor force working on the farm can influence the adoption of

alternatives to herbicide use, as these practices are more time-consuming. The availability of water

for irrigation can also facilitate weed control through the practice of grassing, as this reduces com-

petition for water in the soil under the vines. In contrast, steep slopes in the vineyard could present

2Data are available here: http://draaf.languedoc-roussillon.agriculture.gouv.fr/Commissions-regionales-agro
3Our data also include an additional 238 hectares engaged in 2013. Unfortunately, we were not able to collect all

necessary data regarding the areas under contract in 2013.
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an obstacle to implementing mechanized weeding practices. Additionally, the type of grape pro-

duced and the wine-making process involved can influence the sale price of the production, and

indirectly the motivation and ability of farmers to begin reducing their use of pesticides. Finally,

the degree of a household’s reliance on farm income is likely to decrease the probability of partici-

pation in an AES, as a reduction in pesticide use is expected to increase yield variability.

In order to study to what extent winegrowers from our sample differ from neighboring non-

participants, we estimate a logistic regression where the participation in the AES depends on a va-

riety of individual-specific factors. To do so, we matched our data to the French Agricultural Census

that was conducted in 2010 by the Department of Statistics of the French Ministry of Agriculture.

This database contains a detailed description of every farm during the farming year 2009-2010, i.e.

before the first wave of participation in the AES in 2011. In order for this comparison to make sense,

we focus on a subset of winegrowers from this database who were eligible for the AES.4 Results are

displayed in Table 3. The results suggest that winegrowers who had received agricultural education

or training and whose spouse also works on the farm are two times more likely to participate in the

AES. They also indicate that those who produce wine under geographically protected appellations,

which guarantees higher sale prices, are more likely to participate in the AES. In our data, the ge-

ographical conditions faced by participants do not differ from those faced by non-participants.

Interestingly, the proportion of Utilized Agricultural Area (UAA) cultivated without herbicides is

not significantly higher among participants, which suggests moderate windfall effects of the AES.

The quantity of herbicides used by winegrowers is private data, and even if most of the wine-

growers maintain records of the treatments that they apply, they are under no legal obligation to

provide this information. However, data of this sort are routinely solicited of winegrowers partici-

pating in AESs. Indeed, every farmer willing to participate to the scheme was required to undergo

a diagnosis of his farm by a certified technician who was frequently the site operator himself. As

part of this diagnosis, information on the quantity of herbicides used during the previous farming

season was collected for each plot on the farm. This appraisal was conducted every year during

the entire period of the AES through an annual follow-up. We collected both the initial diagnosis as

well as the follow-up documents held by the site operators for almost every farmer participating in

the scheme. Our sample includes farmers who entered the scheme in 2010, in 2011, in 2012, or in

2013. For farmers who entered the scheme in 2010 (resp. 2011; 2012; 2013), we were able to collect

data on the quantity of herbicides used in 2009, 2010, 2011 and 2012 (resp. 2010, 2011 and 2012;

2011 and 2012; 2012). From these documents, we were able to calculate the quantity of herbicides

used by winegrowers on the plots under contract, as measured through the Treatment Frequency

Index (TFI). This index represents the number of so-called reference doses of herbicides applied

during a farming year (Pingault et al., 2009). The reference dose is often considered the normal

4As no listing of the eligible farmers was available, we focused on farmers located in the same municipalities as par-
ticipating farmers, assuming that they were eligible, as well. Indeed, the main criterion for eligibility was the location of
the vineyard within one of the areas targeted for water quality recovery.
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dose, as it corresponds to the efficient dose of a product for a specific culture and pest:

TFI = treated area

total area
∗ dose used

reference dose

For example, if the reference dose of an herbicide is spread over the entire area of a plot, then the

TFI of the plot equals one. If the herbicide is spread at its reference dose but only under the vine

rows, the TFI of the plot equals 1/3 (because the space between vine rows is roughly twice as wide

as the vine row).

4 Identification Strategy

Our sample includes three groups of winegrowers: those who entered the AES in May 2010, those

who entered the AES in May 2011, and those who entered the AES in May 2012. These data allow

us to estimate two impacts: the impact of the AES on herbicide use in 2011 (that we note ATT2011)

as well as the impact of the AES on herbicide use in 2012 (that we note ATT2012). The definition of

the identification strategy for the impact in 2011 is:

ATT2011 = E(TFI1
2011|AES2011 = 1)−E(TFI0

2011|AES2011 = 1)

where E(TFI1
2011|AES2011 = 1) measures the amount of herbicides actually used in 2011 by those

who were participants in the AES in 2011 and E(TFI0
2011|AES2011 = 1) measures the amount of her-

bicides that would have been used in 2011 by the same group had they not participated in the

AES. From the group of winegrowers who entered the AES in May 2010, we are able to estimate

E(TFI1
2011|AES2011 = 1) directly using the mean value of the TFI. Obviously, we are not able to esti-

mate E(TFI0
2011|AES2011 = 1) from the same group. However, we can estimate this from the group

of individuals who entered the scheme in May 2012, provided the following assumption holds:

E(TFI0
2011|Z ,AES2011 = 1) = E(TFI0

2011|Z ,AES2012 = 1)

where Z denotes the set of information available to the winegrower when deciding to participate

in the AES. This assumption means that the mean value of the TFI that we observe in 2011 among

those who entered the AES in 2012 equals the mean value of the TFI that we would have observed

in 2011 among those who entered the AES in 2010, had they not participated in the AES.

In order to discuss to what extent such an assumption is likely to hold, we must examine a farm-

ers decision to enter the AES. Returning to the theoretical framework, we model the winegrowers’

decision to enter the AES in the following way:

AES = 1{E(V1 −V0|Z )−W ≥ 0}

where W is the disutility of applying for the AES (due to various transaction costs, for example), V1

is the indirect utility of the individual when he participates, and V0 is the indirect utility when he

does not. The selection bias problem occurs when some factors stored in Z are also determinants
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of herbicide demand, which is likely to be the case in our framework:

Z = (P, Ȳ , pQ , pY , w, J , I ,F,ε,δ)

For example, one can reasonably suppose that winegrowers who feel concerned about environ-

mental issues (those who have a high δ) are simultaneously more likely to participate in AESs and

less likely to use herbicide even in the absence of any AES (they have a low TFI0). Because the level

of δ determines the level of TFI0, the participant group and the comparison group must have the

same δ on average when deciding to enter the AES in order for the comparison we propose to be

valid.

Areas under study were eligible to participate in the AES at different dates due to administrative

delays, which we believe to be exogenous to winegrowers’ practices. In practice, AES implemen-

tation by local operators in priority areas required many administrative procedures that ended up

delaying the availability of contracts to farmers. As a first requirement, each priority watershed un-

derwent a hydro-geological diagnostic in order to assess its vulnerability and accurately delineate

the limits of the area targeted for the AES. An official decree then had to validate this delimitation.

Next, a local operator was nominated to design an agri-environmental project on the basis of a

second diagnostic. This second diagnostic aimed to identify the current farming practices in use at

the site in order to best adapt the proposed options to the needs of the local farmers. The operator

was required to choose from a national menu of options, two options that were to be offered to the

farmers at his site for each farming activity. As the last requirement, the final scheme had to be

validated by a regional committee that meets once per year. After this process was complete, the

operator was then in charge of introducing the AES to the farmers at his site. Farmers willing to

participate then had to send in an application form by the 15th of May. The time needed to imple-

ment these steps was highly heterogeneous between sites, which contributed to the incremental

availability of the AES to farmers in different areas. We make use of this exogenous variation in the

timing of AES implementation in order to estimate its causal effect on the quantity of herbicides

used by participating farmers.

Because our sample includes only farmers who engaged in the AES as soon as they were offered

the opportunity to do so,5 we assume that the individuals who entered the scheme in May 2010

and the individuals who entered the scheme in May 2012 had the same probability of entering the

scheme in 2010, given Z . If we accept the qualitative information available regarding the timing

of the program’s implementation, then participants and future-participants differed only in their

eligibility, which is exogenous to their practices. Under this assumption, the impact of the AES

in 2011 can then be properly identified through a comparison of the average use of herbicides of

participants located on early-approved sites (eligible in 2010) with the average use of herbicides of

future participants located on late-approved sites (eligible in 2012). While we are not able to test

the natural experiment assumption directly, we are able to test whether both groups have similar

observable characteristics in 2009, i.e. before the first wave of participation in the AES, using data

5Eligibility and participation indeed coincide for most individuals in the sample. We intentionally drop the small
number of those who did not choose to enter the scheme as soon as it was available because we doubt that those farmers
have similar environmental concern and motivation as those who chose to enter without delay.
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obtained from the French Agricultural Census. In addition, we can test the sensitivity of the iden-

tification strategy in order to determine how strongly an unmeasured variable must influence the

selection process such that it undermines the effectiveness of the identification strategy. Results of

those tests are presented in Section 5.

Finally, even if the natural experiment assumption holds, we must make a second assumption,

known as the Stable Unit Treatment Value Assumption (SUTVA) for the identification to be valid

(Rubin, 1978). SUTVA requires that the treatment received by a subject does not alter the outcome

for other subjects. The SUTVA assumption fails if, for example, the quantity of herbicides used by

farmers in late approved sites had been influenced by the implementation of the scheme in early

approved sites. It is very unlikely that such a phenomenon occurred in our framework, as groups

are usually located on sites distant from each other. Participation of first-wave farmers may have

encouraged the participation of second-wave farmers to some extent, but this does not invalidate

the identification strategy as long as second-wave participants did not change their practices be-

fore they entered the scheme. We test the SUTVA in Section 5.

5 Results

In this section, we present and discuss the results of the estimations based on the natural experi-

ment assumption, as well as those we obtain from various matching estimators. We also present

the results of several robustness checks and a sensitivity test. Finally, we present some illustrative

figures in order to discuss the likely impact of the AES on water quality.

5.1 Overall impact of the AESs

In order to properly estimate the impact of the AES on farmers, we compare current participants

to future participants in the AES. Based on the previous section, we argue that current participants

and future participants had similar probabilities to enter the AES in 2010 given their characteristics

Z . Under this assumption, we can recover the average treatment effect of the AES by comparing

them directly without controlling for their characteristics. Nevertheless, we present both estima-

tors (the direct comparison and the comparison conditioned on covariates) as a robustness check.

In order to estimate the impact of the AES in 2011, we first compare the TFI between the group

of individuals who engaged in the AES in 2010 and the group of those who engaged in 2012. In

order to obtain a standard error, we simply regress the outcome on the treatment variable, which

is a dummy variable that takes on the value of one when treated and zero otherwise. The results

are displayed in Table 4 (Panel A). They show that the AESs have a significant and large overall

impact on the TFI in 2011: the quantity of herbicides used by participants in the program was 50%

below the quantity that would have been used without the program. We run the same regression

excluding the number of farmers who engaged in organic farming schemes because we suspect

that they may drive this estimate (Panel B). The result does not change.

We then run the regression on Panel C, in which individuals in the treatment group are those

who engaged in 2010 or 2011, while individuals in the control group are those who engaged in
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2013. Results show that the quantity of herbicides used by participants in the program in 2012

was 0.45, i.e. 38% below the quantity used in the control group. Unfortunately, this result lacks

precision (we reject the null hypothesis at the 10% significance level only). In order to increase

the sample size, we test the hypothesis that farmers who engaged in the AES in May 2012 can be

considered as controls in 2012. It is indeed reasonable to believe that farmers who engaged in the

AES in May 2012 were not able to meet the contractual commitments before the next grape harvest

(September 2012) due to the fact that a large portion of herbicide applications occur before May.

We thus compare the mean value of the TFI in the subgroup of farmers who engaged in the AES

in May 2012 to the mean value of the TFI in the subgroup of farmers who engaged in May 2013.

The result shows that the TFI does not differ significantly across these groups.6 We conclude that

SUTVA holds in our data (see Section 4) and consequently that farmers who engaged in the AES in

2012 can be considered as untreated in 2012. Results of the estimation from the sample in which

the individuals used as controls are those who engaged in 2012 or 2013 are displayed in the lower

part of Table 4 (Panel D). As expected, the estimate appears to be more precise (we now reject the

null hypothesis at the 5% significance level). The impact is now slightly smaller:7 the quantity of

herbicides used by participants in the program in 2012 was 0.6, i.e. 27% below the quantity used in

the control group.

Taken together, the results from Table 4 suggest that the impact of the AESs in 2011 was larger

than in 2012. In order to test the assumption that these impacts actually differ, we estimate a panel-

data model focusing on the subgroup of individuals for whom we have data on TFI in both years

2011 and 2012:

TFIi t =α+β0AESi +β1AESi ∗Tt +β2Tt +εi t

where the variable AES takes on the value of one when the farmer is treated and zero otherwise.

Individuals used as treated are those who engaged in 2010, and individuals used as controls are

those who engaged in 2012.8 The variable T takes on the value of one in 2011 and zero in 2012,

the variable AES*T is an interactive term, and α refers to the constant term of the model. In this

regression model, the estimate of the impact in 2011 equalsβ0+β1, while the estimate of the impact

in 2012 equals β0. Results are displayed in Table 5. Columns (1)-(2) display results from the entire

sample. Taking the average effect in both years, our results suggest that the AESs had a significant

impact on TFI - specifically a 45% decrease compared to the counterfactual situation (Column 1).

Regarding the heterogeneity of the impact across years, results in Column 2 confirm that the impact

in 2011 indeed differs from the impact in 2012 (we reject the null hypothesis that β1 equals zero at

the 1% significance level).

Results in Column 2 moreover show that the effect of “being in 2011”, as measured through the

variable T , is zero for individuals who participated in the AES (0.21−0.22 ≈ 0), while it is signifi-

cantly different from zero and positive for individuals who did not participate in the AES (0.21 6= 0).

6Results of the regression are available from the authors upon request.
7Compared to Panel C, Panel D includes a larger number of individuals but excludes farmers engaged in organic

farming schemes
8As previously, we assume that SUTVA holds, i.e. that farmers who engaged in 2012 are considered as untreated in

2012.
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In other words, the mean value of the TFI in the control group was significantly higher in 2011

than in 2012, which explains why the impact in 2011 appears larger than the impact in 2012. This

result is in line with rainfall data for these years, which indicates higher weed pressure in 2011 (Di-

rection régionale de l’Environnement, de l’Aménagement et du Logement, 2011, 2012). Columns

(3)-(4) display results from a sample that excludes farmers engaged in organic farming schemes.

The results hold in this case, as well.

5.2 Additional and windfall effects of the “zero herbicide between the rows” option

Next, we turn to the impact analysis of one specific AES, the so-called “zero herbicide between the

rows” option, for which the sample size is large enough. Results are displayed in Columns (5)-(6)

of Table 5. This AES option is interesting because it is both the most often chosen as well as the

least stringent among the measures that target herbicide use - characteristics which are probably

related. Results displayed in Column (5) show that the average effect of this AES, taking all years

together, is significantly different from zero at the standard level of significance. The TFI in the

treated group was only 0.21 points below the TFI in the control group (0.95), which corresponds to

a 22% decrease compared to the counterfactual situation. This result calls for two comments.

Firstly, this impact seems small. Given that farmers who commit to not applying herbicides

between vine rows are expected to have a TFI that equals 0.32, i.e. 1/3 of the counterfactual level

(0.95/3 = 0.32),9 one would expect an impact of -0.63 (0.32-0.95=-0.63) rather than our estimated

impact of -0.21. Note that this result does not imply that participants in the AES did not meet the

contractual commitment. Rather, it suggests that those farmers would not have applied as much

herbicides as expected in the absence of the AES. Put differently, in order for the impact of the

AES to be −2/3 of the counterfactual level of herbicide use, the counterfactual level would have to

exceed 2 (0.75∗ 3 = 2.2). It appears that in the absence of the AES, winegrowers would not have

applied such a high level of herbicides. This suggests the presence of some windfall effect.

Secondly, results in Column (6) show that the impact of this AES varies across years (we reject

the null hypothesis that β1 equals zero at the 5% significance level). Specifically, the impact ap-

pears significantly different from zero in 2011, but not in 2012. In 2011, the average TFI in the con-

trol group was equal to 1.03 (0.84+0.19), while the average TFI in the treated group was 0.29 points

below (1.03−0.29 = 0.74). The story is slightly different in 2012, when the average TFI in the control

group reached 0.84 only (which corresponds with lower weed pressure in 2012 due to a drought

in the region), while the average TFI in the treated group was only 0.06 points below the counter-

factual level (0.84− 0.06 = 0.78). This result suggests that farmers complied with the contractual

commitment during the first year of their agreement (with a TFI close to 0.7) and maintained these

practices afterwards, and that the use of herbicides in the control group fluctuated between the

two years (with a TFI close to 1 in 2011 and close to 0.8 in 2012). As the mean TFI in the control

group approaches the mean TFI in the treated group in 2012, the impact of the AES on herbicide

use becomes statistically null.

9Public authorities indeed expected that winegrowers would divide the quantity used by 3, as the space between vine
rows is roughly twice as wide as the vine row.
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5.3 Discussion on spatial variability

As noted in the theoretical framework, the amount of herbicides farmers apply depends not only

on individual-specific factors (such as physical and human capital) but also on area-specific fac-

tors pertaining to geographical constraints (e.g. soil type, topography, and climatic conditions like

temperature and rainfall). For example, the quantity of herbicides used during rainy years is ex-

pected to be higher than during dryer years, all other determinants being equal, because of the

higher weed pressure that rainfall generates. Our sample includes farmers who are spread over

a fairly wide area (Figure 1). Notably, when comparing average levels of TFI among participants

and future participants, to some extent we compare farmers located in the east zone of the region

under study to farmers located in the west zone. In order to avoid potential bias in the estimate

of the impact of the AES that could arise due to spatial variability in geographical characteristics,

we perform the estimations by focusing on a subset of farmers who are very close to each other

geographically and who constitute a large enough sample to ensure accurate results.10 In doing

so, we drop 23% of the observations from the initial sample. Results are displayed in Table 6. As in

Table 5, columns (1)-(2) display results from the entire sample; columns (3)-(4) display results from

a sample that excludes farmers engaged in organic farming schemes; and columns (5)-(6) display

results from a sample that includes only farmers engaged in the so-called between-the-rows op-

tion. Results appear very similar to those obtained from the initial sample. We conclude that the

data we use from western areas do not bias the estimates.

5.4 Alternative identification strategy

In relying on the natural experiment assumption, we believe that current participants and future

participants did not differ on average in their likelihood to participate in the AES in 2010. Alter-

natively, if we assume that current participants differ from future participants in some factors X

that are observable to us before the AES starts, we can use a quasi-experimental approach in order

to estimate the ATT. The idea behind this is the following: if current participants and future par-

ticipants are similar on average in all of their characteristics (the natural experiment assumption),

then they are similar a fortiori in characteristics that are observable to us. Thus, employing a quasi-

experimental approach should provide the same results as the simple comparison of TFI between

groups.

The validity of matching estimators of the AES impact in 2011 relies on the following assump-

tion:

E
(
TFI0

2011|X2010,AES2011 = 1
)= E

(
TFI0

2011|X2010,AES2011 = 0
)

In practice, matching estimators eliminate the selection bias caused by observable characteristics

X by comparing the TFI of current participants with those of observationally-identical matched

future-participants (Imbens, 2004). There are a variety of matching estimators. We use the nearest-

neighbor matching estimator (Abadie et al., 2004), the kernel-based matching estimator, and the

10Further east, in Gard county, are the territories of Malaven, Camp de Cesar, and Briançon. Farmers in these areas are
not separated by more than 40 km.
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local linear matching estimator (Leuven and Sianesi, 2003). The general form of the matching esti-

mators is:

E(TFI1 −TFI0|AES = 1) = 1

n1

∑
i∈I1∩SP

(
TFI1

i −E(TFI0
i |AES = 1, Xi )

)
with

E(TFI0
i |AES = 1, Xi ) = ∑

j∈I0

λi j TFI0
j

where I1 denotes the group of treated farmers, I0 denotes the group of untreated farmers, and n1

is the number of treated farmers in I1. SP denotes the common support, the subset of treated

farmers for whom the density of observationally-identical untreated farmers is higher than some

cut-off level (Todd, 2008).

Matching estimators differ in how matched untreated farmers are selected through the match-

ing procedure. This is driven by the weights λi j that we assign to potential matches given their

characteristics X . The nearest-neighbour matching estimator matches each participating farmer

to the one or two closest future-participants (closest in terms of vector X ). It is important that

the covariates X are not affected by the treatment (Imbens, 2004), which is why we utilize 2010

values from the French Agricultural Census. Moreover, we also apply the matching procedure to

the summary statistic Pr(AESi = 1|Xi ), also called the propensity score (Rosenbaum and Rubin,

1983). We obtain the individual propensity scores by estimating the probability of participating in

the AES, conditional on the control variables X , from a sample that includes participants, future-

participants and non-participants of the neighbouring areas (see Section 3). In this model, the de-

pendent variable takes on the value of one when the individual is a participant or future-participant

and zero when the individual never participated in the AES. As expected, given their characteristics,

participants and future participants have similar likelihoods of participating in the AES in 2010, as

shown in Figure 2 and Figure 3. Finally, we use the asymptotically-consistent estimator of the vari-

ance of the nearest-neighbour matching estimator provided by Abadie and Imbens (2006), and we

implement a bootstrap procedure of 500 repetitions in order to generate an estimator of the vari-

ance of the kernel and local linear matching estimators.

Another, computationally easier, way to obtain an estimate of the ATT is to run an ordinary

least squares regression of the following model:

TFIi = γ0 +γ1AESi +γ2Xi +µi

where γ1 is the impact that we seek to estimate. However, in addition to the assumption of linearity,

doing so would require supposing that γ1 is constant across X , meaning that the impact of the AES

is the same for all participants. Without any evidence for such an assertion, we present the results

of the matching approach, which does not require specifying the functional form of the outcome

equation and relaxes the assumption of constant additive treatment effects across individuals. We

also present the results of linear regressions as a robustness check.

Table 7 displays the mean level of covariates X from the French Agricultural Census for farmers

in each group. Columns 1 and 2 refer to current participants and future participants respectively,

who are used for the direct comparison of the mean TFI in 2011. Column 3 refers to the subset of
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future participants who ended up in the control group following the matching procedure.11 These

figures show that even before we apply the matching procedure, the treated and untreated groups

do not differ in most features. This result suggests that there was no selection of a specific type

of winegrowers into the first-wave implementation of the AES. Importantly, they did not differ in

terms of herbicide use, as the area with zero herbicide use was close to 0.25 in both groups. This

result is in line with the natural experiment assumption that both groups should not differ in any

dimension before the launch of the program. The matching procedure performed quite well in

reducing some differences between covariates through the delimitation of the new control group;

although these differences remain statistically significant because of the sample size (36 observa-

tions only in each group).

Table 8 gives the estimated ATT in 2011 from the direct comparison between groups (first row

of the table) and from the matching estimators. The results appear remarkably stable, with a TFI

gap between groups of nearly -0.5 points in all cases. We turn next to the estimated ATT in 2012

(Table 9). Here again our estimates are significant and very similar to our main result, with a TFI gap

between groups close to -0.3 points, although this result is slightly more scattered and sometimes

less precise. These results provide evidence that our main findings based on the natural experiment

assumption do not suffer from any selection biases that are due to observable factors.

5.5 Sensitivity test

Although our empirical strategy is likely to perform well, there remains the possibility of a selec-

tion bias due to unobservable factors. Rosenbaum (2002) uses an approach that determines how

strongly an unmeasured variable must influence the selection process in order to undermine the

results of the matching analysis. Two farmers with the same observed characteristics may differ in

the odds of participating in the AES by at most a factor of Γ. We thus search the critical levels of Γ at

which the estimated ATT would become insignificant. This search indicates that the critical value

for Γ is greater than 3. This means that two farmers who have the same observable characteristics

X would have to differ in their odds of program participation by a factor of 3 (200%) in order to

render the ATT estimated from the matching procedure insignificant. We can thus conclude that,

even though unobservable factors may play a role in the decision to enter the AES, it is very unlikely

that they would influence the odds of participation to such a large extent. We are thus confident

that our identification strategy performs well.

5.6 What is the impact on water quality?

We estimate that the AES leads to a 0.5 point reduction of the TFI in 2011, which means that the

participating farmers applied about half the quantity of herbicides that they would have applied

in the absence of the scheme. Such an evaluation is an important step toward the assessment of

the cost-effectiveness of the AES in improving water quality in French watersheds. Because we

do not know the proportion of winegrowers who participate in the scheme in each watershed, the

11Because the number of current participants is quite small, we did not apply the common support procedure, which
would have further reduced the sample size.
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quantity of herbicides used by all non-participants in each watershed, the exact location of each

participant, nor the contribution of their lands to global water pollution levels, we are not able to

conduct a complete cost-benefit analysis of the studied AES. Nonetheless, we are able to provide

some insights regarding the impact of the AES on water quality through some illustrative numbers.

Let us focus on a specific, commonly used herbicide, glyphosate, which has a reference dose of

1,440 g/ha. Depending on soil characteristics, 0.1 to 5% of the applied product ends up in surface

or groundwater. This means that at least 1.44 g/ha are likely to be carried away by runoff. An esti-

mated 1,500 cubic meters of water exits each hectare per year as runoff.12 As a result, assuming that

polluted water will replace all clean water in the long term, the concentration of glyphosate in the

water would be 0.96 µg/l, which is much higher than the legal limit for drinking water (0.5 µg/l).13

Supposing now that all winegrowers in a watershed chose to participate in the AES and that our

estimate of the ATT would be the same for all of them, the concentration of glyphosate in the wa-

ter would reach only 0.48 µg/l, which is below the legal limit for the level of pesticides in drinking

water. Under this scenario, the AES would have reduced the level of herbicides in regional water

sources just below the cumulated threshold for drinking water. However, under the assumption

that the maximum of 5% of applied herbicides are carried away by runoff, the AES would have lead

to a concentration in herbicides in the water exiting the plots equal to 24 µg/l instead of 0.48 µg/l,

which is much higher than the legal threshold. These simple calculations suggest that the success

of this AES in ensuring water quality is conditional on many factors.

6 Conclusions

The main results of our analysis suggest that the AESs targeting the reduction of herbicide use in

French vineyards had a significant impact on participants’ practices. We show that the quantity of

herbicides used by participants in the AESs in 2012 was around 30% below what they would have

used without the program, and that this impact was significantly higher in 2011 (around 50%).

These results are robust to various estimators, robustness checks, and a sensitivity analysis.

We moreover show that variation in the impact of the AES over time can be explained by sea-

sonal differences in weed pressure: while participants comply with the contractual commitment

during the first year of their agreement and maintained these practices afterwards, winegrowers in

the control group adjust the quantity of herbicides they use according to the weed pressure they

face in a given year. The mean value of the TFI in the control group is significantly higher in 2011

(a rainy year) than in 2012 (a dry year). Consequently, the ATT in 2011 appears larger than the ATT

in 2012.

Analysis of the least demanding but most adopted AES option - “zero herbicide between the

vine rows” - also shows that winegrowers who chose this option would not have applied as much

herbicide as expected in the absence of the AES. Put differently, in order for the impact of the AES

on herbicide use to reach the expected level, the counterfactual TFI would have to exceed 2. It

12Runoff can be roughly estimated as the difference between annual rainfalls, approximatively 650 mm in the region
under study, and annual evapotranspiration, which is on average 500 mm for vineyards.

13The legal limit for the level of pesticides in drinking water is 0.1 µg/l for each molecule of pesticide, with a maximum
cumulated level of 0.5 µg/l for all types of pesticides.
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appears that even in the absence of the AES, winegrowers would not apply such a high level of

herbicides. This suggests the presence of some windfall effect.

Results also indicate that the least stringent AES option (“zero herbicide between the rows”) has

a significant impact on herbicide use in 2011, but no significant impact in 2012, even though the

AESs taken together do have a significant impact in 2012. This suggests that least demanding AES

options are effective in avoiding pollution peaks when weed pressure is high (as in 2011), whereas

more demanding AES options guarantee an overall reduction in herbicide use even during easy

farming years in which less weed pressure is experienced (as in 2012).

Though additional work is necessary to measure the impact of the scheme on overall water

quality within the affected watersheds, our analysis constitutes a first step in this direction by

showing that, under certain conditions, these AESs are likely to reduce the level of herbicides in

water below the cumulated threshold for drinking water. This result is more likely to hold when the

quantity of herbicides carried away by runoff is small.

In conclusion, it is worth-mentioning that all of our estimates rely on existing data. Though

these data were available to us, their consistency was less than ideal because they were based on

sometimes sporadic reports submitted by the local site operators themselves. Future AES evalua-

tion would benefit from more complete data, the collection of which could be facilitated by greater

oversight of the reporting process on a national level.
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Table 1: Areas under contract in the sample

AES 2010 2011 2012 2013 Total %
phyto02 92.1 2.9 12.4 41.1 148.6 4%
phyto04 176.4 3.5 0.0 0.0 179.9 5%
phyto10 562.9 272.3 1840.8 197.7 2873.7 79%
couver03 0.0 0.0 17.8 0.0 17.8 0%
bioconv 119.1 149.2 103.7 0.0 372.0 10%
biomaint 0.0 0.0 37.7 0.0 37.7 1%
Total 950.5 427.9 2012.4 238.9 3629.7 100%
Note: Figures are expressed in hectares. AES phyto02 refers to the sup-
pression of herbicide use; AES phyto04 refers to the reduction in her-
bicides use by 40% of the regional standard; AES phyto10 refers to the
suppression of herbicide use between the vine rows; AES bioconv (resp.
biomaint) refers to the conversion to (resp. maintaining of) organic wine
growing.

Table 2: AES participation in the sample

AES 2010 2011 2012 2013 Total
phyto02 10 1 2 7 20
phyto04 6 1 0 0 7
phyto10 29 11 77 14 131
couver03 0 0 4 0 4
bioconv 5 7 7 0 19
biomaint 0 0 2 0 2
Total 50 20 92 21 183
Note: AES phyto02 refers to the suppression of herbicide use;
AES phyto04 refers to the reduction in herbicides use by 40%
of the regional standard; AES phyto10 refers to the suppres-
sion of herbicide use between the vine rows; AES bioconv
(resp. biomaint) refers to the conversion to (resp. maintain-
ing of) organic wine growing.
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Table 3: Determinants of participation in AES

Odds

Ratio Std. Err. z P>z

Date of birth 1.03 0.01 2.97 0.00 ***

Agricultural education: less than baccalaureate (0/1) 2.00 0.48 2.91 0.00 ***

Agricultural education: more than baccalaureate (0/1) 2.56 0.87 2.75 0.01 ***

Agricultural training: less than baccalaureate (0/1) 2.27 0.65 2.87 0.00 ***

Agricultural training: more than baccalaureate (0/1) 2.11 1.21 1.30 0.20

General education: less than baccalaureate (0/1) 1.31 0.37 0.96 0.34

General education: more than baccalaureate (0/1) 1.47 0.52 1.09 0.28

Spouse’s main activity: agricultural activity (0/1) 2.38 0.67 3.09 0.00 ***

Spouse’s main activity: non-agricultural activity (0/1) 1.14 0.29 0.52 0.60

Spouse’s main activity: none (0/1) 1.42 0.44 1.12 0.26

Vineyard surface area (ha) 1.00 0.00 2.82 0.01 ***

Vineyard surface area (%UAA) 1.85 1.26 0.90 0.37

Labor (annual work unit) 1.00 0.00 -2.22 0.03 **

Production (hl) 1.00 0.00 0.34 0.73

Surface area without herbicide (%UAA) 0.81 0.23 0.76 0.45

AOP (%production) 2.90 0.89 3.48 0.00 ***

Vinification in particular cellar (%production) 0.68 0.18 -1.45 0.15

Irrigation (%UAA) 0.84 0.91 -0.16 0.87

Property (%UAA) 0.43 0.12 -3.09 0.00 ***

Slope (degrees) 1.05 0.06 0.84 0.40

Note: Three asterisks *** (resp. **, *, °) denote rejection of the null hypothesis at the 1% (resp. 5%, 10%, 15%)

significance level. The sample includes a total number of 1,562 winegrowers: 139 participants in AES and 1,423

winegrowers who were eligible but did not participate in the AES. We created dummy variables for the categories

of the variables “Agricultural education”, “Agricultural training”, and “General education” (the reference category is

“no baccalaureate”). The reference category of the variable “Spouse’s main activity” is “no spouse”.
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Table 4: Average treatment effects in 2011 and 2012

Mean value

Control Treated ATT s.e. n0 n1 N

TFI 2011 - Panel A 0.98 0.48 -0.50*** 0.09 83 38 121

TFI 2011 - Panel B 1.04 0.55 -0.49*** 0.09 76 31 107

TFI 2012 - Panel C 0.74 0.45 -0.28* 0.16 15 48 63

TFI 2012 - Panel D 0.86 0.62 -0.23** 0.09 83 34 117

Note: Column 1 displays the mean value of TFI in the treated group. Column 2 displays

the mean value of TFI in the control group. AT T refers to the Average Treatment Effect;

s.e. refers to the standard error; n0 (resp. n1) refers to the number of farmers in the con-

trol (resp. treated) group. N is the sample size. In Panel A, individuals in the treatment

group are those who engaged in 2010 and individuals in the control group are those who

engaged in 2012. In Panel B, individuals in the treatment group are those who engaged

in 2010 and individuals in the control group are those who engaged in 2012 but farmers

engaged in organic farming schemes are excluded. In Panel C, individuals in the treat-

ment group are those who engaged in 2010 or 2011 and individuals in the control group

are those who engaged in 2013. In Panel D, individuals in the treatment group are those

who engaged in 2010 or 2011 and individuals in the control group are those who engaged

in 2012 or 2013. Panel D excludes farmers engaged in organic farming schemes. Three

asterisks *** (resp. **, *, °) denote rejection of the null hypothesis at the 1% (resp. 5%,

10%, 15%) significance level.
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Table 5: Random-effects regressions

organic included organic excluded between-the-rows

(1) (2) (3) (4) (5) (6)

AES -0.40*** -0.28*** -0.38*** -0.25*** -0.21** -0.06

0.08 0.09 0.08 0.09 0.10 0.11

AES*T -0.22*** -0.25*** -0.29**

0.08 0.09 0.11

T 0.21*** 0.19*** 0.19***

0.04 0.05 0.05

cons 0.89*** 0.77*** 0.95*** 0.85*** 0.95*** 0.84***

0.05 0.05 0.04 0.05 0.04 0.05

Nb. Obs. 233 233 204 204 164 164

Nb. Farmers 123 123 108 108 86 86

Note: The variable AES takes on value 1 when the farmer is treated and zero elsewhere; the

variable T takes on value 1 in 2011 and zero in 2012; the variable AES*T is an interactive

term; cons refers to the constant term of the model. In all regressions individuals used

as treated are those who engaged in 2010 and individuals used as controls are those who

engaged in 2012. Columns (1)-(2) display results from the whole sample. Columns (3)-(4)

display results from a sample which excludes farmers engaged in organic farming schemes.

Columns (5)-(6) display results from a sample which includes only farmers engaged in the

so-called between-the-rows scheme. Standard errors appear in italics below the coefficient

estimates. Three asterisks *** (resp. **, *, °) denote rejection of the null hypothesis at the

1% (resp. 5%, 10%, 15%) significance level.
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Table 6: Random-effects regressions - Eastern region only

organic included organic excluded between-the-row

(1) (2) (3) (4) (5) (6)

AES -0.42*** -0.29*** -0.30*** -0.15° -0.27** -0.13

0.09 0.10 0.09 0.11 0.11 0.13

AES*2011 -0.23** -0.29** -0.26**

0.10 0.11 0.13

2011 0.21*** 0.19*** 0.19***

0.05 0.05 0.05

cons 0.93*** 0.81*** 0.97*** 0.87*** 0.97*** 0.86***

0.04 0.05 0.04 0.05 0.04 0.05

Nb. Obs. 193 193 170 170 149 149

Nb. Farmers 100 100 88 88 77 77

Note: The variable AES takes on value 1 when the farmer is treated and zero elsewhere; the

variable T takes on value 1 in 2011 and zero in 2012; the variable AES*T is an interactive

term; cons refers to the constant term of the model. In all regressions individuals used

as treated are those who engaged in 2010 and individuals used as controls are those who

engaged in 2012. Columns (1)-(2) display results from the whole sample. Columns (3)-(4)

display results from a sample which excludes farmers engaged in organic farming schemes.

Columns (5)-(6) display results from a sample which includes only farmers engaged in the

so-called between-the-rows scheme. Standard errors appear in italics below the coefficient

estimates. Three asterisks *** (resp. **, *, °) denote rejection of the null hypothesis at the

1% (resp. 5%, 10%, 15%) significance level.
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Table 7: Balancing tests on pre-treatment variables

(1) (2) (3)
Variables X treated untreated stat matched stat
Date of birth 1966 1964 1.39 1963 3.12 ***
Agricultural education: less than baccalaureate 0.67 0.35 9.89 *** 0.53 7.90 **
Agricultural education: more than baccalaureate 0.17 0.26 1.20 0.17 4.00
Agricultural training: less than baccalaureate 0.06 0.16 2.27 0.19 0.35
Agricultural training: more than baccalaureate 0.03 0.04 0.09 0.03 0.00
General education: less than baccalaureate 0.53 0.71 3.78 * 0.61 11.76 ***
General education: more than baccalaureate 0.25 0.16 1.44 0.13 5.14 *
Spouse’s main activity: agricultural activity 0.42 0.17 8.08 *** 0.19 21.78 ***
Spouse’s main activity: non-agricultural activity 0.17 0.30 2.24 0.20 4.47
Spouse’s main activity: none 0.06 0.18 3.22 * 0.03 1.01
Vineyard surface area (ha) 2811 3221 0.98 2592 0.94
Vineyard surface area (%UAA) 0.91 0.90 0.70 0.93 -0.87
Labor (annual work unit) 2332 2774 0.91 2103 0.94
Production (hl) 1103 1246 0.66 941 1.42
Surface area without herbicide (%UAA) 0.29 0.21 1.00 0.22 1.57
AOP (%production) 0.76 0.81 0.89 0.83 -1.84 *
Vinification in particular cellar (%production) 0.43 0.22 -2.30 ** 0.22 2.71 **
Irrigation (%UAA) 0.02 0.03 0.54 0.01 1.11
Property (%UAA) 0.38 0.32 0.75 0.40 -0.32
Slope (degrees) 4.28 3.34 2.67 *** 3.47 1.84 *
Note: stat is the statistics of the test that tests the null hypothesis that the means for both groups are equal (t-test for
continuous variables and chi2 test for categorical variables). Two asterisks ** (resp. *) denote rejection of the null hypothesis
at the 1% (resp. 5%) significance level. The sample includes 37 treated who engaged in 2010 and 84 untreated who engaged
in 2012 (see Panel A from Table 4). We created dummy variables for the categories of the variables “Agricultural education”,
“Agricultural training”, and “General education” (the reference category is “no baccalaureate”). The reference category of
the variable “Spouse’s main activity” is “no spouse”.
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Table 8: Treatment effects in 2011 - Matching estimators

ATT s.e. stat

OLS -0.53 0.09 -5.74 ***

OLS (X) -0.52 0.11 -4.86 ***

OLS (pscore) -0.53 0.09 -5.80 ***

One Nearest Neighbour (X) -0.46 0.13 -3.58 ***

One Nearest Neighbour (pscore) -0.53 0.13 -3.93 ***

Two Nearest Neighbour (X) -0.49 0.12 -4.00 ***

Two Nearest Neighbour (pscore) -0.54 0.10 -5.24 ***

Kernel regression -0.52 0.09 -5.51 ***

Local linear regression -0.47 0.14 -3.49 ***

Note: AT T refers to the Average Treatment Effect; s.e. refers to the standard

error; stat refers to the test statistic. Three asterisks *** (resp. **, *, °) de-

note rejection of the null hypothesis (ATT= 0) at the 1% (resp. 5%, 10%,

15%) significance level. We use the asymptotically-consistent estimator of

the variance of the nearest-neighbor matching estimator and we implement

a bootstrap procedure (500 repetitions) to get an estimator of the variance of

the kernel and the local linear matching estimators. The sample size is 113,

which is smaller than sample size in Table 4. This is because some partici-

pants in the AES have not been found in the French Agricultural Census.

Table 9: Treatment effects in 2012 - Matching estimators

ATT s.e. stat

OLS -0.23 0.10 -2.45 **

OLS (X) -0.29 0.12 -2.38 **

OLS (pscore) -0.22 0.10 -2.29 **

One Nearest Neighbour (X) -0.22 0.11 -1.88 *

One Nearest Neighbour (pscore) -0.18 0.11 -1.59 °

Two Nearest Neighbour (X) -0.29 0.14 -2.10 **

Two Nearest Neighbour (pscore) -0.19 0.10 -1.87 *

Kernel regression -0.22 0.09 -2.40 **

Local linear regression -0.17 0.13 -1.29

Note: AT T refers to the Average Treatment Effect; s.e. refers to the standard

error; stat refers to the test statistic. Three asterisks *** (resp. **, *, °) de-

note rejection of the null hypothesis (ATT= 0) at the 1% (resp. 5%, 10%,

15%) significance level. We use the asymptotically-consistent estimator of

the variance of the nearest-neighbor matching estimator and we implement

a bootstrap procedure (500 repetitions) to get an estimator of the variance of

the kernel and the local linear matching estimators. The sample size is 108,

which is smaller than sample size in Table 4. This is because some partici-

pants in the AES have not been found in the French Agricultural Census.
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Figure 1: Location of surveyed farmers (areas in blue)
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Figure 2: Density of propensity scores by group - ATT in 2011

Figure 3: Density of propensity scores by group - ATT in 2012
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