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Abstract

We consider a model of cake eating with private information. The model cap-

tures phenomena such as trust and “security of supply” in resource-use relation-

ships. It also predicts supply shocks as an equilibrium phenomenon: privately in-

formed sellers have incentives to reveal resource scarcity too late, through a supply

disruption, after which they exploit the consumers’ inability to immediately ad-

just demand. Two puzzles that common resource-use theories cannot explain are

resolved: sellers have an incentive to overstate their resources rather than empha-

size scarcity, and consumers switch to alternatives before exhausting the resource

thereby leaving socially valuable resource in the ground.
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1 Introduction

We consider an exhaustible-resource market where the owner of the resource is privately

informed about the reserves, that is, how much cumulative consumption the resource

can offer. The buyer wishes to consume the resource and, ultimately, when the resource

is depleted, move to an alternative source of consumption. The alternative offers an

opportunity surplus which, however, becomes available after a time-to-build delay, and

therefore the adoption of the alternative should be decided before the resource runs out.

The seller has no direct means for a verifiable communication of its holdings but can

indirectly convey information through the offered terms of trade for the resource. Without

precise knowledge of the seller’s endowment, the consumer’s decision for continuation of

resource dependence, or alternatively stopping the relationship, thus depends on the

observed prices in the market.

In the equilibrium that we consider, a sufficiently large seller communicates a “secure

supply” through prices sufficiently low, in the sense that a critically small resource owner

could not replicate the policy. However, since the resource is finite, ultimately all seller

types become small. The privately informed seller gains from revealing too late – from the

consumer’s perspective – that the stock is running out. The seller will, in the end, exploit

the buyer’s inability to move to the substitute immediately: the seller reveals scarcity – it

becomes public information – through a disruption in supply. A supply shock is thus an

equilibrium phenomenon. The buyer side rationally accepts the chance of being exploited

but requires a compensation for accepting this risk, through generous terms of trade (low

resource prices), prior to the shock. The equilibrium describes a tradeoff between the

seller’s incentive to benefit from the final scarcity and the consumer’s demand for a supply

that matches the substitute surplus, and additionally compensates for the risk of a supply

disruption. Equilibrium supplies are higher for more pessimistic reserve estimates on the

consumer side – larger supplies justify continuing the relationship and accepting a larger

potential supply disruption. Nevertheless, the equilibrium also describes the possibility

of too early transitions to the resource substitute; the buyer can move away from the

resource, even though, in expectations, some socially valuable resource will be left in the

ground.

Private information in exhaustible-resource markets opens fundamental questions for

the resource-use theory — yet, the problem has not been explored before. The model

developed here can shed light on two phenomena in resource-use relationships that the

canonical resource theory cannot explain. First, our model describes “demand manage-
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ment” motives on the seller side where large reserves are emphasized rather than scarcity.

Second, our model rationalizes “caution” on the consumer side, leading to transitions

away from resources before exhaustion.

An illuminating example for the second phenomenon can be found in the World’s

transition away from the natural nitrogen supplies. At the turn of the 20th century,

agricultural nitrogen became a key scarce natural resource commodity in Europe, leading

Sir William Crookes, the president of the British Association for the Advancement of

Science, in 1889 to appeal to chemists to develop a synthetic solution to the nitrogen

problem, as otherwise “All England and all civilized nations stand in deadly peril of not

having enough to eat”, potentially as early as in the 1930’s. The early industrialized

nations had become critically dependent on the deposits of natural sodium nitrogen from

the Atacama desert of Chile.1 Chile was the sole supplier of this commodity in four

decades until the 1920’s. Then, a synthetic substitute was derived through the Haber-

Bosch process, named after the two Nobel Prize winners who developed the process that

turned out to be “[...] one of the most important inventions in the chemical industry

ever.” (Mokyr, 1998).2,3 After the innovation, it took more than a decade for the world

consumption to depart from the natural supplies. Surprisingly, the monopoly did not

only face a competitor but lost its business entirely: a significant fraction of the resource

was left unused (Smil, 2001). The resource was relatively easy to extract (Whitbeck,

1931), and, in view of the standard exhaustible-resource theory (Dasgupta and Heal,

1979), it is unexpected that a costly substitute made a relatively homogenous resource

obsolete. Given that the valuable resource was left unused, it seems that the adoption of

the substitute technology was too much hurried.4

Moving hundred years in time, to the present-day resource relationships, the phe-

nomenon of demand management appears as a puzzle not described by existing resource-

1For the fascinating history of nitrogen use, natural fixation and synthetic production, see, e.g., Leigh

(2004) and Smil (2001).
2Whitbeck (1931) provides a succinct description of the resource reserve, its exploitation technology,

costs, production numbers, as well as the basic facts of the substitute entry.
3See Montéon (1975) for the role of British capital in the resource exploitation, and, e.g., Brown

(1963) for the Chilean government’s resource-use policies.
4Another exhaustible resource with concentrated ownership is phosphorus that is mostly obtained

from mined phoshate to produce fertilizers together with other mineral nutrients. Unlike in the case

of Chilean nitrate or fossil fuels, the substitutes for this basic mineral nutrient is yet to be discovered.

It has only three major producers: United States (Florida), China, and Morocco/Western Sahara. It

has been estimated that the currently available resource stocks may be depleted during the next 50-100

years; however, the estimates of the overall reserves vary considerably (Cordell et al. 2009; Keyzer 2010).

3



use theory. The following headline from the Telegraph of March 22, 2013 is revealing:5

“The world’s oil reserves have been exaggerated by up to a third.”

Or from The Huffington Post September 2, 2011:

“Wikileaks Cable: Saudi Oil Reserves Exaggerated By 40 Percent.”

Why would dominant resource sellers exaggerate their reserves? Prices increase with

the perceived scarcity; if anything, resource theory following Hotelling (1931), suggests

that dominant resource sellers should underestimate rather than overestimate their re-

source holdings. The current theory has no hope of explaining why the dominant resource

sellers often communicate with the market to emphasize stability and the security of sup-

ply.

The nitrogen and oil examples illustrate a common theme. When planning for the

use of resources and future dependence on them, it is essential to take account of the

fact that we do not know how long resources will last precisely. Yet few studies of

exhaustible-resource allocations over time give this problem due consideration. Pindyck

(1980) and others have analyzed the uncertainty of future resource reserves but, for one

reason or other, they did not expound on resource uncertainties arising from asymmetric

information, and on how such asymmetries in uncertainties can lead to drastic changes

in behavior.6 The resource theorists seem to have disregarded the problem altogether.

The common models for resources fail to capture the essence of the buyer-seller rela-

tionships illustrated above – hurried transitions and demand management motives – and

therefore may provide misleading lessons for the present-day resource transitions. We

intend to go to the other extreme; we concentrate entirely on uncertainties arising from

privately informed resource owners and ignore the uncertainties that a resource market

must normally cope with.7

5These headlines are obtained through a simple Google search. A more systematic coverage of the

concerns regarding the size of the Saudi reserves is in Simmons (2005).
6While Pindyck (1980) considers multiple uncertainties, there is a literature that seeks to answer the

question ”How to eat a cake of an unknown size”; see Kemp (1976), and, for example, Kumar (2005).

There are no private information considerations in this literature.
7Conventional oil can be defined as the cheapest-to-extract oil reserve in the hands of a few core

OPEC countries. It is this low-cost but finite reserve with concentrated ownership and inelastic short-

run demand that is the exhaustible oil resource of interest for the issues raised in this paper; the rest

of production can be seen as part of the substitute fuel production, including costly conventional oil

sources, nonconventional oils, biofuels, and alternative energy sources. The industry experts estimates
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In this paper, we develop a simple model of resource dependence to capture exactly

these features. We have two strategic parties but the bargaining is not explicit as the

resource is traded in the market rather than in a direct bilateral relationship. The

timing assumptions support a market interpretation of the resource relationship and an

implicit nature of bargaining. The relationship description follows Gerlagh and Liski

(2011), but the informational asymmetries introduced in the current paper are novel and

necessary for the two features of resource markets outlined above.8 While not cheap

talk (Crawford and Sobel, 1982), the periodic interactions we describe between resource

sellers and buyers has an element thereof: the seller offers supplies to influence beliefs

and, then, if the buyer continues without investing, the offer is implicitly accepted and

supply is delivered; the offer is “declined” by investing into a substitute, and then the

seller does not have to deliver the supply offer. These staged interactions preserve a

non-trivial sharing of the surplus, depending on the primitives such as adjustment delays

of the demand, resource size, and the surplus from options outside the relationship.

The setting shares similarities with the literature on the Coase conjecture — Hörner

and Kamien (2004) establish that the resource monopsony problem is equivalent to the

durable-good monopoly problem.9 However, our setting is a bilateral monopoly with dy-

namic signaling (Fudenberg and Tirole, 1983) with a different strategic variable (stopping

decision with a delay), leading to quite different equilibrium outcomes. In particular, the

informed agent takes initiative in the relationship. After all, in reality, it is the resource

seller who strategically interacts with the market. The individual resource consumers

of the remaining viable core-oil stocks vary widely, which is a precondition for the equilibrium where the

supply disruption is a possibility. The estimates and concerns are extensively entertained in a popular

book by Simmons (2005); see also the Hirsch Report (prepared for the U.S. Department of Energy,

2005).
8To be sure, the two puzzles presented — the consumer side caution and the seller side over-reporting

of reserves — cannot be addressed without hidden information. We have one goal in this research: to

introduce hidden information into the canonical resource use model. The full information results in

Gerlagh and Liski (2011) were necessary intermediary steps for developing a tractable model for the

setting with hidden information.
9There is a long tradition in resource economics to study the strategic interactions in the resource

markets, although the formal connection to the durable-good theory was first presented by Hörner and

Kamien (2004). There are two branches of literature that are Coasian in spirit: the optimal tariff

literature (e.g., Newbery, 1983; Maskin and Newbery,1990; see Karp and Newbery 1993 for a review);

and the literature on strategic R&D and technology adoption in exhaustible-resource markets (Dasgupta

et al., 1983; Gallini et al., 1983, and Hoel, 1983; Lewis et al.,1986; Harris and Vickers 1995, Harstad and

Liski (2013)). The common theme in this literature is that the co-ordinated action on the buyer side can

be used to decrease the seller’s resource rent. None of these papers consider asymmetric information.
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play no strategic role, but the buyer’s agent (government) can respond to the informa-

tion generated by the market interaction through investment in a substitute if such is

evaluated to be interest of the consumers.10

We describe equilibrium in a situation where the informed agent (seller) takes initia-

tive by offering terms of trade to the market, and the uninformed agent (buyer) decides

whether to continue the relationship. While this timing takes us to the domain of dy-

namic signaling, and thus leads to multiplicity of sequential equilibria (Fudenberg and

Tirole 1983; see also, for example, Ausubel et al., 2002), the structure of equilibria is

relatively simple due to the nature of the buyer’s stopping problem. We start by mak-

ing distributional assumptions that ensure stationarity in terms of resource stock beliefs:

under continuation, the buyer updates beliefs of the seller’s size upwards at the same

rate as the resource stock is exhausted. This allows a relatively simple analysis while

keeping the substance-related key concepts in the analysis, such as the resource scarcity,

substitute surplus, and the determinants of the resource dependence. The framework set

up for the stationary equilibrium provides a basis for non-stationary equilibria where,

since resources are ultimately depleted, the consumer side pessimism about the remain-

ing reserve increases with a longer consumption history. How quickly pessimism sets in

determines who, effectively, stops the relationship – the uninformed buyer following a

common knowledge plan or the informed seller through a supply disruption.

There is a literature on dynamic models of adverse selection and signaling, building

on the static models of Akerlof (1970) and Spence (1973), respectively. The dynamic

extensions of the static model by Spence introduce time for changing the information

exchange and commitment assumptions.11 In contrast, our paper contributes to the

signaling literature by developing a tractable approach with private information where

dynamics arise from changes in a physical state. Our approach to dynamics is very dif-

ferent and motivated by the physical nature of the problem. In our dynamic equilibrium,

the seller’s type is revealed either by the buyer’s irreversible action to stop the relation-

10In a typical durable-good problem, the uninformed agent makes repeated offers to the informed

agent whose valuation is private information (see, e.g., Gul et al. 1986). Assuming screening of the seller

by the uninformed buyer would be at odds with the market interaction. Deneckere and Liang (2006)

consider screening, which is more natural in their case since there is no market involved.
11In Nöldeke and Van Damme (1990), the privately informed seller has a sequence of opportunities

for trading and signaling; the separation of seller types can be obtained through off-equilibrium beliefs

when the opportunities for information exchange increase without bound. Swinkels (1999) shows that the

results depend critically on whether the offers are private or public; Kremer and Skrzypacz (2005) and

Daley and Green (2012) both analyze the the effect of exogenous news arrival on equilibrium dynamics.
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ship, or if consumption continues, the seller will reveal its type by separating at a future

time that is known to the seller but random from the buyer’s point of view. Thus, by

stopping, the buyer can verify the seller’s type but, since the action is irreversible, the

buyer would like to know the type before making the decision, as stopping may leave

some socially valuable stock in the ground. Under continuation, our equilibrium is nei-

ther a traditional pooling nor separation equilibrium: sellers pool as long as the game

continues but each type has a privately known and stock-dependent opt-out time from

the equilibrium. These features are novel and arise from real changes in the type space,

not from dynamic information exchange per se.

The paper is organized as follows. In the next Section, we introduce the formal

notation and present the basic assumptions regarding the strategic interaction as well as

restrictions on beliefs. We state the conjectured equilibrium, and the main Theorem for

the existence and structure of the equilibrium. In Section 4, we present the buyer’s and

the seller’s dynamic problems, and characterize the equilibrium. Section 5 elaborates on

how concepts such as trust, mutual dependence, and supply shocks are captured by the

model, through the analysis of the key parameters. In Section 6, we introduce changes

in the buyer’s outside option on the equilibrium path, to identify a source of supply

disruption and resource abandoning that is different from that in the main model. This

extension provides one resolution to the puzzle illustrated by the Nitrogen case. Section

7 extends the model to non-stationary equilibria. Here, we present our second main

Theorem that describes the equilibrium outcome for general distributions covering the

resource dynamics. Much of the analysis progresses without discussions on the alternative

assumptions and connections to the literature; we provide an extensive discussion in

Section 8. All proofs are in the Appendix.

2 The model

2.1 Basic setting

There are two strategic agents: a seller who owns a resource stock and a buyer who wants

to consume the resource. Time runs continuously, t ∈ [0,∞), and at each t where there

is consumption, qt > 0, the buyer enjoys consumption utility, U(qt), assumed to be an

increasing, twice differentiable, and strictly concave function. The seller has full powers

to set the unit price of consumption, pt > 0. After the buyer observes pt, it can choose

to end the relationship, or not. Over time, the economy can be in one of two states: the
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consumer has either decided to end the relationship in the past, or not. If no stopping

decision has been made, the dependence on the seller is strict in the sense that there

is no alternative source of consumption currently available; in this state, the quantity

consumed at price pt follows from U ′(qt) = pt.

The consumer can decide to end the resource-consumption relationship at any time,

following a protocol defined below; but, after making the decision, the resource is still

needed for a known and given time interval of length k. Here, k is the time-to-build

constraint for the substitute, capturing the degree of resource dependence. Once in

place, the substitute replaces the resource irreversibly and generates a constant utility

flow that we denote by ū. In the analysis, we consider variations in k and ū, and assume

k ∈ (0,∞) and ū ∈ (0,∞).

Whether the buyer stops or not at time t is described by the choice dt ∈ {0, 1}, where

dt = 1 means stopping. The seller setting pt and the buyer choosing dt are the only

strategic choices in this game.

The buyer’s problem is that only the seller knows the exact size of the initial stock,

s0 > 0. Thus, only the seller knows how much is left after some publicly known cumu-

lative use Qt =
∫ t

0
qτdτ , st = s0 − Qt. We introduce shortly a specific structure for the

buyer’s belief about the remaining resource stock. When should the consumer initiate

the transition to the substitute? For conciseness, we say that the answer to this question

defines the stopping time for the resource dependence, although one should bear in mind

that the resource is still needed during the transition period of length k.

Let us now define the protocol for strategic interactions. Time is continuous but

strategic interactions take place at discrete time points in the time line, ti = εi where

ε > 0 and i = 1, 2, 3, ... At given ti, the buyer has beliefs about the seller’s remaining

resource stock, formulated shortly. The choices at each ti freeze actions for the next ε

interval of time. In our analysis, we let ε converge to zero to analyze the continuous-time

limit: all theorems and propositions consider the limit case. After each ε units of time,

conditional on continuation, the interaction starts anew. The timing of moves at any

t = ti where the buyer has not yet “invested” in the past (dτ = 0, ∀τ < ti) is:

1. The seller offers supply price pt > 0;

2. The buyer updates beliefs and decides on investment dt ∈ {0, 1};

3. If dt = 0, the seller delivers the demanded qt at price pt, and the game continues to

stage 1 at t + ε. If dt = 1, the strategic interaction stops, and the seller offers its

privately optimal monopoly price at each t ∈ [ti, ti + k].
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These timing assumptions create a bargaining situation that sustains a division of

surplus dependent on the fundamentals of the problem, even when time discounting is

absent, which we assume. Since the buyer can respond to pt in the same period, the seller

will have to choose a price that gives the buyer at least the expected surplus achievable

from stopping immediately. Figure 1 illustrates the overall timeline.

0
t

T0 t = T + k

type selection
strategic interaction

stopping
time to build long-run

end

Figure 1: Timeline

The seller’s profit flow is π̂(pt) = ptqt(pt) where q(pt) is the demand function that

satisfies pt = U ′(q(pt)) for qt > 0. For the analysis, it is convenient to work with

quantities, and we write π(qt) = p(qt)qt with the inverse demand p(qt) = U ′(qt) for the

resource supply flow qt > 0. The seller’s total payoff at time t, when the buyer’s stopping

decision is made at time T , is generated by (pτ )T+k>τ>t or, equivalently, by (qτ )T+k>τ>t:

Vt =

∫ T+k

t

π(qτ )dτ. (1)

The buyer’s net surplus flow is the consumer surplus, u(qt) = U(qt) − p(qt)qt. We

assume throughout the analysis that both u and π are strictly concave in quantities,

and qm = argmax{π(q)} < ∞.12 Since the consumer is long-lived in this setting, the

total consumer surplus, for a path (qτ )T+k>τ>t, is expressed as an excess surplus over the

long-run payoff,

Wt =

∫ T+k

t

[u(qτ )− ū]dτ . (2)

This payoff criterion measures how much more surplus the resource can offer in compari-

son to the substitute; it coincides with Dutta’s (1991) strong long-run average criterion.13

12Note that the assumption of joint concavity for u and π is equivalent to assuming that the relative

prudence of U is between 1 and 2. But see Section 8 for a discussion of an extension to a non-concave u.
13In Appendix, we derive the total consumer surplus expression as a limit of discounted payoff, after

introducing the strategies for evaluating the path of the game.
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2.2 Strategies

We consider a Perfect Bayesian Equilibrium (PBE), and describe first the general struc-

ture of strategies. Beliefs at time t are characterized by a probability distribution for the

remaining stock at t, with density function denoted by ft = ft(s). At time t = ti, all

information relevant for continuation strategies is captured by initial beliefs f0 and the

history of observables until that time, that is, ht = {q0, qt1 , ..., qti−1
} together with the be-

lief updating, which we denote by fti+1
= fti+1

(qti , fti), covering also off-equilibrium. We

consider pure strategies only. For seller type s0, after history ht, the remaining reserve is

st, which is private information. For seller st, the strategy depends on the initial beliefs,

held by the buyer, and on the history: qt = ηt(st, ht, f0). The buyer’s decision to invest

is conditioned on the latest supply offer, history, and beliefs: dt = µt(qt, ht, f0) ∈ {0, 1}.

We rule out reputational seller strategies that change beliefs about the seller’s future

supplies other than through changing beliefs about the underlying distribution of types.

Formally, we write h
tj
ti
= {qti , ..., qtj−1

} for the history between periods ti and tj, and for

strategies

ηtj (stj , h
tj
0 , f0) = ηtj−1

(stj , h
tj
t1
, ft1) = ... = η0(stj , h

tj
tj
, ftj ) ≡ η(stj , ftj )

µtj
(qtj , h

tj
0 , f0) = µtj−1(qtj , h

tj
t1
, ft1) = ... = µ0(qtj , h

tj
tj
, ftj ) ≡ µ(qtj , ftj ).

The first equality (in both lines) states that the information of supply q1 is absorbed

by beliefs f1, subsequently supply q2 is absorbed by beliefs f2, and so forth, untill ft

captures all history.14 The payoff functions then depend on the resource stock for the

informed party, the observed supply for the uninformed party, and on beliefs: at the

start of stage 1, before the seller has made the offer, payoffs (1)-(2) are functions of the

information that parties hold, Vt = V (st, ft), and EWt = EW (ft). The equilibrium belief

updating is Bayesian consistent, and the strategies are best responses:

η(st, fti) = argmax
qt

{[1− µ(qt, fti)][επ(qt) + V (st − εqt, fti+1
(qt, fti))] + µ(qt, fti)V

I(st)}

µ(qt, fti) = argmax
dt∈{0,1}

{[1− dt][εu(qt) + EWt(fti+1
(qt, fti))] + dtEW

I(fti+1
(qt, fti))}

where V I(st) is the seller’s privately known payoff if the relationship ends at t, and

EW I(fti+1
) is the expected buyer’s payoff at stopping.

14Note that the subscripts t decrease when moving from the left to the right; they denote that the

strategies ηt(.) and µt(.) use beliefs from t period before, and use the information collected through the

history since that time.
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Throughout the paper we confine attention to seller and buyer strategies that are of

the cut-off type. The buyer stops the relationship if the offered price is above a given

threshold; or, stated in terms of quantities, the buyer will invest in the substitute if the

supply falls below a threshold, denoted by qIt > 0. Otherwise, the buyer will not stop and

thus continues. Also, the seller types whose resource is above a cutoff size, denoted by

sLt , find it privately optimal to offer a continuation quantity qIt ; smaller seller types will

implement stopping. Intuitively, the small types do not have enough resource to meet

the buyer’s requirement for continuation; but, all types prefer to continue as long as their

stock allows since the seller’s first-best would be to spread supplies as thinly as possible

over time if there was no requirement to supply at least qIt > 0. Thus, it is common

knowledge that there is a “smallest seller” type sLt such that only sellers above this type

induce continuation. In equilibrium, the beliefs on the buyer’s side, under continuation,

can be described through the smallest type sLt , and the Bayesian updating becomes

fti+1
(s) =

fti(s)

1− Fti(s
L
t )

for s ≥ sLt if qt ≥ qIt .

When the seller supplies more than required (off-the-equilibrium), beliefs remain as in

equilibrium. The assumption of passive conjectures supports the equilibrium described

by the cut-off policies; it rules out threats by the buyer built into the out-of-equilibrium

beliefs that could lead to intricate history-dependent dynamics in this resource extraction

game. Yet, the equilibrium strategies allow both stationary and non-stationary equilib-

rium paths, as will be seen. We first consider stationary equilibria, and then later extend

the analysis to non-stationary equilibria.

3 Stationary equilibrium

3.1 Stationary equilibrium strategies

We construct the equilibrium by the guess-and-verify method. We assume that the sup-

ply justifying continuation is constant at level qt = qI , immediately from t = 0 onwards,

and that the smallest seller willing to supply qI is of constant type sL, also immediately

from t = 0 onwards. We then verify conditions for existence and uniqueness of such a pair
(

qI , sL
)

, demanding best responses on both sides and consistent beliefs. The equilibrium

(qI , sL) only depends on the primitives of the setting: profits, consumer surplus, and be-

liefs, that is, the prior distribution of seller types. For beliefs, we consider an exponential

prior distribution for seller types, s0 ∼ exp(α), with parameter α ∈ (0,∞). Given this
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distribution, the consumer side can immediately form beliefs about the smallest seller

type sL. We assume the prior is updated to include information about the lowest pos-

sible type at time t = 0, before the first strategic interaction, so that the stationary

equilibrium is entered immediately. Beliefs are then fully determined by two parameters:

sL for the smallest possible type complying with the consumer’s continuation demand

qI , and the hazard rate α for the distribution. Beliefs in the continuation equilibrium

are represented through a density function f(s; sL, α), and the corresponding probability

that the resource stock falls short of s is given by the cumulative distribution,

F (s; sL, α) =

{

1− e−α(s−sL) if s > sL

0 otherwise.

Stationarity in this sense means that the equilibrium belief remains constant as long

as the relationship continues, and will change only when the seller side stops supplying

the required quantity. When consuming at rate qt at time t, beliefs about the remaining

stock should be revised downwards because the true initial stock drifts down at this rate.

Yet, in the continuation of the game, the buyer continuously learns that the seller is not

of the smallest type, implying an upward drift in beliefs. In a stationary equilibrium,

this upward drift in beliefs exactly equals the rate at which the physical stock declines

so that the equilibrium beliefs remain stationary.15

Note also that while, under continuation, the equilibrium beliefs and actions remain

stationary, the true physical stock is gradually depleted: the relationship is expected to

end in finite time in equilibrium.

3.2 Conjectured equilibrium

Here we present the main result and intuition. The construction of the equilibrium and

proofs follow in subsequent sections. The stationary equilibrium has a simple structure.

The key parameters of the model are k ∈ (0,∞) (degree of dependence), ū ∈ (0,∞)

(outside option), and α ∈ (0,∞) (expectation of scarcity). We denote this parameter set

by Ω.

15Notice that the type expectation follows a semi-exponential distribution. While α is a constant,

determined by the initial distribution, the lower bound sL is an endogenous characteristic of the equi-

librium. Both a lower value for sL, and a higher value for α represent more pessimistic beliefs about the

resource stock, as E[s] = sL + 1/α. A larger value for α represents both a more pessimistic view, but

also a lower degree of asymmetry in information, as Var[s] = 1/α2.
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Theorem 1 For any given (k, ū, α) ∈ Ω, the stationary equilibrium outcome is one of

two possibilities, continuation until the seller induces stopping at a privately-known time

or immediate stopping by the consumer:

• (continuation) there is a unique stationary pair of beliefs and supplies (ŝL, q̂I)

such that the buyer is indifferent between continuation and stopping, and the seller

strictly prefers continuation until st ≤ ŝL, after which the seller supplies qt < q̂I

and the buyer finds it optimal to invest;

• (immediate stopping) there is no belief sL supporting a stationary continuation

equilibrium; the buyer finds it optimal to invest at t = 0.

In Fig. 2, we show “demand” and “supply” schedules, with the intersection identifying

the equilibrium belief and supply (ŝL, q̂I). The demand, denoted by qI = D(sL), is the

quantity qI demanded by the consumer for continuation when sL is the belief on how

small the smallest continuing seller can be; it is downward sloping in the belief since (as

we establish later) continuing the relationship is less costly when the resource is expected

to be larger. The demand schedule is defined only above a critical belief level s∗; for worse

beliefs, the buyer always stops without considering the seller’s offer. With increasing sL,

the demand ultimately declines to q̄, which gives the same consumption-utility as the

outside option offered by the substitute. The demand schedule reaches q̄ when the belief

is optimistic enough, sL ≥ kqm; then, after stopping, all potential seller types supply the

static monopoly level that maximizes instantaneous profits. Hence, resource depletion

does not affect post-stopping supplies, and the buyer does not require a compensation

for the risk of supply disruption. Intuitively, when the seller is expected to be sufficiently

large, the buyer does not demand a compensation for scarcity and will receive the same

surplus flow under continuation as in the long-run from the outside option.

The supply schedule, denoted by qI = S(sL), identifies the maximum supply that the

seller type sL is willing to offer to support continuation. As expected, the seller type

and maximal supplies are positively related: the seller’s opportunity costs of inducing

stopping increase with the size of the stock that has to be sold in the limited time

window of length k. Thus, with the stock size also increases the willingness to supply

large amounts if such prevents stopping.

The area above the “demand” schedule and, simultaneously, below the “supply”

schedule presents the potential outcomes for a stationary equilibrium. But, as we will see,

for any (sL, qI) strictly below the supply schedule, there are also seller types s < sL that

13



sL

q∗

qI

q̄

D(sL)
S(sL)

kqm

q = s/k
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Figure 2: Equilibrium

will supply the required qI , and thus the belief that the smallest type is sL is not Bayesian

consistent. Thus, the equilibrium must be on the supply curve. For any point strictly

above the demand curve, there exists a supply level q < qI for which the buyer prefers to

continue, given the belief. Sellers will exploit this understanding of the buyer’s incentive

and offer supplies below qI . Thus the equilibrium must be on the demand curve.16 The

sections below provide the details for these arguments, the precise conditions for the

equilibrium characterization, the comparative statics for the model’s parameters, and an

extension of the basic model to time-changing outside options. Then, we build on the full

understanding of the stationary equilibrium and proceed to the general case in Section

7.

4 Equilibrium analysis

4.1 Supply: Seller’s incentives

The stock size is not observed by the buyer when the relationship continues but stopping

forces the seller to reveal this information; after stopping, the game is over, and the only

remaining issue for the seller is how to allocate the stock at hand for the known time-

to-build period, after which the market for the resource dies out. Thus, in this sense,

stopping puts the remaining resource to the market. If the stopping decision is made at t,

16In Appendix, we provide Figures 5 - 7 that decompose the seller’s and buyer’s incentives for contin-

uation in Figure 2.
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the seller’s optimal supply flow at each τ ∈ [t, t+k], which is the remaining time-window

for sales, is

qτ = min{st/k, q
m} (3)

where qm = argmax{π(q)} is the (static) monopoly supply in the absence of resource

stock constraints. The strategy is simple: the post-stopping monopolist cannot do better

than to sell flow qm but it may not have a stock large enough. If the stock falls short of

kqm, the best supply is st/k, exhausting the resource during the monopoly’s remaining

lifetime. If the stock is large enough so that st/k > qm, there is no scarcity in the sense

that post-stopping supply does not change with a larger holding; the seller will leave

quantity st − qmk of the resource in the ground.17

Given the buyer’s requirement for continuation qI , the seller faces a simple opt-out

problem: for how long to supply at least qI , that is, for how long to implement contin-

uation? Supplying qt < qI triggers stopping and, through policy (3) over [t, t + k], the

stopping payoff is

V I
t = V I(st) =

{

kπ(st/k) if st < kqm

kπ(qm) otherwise.
(4)

As the stock declines, continuation becomes more costly to the seller because the

stopping value of the resource depends positively on the stock,

V I′(st) =

{

π′(st/k) > 0 if st < kqm

0 otherwise.
(5)

At time t = 0, each seller knows its initial stock s0 and so can plan for opt-out time

T = Ts0 and also supply qt ≥ qI for all t < T to implement continuation up to T . We

can write the value of this program as

V (s0) = max
{qt≥qI ,T}

∫ T

0

π(qt)dt+ V I(s0 −QT ), (6)

where Qt is the cumulative sum of the supplies at time t.

The seller’s opt-out problem has an intuitive solution: the seller continues by offering

the lowest possible supply qI as long as the price p(qI) from continuation sales exceeds

the marginal decline in the stopping payoff, V I′(st), induced by depleting the stock at

rate qI . But since the decline in the stopping payoff is the marginal profit from selling the

post-stopping quantity (see Fig. 3), the opt-out decision defines the marginal continuing

type through the simple rule (7) in:

17Note that when there is scarcity, the monopoly’s supply is socially optimal; however, the monopoly’s

threshold stock qmk for leaving resource in the ground is not socially optimal. Moreover, it should be

noted that, when st > kqm, stopping does not reveal fully the seller’s stock level, only that there is at

least kqm. But, the payoff-relevant information is revealed.
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Figure 3: Demanded qIand the separating type sL.

Lemma 1 For p(qI) > 0, the lowest continuing type, sL with qI = S(sL), is uniquely

defined through the incentive constraint

p(qI) = π′(
sL

k
). (7)

Moreover, S(0) = 0, S(sL) > sL/k for sL < kqm, and S(sL) is continuous, and strictly

increasing for 0 6 sL < kqm, and constant at S(sL) = qu for sL ≥ kqm, where qm is the

unconstrained monopoly supply that maximizes instant profits and qu is satiation supply,

p(qu) = 0.18 For all (t, st) such that S(st) ≥ qI, the privately optimal supply is qt = qI.19

4.2 Demand: consumer indifference

The key step in the construction of the demand schedule is the description of the terms

of trade that keeps the buyer indifferent between stopping the resource dependence and

continuing. When contemplating stopping, the consumer does not yet know the seller’s

private information and thus cannot tell the supply that follows the stopping decision.

But, understanding the seller’s policy in (3), the buyer can form an expectation for the

post-stopping surplus flow in [t, t + k], using û(s/k) = u(min{s/k, qm}). Stopping with

belief sL, the total expected surplus for the post-investment phase, denoted by E[W I |sL],

18If the consumer’s utility does not satisfy finite satiation, qu = ∞, then S(sL) → ∞ as sL ր kqm.
19Recall that qm maximizes profits for the seller only if some resource is left unused. In all other cases,

profits are maximized by maximing prices, that is, by minimizing supplies.
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is the sum of the instantaneous surpluses in excess of the long-run surplus flow:20

E[W I |sL] =

∫ ∞

sL
k[û(s/k)− ū]dF (s; sL, α). (8)

This payoff measures the value of the outside option; it is independent of time and,

for shorthand, we may write for the left-hand side EW I = E[W I |sL].21

Knowing what the consumer can expect from stopping, we have a basis for construct-

ing the payoff from continuation. Specifically, we have conjectured that continuation is

supported by a constant supply path which generates a payoff that is at least EW I . Let

qI > 0 denote the conjectured constant supply that supports continuation and, for this

path, let EWC = E[W |qI , sL] be the associated total surplus when the belief is sL. We

identify the cutoff supply qI through the indifference EWC = EW I .

Thus, consider continuation consumption qI over a short period ε, and the total payoff

from time t onwards, which equals the surplus generated over the interval [t, t+ ε], plus

the payoff after that period. There is the probability εh with h = αqI for the event

that at time t + ε the buyer will not receive qI but will learn that the seller is of a

small type st+ε ∈ [sL − εq, sL), in which case the future payoff (for small ε) becomes

k[û(sL/k) − ū]. In the complement event, the buyer learns that the seller’s type is not

small, and continues with the same beliefs as before, and thus with the same expected

payoff, EWC . The expected surplus under continuation satisfies thus

EWC = ε[u(qI)− ū] + εhk[û(sL/k)− ū] + (1− εh)EWC . (9)

The last two terms contain a measure for the costs of delay. The items multiplied by

εh denote the drop in the expected payoff in the situation where the seller turns out to be

small: the expected continuation surplus minus the worst outcome surplus, k[û(sL/k)−ū].

The cost of delay can be expressed in a very useful way (as we prove in the Appendix):

20To be sure, in the Appendix, we derive this payoff as a limit of a traditional discounted surplus

measure. As noted in Section 2.1, the payoff criterion here coincides with Dutta’s (1991) strong long-run

average payoff expression.
21Note that if the buyer’s belief is that the seller has more stock than what will be supplied during

the time to build, sL > kqm, then the stopping payoff is just EW I = k[u(qm) − ū], which is positive if

the seller can offer surplus above the outside option. The payoff is also strictly increasing in dependence

parameter k. This captures an element of waste in stopping when beliefs are very optimistic: for such

beliefs, it is good for the buyer’s payoff if the transition could be made longer through larger k. However,

as we will see, such a situation is never relevant in equilibrium. In equilibrium, scarcity is expected,

sL < kqm, and the consumer’s perception of scarcity will increase with a longer period of dependence

(Lemma 6 below).
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Lemma 2 (Cost of delay) The following two measures for the cost of delay are equal:

h(E[W I |sL]− k[û(sL/k)− ū]) = qE[û′(st/k)|s
L]. (10)

The left-hand side measures the cost of delay as the expected drop in payoff associated

with learning that the seller is small. Intuitively, the right-hand side qE[û′(s/k)|sL] is a

measure of the expected scarcity, unavoidable when consumption continues at rate q and

the arrival of the alternative is postponed.

We now want to identify q = qI that equates the continuation and stopping payoffs,

EWC = EW I . When the indifference EWC = EW I holds, combining (9)-(10), gives

EW I = ε[u(q)− ū] + EW I − εqE[û′(s/k)|sL] ⇒ (11)

u(q) = ū+ qE[û′(s/k)|sL]. (12)

This now defines the indifference-making supply q = qI which, after separating out

the belief-dependent part, can be better seen from

u(qI) = ū+ λ(sL)qI , (13)

λ(sL) = E[û′(s/k)|sL] =

∫ ∞

sL
û′(s/k)dF (s; sL, α). (14)

Note that λ = λ(sL) is a number that depends, aside from the primitives, only on the

buyer’s beliefs as captured by sL. Intuitively, the supply today should provide surplus

u(q) that is enough to cover (i) the substitute surplus, ū, that is lost irreversibly at this

rate if the arrival of the substitute is postponed, and (ii) the expected scarcity cost λ per

unit of consumption q.

Through (13), we have a relationship between the demanded quantity for continuation

and the belief, qI = D(sL); that is, the buyer’s “demand” schedule depicted in Fig. 2.

For a formal statement, we first note how beliefs shape the expected scarcity cost:

Remark 1 Scarcity cost λ(sL) is a strictly decreasing function of sL ∈ (0, kqm):

sL
′

> sL ⇒ F (s, sL
′

, α) > F (s, sL, α) for all s > sL ⇒ λ(sL
′

) < λ(sL),

where sL < kqm. For sL ∈ [kqm,∞), λ(sL) = 0.

Increasing sL does not affect the utility but only the distribution. The distribution

with higher sL stochastically dominates a one with lower sL. Since û′(s/k) is a decreasing

function, it follows that λ(sL
′

) < λ(sL), under the conditions stated. Beliefs have an
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impact on the distribution of supply outcomes after stopping, provided the seller is

expected to use all of its holdings at least in some outcomes (ensured by sL < kqm);

otherwise, there is no perceived scarcity and thus λ(sL) = 0.

If beliefs are very pessimistic, the perceived scarcity cost may be larger than what the

consumer can accept – it may not be possible to make the consumer indifferent. Define

the largest scarcity cost that the consumer accepts, from (13), as

λ∗ = max
q

{
u(q)− ū

q
} =

u(q∗)− ū

q∗
. (15)

If λ = λ∗, it is possible to offer q∗ = argmax{(u(q)− ū)/q} and make the buyer indifferent

but the indifference breaks down if λ is any larger; see Figure 4. Thus, for λ(sL) > λ∗,

it immediately follows that no continuation stage can exist, and the buyer immediately

invests. On the other hand, if the belief implies that the seller’s stock is so large that it

will in all cases be left partially in the ground, sL ≥ kqm, then there is no scarcity cost

λ = 0. In that case, continuation requires only a supply that provides the same surplus

as the buyer’s outside option, qI = q̄ = u−1(ū).

Assumption 1 For the most pessimistic belief (sL = 0), the buyer will stop:

λ(0) =

∫ ∞

0

û′(s/k)dF (s; 0, α) > λ∗. (16)

For sufficiently optimistic belief such that sL > kqm (i.e., λ(sL) = 0), there exists con-

tinuation supply qI = q̄ = u−1(ū) < qm.

The assumption is not needed for Theorem 1 but, for discussion, it is natural to limit

the parameter space Ω, through Assumption 1, to focus on non-degenerate equilibrium

outcomes. First, it states that beliefs need to be sufficiently optimistic to make the

buyer’s continuation possible. Second, it limits the strength of the buyer’s outside option,

so that compensating supply q̄ = u−1(ū) exists (see Figure 2), in case there is no expected

scarcity, λ = 0. Moreover, we limit the continuation supply to be less than the static

monopoly supply q̄ < qm. 22

Condition (16) allows us to define the domain of the buyer’s demand schedule:

Lemma 3 Given Assumption 1, there is a critical belief s∗ ∈ (0, kqm) such that λ(s∗) =

λ∗ and D(s∗) = q∗.

22This is to avoid equilibria where the scarcity considerations do no play a role; see the proof of

Theorem 1 where we relax the assumption.
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Figure 4: Determination of qI and λ∗

We can immediately see why such a critical belief must exist. By (16), sufficiently

low expectation triggers stopping while belief sL > kqm implies λ = 0 and the feasibility

of continuation. The expectation of scarcity, λ(sL), is continuously declining in belief so

that sL = s∗ solving λ(s∗) = λ∗ is unique. Note that λ∗ depends on ū, and that λ(sL)

depends on α and k so that s∗ depends on all parameters α, k, ū. The following lemma

describes the “demand” function in Figure 2.

Lemma 4 For all beliefs sL more optimistic than the critical belief (sL > s∗), the buyer’s

reservation demand qI = D(sL) declines in sL: it starts at D(s∗) = q∗, and strictly

decreases until for sL > kqm it takes value D(sL) = q̄ = u−1(ū). For all beliefs sL < s∗,

no stationary supply can make the buyer to continue.

If (16) stated by Assumption 1 does not hold, then s∗ = 0. On the other hand, if,

in Assumption 1, supply ensuring surplus ū does not exist, the critical belief s∗ tends to

infinity; the consumer invests immediately since the outside option dominates whatever

the surplus is that the seller might offer.

4.3 Equilibrium continuation and dynamics

We can now characterize the determinants of the equilibrium resource relationship. From

the analysis of the buyer’s problem, we know that the buyer tolerates expected scarcity,

as measured by E[û′(st/k)|s
L], up to λ∗, which is a given number defined by the buyer’s

primitive payoff expressions in (15). Continuation, then, requires that the buyer trusts

the relationship enough, meaning a sufficiently large expected remaining stock, so that
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λ(sL) < λ∗. Using the seller’s incentives, the buyer can readily infer whether there can

be enough trust in the relationship. There is a dichotomy based on the fundamentals

that determines if there can be enough trust for continuation.

Proposition 1 Given Assumption 1, it holds for the stationary equilibrium resource

relationship that

• If S(s∗) ≤ q∗, there is a unique continuation equilibrium that is ended at time

T = s0/q̂
I by the informed party (seller); for the consumer, stopping time T is

random, following the equilibrium belief distribution for s0. That is, a unique pair

of beliefs and supplies (ŝL, q̂I) exists that satisfies seller’s incentives (7) and buyer’s

indifference (13). Moreover, ŝL < kqm, q̄ < q̂I ≤ q∗. At time T , supplies drop to

qt = S−1(q̂I)/k < q̂I for t ∈ [T, T + k]. All resources are used.

• If S(s∗) > q∗, there is no belief sL supporting continuation. The relationship is

ended by the uninformed party at t = 0, with the expectation that some stock is left

in the ground. Supplies are qt = min{qm, s0/k} for t ∈ [0, k].

The dichotomy is thus the following. Critical belief s∗ defines the smallest type that

still justifies continuation; for this belief, the demanded quantity is q∗. This defines a

pessimistic conjectural belief that allows the buyer to test whether the expected scarcity

can in principle be less than what the buyer can tolerate. If S(s∗) ≤ q∗, which the buyer

can verify from the seller’s incentive constraint, seller type s∗ would not be willing to

go above q∗ for continuation. That is, seller type s∗ would have separated, and the true

equilibrium belief is then more optimistic than s∗ and can be uniquely defined as well

as the associated supply. Figure 2 depicts such a situation: looking at level q∗, marginal

type s∗ would not supply q∗. For this reason, and given the established properties of the

buyer’s demand and the seller’s incentives, we can find the unique intersection of the two

graphs.

Otherwise, the buyer’s requirement and the sellers’ incentives are incongruent, leading

to immediate stopping. In Figure 2, this happens when the buyer’s demand schedule

shifts enough horizontally to the right so that the most pessimistic belief under which

the buyer continues is higher than the marginal seller willing to implement continuation.

Later, in Section 6, we introduce shocks to the options outside the resource relationship,

so that the incentive incongruence can arise later in time than t = 0; in Section 7, the

result arises due to an endogenous change in the seller type distribution.
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Importantly, the continuation equilibrium features a time path for supplies where each

privately informed type supplies the demanded q̂I until the stock dwindles enough to reach

ŝL, the seller’s separation stock level. Each type thus separates at some point as t → ∞

but, from the buyer’s point of view, at random time. The separation is implemented

through a negative supply shock; see Fig. 3 that shows how the continuation quantity

differs from what the seller finds optimal to supply conditional on stopping. The size of

the shock depends on the stringency of the supplier’s incentive constraint, and is public

information as the buyer can infer the separating type and its post-stopping supply. We

analyze next, among other substantial implications, how the supply shock depends on

the fundamentals describing the relationship.

5 Trust, dependence, and supply shocks

We describe now how the equilibrium depends on: the buyer’s primitive expectations

with regards to the size of the stock, as measured by α; the buyer’s dependence on the

seller (including the possibility to store the resource), as measured by k; and the outside

option ū. We consider changes in these fundamentals one at a time, and introduce them

to the equilibrium relationships one by one. Consider first α, and the buyer’s perceived

scarcity cost for given α and belief sL:

λ(sL, α) =

∫ ∞

sL
û′(s/k)dF (s; sL, α).

Remark 2 Scarcity cost λ(sL, α) is increasing in α:

α′ > α ⇒ F (s; sL, α′) < F (s; sL, α) for all s > sL ⇒ λ(sL, α′) > λ(sL, α)

where sL < kqm.

For larger α, distribution F becomes worse in the sense of stochastic dominance by

the fact that α is a parameter of the exponential. Since the payoff function is non-

increasing in the stochastic variable, the expected value increases in α. The remark

requires kqm > sL; otherwise λ = 0, for all α > 0 (that is, the seller is expected to have

more stock than what will be supplied).

We can now consider the effect of changes in α on the equilibrium; it enters the buyer’s

demand qI = D(sL, α) that is defined through u(qI) = ū+λ(sL, α)qI but it does not enter

the seller’s incentive constraint for continuation. Since larger α makes the distribution

for types worse, the other part of the belief, that is sL, must improve to keep the buyer

indifferent.
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Lemma 5 The buyer’s demand schedule qI = D(sL, α), for sL ∈ [s∗, kqm], shifts out-

wards (to the right) for increasing α:

α′ > α ⇒ D(sL, α′) > D(sL, α)

and the critical belief s∗, defined Lemma 3, increases alongside. There is a maximal α∗

that can support a stationary equilibrium, such that q∗ = S(s∗).

Since the buyer’s demand schedule shifts horizontally to the right with increased

pessimism, the demanded supplies increase until no continuation in equilibrium can be

supported. This is formalized below.

Proposition 2 (trust) There is a threshold α = α∗ > 0 such that for α = α∗ the

unique stationary equilibrium supply is q̂I = q∗. For increased pessimism (α > α∗),

no continuation equilibrium exists. For increased optimism (α < α∗), the continuation

equilibrium exists; equilibrium supply q̂I strictly decreases as α decreases and, moreover,

q̂I → q̄ as α → 0.

The buyer places less trust in the relationship when α is increased, and therefore re-

quires larger supplies (lower prices) for compensation. A sufficient increase in pessimism

must lead to ending of the relationship. Strikingly, the increase in scarcity, as measured

by α, leads to larger supplies rather than smaller, in contrast with standard exhaustible-

resource theory (see, Dasgupta and Heal, 1979). The difference is explained by elements

in our setting that introduce caution on the consumer side, that is, the buyer’s neces-

sary dependence on the resource through the time-to-build period, and also by strategic

interactions that allow bribing for continuation through generous supplies.

Proposition 3 (supply shock) An increase in the buyer-side caution through pessimism

(larger α) leads to a larger expected supply both before and after stopping, and a larger

disruption when stopping.

An increase in the arrival rate for a small stock per unit of consumption, α, shifts

the buyer’s demand schedule to the right in Lemma 5. When the buyer’s demanded

quantity for continuation increases and, consequently, consumption price p(qI) decreases,

the marginal seller type willing to offer such terms of trade must increase. Since the

marginal revenue falls faster than the price, the gap between continuation and stopping

supplies must increase; see Fig. 3. Formally, the drop in supplies equals q̂I −S−1(q̂I)/k,
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and as ∂S(s)/∂s = π′′/p′ > 0, it follows that the gap increases when q̂I increases. In

other words, the anticipated supply disruption increases with the buyer side caution, α.

An improvement in the buyer’s outside option utility ū has analogous implications

on the equilibrium: the buyer’s demand schedule for continuation qI = D(sL, ū) shifts to

the right while the seller side incentives remain unaffected.

Proposition 4 There is a threshold ū∗ such that for ū = ū∗ the unique stationary equi-

librium satisfies q̂I = q∗. For better substitutes, no continuation equilibrium exists. For

worse substitutes (lower ū), the equilibrium supply q̂I decreases, approaching q̂I = 0 for

ū = 0. Moreover, given continuation, there is a larger supply disruption at stopping, the

greater is ū

Time-to-build, as captured by k, measures the buyer’s dependence on the seller but

it also has direct implications for the seller’s incentives.23 For the seller, the incentive

to opt-out from continuation depends on k since a longer time window for post-stopping

sales increases the value of stopping for a given stock level; separation schedule q∗ = S(sL)

rotates right in Fig. 2 when k is marginally increased. Intuitively, when k extends to

infinity, the upper bound for the seller’s profits is approached because the resource stock

is then effectively sold unit by unit at a price close to the maximum price p(0).

The dependence period k has an expected impact on the buyer’s continuation demand;

a longer time-to-build increases the perceived scarcity.

Lemma 6 Scarcity cost λ(sL, k) is increasing in k: for any belief sL < kqm,

k′ > k ⇒ λ(sL, k′) > λ(sL, k).

For larger k, the buyer thus finds stopping more appealing, all else equal. So, dis-

tribution F must become more favorable through an increase in belief sL to keep the

indifference at given supply qI , as defined through u(qI) = ū + λ(sL, k)qI ; the buyer’s

schedule qI = D(sL, k) shifts horizontally to the right with k in Fig. 2. When combined

with the change in the seller’s incentives, we can unambiguously pin down the effect of

the time-to-build period on the equilibrium:

23We take k as a given parameter of dependence. Changes in k can capture multiple interpretations.

For example, a larger on-ground resource storage capacity on the consumer side can be interpreted as

a reduction in dependence and thus a reduction in k. A similar interpretation is possible if there is a

credible supply commitment (contract) by the seller over a given interval of time.
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Proposition 5 (dependence) There is cut-off k∗ such that for k = k∗ the unique station-

ary equilibrium satisfies q̂I = q∗. For a longer time-to-build, no continuation equilibrium

exists. For k < k∗, the equilibrium supply q̂I decreases as k decreases, reaching the buyer’s

outside option supply qI = q̄ for k = 0.

Interestingly, when the buyer’s outside option becomes readily available (k → 0),

the buyer’s share of the resource surplus vanishes; the surplus from supplies qI = q̄ is

the same as without the resource. Thus, the inability to adjust demand immediately is

the source of the buyer’s bargaining power, giving a share of the resource surplus. It is

thus not profitable for the buyer to invest in storage capacity, while the seller gains from

long-term supply contracts.

6 Shocks to outside options

We have seen that the relationship can end in two basic ways. First, the uninformed

party may stop immediately. Second, the continuation is ended by the informed party

who reveals its type at stopping. The separation of types is rooted in the dynamic change

of the type space, leading to an equilibrium path with a random supply shock from the

uninformed (buyer’s) perspective, and full final exhaustion of the resource. However,

stopping also by the uninformed party can happen on the equilibrium path, rather than

only at time t = 0, if outside options change during the game. Whether it is the buyer

or seller who initiates the ending has substantial implications for the equilibrium path

— some resource may be left in the ground. In this Section, we show how the result can

arise in the stationary equilibrium, and then, in the next Section, it arises in the analysis

of a more general non-stationary equilibrium.

From Proposition 4, we see that when the outside utility, ū, jumps from below to

exceed ū∗, the uninformed party will stop at the time when the outside option changes,

and there is a breakdown of the relationship. Assume now a constant hazard rate x > 0

for the arrival of news about such an event. That is, we consider an initial state A with

ūA < ū∗, but assume probability rate x for the news that a transition will occur to a

new state B with ūB > ū∗. The ultimate long-run substitute surplus is then ūB so that

this becomes the benchmark relative to which we evaluate the expected surplus. The

substitute surplus at time s > t from the perspective of time t when no news has arrived,
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is given by

Etūs = ūA for s < t+ k

Etūs = e−x(s−t−k)ūA + (1− e−x(s−t−k))ūB for s ≥ t+ k.

Here, by assumption, the better outside option has an arrival time that goes beyond

the transition time of length k. Note that news about the arrival time may be released

today. Thus, when using the substitute in state A, the buyer’s expected loss from having

to wait for state B is

Et

∫ ∞

0

[ūs − ūB]ds = (k + x−1)(ūA − ūB).

Rewrite W i with i = A,B for the stopping payoffs in the two states, now expressed as

EWA =

∫ ∞

sL
k[û(s/k)− ūB]dF (s; ·) + x−1(ūA − ūB),

EWB =

∫ ∞

sL
k[û(s/k)− ūB]dF (s; ·).

Restated, the value of receiving information (announcement) that the improved sub-

stitute will arrive is

EtW
B − EtW

A =
1

x
(ūB − ūA). (17)

The announcement thus saves the visit to the inferior outside option ūA. This for-

malization of shocks to outside options allows us to analyze the shocks as if they were

unanticipated (see the Appendix for the proofs):

Proposition 6 If a new substitute for which no continuation equilibrium exists, ūB >

ū∗ arrives at hazard rate x, while for the current substitute a stationary continuation

equilibrium exists, ūA < ū∗, then the equilibrium outcome is unaffected by the better

substitute until it has become known.

The potential arrival of a new substitute does not change the buyer’s trade off: re-

source depletion leads to an increased resource scarcity in expectations, and this needs

to be compensated by an additional consumer surplus as before: u(qI) = ūA + λqI . The

arrival of the new substitute also affects the seller’s payoff but not the optimal opt-out

time for each seller type.

We come to the substance lessons from the extension:
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Proposition 7 For outside options ūA < ū∗ < ūB, the ending of the resource relation-

ship is characterized by a dichotomy: either (i) the seller’s stock swindles before news on

ūB arrive and the continuation path is followed by a supply disruption and full exhaustion,

or (ii) the news arrive and the buyer stops the relationship, leading to a supply shock that

is up (down) when the remaining stock is large (small). There is some strictly positive

probability that some resource will be left unused at the arrival of the new substitute.

This extension allows the continuation path to end by stopping either by the informed

or uninformed party. In both cases, from the buyer’s point of view, the equilibrium

stopping occurs at a random time. On the other hand, the seller has a privately known

planned stopping time but faces uncertainty whether that time will be reached; when

that time is not reached, the seller may have to leave some of its stock in the ground,

depending on the resource availability at that time. Indeed, the seller has to flood the

market with supplies and thus dump prices when there is excess availability at the news

arrival time.

7 Non-stationary equilibrium

Two basic forces shape the equilibrium belief updating. Resource depletion drives pes-

simism; whatever is the seller’s reserve, it must become smaller with consumption (“the

distribution shifts to the left”). But, not observing a supply shock allows ruling out

small seller types and thus consumption also drives optimism, as we have seen (“the

distribution is truncated from the left”). With an exponential type distribution, changes

in equilibrium optimism exactly cancel out changes in equilibrium pessimism. For more

general distributions, such stationarity of continuation beliefs cannot generally arise in

equilibrium. Yet, building on the exponential case, and on our restrictions on strategies in

Section 2.2, we can describe the general equilibrium dynamics in our resource extraction

game.

If the buyer knows the resource stock size fairly precisely, pessimism unambiguously

dominates in the equilibrium belief development: the expected remaining resource is

known to decline as consumption progresses. As a result, the consumer requires an

increasing compensation over time, that is, qIt increases on the equilibrium path. For

illustration, a uniform distribution is convenient (but the result below is stated for a

general distribution). Consider that the buyer’s belief at t = 0 is described by parameters

(σ0, θ0) where σ0 is the expected resource stock and θ0 is the spread of the belief such
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that there is a uniform support of seller types [sL0 , s
H
0 ] = [σ0 − θ0, σ0 + θ0]. At some later

date, the belief is (σt, θt) and the seller’s privately know stock is st.

With a uniform posterior, the measure of scarcity, that we have so far denoted by

λ(sL) in (14), depends now on (σt, θt) and can be explicitly written as follows:

λ(σt, θt) =
k

2θt
[û(

σt + θt
k

)− û(
σt − θt

k
)]. (18)

For the degree of asymmetric information sufficiently small, that is θ0 → 0 in (18),

the buyer knows the stock size precisely s = σ, and, the indifference condition in (13)

converges to

u(q) = u+ qu′(s/k).

This condition pins down the unique Markov-perfect equilibrium of the symmetric infor-

mation case (Gerlagh and Liski, 2011). The consumer’s indifference generates increasing

paths for supplies qIt and scarcity cost λt, until they reach qIt = q∗ and λt = λ∗; see (15)

where we define the largest scarcity that the consumer can tolerate. At this point, the

consumer stops and consumes remaining reserve s∗ = kq∗ at rate q∗ while waiting for the

substitute for k units of time. We can readily extend this equilibrium description to any

distribution of types with a sufficiently concentrated support.

Proposition 8 Given f0(s) with mean σ0 > kq∗ and spread θ0 such that f0(s) = 0 for

s < σ−θ and for s > σ+θ, for vanishing information asymmetry θ → 0, the equilibrium

path converges to the symmetric information path where the consumer decides on the final

ending of the relationship.

The result states it is the buyer who stops the relationship but this can still hap-

pen immediately, or after a period of consumption. Assumption 1 puts limits to the

consumer’s outside options so that the seller can in principle compensate the buyer for

continuing. In addition, if q∗ < S(kq∗), the seller would like to continue when the buyer

stops. But, then, the seller’s incentive constraint is never binding, as the buyer demands

less at larger stocks. Thus, under these assumptions, there is a consumption time inter-

val, after which the buyer stops. In particular, the result implies that when the buyer

knows the reserve size reasonably well, the equilibrium stopping time becomes common

knowledge; the seller will not opt-out from the equilibrium path before the buyer’s in-

vestment. The consumption history after which the buyer will do so is known at the

outset. While facing little uncertainty, the buyer learns nothing about the seller’s size in

the continuation equilibrium.
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In contrast, with a sufficiently large spread of seller types, consumption is always

informative; the consumer may even become more optimistic with consumption if small

types can be ruled out after a consumption history and if the type distribution suffi-

ciently improves for larger stock levels. To preserve the monotonicity of incentives in

equilibrium, we make an assumption on the primitive of the distribution function to

support resource expectations that become more pessimistic with extraction. For the

results in the remainder of the paper, let f0(s) > 0 or shortly f(s) be the (continuously

differentiable) prior distribution of types, defined on the extended real line. We denote

by m(s) = 1 − F (s) the survival function. We define α(s) ≡ −f ′(s)/f(s) to be the

distribution’s local decay rate.24 Let α∞ = lim
s→∞

α(s) denote the limit decay rate, possibly

infinite.25

Assumption 2 α is monotone non-decreasing. In addition, limit decay rate α∞ is not

reached for finite s (the distribution never becomes exponential): for all s, α(s) < α∞.

The results below assume that this property holds. The assumption is equivalent

to log-concavity of f (and also F ), often made in economics of information.26 We can

interpret the assumption as a statement that an exponential distribution of seller types

tends to overrate the probabilities both of very small and very large stocks. We often

have information that resource stocks are not very small; for small stocks, the density

may even increase, f ′(0) > 0 so that α(0) < 0. But α cannot be negative everywhere; if

f ′(0) > 0, it is natural that α is increasing for small s. On the other side of the spectrum,

it may be considered very unlikely that stocks are very large because of physical limits.

Thus, it is also natural to assume that α(s) increases for large s.

Remark 3 α(s)m(s) < f(s).

That is, α is less than the hazard rate.27

24Note that the decay rate is constant for the expontial distributions considered above, and that the

expected resource stock after any cumulative extraction remains Es = 1/α (possibly corrected for the

smallest seller type sL), conditional on knowledge that the resource is not exhausted yet.
25Monotone functions have well-defined limits on real line; on the extended real line we include ∞ as

a limit.
26See Bagnoli and Bergstrom (1989) and their Remark 1 together with the main Theorems. They also

show that common distributions satisfy the assumption, including the truncated normal distribution.
27The property is immediate, noting that f(s′) ≤ f(s) exp(−α(s)(s′ − s)) for s′ > s, with strict

inequality for sufficiently large s′ by Assumption 2. For the exponential bound distribution, αm = f

holds; true f falls short of the bound for s′ > s, and the survival function is lower, so α(s)m(s) < f(s).
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For the consumer, scarcity cost λ depends on the cumulative resource extraction, Qt,

and beliefs about the smallest seller type; the scarcity cost in (13) becomes

λ(sLt , Qt) = E[û′(s/k)|sL, Qt] =

∫∞

sL
û′(s/k)f(Qt + s)ds

m(Qt + sLt )
.

Lemma 7 The scarcity cost decreases with more optimistic beliefs sLt , and increases with

exhaustion Qt:

∂λ

∂sLt
< 0

∂λ

∂Qt

> 0.

These properties ensure the monotonicity of incentives in equilibrium. First, the con-

sumer’s indifference-making supply increases a with longer consumption history. Second,

through qI = S(sL) (Lemma 1), the marginal seller type also increases in the continuation

equilibrium. This allows us to describe any continuation equilibrium as follows:

Proposition 9 If α increases in s (Assumption 2), supplies in a continuation equilib-

rium rise: d
dt
qt ≥ 0 (increasing pessimism in equilibrium).

We can now state generally conditions under which there is enough trust in the rela-

tionship for continuation, and also if it is the informed or uninformed party that ends the

relationship, which, in turn, determines if all of the resource will be used in equilibrium.

The result builds on the exponential bound that we characterized in Proposition 2, that

is, α∗, and its relationship with the limiting behavior of the general type distribution.

Theorem 2 (i) If α∞ ≤ α∗, the equilibrium continues until the seller induces stopping

at a privately-known time. All resources are used. (ii) If α∞ > α∗ and λ(s∗, 0) > λ∗,

the equilibrium collapses: the buyer invests at t = 0, with expectation that some resource

is left in the ground. (iii) If α∞ > α∗ and λ(s∗, 0) < λ(s∗, s0 + s∗) < λ∗, the seller

induces a privately known stopping time, with all resources used. (iv) If α∞ > α∗ and

λ(s∗, 0) < λ∗ < λ(s∗, s0+ s∗) , the consumer stops when the scarcity cost increases to λ∗,

and in expectations leaves some resource in the ground.

The stationary equilibrium that assumes an exponential distribution is thus the key

to the general characterization. Parameter α∗ of the exponential compresses the relevant

information about the consumer’s and seller’s incentives: for any α < α∗, the stationary

continuation equilibrium exists (Proposition 2). The strategy for the proof of the result

30



(in the Appendix) is to show that the stationary equilibrium provides a bound for the

scarcity cost that the consumer can experience in the non-stationary case. If α∞ ≤ α∗,

it then follows immediately that the scarcity is lower than the corresponding stationary

scarcity, which leads to the equilibrium description of the path in Proposition 9. Since,

by α∞ ≤ α∗, the scarcity never rises to a level that the buyer cannot tolerate, it must be

the seller who initiates stopping. Clearly, the seller’s privately optimal stopping exhausts

the resource.

In contrast, if for a sufficient long consumption history, the scarcity ultimately exceeds

what the consumer can tolerate in the exponential case, more information is needed to

determine who stops the game. This information comes from the primitives of the model.

Recall that λ∗ is the maximum scarcity, defined by the surplus frontier, that the buyer can

accept (eq. (4)). Belief s∗ is the critical belief (Lemma 3 ) that becomes the stationary

equilibrium belief if α = α∗ (see Lemma 5). Now, the remaining properties of the result

follow. If, without any consumption history, the scarcity cost exceeds λ∗ when holding

belief s∗, the buyer must stop immediately; there is no consistent belief that could lower

the scarcity assessment below λ∗. However, if some consumption history is needed for

the scarcity to increase up to level λ∗, there is a unique cumulative extraction level that

leads to such scarcity increase. When the seller has enough stock for scarcity λ∗ to be

reached, then the buyer ends the relationship. Otherwise, it is the seller’s decision.

8 Concluding remarks

We have made several modeling choices to make progress on a previously unexplored

problem. We conclude by discussing the key modelling choices and connections to the

literature.

We made assumptions ensuring that the stationary equilibrium description is feasible

for an exponential distribution of seller types. That is, we ruled out dynamic signaling

schemes that could potentially facilitate a faster separation of types. This extension

could potentially be more natural in a setting where there are multiple buyers whose

competition can lead to alternative belief structures (in the spirit of Nöldeke and Van

Damme 1990 and Swinkels (1999)). In our current setting, we wanted to avoid outcomes

where the buyer threatens with beliefs to achieve a better “screening” of the seller types;

to the best of our knowledge, there are no well-developed candidates for refinements on

beliefs that could be invoked in our setting (see Janssen and Roy (2002) for a discussion

in a context for dynamic trading with price-taking agents; Ausubel et al. (2002) discuss
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the issue in bargaining settings). However, it is not clear whether a plausible equilibrium

outcome should be much affected by events that are off-equilibrium; there can be noise

in actions and external information that may affect the market values of the resource (in

the spirit of Kremer and Skrzypacz (2005) and Daley and Green (2012)), and this can

make conditioning of policies on intricate screening structures involving off-equilibrium

beliefs impossible.

Instead of relaxing stationarity through strategies, we relaxed the assumption on

stationary belief distribution, by making the assumption that beliefs become more pes-

simistic over time when extraction cumulates. The results for the non-stationary equi-

librium show a clear connection between the comparative statics in the stationary equi-

librium and its nonstationary counterpart: both Proposition 2 and 9 tell that supplies

rise with increasing pessimism.

The nonstationary equilibrium and shocks to outside options in the stationary model

provide two different causes for some valuable resource to be left unexploited. It is

possible that beliefs about the resource stock become too pessimistic over time, or alter-

natively, that outside options improve sufficiently to warrant a transition away from the

resource. In conclusion, the model with a stationary or a non-stationary solution lead to

similar quantitative conclusions: the consumer requires a compensation for continuing

the relationship which is ended by a supply shock when the ending is initiated by the

informed party. The economic reasoning for the sellers’ late reporting of their types is

the same in both models.

Our model departs by construction from the strand of literature that followed Akerlof

(1970) and Spence (1973) to study the dynamics of hidden information: in this literature,

when there are no informational asymmetries, one side of the market takes the full

surplus, which is natural since the focus is on information-driven changes in surpluses

and thus in efficiency. Our model preserves a non-trivial division surplus when there is

full information about the stock size. The extension with vanishing asymmetry shows

that the core of our model is a bargaining situation where inefficiencies are preserved

even without hidden information. The distortions arise from the fact that transfers

are market-based; without this assumption the parties could directly bargain about the

division of the resource value with direct transfers (as, for example, in Schweinzer 2010).

We have characterized the full information distortions in Gerlagh and Liski (2011).

One contribution of the current paper is that it can be either the bargaining or hidden

information that shapes the equilibrium outcome. The bargaining outcome dominates

when the buyer stops the relationship due to a good outside option, and therefore does
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not enter the dynamic signaling game at all (or may leave it after an improvement in

the outside option). With full information, the buyer must ultimately stop when the

seller’s observable stock sufficiently declines; thus, bargaining leads to a final breakdown

because of the stock depletion. Hidden information shapes the equilibrium when there

is a bargaining outcome for continuation, and depending on the assumptions made on

distributions, hidden information can delegate the ending decision to the informed party.

It is obvious that these properties arise in a fundamental way from the physical state of

the problem that is endogenously developing in the equilibrium.

Our results can be linked to Hörner and Kamien (2004) who show that a resource

monopsony facing price-taking and forward-looking sellers is conceptually equivalent to a

durable-good monopoly facing price-taking and forward-looking buyers. In their paper,

the Coase conjecture (Coase, 1972) arises since the low-cost resource sellers can wait for

the high-cost seller to enter the market; in the undiscounted limit, the buyer’s market

power vanishes at the twinkling of an eye, as expressed by Coase for the durable-good

monopoly. It is essential for the conjecture that the resource sellers have heterogenous

costs of supplying, similarly as it is essential for the original durable-good monopoly

that the consumers are heterogenous. In our model, there is no cost of extraction but

the outside option has a similar role: there is a zero-cost finite resource, and a higher-

cost substitute-resource that is infinite. Now, the Coase conjecture says that without

discounting the buyer should receive no surplus from the resource; the seller should price

the resource supplies at the cost of the substitute. Our equilibrium achieves this limit

when the adjustment delay k vanishes; the buyer receives the long-run payoff during the

resource consumption period, and thus no resource surplus (Proposition 5). Since the

seller takes the full surplus, the equilibrium outcome is also efficient, irrespective of the

private information. The time-to-build period for the substitute is thus an additional

feature of the cost structure that, when positive, leaves some surplus also for the buyer

and is therefore the source of distortions in our setting.

We have eliminated discounting from the analysis for tractability, building on Dutta

(1991) for the appropriate and intuitive tools that are applicable since the long-run state

of the game is “absorbing”. The assumption of no discounting ensures that there is an

equilibrium characterized by the buyer’s indifference between continuation and stopping.

For low discount rates r → 0, the seller’s post-investment strategy will uniformly converge

to (3), the seller’s incentive constraint will converge to (7), and the buyer’s incentive

constraint will converge to (13). But the equilibrium will change qualitatively when there

is high discounting. Intuitively, when the resource is very large, the end-game that has
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been the focus of this paper is far in the future and, by positive discounting, the seller gives

more weight to current revenues leading to supplies closer to static monopoly supplies and

potentially exceeding the buyer’s demand for continuation. Thus, both parties can prefer

continuation, which changes the nature of the analysis. Clearly, positive discounting is

also important for descriptive realism.

We have also made very stark assumptions on the buyer’s outside options, captur-

ing the notion of a substitute for the resource. Descriptive realism can be added by

considering a more gradual investment process, allowing the resource to compete with

the substitute, or adding uncertainty to the transition period. We have analyzed such

extensions for the symmetric information case (Gerlagh and Liski, 2011). The general

conclusion from that analysis is that as long as the buyer’s decision can irreversibly de-

stroy part of the seller’s surplus, there is something to be gained by offering part of that

surplus to the buyer; this makes core dynamics of the current results robust to exten-

sions mentioned. Note that the extensions modify the description of the post-stopping

stage where the game is over; they seem largely inconsequential for the issues of hidden

information considered in the current paper.

One final restrictive assumption that facilitated smooth analysis is the strict concavity

of the buyer’s surplus, u(q). The assumption is somewhat restrictive as, for example, it

rules out linear demand. However, the construction of the equilibrium does not depend

on concavity. For example, looking at Fig. 4, highest scarcity cost λ∗ that the buyer can

tolerate can be found for any continuous and bounded surplus function. Nevertheless,

uniqueness of the stationary equilibrium and monotonicity of the equilibrium with respect

to parameter changes can depend on concavity.28

Appendix: The buyer’s strong long-run average payoff

Here we derive the buyer’s stopping payoff in (8) as a limit of a discounted payoff.

Consider the following expected discounted payoff from stopping

E[U I |sL] =

∫ ∞

sL

∫ k

0

[û(s/k)]e−ρτdτdF (s; sL, α) + e−ρk 1

ρ
ū

where ρ > 0 is the discount rate. Define

E[W I |sL] = E[U I |sL]−
1

ρ
ū.

28But even these properties can be restored under suitable distributional assumptions; for example,

with a uniform type distribution, the concavity of u(q) can be relaxed while preserving the key charac-

terization. The proof of these results is available on request.
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Letting ρ → 0, gives the buyer’s nondiscounted payoff (8) in the text. This is the strong

long-run average payoff, as defined by Dutta (1991). The conditions stated in Dutta

(1991) for this payoff criterion to identify the appropriate policies for the undiscounted

limit are trivially satisfied in our setting.

Appendix: Lemmas

Lemma 1

Proof. We rewrite the value of the seller’s program,

V (s0) = max
{qt>q̄,T}

∫ T

0

π(qt)dt+ V I(s0 −QT )

⇒

V (s0) = max
T

{p(qI)qIT + V I(s0 − qIT )},

where the last line uses the fact that by keeping supplies at the buyer’s reservation level,

qt = qI , the seller receives the reservation price for continuation for all units in its reserve,

until stopping at T .

The first-order condition for T > 0, p(qI) > 0 is

p(qI) = V I′(s0 − qIT ) = V I′(sT ) (19)

where V I′(sT ) is defined in (5). Noting that the seller at time T is the smallest seller

type, so we can substitute sT = sL and obtain for p(qI) > 0

p(qI) = π′(
sL

k
) (20)

which is a relationship between the demanded quantity qI and the minimal stock level

for the seller’s continuation. Since π′( s
L

k
) strictly increases as sL declines, the equation

uniquely defines the smallest continuing resource owner. We denoted this supplier as a

function of the smallest seller type qI = S(sL).

For the rest of the properties, note that utility function U(q) is twice continuously

differentiable. Since then p(q) → π′(q) as q → 0, we have S(0) = 0. On the other

hand, for sL/k < qm, since π′(sL) < p(sL/k), it follows from (20) that S(sL) > sL/k.

As π′(sL) < 0 , the seller will never stop if sL > kqm. It follows that S(sL) = qu for all

sL ≥ kqm, with p(qu) = 0.
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Lemma 2

Proof. Exploiting the exponential distribution’s properties, such as fs(s; s
L, α) = −αf(s; sL, α),

and f(sL; sL, α) = α, we find that

E[û′(s/k)|sL] =

∫ ∞

sL
û′(s/k)f(s; ·)ds

= −

∫ ∞

sL
k[û(s/k)− ū]fs(s; ·)ds+ [k[û(s/k)− ū]f(s; ·)]∞sL

= α{E[W I |sL]− k[û(sL/k)− ū]}.

Now, when we substitute h = αq, we have (10).

Lemma 3

Proof. In text.

Lemma 4

Proof. Consider

u(q) = ū+ qλ

for a given λ < λ∗. Differentiating with respect to q and λ, yields

û′(q)dq = λdq + qdλ, or

dq

dλ
=

q

û′(q)− λ
.

We obtain dq/dλ > 0 since, by definition of λ∗, we have û′(q) − λ > 0. Now, λ is

continuously decreasing in sL (by Remark 1), implying that the reservation supply qI is

continuously increasing in sL whenever such a supply satisfying u(q) = ū+ qλ exists. By

the same continuity argument and Lemma 3 such qI can exist only when sL > s∗. For

sL > kqm, λ = 0 and q = q̄, where q̄ exists by Assumption 1.

Lemma 5

Proof. From Remark 1, λ(sL, α) is strictly increasing in sL given α, and, from Lemma

2, we see that λ(sL, α) is strictly decreasing in α given sL. Differentiating û(qI) =

ū+ qIλ(sL, α) with respect to sL and α leads to dsL/dα = −λα(s
L, α)/λsL(s

L, α) > 0.

From Proposition 1, an equilibrium exists if and only if S(s∗) ≤ q∗. Note that q∗ is a

constant defined by (15), consistent with scarcity cost λ∗. Thus, for each α, λ(s∗, α) = λ∗
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defines the critical belief s∗. Since ds∗/dα > 0, there is α∗ > 0 such that S(s∗) = q∗, and

S(s∗) > q∗ for α > α∗.

Lemma 6

Proof. For all sL ≤ s, we have dF (s; sL, α) > 0. Moreover, for any sL < kqm, we have

û′′(s/k) < 0. Thus,

d

dk
λ(sL, k) =

∫ ∞

sL

−s

k2
û′′(s/k)dF (s; sL, α) > 0

Lemma 7

Proof. The first inequality follows from straightforward application of the quotient rule:

∂λ

∂sLt
= λ(sLt , Qt)

f(Qt + sLt )

m(Qt + sLt )
−

û′(sLt /k)f(Qt + sLt )

m(Qt + sLt )

and noting that û′(s/k) is non-increasing and non-constant, so that λ(sLt , Qt) <

û′(s/k). The second inequality follows from

∂λ

∂Qt

=

∫∞

sL
û′(s/k)f ′(Qt + s)ds

m(Qt + sLt )
+ λ(sLt , Qt)

f(Qt + sLt )

m(Qt + sLt )

≥
−
∫∞

sL
û′(s/k)α(Qt + s)f(Qt + s)ds

m(Qt + sLt )
+ α(Qt + sLt )λ(s

L
t , Qt)

>
−α(Qt + sLt )

∫∞

sL
û′(s/k)f(Qt + s)ds

m(Qt + sLt )
+ α(Qt + sLt )λ(s

L
t , Qt)

= 0

where the first inequality follows from the remark, and the second inequality from

the assumption that α(s) is non-decreasing and non-constant.

Appendix: Propositions

Proposition 1

Proof. If we can find a pair (ŝL, q̂I) such that S(ŝL) = D(ŝL) = q̂I , then, by construction,

the buyer’s (weak) best response is to continue given belief ŝL, and the seller type s > ŝL

(strict) best response is to supply q̂I . If such a pair does not exist, then there is no
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stationary continuation equilibrium. We consider the two conditions, S(s∗) ≤ q∗ and

S(s∗) > q∗, in the Proposition separately; by Assumption 1 and Lemma 3, critical belief

s∗ > 0 dividing the two cases exists. For shorthand, we denote sm = kqm in this proof.

Continuation condition in Proposition 1:

S(s∗) ≤ q∗. (21)

Thus,

D(s∗) = q∗ > S(s∗) (22)

so that “demand” exceeds “supply” for sL = s∗ (type s∗ will not supply q∗). Lemma 4

states q̄ = D(sm), and by Assumption 1, q̄ < qm < qu so

D(sm) = q̄ < qu = S(sm). (23)

Thus, “supply ” exceeds “demand” for sL = sm (type sm could supply more than the

required, q̄, for continuation).

Since, by Lemma 4, the buyer’s requirement D(sL) is continuous and declining in sL

from q∗ to q̄, where the lower-end is reached when sL = sm = kqm, it follows by (21) and

(23) that the schedules S and D must intersect. The intersection is unique by Lemmas

1 and 4, defining the unique pair (ŝL, q̂I) such that S(ŝL) = D(ŝL) = q̂I .

Finally, the small seller, type ŝL, triggering stopping arrives at rate αq̂I > 0 per unit

of time. Thus, stopping occurs with probability one as t → ∞.

Stopping assumption in Proposition 1:

S(s∗) > q∗

so that

S(s∗) > D(s∗) = q∗ (24)

By the arguments from the first part of the proof, (24) rules out an intersection of S and

D. Note that the seller’s continuation profit increases when supplies decrease below S(s):

all seller types sL > s∗ can supply q∗ for continuation. However, this same argument

holds for all types in [S−1(q∗), s∗), where S−1(q∗) < s∗ by assumption. Thus, consistent

belief implies λ > λ∗ for which continuation is not possible by the definition of λ∗ in (15).

No stationary equilibrium can exist.
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Proposition 2

Proof. Restating (15),

λ∗ = max
q

{
u(q)− ū

q
} =

u(q∗)− ū

q∗

we can see that λ∗ is a positive constant, defined by the primitive payoff functions. Thus,

through λ∗ = λ(s∗, α), critical belief s∗ is a continuous and increasing function of α, as

in the proof of Lemma 5. Lemma 3 shows that such s∗ ∈ (0, kqm) exists. Assumption

1 in Lemma 3 ensures that s∗ < kqm, for any given α < ∞. Assumption 1 in Lemma 3

puts an implicit lower bound on α so that λ∗ < λ(0, α) holds. This lower bound can be

relaxed as we explain shortly; for the time being, assume that α is above this lower bound

so that λ∗ = λ(s∗, α) holds for s∗ > 0. Denote s∗ = s∗(α) such that λ∗ = λ(s∗(α), α).

We can now restate the condition for stopping in Proposition 1 as follows:

S(s∗(α)) > q∗ ⇔ α > α∗.

This proves Proposition 2, excluding the case where α is so low that Assumption 1 is

violated, and λ∗ < λ(0, α). For all α so low, we have s∗ = 0. However, the indifference-

making supply is still determined by u(qI) = ū + qIλ(0, α), and therefore as α → 0,

qI → q̄.

Proposition 3

Proof. An in increase in α shifts the buyer’s demand schedule to the right in Lemma 5.

Then, in view of Fig. 2, the separating type increases along S−1(qI) which is less than

that indicated by the diagonal line s = kq; this follows directly from the monotonicity

of the separation condition, defined through (7). Thus, increased pessimism leads to a

larger expected supply disruption.

Proposition 4

Proof. The buyer’s demand for continuation, qI = D(sL, ū), experiences a qualitatively

similar change as in Lemma 5 but now α is replaced by ū. The analysis of marginal

changes is similar as in Proposition 2, and thus omitted. However, the global analysis

is different: when ū > û(qm), Assumption 1 is violated. That assumption was made to

ensure that the main text can focus on an interior equilibrium but dropping Assumption

1 does not conceptually alter the equilibrium. Given ū > û(qm), the equilibrium belief
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is ŝL > kqm (and λ = 0); a seller with sufficient stock, S(kqm) < qm , will supply

q̂I = q̄ = û−1(ū), until its stock declines to level kqm.

Proposition 5

Proof. By definition in (15), λ∗ is independent of k. λ(sL, k) is increasing in k; from

the proof of Lemma 6, we can see that λ(sL, k) continuous and differentiable in k > 0.

Moreover, by Remark 1, λ(sL, k) is decreasing (and differentiable) in sL. Thus, λ∗ =

λ(sL, k) defines the critical belief sL = s∗ as an increasing function of k:

λ∗ = λ(s∗, k) ⇒ s∗ = s∗(k),
ds∗

dk
= −

λk(s
∗, k)

λs(s∗, k)
> 0

Now, in Proposition 1, the condition for stopping can be stated:

S(s∗(k)) > q∗ ⇔ k > k∗,

where k∗ < ∞ since S(q∗) is bounded. When k → 0, we have EW I → 0 from (8). Then,

W = EW I ⇒ u(q) = ū ⇒ q̂I = q̄.

Proposition 6

Proof. We first reconstruct the buyer’s indifference for the outside option state A.

Consider a short time period of length ε. The buyer’s payoff relative to the benchmark ūB,

after continuation consists of the consumer surplus above the long-run surplus, u(q)− ūB.

As before, there is a probability εh that the seller announces to be the smallest type sL,

after which the payoff outcome is û(sL/k)− ūB for k units of time, and the expected post-

resource payoff equals x−1(ūA − ūB) < 0 thereafter. In addition, there is probability εx

that the future arrival time of the better substitute is announced. In that case, the buyer

will immediately invest after ε time. If the buyer decides to invest because information

on the new substitute has arrived, its expected cumulative payoff during the dependence

stage will have decreased by ελq = εqkE[û′(s/k)|sL] units, while its post dependence

expected surplus will have increased by x−1(ūB − ūA). The economy remains in the same

stationary state with remaining probability (1 − εh − εx). Collecting these items, the

analog of the continuation surplus (9) can now be stated:

EW = ε[u(q)− ūA] + εhk[û(sL/k)− ūA]− εhx−1(ūB − ūA)

+εx(EWB − ελq) + (1− εh− εx)EW.
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The buyer is indifferent between continuation and stopping, so we can we substitute

EW = EWA. We get (noticing that the term ε2xλq cancels for ε small):

0 = ε[u(q)− ūA] + εhk[û(sL/k)− ūA]− εhx−1(ūB − ūA) + εx(EWB − EWA)− εhEWA

(25)

⇒

u(q) = ūA + h(EWA − k[û(sL/k)− ūA])− (1− hx−1)(ūB − ūA) (26)

Using (17), rewritten as

EWB − k[û(sL/k)− ūB] = EWA − k[û(sL/k)− ūA] + x−1(ūB − ūA),

we can rewrite

u(q) = ūA + h(EWB − k[û(sL/k)− ūB]) + h(EWA − EWB + ūB − ūA)− (1− hx−1)(ūB − ūA)

⇒

u(q) = ūA + h(EWB − k[û(sL/k)− ūB])

where the last two bracketed terms cancel out in the next to the last line. The last

term seems to depend on outside option ūB, but by use of Remark 2, we see it measures

scarcity which only depends on beliefs (α, sL). Using h = αq:

α(EWB − k[û(sL/k)− ūB]) = −

∫ ∞

sL
k[û(s/k)− ūB]fs(s; s

L, α)ds+ [k(û(s/k)− ūB)f(s; sL, α)]∞0

=

∫ ∞

sL
û′(s/k)f(s; sL, α)ds

= E[û′(s/k)|sL]

= λ(α, sL)

leading to the indifference condition,

u(q) = ūA + λq,

showing that the buyer’s stopping condition has not changed.

The seller’s separation decision can be formulated as an opt-out problem where the

seller chooses whether to supply qA, or more, at any given time, and for how long.

Supposing the seller with initial s0 keeps the buyer indifferent as long as the state is A,

so it will supply qA. Then, for a given future time T for opting out, the expected payoff

is:

V (s0) =

∫ T

0

xe−xt[π(qA)t− V (s0 − qAt)]dt + e−xT [π(qA)T − V (s0 − qAT )]
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The first part on the right captures the outcomes where the better outside option and

thus stopping by the buyer arrives at time t before the planned stopping time by the seller

T , with probability xe−xt and payoff π(qA)t− V (s0 − qAt). The second part corresponds

to events where the seller stops first at time T with probability e−xT . Yet, the first order

condition for the opt-out time is precisely as in (19), so that the seller’s separation curve

S(sL) remains the same. The new substitute arrival is exogenous to the seller’s stopping

decision and thus the seller’s separation type is unchanged.

Proposition 7

Proof. By Proposition 6, we can analyze the event as if it was unanticipated; the

equilibrium in state A progresses as in the absence of state B. We have characterized

the continuation equilibrium: from Proposition 3, the informed party triggers stopping

by a supply disruption conditional on reaching the privately known stopping level for

the stock. If such this level is not reached, state B arrives and the buyer stops. By the

properties of the distribution F (s; ·), there is positive probability for the event that the

seller has more than kqm, in which case some stock will be left unused.

Proposition 9

Proof. We assume the consumer’s indifference condition is binding, qt = qIt , as well as the

seller’s incentive constraint, qIt = S(sLt ). Then, we verify the assumptions must hold in

equilibrium. The constraint qIt = S(sLt ) ensures that on the path we have dqt
dsLt

=
∂qIt
∂sLt

> 0.

The buyer’s incentive indifference (13) gives

dqt
dsLt

=
∂qIt
∂λ

∂λ

∂sLt
+

∂qIt
∂λ

∂λ

∂Qt

dQt

dsLt

As the left-hand side is positive, and the first term on the right-hand side is non-

positive (recall that
∂qIt
∂λ

> 0), it follows that the second term on the right-hand side must

be strictly positive, and thus dQt

dsLt
> 0. Since, on the path, dQt

dt
> 0, so

dsLt
dt

> 0 and
dqt
dt

> 0.

To verify the seller’s incentives, note that the type domain is [0,∞), so that for any

given demanded quantity qIt , the seller’s incentive constraint qIt = S(sLt ) identifies a

marginal continuing type. For the seller’s constraint to be always binding, we must have

that ht > 0 where ht is the hazard rate of small sellers revealing their type: ht = (qt +
dsLt
dt
)f(sLt )/m(sLt ). Along the path, we have that the smallest seller type is continuously
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increasing, so that the speed of seller types revealing their type is given by qt +
dsLt
dt

> 0

and thus ht > 0.

The buyer’s indifference follows from the seller’s best-response: given the beliefs, the

seller maximizes the payoff by offering lowest possible quantity needed for the buyer

continuation (Lemma 1).

Theorems

Theorem 1

Proof. The proof follows from the proof of Proposition 1, after we relax Assumption 1

which is not required in the Theorem.

If (16) stated by Assumption 1 does not hold, then S(s∗) = S(0) = 0, by Lemma 1,

and the continuation condition in Proposition 1 is satisfied.

If q̄ > qm, Assumption 1 is again violated. It implies that the buyer’s outside utility

flow exceeds what the monopoly after stopping can maximally offer, ū > û(qm). The

equilibrium degenerates as the buyer will not accept any expected scarcity. The equilib-

rium belief is ŝL > kqm (and λ = 0); a seller with sufficient stock, s0 > kqm, will supply

q̂I = q̄ = û−1(ū), until its stock declines to level kqm.

Theorem 2

Proof. As explained in the text, the stationary equilibrium provided bounds that are

used in the proof. To this end, in this proof, we denote the scarcity cost for the exponential

distribution by

Λ(sL, α) =

∫ ∞

sL
û′(s/k)dF (s; sL, α).

That is, Λ(sL, α) = λ(sL, α), as we defined for the exponential case. Writing Λ(sL, α(Q))

means that we measure this cost using the exponential distribution with parameter

α = α(Q) given by the local decay of the general distribution evaluated at s = Q.

We prove first the following bounds:

Λ(sLt , α(Qt)) ≤ λ(sLt , Qt) ≤ Λ(sLt , α∞).

By Assumption 2, for finite Q, the general distribution is less optimistic than the ex-

ponential counterfactual: Λ(sLt , α(Qt)) ≤ λ(sLt , Qt) (see Remark 3). On the other hand,
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lim
Q→∞

α(Q) = α∞, and because this limit is not reached for any finite Q (Assumption 2),

Λ(sLt , α∞) is the upper bound for the scarcity cost:

lim
Q→∞

Λ(sLt , α(Q)) = Λ(sLt , α∞) = lim
Q→∞

λ(sLt , Q).

Now consider λ(s∗, Qt). It follows that lim
Q→∞

λ(s∗, Q) = Λ(s∗, α∞). Also,

α∞ ≤ α∗ ⇒ lim
Q→∞

λ(s∗, Q) ≤ λ∗ = Λ(s∗, α∗),

so that the path defined by the seller’s and buyer’s incentive constraints is well-defined

throughout, and satisfies Proposition 9. If α∞ > α∗, we know that lim
Q→∞

λ(s∗, Q) > λ∗.

Now, if λ(s∗, 0) > λ∗, the equilibrium collapses: there is not enough trust in the relation

and the buyer immediately invests. If λ(s∗, 0) < λ∗, there is a unique Q∗ such that

λ(s∗, Q∗) = λ∗. When cumulative supplies reach this level, the buyer will invest as

scarcity costs run too high. If s0 + s∗ < Q∗, the seller will have revealed its type before.
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APPENDIX FOR ADDITIONAL FIGURES
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sL

q

S(sL)
q = s/k

Figure 5: Supply-belief pairs (sL, q) that the seller can offer for continuation. The incen-

tive constraint binds at qI = S(sL).

sL

q∗

q

q̄

D(sL)

kqms∗

Figure 6: Supply-belief pairs (sL, q) at which the buyer continues. The indifference holds

for qI = D(sL).

sL

q∗

q

q̄

D(sL) S(sL)

kqms∗

Figure 7: Candidate pairs (sL, q) that can be supported as best responses. Consistency

requirement on beliefs: the area collapses to a point, D(sL) = S(sL).
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