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Abstract

Under a large dimensional approximate factor model for asset returns, we use high frequency

data to infer their covariance structure. We adapt principal component analysis (PCA) to this

high frequency setting and provide an asymptotic theory that covers joint in-fill time series and

diverging cross-sectional dimension asymptotics, under a variety of sparsity assumptions on the

idiosyncratic covariance matrix. Empirically, we investigate the factor structure of a large port-

folio of stock returns, focusing in particular on the consistency of the latent factor structure with

their counterparts based on well-known observable factors in the literature.

Keywords: high-dimensional data, high-frequency latent factor model, PCA, Global Industrial
Classification Standard (GICS), low rank plus sparse, S&P 500 index constituents

1 Introduction

The celebrated arbitrage pricing theory by Ross (1976) suggests that assets earn risk premia because

they are exposed to underlying risk factors, and that the co-movement between assets are driven by

their exposure to these risk factors. However, the factor structure of asset returns is either neglected

or abused by some portfolio managers in practice. For example, the sample covariance matrix is

often used as the key input to portfolio optimization, which ignores the factor structure behind

asset returns, leading to economically infeasible portfolios in particular when the universe of assets

under management is enormous. At the other extreme, some users build factor models with tens
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or hundreds of factors, which defeats the purpose of the factor investment, not to mention many of

such factors are spurious.

The aforementioned problems are partially due to the lack of theoretical guidance on the number

of factors or the choice of factors to use, when building large covariance matrices. Additionally, a

small number of factors alone cannot fully explain the comovement of asset returns. In the universe

of equities, individual firms’characteristics may be responsible to their comovement. One notable

example is the dual of Pepsi and Coca-Cola, whose correlation cannot be fully explained by their

exposure to systematic factors. Using more systematic factors is not an ideal solution to these

problems.

Using the principal component analysis (PCA), we separate correlations of high-frequency returns

driven by the common yet latent factors. We then find a striking block-diagonal pattern in the

residual correlations, after sorting the stocks by their firms’global industrial classification standard

(GICS) codes. This finding suggests that the covariance matrix can be approximated by a low-rank

component due to their exposure to some common factors, plus a sparse component, which reflects

their sector/industry specific exposure.

We thereby take this structure into account when estimating the covariance matrix. Our analysis

is based on a general continuous-time semiparametric approximate factor model, allowing the well-

documented time-variation in equity volatilities and correlations. We show that both the factor-

driven and the residual components of the sample covariance matrix are identifiable, as the cross-

sectional dimension increases. Our PCA based estimator is not only consistent, but also invertible

and well-conditioned. Additionally, based on the eigenvalues of the sample covariance matrix, we

provide a new estimator for the number of latent factors. To develop the theoretical properties of

these estimators, and in particular to highlight the effect of an increasing dimensionality, we use the

joint in-fill and diverging dimensionality asymptotics.

Empirically, we find that the factors uncovered from the PCA explain more variation of asset

returns than that explained by observable portfolio factors such as the market portfolio, the Fama-

French portfolios, as well as the industrial ETF portfolios. The difference is not very large when

industrial factors are included, suggesting that the industrial portfolios perhaps span approximately

the same linear space as the estimated latent factors. Also, the residual covariance matrix based

on the PCA is more sparse than that based on observable factors, and both demonstrate a clear

block-diagonal pattern. Finally, we take the new covariance estimator to an empirical test-drive, and

find that both estimators perform significantly better against the sample covariance estimator in an

out-of-sample portfolio allocation setting.

There has been a large literature on the factor model and its applications in finance and macro-

economics. The arbitrage pricing theory by Ross (1976) and the ICAPM by Merton (1973) develop

the fundamental economic theory behind the factor structure of asset returns. Chamberlain and

Rothschild (1983) extend Ross’strict factor model to the approximate factor model, in which the

residual covariances are not necessarily diagonal, hence allowing the comovement unaccountable from

the systematic risk factors. Based on this model, Bai and Ng (2002) propose a statistical method-
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ology to determine the number of factors, and Bai (2003) studies the statistical inference of factors

and their loadings. All these papers use the principal component analysis (PCA), which has been

adopted by Connor and Korajczyk (1988) to test the arbitrage pricing theory, and by Stock and Wat-

son (2002) in a forecasting setting. All these papers assume latent factors. On the other hand, many

efforts have been devoted to search for observable empirical proxies of the latent factors. Among

many others, the Fama-French 3-factor model by Fama and French (1993) is perhaps most widely

used. Their factors are explicitly constructed using portfolios formed by sorting firm characteristics.

Chen, Roll, and Ross (1986) consider macroeconomic variables as factors, for example, inflation,

output growth gap, interest rate, risk premia, and term premia.

The above factor models are static, as opposed to the dynamic factor models discussed in Forni,

Hallin, Lippi, and Reichlin (2000), Forni and Lippi (2001), and Forni, Hallin, Lippi, and Reichlin

(2004), in which the lagged values of the unobserved factors may also affect the observed dependent

variables. Both static and dynamic factor models are cast in discrete time. In contrast, our paper

discusses continuous-time factor models, where the observed variables are continuous Itô semimartin-

gales. Our setting is particularly suitable for analyzing stock returns observed within a fixed window.

Prior literature in this setting mainly discusses regression models with observable explanatory vari-

ables. For example, Mykland and Zhang (2006) introduce the ANOVA as well as the univariate

regression. Todorov and Bollerslev (2010) add a jump component to their univariate regression set-

ting. Aït-Sahalia, Kalnina, and Xiu (2014) extend their model to allow multivariate regressors and

time-varying coeffi cients. An exception is by Aït-Sahalia and Xiu (2014), which introduces the non-

parametric PCA for Itô semimartingales, sheding light on the latent factor structure of asset returns.

This paper, however, imposes a semiparametric factor model and adopts the PCA to estimate the

covariance and residual covariance matrices.

With respect to the literature on large covariance matrix estimation, Fan, Fan, and Lv (2008)

propose an estimator based on observable factors using a strict factor model. Fan, Liao, and Mincheva

(2011) study the approximate factor model, introducing high-dimensional thresholding techniques

to the residual covariance matrix. Closely related to our estimator is the POET estimator proposed

by Fan, Liao, and Mincheva (2013). They adopt the same low-rank plus sparsity structure of the

approximate factor model. Related papers also include Fan and Wang (2014) and Fan, Liao, and

Wang (2014). Alternative estimators include the shrinkage approach by Ledoit and Wolf (2004a),

Ledoit and Wolf (2004b), and Ledoit and Wolf (2012); the thresholding approach by Bickel and

Levina (2008a), Bickel and Levina (2008b), Cai and Liu (2011), etc. Zhou, Cai, and Ren (2014)

provides a comprehensive summary of the literature.

Our paper is also related to the growing literature on the covariance matrix estimation with high-

frequency data. The vast amount of data available intraday makes it rather attractive to estimate

the comovement between assets nonparamtrically, as opposed to building complex parametric models

with years of daily data. Earlier literature mainly focuses on attacking the microstructure noise

and asynchronous observation issues endemic to multivariate high-frequency data, which result in a

significant bias in the sample covariance matrix estimates by Barndorff-Nielsen and Shephard (2004).
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Among others, Aït-Sahalia, Fan, and Xiu (2010), Christensen, Kinnebrock, and Podolskij (2010),

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011), Zhang (2011), and Bibinger, Hautsch,

Malec, and Reiß(2014) propose different noise-robust estimators to the synchronized data using

either the previous tick scheme or the refresh time method. Shephard and Xiu (2012) propose a

rate-effi cient estimator that further achieves the desired positive-semidefinite property.

However, when the dimension of the asset universe increases to a few hundreds, the number of

observations of the synchronized data drops dramatically, so that the curse of dimensionality becomes

the dominant problem that plagues the covariance estimation. Fan, Furger, and Xiu (2015) establish

the consistency of a noise-robust estimator, allowing the dual in-fill and diverging dimensionality

asymptotics. Related work also includes Tao, Wang, Yao, and Zou (2011), Tao, Wang, and Zhou

(2013), and Tao, Wang, and Chen (2013). All these papers share the assumption that the population

covariance matrix itself is sparse. This assumption is refuted by Fan, Furger, and Xiu (2015), which

then propose a regression approach that decomposes the covariance matrix into a low-rank component

driven by some observable factors, and a sparse component that reflects the residual correlations.

They use up to 12 factors, including the three Fama-French factors as well as 9 sector SDPR Exchange

Traded Funds (EFTs). In contrast, our estimator uses the PCA approach to separate the low rank

component and the sparse components apart, which accommodates latent factors. Independently,

Pelger (2015a) derives the distributional theory for factors and their loadings in a high-frequency

factor model with jumps, and proposes an alternative estimator for the number of factors. The

distributional theory therein is entry-wise, similar to the results developed in Bai and Ng (2002) and

Bai (2003), whereas our paper discusses the matrix-wise asymptotic properties for the covariance

matrix and its inverse. See Pelger (2015b) for some related empirical work.

The structure of the rest of the paper is as follows. Section 2 sets up the model and provides

the assumptions. Section 3 details the econometric analysis that provides the theoretical support for

our procedure. Section 4 provides Monte Carlo simulation evidence. Section 5 includes an empirical

study that demonstrates the performance of our estimator. Section 6 concludes. The appendix

contains mathematical proofs.

2 Model Setup and Assumptions

Let (Ω,F , {Ft},P) be a filtered probability space. LetMd×r be the Euclidian space of d×r matrices,
andM++

d×r,M
+
d×r be the subsets of positive-definite and positive-semidefinite matrices, respectively.

Throughout the paper, we use λj(A), λmin(A), and λmax(A) to denote the jth, the minimum, and the

maximum eigenvalues of a matrix A. In addition, we use ‖A‖1, ‖A‖, and ‖A‖F to denote the L1 norm,

the operator norm (or L2 norm), and the Frobenius norm of a matrix A, that is, maxi,j
∑

i |Aij |,√
λmax(AᵀA), and

√
Tr(AᵀA), respectively. When A is a vector, both ‖A‖ and ‖A‖F are equal to

its Euclidean norm. We also use ‖A‖MAX = maxi,j |Aij | to denote the L∞ norm of A on the vector

space. We use ei to denote a d-dimensional column vector whose ith entry is 1 and 0 elsewhere. K

is a generic constant that may change from line to line.
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We observe a large intraday panel of asset prices, Y , at 0,∆n, 2∆n, . . . , t, where∆n is the sampling

frequency. We assume Y follows a continuous-time factor model,

Yt = βXt + Zt, (1)

where Yt is a d-dimensional vector process, Xt is a r-dimensional unobservable factor process, Zt is

the idiosyncratic component, and β is a constant factor loading matrix of size d× r. The constant β
assumption is not foreign to the literature. In fact, ReißTodorov, and Tauchen (2015) find supportive

evidence of this assumption using high-frequency data.

To complete the specification, we make additional assumptions on the dynamics of factors and

the idiosyncratic components.

Assumption 1. Suppose the vector of log asset prices Y follows a factor model given by (1), in

which X and Z are continuous Itô semimartingales, that is,

Xt =

∫ t

0
hs ds+

∫ t

0
ηsdWs, Zt =

∫ t

0
fsds+

∫ t

0
γsdBs.

We denote the spot covariance of Xt as et = ηtη
ᵀ
t , and that of Zt as gt = γtγ

ᵀ
t . Wt and Bt are

independent Brownian motions. In addition, ht and ft are progressively measurable, the process ηt,

γt are càdlàg, and et, et−, gt, and gt− are positive-definite. Finally, for all 1 ≤ i, j ≤ r, 1 ≤ k, l ≤ d,
there exist a constant K and a locally bounded process Ht, such that |βkj | ≤ K, and that |hi,s|, |ηij,s|,
|γkl,s|, |eij,s|, |fkl,s|, and |gkl,s| are all bounded by Hs for all ω and 0 ≤ s ≤ t.

Apart from the fact that jumps are excluded, Assumption 1 is fairly general, allowing almost

arbitrary forms of heteroscedasticity in both X and Z. While jumps are potentially important

to explain asset return dynamics, we do not find them essential in large-scale portfolio allocation

exercises. We thereby leave jumps aside for future work. The assumption on the uniform bounds

of all processes is necessary to develop the large dimensional asymptotic results. This is a fairly

standard assumption in the factor model literature, e.g., Bai (2003).

We also impose the usual exogeneity assumption. Different from those discrete-time regression or

factor models, this assumption imposes path-wise restrictions, which is standard in a continuous-time

factor model.

Assumption 2. For any 1 ≤ j ≤ r, 1 ≤ k ≤ d, and 0 ≤ s ≤ t, [Zk,s, Xj,s] = 0, where [·, ·] denotes
the quadratic covariation.

Combing with Equation (1), Assumptions 1 and 2 determine a factor structure on the spot

covariance matrix of Y , denoted as cs:

cs = βesβ
ᵀ + gs. 0 ≤ s ≤ t,

This leads to a key equality:

Σ = βEβᵀ + Γ, (2)
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where, without ambiguity we omit the dependence of Σ, E, and Γ on t,

Σ =
1

t

∫ t

0
csds, Γ =

1

t

∫ t

0
gsds, and E =

1

t

∫ t

0
esds.

Throughout the paper, t is fixed to be 1 month. The number of factors r is unknown but finite,

whereas d increases to ∞ as ∆ goes to 0.

Finally, we impose some structure on the residual covariance matrix Γ.

Assumption 3. Γ is a block diagonal matrix, and the set of its non-zero entries, denoted by S, is

known prior to the estimation. Moreover, λmin(Γ) is bounded away from 0 almost surely.

The block-diagonal assumption on Γ is motivated from our empirical work as well as a closely-

related study by Fan, Furger, and Xiu (2015). Fan, Furger, and Xiu (2015) find such a pattern of Γ in

their regression setting, after sorting the stocks by the GICS code and stripping off the part explained

by observable factors. Our empirical study sheds light on an even more clear block-diagonal pattern.

The comparison between the two studies reinforce the low-rank plus sparsity structure behind asset

returns.

To ensure the identification of Γ, we need to control the size of the largest block in Γ, which is

given by

md = max
1≤i≤d

∑
1≤j≤d

1{Γij 6=0}.

This quantity coincides with the commonly used measure of the sparsity of a matrix. For example,

Bickel and Levina (2008a) introduce this notion of sparsity to the covariance matrix, and establish

the asymptotic theory of a thresholded sample covariance matrix estimator. The degree of sparsity

determines the convergence rate of the estimator. We impose the sparsity assumption on the residual

covariance matrix, because this low-rank plus sparsity structure matches the asset returns we have.

In a setting with low-frequency time series data, Fan, Liao, and Mincheva (2011) and Fan,

Liao, and Mincheva (2013) use the sparsity assumption without assuming the block-diagonal pattern

of Γ. We make this additional assumption to achieve the simplicity of the estimator. The next

section provides a simple nonparametric covariance matrix estimator, with easy-to-interpret tuning

parameters, the number of digits of the GICS code and the number of latent factors. We also provide

a new estimator to determine the number of factors.

3 Econometric Analysis

3.1 Identification

There is fundamental indeterminacy in a latent factor model. For instance, we can rotate the factors

and their loadings simultaneously without changing the covariance matrix Σ. In the literature, the

canonical form of a factor model assumes that the covariance matrix E is an identity matrix and

βᵀβ is diagonal. This is not appropriate for our model, since we allow the factor covariance matrix
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E to be time-varying and non-deterministic, which is more general than the common factor models

in discrete-time.

Our goal in this paper is to propose a new covariance matrix estimator, taking advantage of the

assumed low-rank plus sparsity structure. We do not, however, try to identify the factors or their

loadings, which can be pinned down by imposing suffi ciently many identification restrictions, see,

e.g., Bai and Ng (2013). Since we only need to separate βEβᵀ and Γ from Σ, we can avoid some

strict and unnecessary restrictions.

Chamberlain and Rothschild (1983) study the identification problem of a general approximate

factor model. One of their key identification assumptions is that the eigenvalues of Γ are bounded,

whereas the eigenvalues of βEβᵀ diverge because the factors are assumed pervasive. It turns out

that we can relax the boundedness assumption on the eigenvalues of Γ. In fact, the block-diagonal

structure on Γ, combined with some sparsity condition imposed on md, implies that the largest

eigenvalue of Γ diverges but at a slower rate compared to the eigenvalues of βEβᵀ.

These considerations motivate our identification assumption below, which is weaker than the

usual canonical-form and pervasiveness assumptions in the literature.

Assumption 4. E is a positive-definite covariance matrix, with distinct eigenvalues bounded away

from 0. Moreover,
∥∥d−1βᵀβ − Ir

∥∥ = o(1), as d→∞.

This leads to our identification result.

Theorem 1. Suppose Assumptions 3 and 4 hold. Also, assume that ‖E‖MAX ≤ K, ‖Γ‖MAX ≤ K

almost surely, and that d−1/2md = o(1). Then r, βEβᵀ, and Γ can be identified as d→∞. That is,
r̄ = r, if d is suffi ciently large. Moreover, we have∥∥∥∥∥∥

r̄∑
j=1

λjξjξ
ᵀ
j − βEβᵀ

∥∥∥∥∥∥
MAX

≤ Kd−1/2md, and

∥∥∥∥∥∥
d∑

j=r̄+1

λjξjξ
ᵀ
j − Γ

∥∥∥∥∥∥
MAX

≤ Kd−1/2md,

where {λj , 1 ≤ j ≤ d} and {ξj , 1 ≤ j ≤ d} are the eigenvalues and their corresponding eigenvectors
of Σ, and r̄ = arg min1≤j≤d(d

−1λj + jd−1/2md)− 1.

The key identification condition is d−1/2md = o(1), which creates a suffi ciently wide gap between

two groups of eigenvalues, so that we can identify the the number of factors as well as the two

components of Σ. The identification is only possible when d is suffi ciently large — the so called

“the blessings of dimensionality.” This is in contrast with the result for a classical strict factor

model, where the identification is achieved by matching the number of equations with the number

of unknown parameters.

3.2 Estimation Procedure

To fix ideas, let ∆n
i X = Xi∆n − X(i−1)∆n

, for 1 ≤ i ≤ n = [t/∆n]. Our estimator is built on the

principal component analysis of the sample covariance matrix estimator. Denote

Σ̂ =
1

t

n∑
i=1

(∆n
i X)(∆n

i X)ᵀ.
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Suppose that λ̂1 > λ̂2 > . . . > λ̂d are the simple eigenvalues of Σ̂, and that ξ̂1, ξ̂2, . . . , ξ̂d are the

corresponding eigenvectors.1 Our covariance matrix estimator Σ̂S is given by

Σ̂S =

r̂∑
j=1

λ̂j ξ̂j ξ̂
ᵀ
j + Γ̂S , (3)

where r̂ is an estimator of r discussed below,

Γ̂ =
d∑

j=r̂+1

λ̂j ξ̂j ξ̂
ᵀ
j , and Γ̂S = (Γ̂ij1(i,j)∈S), (4)

The residual covariance matrix estimator Γ̂S is a by-product.

Our covariance matrix estimator is similar in construction to the POET estimator by Fan, Liao,

and Mincheva (2013) for discrete time series, except that we block-diagonalize Γ instead of using soft-

or hard- thresholding. The latter approach would inevitably introduce additional tuning parameters,

which we try to avoid. The same principle is adopted by Fan, Furger, and Xiu (2015) in a similar

setting with observable factors.

Equivalently, we can also motivate our estimator from least-square estimation in Stock and Wat-

son (2002), Bai and Ng (2013), and Fan, Liao, and Mincheva (2013). Our estimator can be written

as

Σ̂S = t−1FGGᵀF ᵀ + Γ̂S , Γ̂ = t−1 (Y − FG) (Y − FG)ᵀ , and Γ̂S = (Γ̂ij1(i,j)∈S), (5)

where Y = (∆n
1Y,∆

n
2Y, . . . ,∆

n
nY ) is a d×n matrix, G = (g1, g2, . . . , gn) is r̂×n, F = (f1, f2, . . . , fd)

ᵀ

is d× r̂, and F and G solve the least-squre problem:

(F,G) = arg min
fk,gi∈Rr̂

n∑
i=1

d∑
k=1

(
∆n
i Yk − f

ᵀ
k gi
)2

= arg min
F∈Md×r̂,G∈Mr̂×n

‖Y − FG‖2F

subject to

d−1F ᵀF = Ir̂, GGᵀ is an r̂ × r̂ diagonal matrix.

Our least-square estimator is similar to those by Bai and Ng (2002), Bai (2003), and Fan, Liao,

and Mincheva (2013), except that we apply the PCA to the d× d matrix YYᵀ instead of the n× n
matrix YᵀY. This is mainly because our spot covariance matrices es and cs are time-varying, so
that the n × n matrix is conceptually more diffi cult to analyze. It is straightforward to verify that
F = d1/2

(
ξ̂1, ξ̂2, . . . , ξ̂r̂

)
and G = d−1F ᵀY are the solutions to this optimization problem, and the

estimator given by (5) is the same as that given by (3) and (4).

To determine the number of factors, we propose the following estimator using a penalty function:

r̂ = arg min
1≤j≤rmax

(
d−1λj(Σ̂) + j × g(n, d)

)
− 1,

1Aït-Sahalia and Xiu (2014) discuss the more general setting where eigenvalues are potentially repeated.
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where rmax is some upper bound of r + 1. The penalty function g(n, d) satisfies two criterions. On

the one hand, the penalty cannot dominate the signal, i.e., the value of d−1λj(Σ), when 1 ≤ j ≤ r.

Since d−1λr(Σ) is Op(1) as d increases, the penalty should shrink to 0. On the other hand, the

penalty should dominate the estimation error as well as d−1λr+1(Σ) when r + 1 ≤ j ≤ d to avoid

overshooting. The choice of rmax does not play any role in theory. It is only used to avoid an

economically nonsensical choice of r in finite sample or in practice.

Our estimator is similar in spirit to that introduced in Bai and Ng (2002). They suggest to

estimate r by minimizing the penalized objective function:

r̂ = arg min
1≤j≤rmax

(d× t)−1 ‖Y − F (j)G(j)‖2F + penalty,

where the dependence of F and G on j is highlighted. It turns out, perhaps not surprisingly, that

(d× t)−1 ‖Y − F (j)G(j)‖2F = d−1
d∑

i=j+1

λi(Σ̂),

which is closely related to our proposed objective function. It is, however, easier to use our proposal

as it does not involve estimating the sum of many eigenvalues. The proof is also simpler.

There are many alternative methods to determine the number of factors, including Hallin and

Liška (2007), Amengual and Watson (2007), Alessi, Barigozzi, and Capasso (2010), Kapetanios

(2010), and Onatski (2010). Ahn and Horenstein (2013) propose an estimator by maximizing the

ratios of adjacent eigenvalues. Their approach is convenient and it does not involve any penalty

function. Unfortunately, the consistency of their estimator requires the random matrix theory estab-

lished by, e.g., Bai and Yin (1993), so as to establish a sharp convergence rate for the eigenvalue ratio

of the sample covariance matrix. Such a theory is not available for semimartingales to the best of

our knowledge, we thereby propose the alternative estimator, for which we can establish the desired

consistency without using the random matrix theory.

3.3 Asymptotic Theory

Our theory is based on the dual in-fill and diverging dimensionality asymptotics with the number of

factors being finite. That is, ∆n → 0, d → ∞, and r is fixed but unknown. We first establish the
consistency of r̂.

Theorem 2. Under Assumptions 1 - 4, and suppose that d−1md = o(1), ∆n log d = o(1), g(n, d)→ 0,

and g(n, d)
(
(∆n log d)1/2 + d−1md

)−1 →∞ , we have P(r̂ = r)→ 1.

A choice of the penalty function could be

g(n, d) = µ
(

(n−1 log d)1/2 + d−1md

)κ
,

where µ and κ are some constants and 0 < κ < 1. While it may be diffi cult to choose these tuning

parameters in practice, the covariance matrix estimates are not sensitive to the numbers of factors.
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Also, the scree plot offers the rule-of-thumb guide to set r. Practically speaking, r is no different

from a “tuning parameter.” And it is much easier to interpret r than µ and κ above. In the later

portfolio allocation study, we choose a range of rs to compare our covariance matrix estimator with

that using observable factors. As long as r is larger than 3, the results do not change much and the

interpretation remains the same.

The next theorem establishes the desired consistency of the covariance matrix estimator.

Theorem 3. Suppose Assumptions 1 - 4 hold. Also, d−1/2md = o(1) and ∆n log d = o(1) are

satisfied. Suppose r̂ → r with probability approaching 1, then we have∥∥∥Γ̂S − Γ
∥∥∥

MAX
= Op

(
(∆n log d)1/2 + d−1/2md

)
.

Moreover, we have ∥∥∥Σ̂S − Σ
∥∥∥

MAX
= Op

(
(∆n log d)1/2 + d−1/2md

)
.

Compared to the rate of the regression based estimator in Fan, Furger, and Xiu (2015), i.e.,

Op((∆n log d)1/2), the convergence rate of the PCA estimator depends on a new term d−1/2md, due

to the presence of unobservable factors, as can be seen from Theorem 1. We consider the consistency

under the entry-wise norm instead of the operator norm, partially because the eigenvalues of Σ

themselves grow at the rate of O(d), so that their estimation errors do not shrink to 0, when the

dimension d increases exponentially, relative to the sampling frequency ∆n.

In terms of the portfolio allocation, the precision matrix perhaps plays a more important role

than the covariance matrix. For instance, the popular minimum variance portfolio is determined by

the inverse of the Σ instead of the Σ itself. Our estimator is not only positive-definite, but is also

well-conditioned. This is because the minimum eigenvalue of the estimator is bounded from below

with probability approaching 1. The next theorem describes the asymptotic behavior of the precision

matrix estimation under the operator norm.

Theorem 4. Suppose Assumptions 1 - 4 hold. Suppose d−1/2md = o(1), ∆n log d = o(1), and r̂ → r

with probability approaching 1, then we have∥∥∥Γ̂S − Γ
∥∥∥ = Op

(
md(∆n log d)1/2 + d−1/2m2

d

)
.

If in addition, d−1/2m2
d = o(1) and md(∆n log d)1/2 = o(1), then λmin(Σ̂S) is bounded away from 0

with probability approaching 1, and∥∥∥(Σ̂S)−1 − Σ−1
∥∥∥ = O

(
m3
d

(
(∆n log d)1/2 + d−1/2md

))
.

The convergence rate of the regression based estimator in Fan, Furger, and Xiu (2015) with

observable factors is Op(md(∆n log d)1/2). In their paper, the eigenvalues of Γ is bounded from

above, whereas we relax this assumption in this paper, which explains the extra powers of md here.

As above, d−1/2md reflects the loss due to ignorance of the latent factors.

As a by-product, we can also establish the consistency of factors and loadings up to some matrix

transformation:
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Theorem 5. Suppose Assumptions 1 - 4 hold. Suppose d−1/2md = o(1), ∆n log d = o(1), and

r̂ → r with probability approaching 1, then there exists a r × r matrix H, such that with probability
approaching 1, H is invertible, ‖HHᵀ − Ir‖ = ‖HᵀH − Ir‖ = op(1), and more importantly,

‖F − βH‖MAX = Op

(
(∆n log d)1/2 + d−1/2md

)
,
∥∥G−H−1X

∥∥ = Op

(
(∆n log d)1/2 + d−1/2md

)
.

The presence of the H matrix is due to the indeterminacy of a factor model. Bai and Ng (2013)

further impose strong assumptions so as to identify the factors. For instance, one set of identification

assumptions suggest that the first few observed asset returns are essentially noisy observations of

the factors themselves. For the purpose of covariance matrix estimation, such assumptions are not

needed.

4 Monte Carlo Simulations

In the previous section, we have established the theoretical asymptotic results in an ideal setting

without market microstructure concerns. This setting is realistic and relevant in practice only for

returns sampled at a suffi ciently low frequency. We choose this setup mainly to demonstrate the effect

of an increasing dimensionality. In this section, we also examine the effect of subsampling on the

performance of our estimators in the presence of both asynchronous observations and microstructure

noise.

Following the setup in Fan, Furger, and Xiu (2015), we sample 100 paths from a continuous-time

r-factor model of d assets specified as:

dYi,t =
r∑
j=1

βi,jdXj,t + dZi,t, dXj,t = bjdt+ σj,tdWj,t, dZi,t = γᵀi dBi,t,

where Wj is a standard Brownian motion and Bi is a d-dimensional Brownian motion, for i =

1, 2, . . . , d, and j = 1, 2, . . . , r. They are mutually independent. Xj is the jth unobservable factor.

We deem one of the Xs as the market factor, so that its associated βs are positive. The covariance

matrix of Z is a block diagonal matrix, denoted by Γ, that is, Γil = γᵀi γl. We allow for time-varying

σj,t which evolves according to the following system of equations:

dσ2
j,t = κj(θj − σ2

j,t)dt+ ηjσj,tdW̃j,t, j = 1, 2, . . . , r,

where W̃j is a standard Brownian motion with E[dWj,tdW̃j,t] = ρjdt. We choose d = 500 and

r = 3. In addition, κ = (3, 4, 5), θ = (0.05, 0.04, 0.03), η = (0.3, 0.4, 0.3), ρ = (-0.60, -0.40,

-0.25), and b = (0.05, 0.03, 0.02). In the cross-section, we sample β1 ∼ U [0.25, 1.75], and sample

β2, β3 ∼ N (0, 0.52). The variances on the diagonal of Γ are uniformly generated from [0.05, 0.20],

with constant within-block correlations sampled from U [0.10, 0.50] for each block. In total, there are

20 blocks (of size 25× 25) on the diagonal of the residual covariance matrix.

To mimic the effect of microstructure noise and asynchronicity, we add a Gaussian noise with

mean zero and variance 0.0012 to the simulated log prices before censoring. The data are then

11



censored using Poisson sampling, where the number of observations for each asset is drawn from a

truncated log-normal distribution. The parameters of the distribution are calibrated such that its

cross-sectional distribution matches the empirical pattern shown in Figure 1 of Lunde, Shephard,

and Sheppard (2014).

Table 1 provides the averages of ‖Σ̂−Σ‖MAX and ‖(Σ̂S)−1−Σ−1‖ in various scenarios. We apply
the PCA and the regression estimators to the ideal dataset without any noise or asynchronicity. The

results are shown in Columns PCA∗ and REG∗. Columns PCA and REG contain the estimation

results using the polluted data. In the last column, we report the estimated number of factors with

the polluted data. We choose the tuning parameters as κ = 0.5, rmax = 20, and µ = 0.04× λd/2(Σ̂).

The use of the median eigenvalue λd/2(Σ̂) helps adjust the level of average eigenvalues for better

accuracy.

We summarize the findings here. First, the values of ‖Σ̂ − Σ‖MAX in Columns REG and PCA

are identical. This is due to the fact that the largest entry-wise errors are likely achieved along the

diagonals, and that the estimates on the diagonal are identical to the sample covariance estimates,

regardless of whether the factors are observable or not. As to the prevision matrix under the operator

norm, i.e., ‖(Σ̂S)−1 − Σ−1‖, the differences between the two estimators are noticeable despite being
very small. While the PCA approach uses less information, it can perform equally well as the REG

approach. That said, the benefit of using observable factors is apparent from the comparison between

Columns REG∗ and PCA∗, as the results based on the PCA∗ are slightly worse. Secondly, the well-

known microstructure effect clearly ruins the estimates when the sampling frequency is as high as

every few seconds. Subsampling indeed mitigates the microstructure concerns, while it also raises

another concern with a relatively increasing dimensionality —the ratio of cross-sectional dimension

against number of observations. The sweet spot of the trade-off appears to be in the range between

15 and 30 minutes. Finally, the number of factors is precisely estimated for most frequencies. Not

surprisingly, at both ends of the sampling frequency, the estimates are off.

5 Empirical Work

5.1 Data

We collect from the TAQ database intraday observations of the S&P 500 index constituents from

January 2004 to December 2012. The constituents have been changing from time to time. As a

result, there are in total 736 stocks. We follow the usual procedure, see, e.g., Aït-Sahalia and Jacod

(2014), to clean the data and subsample returns of each asset every 15 minutes. The overnight

returns are excluded to avoid dividend issuances and stock splits.

In addition, we collect the Global Industrial Classification Standard (GICS) codes from the

Compustat database. These 8-digit codes are assigned to each company in the S&P 500. The code

is split into 4 groups of 2 digits. Digits 1-2 describe the company’s sector; digits 3-4 describe the

industry group; digits 5-6 describe the industry; digits 7-8 describe the sub-industry. The GICS codes

12



‖Σ̂− Σ‖MAX ‖(Σ̂S)−1 − Σ−1‖ # of Factors
Freq REG∗ PCA∗ REG PCA REG∗ PCA∗ REG PCA
5 0.005 0.009 2.371 2.371 0.590 3.242 33.426 33.417 1
15 0.008 0.011 0.806 0.806 0.981 3.211 32.875 32.854 1
30 0.011 0.014 0.414 0.414 1.499 3.408 32.012 31.963 3
60 0.018 0.019 0.221 0.221 2.257 3.478 30.466 30.350 3
300 0.037 0.037 0.075 0.075 7.543 7.429 22.371 22.035 3
900 0.049 0.050 0.061 0.061 13.677 13.486 14.237 14.124 3
1800 0.071 0.071 0.072 0.073 20.850 20.450 14.126 14.456 3
3900 0.108 0.108 0.112 0.112 38.693 40.498 35.884 36.537 20
4680 0.142 0.142 0.150 0.150 52.045 54.002 51.443 51.225 20
11700 0.201 0.201 0.205 0.205 634.357 586.789 511.255 486.668 20

Table 1: Simulation Results

Note: In this table, we report the values of ‖Σ̂−Σ‖MAX and ‖(Σ̂S)−1−Σ−1‖ for each subsampling frequency
ranging from one observation every 5 seconds to 2 observations per day. The first column displays the
sampling frequencies in seconds. Columns REG∗ and PCA∗ report the results of regression and the PCA
methods respectively, using synchronous observations without microstructure noise. Columns REG and the
PCA are based on the polluted data. Columns REG∗, REG, and PCA∗ all assume 3 factors. The results in
the PCA column are obtained by estimating the number of factors first. The last column reports the median
estimates of the number of factors.

are used to sort stocks and form blocks of the residual covariance matrices. The GICS codes also

change over time. The time series median of the largest block size is 77 for sector-based classification,

38 for industry group, 24 for industry, and 14 for sub-industry categories.

For comparison purpose, we also make use of the observable factors constructed from high-

frequency returns, including the market portfolio, the small-minus-big market capitalization (SMB)

portfolio, and high-minus-low price-earnings ratio (HML) portfolio in the Fama-French 3 factor

model, as well as the daily-rebalanced momentum portfolio formed by sorting stock returns between

the past 250 days and 21 days. We follow the same procedure to construct these factors as described

on Kenneth French’s webpage, see Aït-Sahalia, Kalnina, and Xiu (2014) for more details. We also

collect from TAQ 9 industry SDPR ETFs. They are Energy (XLE), Materials (XLB), Industrials

(XLI), Consumer Discretionary (XLY), Consumer Staples (XLP), Health Care (XLV), Financial

(XLF), Information Technology (XLK), and Utilities (XLU).

5.2 The Number of Factors

Prior to estimating the number of factors, we demonstrate the sparsity and block-diagonal pattern of

the residual covariance matrix using various combinations of factors, which server as a rule-of-thumb

guide. In Figures 1 and 2, we mark the economically significant entries of the residual covariance

estimates for the year 2012, after removing the part driven by 1, 4, 10, and 13 PCA-based factors,

respectively. The criterion of the economic significance is that the correlation is at least 0.15 for at
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Figure 1: The Sparsity Pattern of the Residual Covariance Matrices
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Figure 2: The Sparsity Pattern of the Residual Covariance Matrices

least 1/3 of the year. These two thresholds and the choice of the year 2012 are entirely arbitrary.

Varying these numbers do not change the pattern and the message of the plots. We also compare

these plots with those based on observable factors. More specifically, our benchmark 1-factor model

is the CAPM. For the 4-factor model, we use 3 Fama-French portfolios plus the momentum portfolio.

The 10-factor model is based on 1 market portfolio and 9 industrial ETFs. The 13-factor model uses

all factors.

Note: The figure displays the significant entries of the residual covariance matrices, relative to 1, 4, 10,

and 13 latent factors. The red (resp. black) squares highlight those stocks that belong to the same sector

(resp. industry group).

Note: The figure displays the significant entries of the residual covariance matrices, relative to 1, 4,

10, and 13 observable factors. The red (resp. black) squares highlight those stocks that belong to the same
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Figure 3: Estimates of the Number of Factors

sector (resp. industry group). CAPM denotes one factor case using the market portfolio, FF refers to the two

additional Fama-French factors, MoM denotes the momentum factor, whereas the 9IF refers to the 9 industrial

ETF factors. They are Energy (XLE), Materials (XLB), Industrials (XLI), Consumer Discretionary (XLY),

Consumer Staples (XLP), Health Care (XLV), Financial (XLF), Information Technology (XLK), and Utilities

(XLU).

We find that the PCA approach is very effective in identifying the latent factors. The residual

covariance matrix demonstrates a clear block-diagonal pattern after removing as few as 4 latent

factors. The residual correlations are likely due to idiosyncrasies within sectors or industrial groups.

This pattern verifies the low-rank plus sparsity structure we impose. Instead of thresholding all

off-diagonal entries as suggested by the strict factor model, our proposal maintains within-sector

or within-industry correlations, hence produces more accurate estimates. As documented in Fan,

Furger, and Xiu (2015), there is a similar pattern with observable factors, but apparently, more of

such factors are necessary to obtain the same degree of the sparsity obtained by the PCA approach.

We then use our estimator to determine the number of factors for each month. The time series

plot is shown in Figure 3. The times series is relatively stable, pointing out 2 - 5 factors for most

of the sample periods. The result echoes with the scree plot shown in Aït-Sahalia and Xiu (2014).

This finding also agrees with the pattern in the residual sparsity plot.

Note: This figure plots the time series of the estimated number of factors using the PCA. The tuning

parameters in the penalty function are µ = 0.04× λd/2(Σ̂), κ = 0.5, and rmax = 20.

5.3 In-Sample R2 Comparison

We now compare the variation explained by an increasing number of latent factors with the variation

explained by the same number of observable factors. We calculate their in-sample R2 respectively

for each stock and for each month, and plot the time series of their cross-sectional medians in Figure
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Figure 4: In-Sample R2 Comparison

4. Not surprisingly, the first latent factor agrees with the market portfolio. Despite that it is not

a portfolio, it explains as much variation as the market portfolio. Nevertheless, when more factors

are included, both the latent factors and the observable factors can explain more variation, with the

former explaining slightly more. This in fact suggests that the observable factors are rather effective

in capturing the latent common factors.

Note: This figure plots the time series of the cross-sectional medians of R2s based on the latent factors

identified from the PCA, as well as those based on the observable factors. The number of factors refers to

the number of latent components from the PCA approach and the number of portfolios used in the regression

approach.

5.4 Out-of-Sample Portfolio Allocation Study

In this section, we bring together our covariance estimates to an empirical test-drive. We consider

the following constrained portfolio allocation exercise:

min
w
wᵀΣ̂Sw, subject to ωᵀ1 = 1, ‖ω‖1 ≤ γ, (6)

where ‖ω‖1 ≤ γ imposes an exposure constraint, see, e.g., Jagannathan and Ma (2003) and Fan,

Zhang, and Yu (2012). When γ = 1, the optimal portfolio allows no short-sales, i.e., all portfolio

weights are non-negative. When γ is small and binding, the optimal portfolio is sparse, i.e., many

weights are zero. When γ is no longer binding, the optimal portfolio coincides with the global

minimum variance portfolio.

For each month from February 2004 to December 2012, we build our portfolio based on the

covariance estimates in the past month. This amounts to assuming that Σ̂S
t ≈ Et(Σt+1), which is a

common strategy in practice. We compare the out-of-sample performance of the portfolio allocation

problem (6) with a range of exposure constraints. The results are shown in Figure 5.
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Figure 5: Out-of-Sample Risk of the Portfolio

Note: This figure compares the time series average of the out-of-sample monthly volatility from 2004

and 2012. The x-axis is the exposure constraint γ in the optimization problem (6). The results are based

on 5 covariance matrix estimators, including the sample covariance matrix (Sample), the PCA approach with

sector-grouped block-diagonal residual covariance (Sector + PCA), PCA with diagonal residual covariance

(Strict + PCA), and their regression counterparts (Sector + REG, Strict + REG). The number of factors

refers to the number of principal components for the PCA approach and the number of portfolios factors for

the regression approach.

We find that for the purpose of portfolio allocation, the PCA approach performs as well as the

regression method. Their performance further improves when combined with sector-based block-

diagonal structure of the residual covariance matrix. The sample covariance matrix based allocation

only performs reasonably well when the exposure constraint is very tight. As the constraint relaxes,

more stocks are selected into the portfolio, so that the in-sample risk of the portfolio decreases.

However, the risk of the sample covariance based portfolio increases out-of-sample, suggesting that the

covariance matrix estimates are ill-conditioned that the allocation becomes noisy and unstable. Both

the PCA and the regression approach produce stable out-of-sample risk, as the exposure constraint

relaxes. We also build up an equal-weight portfolio, and its annualized risk is 17.89%. We did not

plot it as it is independent of the exposure constraints and the numbers of factors. taowangchen2013

6 Conclusion

We propose a simple PCA based estimator of the large covariance matrix using high frequency

returns. Our model is semiparametric, allowing latent factors with arbitrary heteroscedasticity. The

estimator is positive-definite and well-conditioned. We also provide a new estimator of the number

of latent factors. We justify the consistency of these estimators using the dual in-fill and diverging

dimensionality asymptotics, which sheds light on both the curse and blessings of the dimensionality.
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Empirically, we document a latent low-rank and sparsity structure behind the covariances of the

asset returns. Our comparison with observable factors also suggest that the Fama-French factors,

the momentum factor, and the industrial portfolios together, approximate the span of the latent

factors very well.
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Appendix A Mathematical Proofs

Appendix A.1 Proof of Theorem 1

Proof of Theorem 1. First, we write B = β
√

E = (b1,b2, . . . ,br) with ‖bj‖s sorted in a descending
order. Note that

{
‖bj‖2 , 1 ≤ j ≤ r

}
are the non-zero eigenvalues of BBᵀ. Therefore by Weyl’s

inequalities, we have

|λj(Σ)− ‖bj‖2 | ≤ ‖Γ‖ , 1 ≤ j ≤ r; and |λj(Σ)| ≤ ‖Γ‖ , r + 1 ≤ j ≤ d.

On the other hand, the non-zero eigenvalues of BBᵀ are the eigenvalues of BᵀB. By Weyl’s inequalities

and Assumption 4, we have, for 1 ≤ j ≤ r,∣∣d−1λj (BᵀB)− λj(E)
∣∣ =

∣∣∣d−1λj

(√
Eβᵀβ

√
E
)
− λj(E)

∣∣∣ ≤ ‖E‖∥∥d−1βᵀβ − Ir
∥∥ = o(1).

Therefore, ‖bj‖2 = O(d), and K ′d ≤ λj(Σ) ≤ Kd, for 1 ≤ j ≤ r. Since ‖Γ‖ ≤ ‖Γ‖1 ≤ Kmd and

λj(Σ) ≥ λj(Γ) for 1 ≤ j ≤ d, it follows that K ′ ≤ λj(Σ) ≤ Kmd, for r + 1 ≤ j ≤ d. This implies

that d−1λj(Σ) ≥ d−1λr(Σ) ≥ K ′, for 1 ≤ j ≤ r; d−1λj(Σ) ≤ d−1md, for r + 1 ≤ j ≤ d. Since

d−1/2md = o(1), it follows that d−1md < d−1/2md < K ′. Therefore, we have, as d→∞:

r̄ = arg min
1≤j≤d

(
d−1λj(Σ) + jd−1/2md

)
− 1→ r.

Next, by the Sin theta theorem in Davis and Kahan (1970), we have∥∥∥∥ξj − bj
‖bj‖

∥∥∥∥ ≤ K ‖Γ‖
min

(∣∣∣λj−1(Σ)− ‖bj‖2
∣∣∣ , ∣∣∣λj+1(Σ)− ‖bj‖2

∣∣∣) .
By the triangle inequality, we have∣∣∣λj−1(Σ)− ‖bj‖2

∣∣∣ ≥ ∣∣∣‖bj−1‖2 − ‖bj‖2
∣∣∣− ∣∣∣λj−1(Σ)− ‖bj−1‖2

∣∣∣ ≥ ∣∣∣‖bj−1‖2 − ‖bj‖2
∣∣∣− ‖Γ‖ > Kd,

because for any 1 ≤ j ≤ r, the proof above shows that ‖bj−1‖2−‖bj‖2 = d (λj−1(E)− λj(E)) + o(1).

Similarly,
∣∣∣λj+1(Σ)− ‖bj‖2

∣∣∣ > Kd, when j ≤ r − 1. When j = r, we have ‖br‖2 − λj+1(Σ) ≥
‖br‖2 − ‖Γ‖ > Kd. Therefore, it implies that∥∥∥∥ξj − bj

‖bj‖

∥∥∥∥ = O
(
d−1md

)
, 1 ≤ j ≤ r.

This, along with the triangle inequality, ‖B‖MAX ≤ ‖β‖MAX

∥∥E1/2
∥∥

1
≤ K, and ‖·‖MAX ≤ ‖·‖, implies

that for 1 ≤ j ≤ r,∥∥ξj∥∥MAX
≤
∥∥∥∥ bj
‖bj‖

∥∥∥∥
MAX

+O
(
d−1md

)
≤ O(d−1/2) +O

(
d−1md

)
.

Since r̄ = r, for d suffi ciently large, by triangle inequalities and that ‖·‖MAX ≤ ‖·‖ again, we have∥∥∥∥∥∥
r∑
j=1

λjξjξ
ᵀ
j − BBᵀ

∥∥∥∥∥∥
MAX

≤
r∑
j=1

‖bj‖2
∥∥∥∥ bj
‖bj‖

∥∥∥∥
MAX

∥∥∥∥ξj − bj
‖bj‖

∥∥∥∥
MAX

+

r∑
j=1

|λj − ‖bj‖2 |
∥∥∥ξjξᵀj∥∥∥

MAX
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+

r∑
j=1

‖bj‖2
∥∥ξj∥∥MAX

∥∥∥∥ξj − bj
‖bj‖

∥∥∥∥
MAX

≤Kd−1/2md.

Hence, since Σ =
∑d

j=1 λjξjξ
ᵀ
j , it follows that∥∥∥∥∥∥

d∑
j=r+1

λjξjξ
ᵀ
j − Γ

∥∥∥∥∥∥
MAX

≤ Kd−1/2md,

which concludes the proof.

Appendix A.2 Proof of Theorem 2

Throughout the proofs of Theorems 2 to 5, we will impose the assumption that ‖β‖MAX, ‖Γ‖MAX,

‖E‖MAX, ‖X‖MAX, ‖Z‖MAX, are bounded by K uniformly across time and dimensions. This is due

to Assumption 1, the fact that X and Z are continuous, and the localization argument in Section

4.4.1 of Jacod and Protter (2011).

We need one lemma on the concentration inequalities for continuous Itô semimartingales.

Lemma 1. Suppose Assumptions 1 and 2 hold, then we have

(i) max
1≤l,k≤d

∣∣∣∣∣∣
[t/∆n]∑
i=1

(∆n
i Zl)(∆

n
i Zk)−

∫ t

0
gs,lkds

∣∣∣∣∣∣ = Op

(
(∆n log d)1/2

)
, (A.1)

(ii) max
1≤j≤r,1≤l≤d

∣∣∣∣∣∣
[t/∆n]∑
i=1

(∆n
i Xj)(∆

n
i Zl)

∣∣∣∣∣∣ = Op

(
(∆n log d)1/2

)
, (A.2)

(iii) max
1≤j≤r,1≤l≤r

∣∣∣∣∣∣
[t/∆n]∑
i=1

(∆n
i Xj)(∆

n
i Xl)−

∫ t

0
es,jlds

∣∣∣∣∣∣ = Op

(
(∆n log d)1/2

)
. (A.3)

Proof of Lemma 1. The proof of this lemma is given by that of (i), (iii), (iv) of Lemma 2 in Fan,

Furger, and Xiu (2015).

Proof of Theorem 2. We first recall some notation introduced in the main text. Let n = [t/∆n].

Suppose that Y = (∆n
1Y,∆

n
2Y, . . . ,∆

n
nY ) is a d×n matrix, where ∆n

i Y = Yi∆n −Y(i−1)∆n
. Similarly,

X and Z are r×n and d×n matrices, respectively. Therefore, we have Y = βX+Z and Σ̂ = t−1YYᵀ.
Let f(j) = d−1λj(Σ̂) + j × g(n, d). Suppose R = {j|1 ≤ j ≤ kmax, j 6= r}.

Note that using ‖β‖ ≤ d1/2 ‖β‖MAX = O(d1/2) and ‖Γ‖∞ ≤ Kmd we have

‖YYᵀ − βXX ᵀβᵀ‖ ≤‖ZX ᵀβᵀ‖+ ‖βXZᵀ‖+ ‖ZZᵀ − Γ‖+ ‖Γ‖
≤Kd1/2 ‖β‖ ‖ZX ᵀ‖MAX + d ‖ZZᵀ − Γ‖MAX + ‖Γ‖∞
=Op

(
d(∆n log d)1/2 +md

)
.
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where we use the following bounds, implied by Lemma 1:

‖ZZᵀ − Γ‖MAX = max
1≤k,l≤d

(∣∣∣∣∣
n∑
i=1

(∆n
i Zl)(∆

n
i Zk)−

∫ t

0
gs,lkds

∣∣∣∣∣
)

= Op((∆n log d)1/2), and

‖ZX ᵀ‖MAX = Op((∆n log d)1/2).

Therefore, by Weyl’s inequality we have for 1 ≤ j ≤ r,

|λj(Σ̂)− λj(t−1βXX ᵀβᵀ)| = Op

(
d(∆n log d)1/2 +md

)
.

On the other hand, the non-zero eigenvalues of t−1βXX ᵀβᵀ are identical to the eigenvalues of
t−1
√
XX ᵀβᵀβ

√
XX ᵀ. By Weyl’s inequality again, we have for 1 ≤ j ≤ r,∣∣∣d−1λj

(
t−1
√
XX ᵀβᵀβ

√
XX ᵀ

)
− λj(t−1XX ᵀ)

∣∣∣ ≤ t−1 ‖XX ᵀ‖
∥∥d−1βᵀβ − Ir

∥∥ = op(1),

where we use

‖X‖ =
√
λmax(XX ᵀ) ≤ r1/2 max

1≤l,j≤r

∣∣∣∣∣
n∑
i=1

(∆n
i Xl)(∆

n
i Xj)

∣∣∣∣∣
1/2

= Op(1). (A.4)

Also, for 1 ≤ j ≤ r, by Weyl’s inequality and Lemma 1, we have

|λj(t−1XX ᵀ)− λj(E)| ≤
∥∥t−1XX ᵀ − E

∥∥ = Op

(
(∆n log d)1/2

)
.

Combining the above inequalities, we have for 1 ≤ j ≤ r,

|d−1λj(Σ̂)− λj(E)| ≤ Op
(

(∆n log d)1/2 + d−1md

)
+ op(1).

Therefore, for 1 ≤ j < r, we have

λj+1(E)− op(1) < d−1λj+1(Σ̂) < λj+1(E) + op(1) < λj(E)− op(1) < d−1λj(Σ̂). (A.5)

Next, note that

YYᵀ = β̃XX ᵀβ̃ᵀ + Z
(
In −X ᵀ(XX ᵀ)−1X

)
Zᵀ

where β̃ = β + ZX ᵀ(XX ᵀ)−1. Since rank(β̃XX ᵀβ̃ᵀ) = r, and by (4.3.2b) of Theorem 4.3.1 and

(4.3.14) of Corollary 4.3.12 in Horn and Johnson (2013), we have for r + 1 ≤ j ≤ d,

λj(YYᵀ) ≤ λj−r
(
Z
(
In −X ᵀ(XX ᵀ)−1X

)
Zᵀ
)

+ λr+1(β̃XX ᵀβ̃ᵀ) ≤ λj−r(ZZᵀ) ≤ λ1(ZZᵀ).

Since by Lemma 1 we have

λ1(ZZᵀ) = ‖ZZᵀ‖ ≤ ‖ZZᵀ‖∞ ≤ max
1≤j,l≤d

{d|(ZZᵀ − Γ)jl|+md|Γjl|}

= Op(d(∆n log d)1/2 +md), (A.6)
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it thus implies that for r + 1 ≤ j ≤ d, there exists some K > 0, such that

d−1λj(Σ̂) ≤ K(∆n log d)1/2 +Kd−1md.

In sum, for 1 ≤ j ≤ r,

f(j)− f(r + 1) = d−1
(
λj(Σ̂)− λr+1(Σ̂)

)
+ (j − r − 1)g(n, d) > λj(E) + op(1) > K,

for some K > 0. Since g(n, d)
(
(∆n log d)1/2 + d−1md

)−1 →∞, it follows that for r + 1 < j ≤ d,

P (f(j) < f(r + 1)) = P
(

(j − r − 1)g(n, d) < d−1
(
λr+1(Σ̂)− λj(Σ̂)

))
→ 0.

This establishes the desired result.

Appendix A.3 Proof of Theorem 3

First, we can assume r̂ = r. Since it holds with probability approaching 1 as established by Theorem

2, a simple conditioning argument, see, e.g., footnote 5 of Bai (2003), is suffi cient to show this is

without loss of rigor. Recall that

Λ = Diag
(
λ̂1, λ̂2, . . . , λ̂r

)
, F = d1/2

(
ξ̂1, ξ̂2, . . . , ξ̂r

)
, and G = d−1F ᵀY.

We write

H = t−1XX ᵀβᵀFΛ−1.

It is easy to verify that

Σ̂F = FΛ, GGᵀ = td−1 × Λ, F ᵀF = d× Ir, and

Γ̂ = t−1 (Y − FG) (Y − FG)ᵀ = t−1YYᵀ − d−1FΛF ᵀ.

We now need a few more lemmas.

Lemma 2. Under Assumptions 1 - 4, d−1/2md = o(1), and ∆n log d = o(1), we have

(i) ‖F − βH‖MAX = Op

(
(∆n log d)1/2 + d−1/2md

)
. (A.7)

(ii)
∥∥H−1

∥∥ = Op(1). (A.8)

(iii)
∥∥G−H−1X

∥∥ = Op

(
(∆n log d)1/2 + d−1/2md

)
. (A.9)

Proof of Lemma 2. (i) By simple calculations, we have

F − βH =t−1 (YYᵀ − βXX ᵀβᵀ)FΛ−1

=t−1
(
βXZᵀFΛ−1 + ZX ᵀβᵀFΛ−1 + (ZZᵀ − Γ)FΛ−1 + ΓFΛ−1

)
. (A.10)

We bound these terms separately. First, we have∥∥(ZZᵀ − Γ)FΛ−1
∥∥

MAX
≤ ‖ZZᵀ − Γ‖MAX ‖F‖1

∥∥Λ−1
∥∥

MAX
.
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Moroever, ‖F‖1 ≤ d1/2 ‖F‖F = d, and by (A.5),
∥∥Λ−1

∥∥
MAX

= Op(d
−1), which implies that∥∥(ZZᵀ − Γ)FΛ−1

∥∥
MAX

= Op((∆n log d)1/2).

In addition, since ‖Γ‖∞ ≤ Kmd and ‖F‖MAX ≤ ‖F‖F = d1/2, it follows that∥∥ΓFΛ−1
∥∥

MAX
≤ ‖Γ‖∞ ‖F‖MAX

∥∥Λ−1
∥∥

MAX
= Op(d

−1/2md).

Also, we have∥∥βXZᵀFΛ−1
∥∥

MAX
≤ ‖β‖MAX ‖XZ

ᵀ‖1 ‖F‖1
∥∥Λ−1

∥∥
MAX

= Op((∆n log d)1/2).

where we use the fact that ‖β‖MAX ≤ K and the bound below derived from (A.2):

‖XZᵀ‖1 = max
1≤l≤d

r∑
j=1

∣∣∣∣∣
n∑
i=1

(∆n
i Xj)(∆

n
i Zl)

∣∣∣∣∣ ≤ r max
1≤l≤d,1≤j≤r

∣∣∣∣∣
n∑
i=1

(∆n
i Xj)(∆

n
i Zl)

∣∣∣∣∣ = Op((∆n log d)1/2).

The remainder term can be bounded similarly.

(ii) Since ‖β‖ = O(d1/2) and
∥∥t−1XX ᵀ

∥∥ = Op(1), we have

‖H‖ =
∥∥t−1XX ᵀβᵀFΛ−1

∥∥ ≤ ∥∥t−1XX ᵀ
∥∥ ‖β‖ ‖F‖ ∥∥Λ−1

∥∥ = Op(1).

By triangle inequalities, and that ‖F − βH‖ ≤ (rd)1/2 ‖F − βH‖MAX, we have

‖HᵀH − Ir‖ ≤
∥∥HᵀH − d−1HᵀβᵀβH

∥∥+ d−1 ‖HᵀβᵀβH − Ir‖
≤‖H‖2

∥∥Ir − d−1βᵀβ
∥∥+ d−1 ‖HᵀβᵀβH − F ᵀF‖

≤‖H‖2
∥∥Ir − d−1βᵀβ

∥∥+ d−1 ‖F − βH‖ ‖βH‖+ d−1 ‖F − βH‖ ‖F‖
=op(1).

By Weyl’s inequality again, we have λmin(HᵀH) > 1/2 with probability approaching 1. Therefore,

H is invertible, and
∥∥H−1

∥∥ = Op(1).

(iii) We use the following decomposition:

G−H−1X = d−1F ᵀ (βH − F )H−1X + d−1(F ᵀ −Hᵀβᵀ)Z + d−1HᵀβᵀZ.

Note that by (A.4), we have ‖X‖ = Op(1). Moreover, since ‖F‖ ≤ ‖F‖F and ‖F − βH‖ ≤
d1/2 ‖F − βH‖MAX, we have∥∥d−1F ᵀ (βH − F )H−1X

∥∥ ≤ d−1 ‖F‖ ‖F − βH‖
∥∥H−1

∥∥ ‖X‖ = Op

(
(∆n log d)1/2 + d−1/2md

)
.

Similarly, by (A.6) we have

‖Z‖ = Op(d
1/2(∆n log d)1/4 +m

1/2
d ),

which leads to∥∥d−1(F ᵀ −Hᵀβᵀ)Z
∥∥ = Op

((
(∆n log d)1/4 + d−1/2m

1/2
d

)(
(∆n log d)1/2 + d−1/2md

))
.
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Moreover, we can apply Lemma 1 to βᵀZ, which is an r × n matrix, so we have

‖βᵀZ‖ =
√
λ1 (βᵀZZᵀβ) ≤

√
‖βᵀZZᵀβ − βᵀΓβ‖∞ + ‖β‖1 ‖Γ‖∞ ‖β‖∞

≤K (∆n log d)1/4 +Kd1/2m
1/2
d ,

which leads to ∥∥d−1HᵀβᵀZ
∥∥ = Op

(
d−1(∆n log d)1/4 + d−1/2m

1/2
d

)
.

This concludes the proof.

Lemma 3. Under Assumptions 1 - 4, d−1/2md = o(1), and ∆n log d = o(1), we have∥∥∥Γ̂S − Γ
∥∥∥

MAX
≤
∥∥∥Γ̂− Γ

∥∥∥
MAX

= Op

(
(∆n log d)1/2 + d−1/2md

)
. (A.11)

Proof of Lemma 3. We write G = (g1, g2, . . . , gn), F = (f1, f2, . . . , fd)
ᵀ, β = (β1, β2, . . . , βd)

ᵀ, and

∆̂n
i Zk = ∆n

i Yk − f
ᵀ
k gi. Hence, Γ̂lk = t−1

∑n
i=1(∆̂n

i Zl)(∆̂
n
i Zk).

For 1 ≤ k ≤ d and 1 ≤ i ≤ n, we have

∆n
i Zk − ∆̂n

i Zk =∆n
i Yk − β

ᵀ
k∆n

i X − (∆n
i Yk − f

ᵀ
k gi) = fᵀk gi − β

ᵀ
k∆n

i X

=βᵀkH(gi −H−1∆n
i X) + (fᵀk − β

ᵀ
kH)(gi −H−1∆n

i X) + (fᵀk − β
ᵀ
kH)H−1∆n

i X.

Therefore, using (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we have

n∑
i=1

(
∆n
i Zk − ∆̂n

i Zk

)2

≤3
n∑
i=1

(
βᵀkH(gi −H−1∆n

i X)
)2

+ 3
n∑
i=1

(
(fᵀk − β

ᵀ
kH)(gi −H−1∆n

i X)
)2

+ 3
n∑
i=1

(
(fᵀk − β

ᵀ
kH)H−1∆n

i X
)2
.

Using vᵀAv ≤ λmax(A)vᵀv repeatedly, if follows that

n∑
i=1

(
βᵀkH(gi −H−1∆n

i X)
)2

=

n∑
i=1

βᵀkH(G−H−1X )eie
ᵀ
i (G−H−1X )ᵀHᵀβk

≤λmax

((
G−H−1X

)
(
(
G−H−1X

)ᵀ)
λmax(HHᵀ)βᵀkβk

≤r
∥∥G−H−1X

∥∥2 ‖H‖2 max
1≤l≤r

|βkl|2

Similarly, we can bound the other terms.

n∑
i=1

(
(fᵀk − β

ᵀ
kH)(gi −H−1∆n

i X)
)2 ≤r ∥∥G−H−1X

∥∥2
max
1≤l≤r

(Fkl − (βᵀkH)l)
2,

n∑
i=1

(
(fᵀk − β

ᵀ
kH)H−1∆n

i X
)2 ≤rt ‖E‖ ∥∥H−1

∥∥2
max
1≤l≤r

(Fkl − (βᵀkH)l)
2.
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As a result, by Lemma 2, we have

max
1≤k≤d

n∑
i=1

(
∆n
i Zk − ∆̂n

i Zk

)2

≤K
∥∥G−H−1X

∥∥2 ‖H‖2 ‖β‖2MAX +K
∥∥G−H−1X

∥∥2 ‖F − βH‖2MAX +K ‖E‖
∥∥H−1

∥∥2 ‖F − βH‖2MAX

≤Op
(
(∆n log d) + d−1m2

d

)
By the Cauchy-Schwartz inequality, we have

max
1≤l,k≤d

∣∣∣∣∣
n∑
i=1

(∆̂n
i Zl)(∆̂

n
i Zk)−

n∑
i=1

(∆n
i Zl)(∆

n
i Zk)

∣∣∣∣∣
≤ max

1≤l,k≤d

∣∣∣∣∣
n∑
i=1

(
∆̂n
i Zl −∆n

i Zl

)(
∆̂n
i Zk −∆n

i Zk

)∣∣∣∣∣+ 2 max
1≤l,k≤d

∣∣∣∣∣
n∑
i=1

(∆n
i Zl)

(
∆̂n
i Zk −∆n

i Zk

)∣∣∣∣∣
≤ max

1≤l≤d

n∑
i=1

(
∆̂n
i Zl −∆n

i Zl

)2
+ 2

√√√√max
1≤l≤d

n∑
i=1

(∆n
i Zl)

2 max
1≤l≤d

n∑
i=1

(
∆̂n
i Zl −∆n

i Zl

)2

=Op

(
(∆n log d)1/2 + d−1/2md

)
,

Finally, by the triangular inequality,

max
1≤l,k≤d,(l,k)∈S

∣∣∣Γ̂lk − Γlk

∣∣∣ ≤ max
1≤l,k≤d

∣∣∣Γ̂lk − Γlk

∣∣∣ ≤ max
1≤l,k≤d

∣∣∣∣∣
n∑
i=1

(∆n
i Zl)(∆

n
i Zk)−

∫ t

0
gs,lkds

∣∣∣∣∣
+ max

1≤l,k≤d

∣∣∣∣∣
n∑
i=1

(∆̂n
i Zl)(∆̂

n
i Zk)−

n∑
i=1

(∆n
i Zl)(∆

n
i Zk)

∣∣∣∣∣ ,
which yields the desired result by using (A.1).

Lemma 4. Under Assumptions 1 - 4, d−1/2md = o(1), and ∆n log d = o(1), we have∥∥t−1FGGᵀF ᵀ − βEβᵀ
∥∥

MAX
= Op

(
(∆n log d)1/2 + d−1/2md

)
.

Proof. By simple calculations, we have∥∥t−1FGGᵀF − βEβᵀ
∥∥

MAX
≤d−1 ‖(F − βH)Λ(F − βH)ᵀ‖MAX + 2d−1 ‖βHΛ(F − βH)ᵀ‖MAX

+ t−1
∥∥βH(G−H−1X )(G−H−1X )ᵀHᵀβᵀ

∥∥
MAX

+ 2t−1
∥∥βH(G−H−1X )X ᵀβᵀ

∥∥
MAX

+
∥∥β(t−1XX ᵀ − E)βᵀ

∥∥
MAX

Note that by Lemma 2, (A.4), ‖β‖MAX = Op(1), ‖H‖ = Op(1), and ‖Λ‖MAX = Op(1),

d−1 ‖(F − βH)Λ(F − βH)ᵀ‖MAX ≤r
2d−1 ‖F − βH‖2MAX ‖Λ‖MAX

≤Op(∆n log d+ d−1m2
d),

2d−1 ‖βHΛ(F − βH)ᵀ‖MAX ≤2r2d−1 ‖β‖MAX ‖H‖ ‖Λ‖MAX ‖F − βH‖MAX

29



≤Op
(

(∆n log d)1/2 + d−1/2md

)
,

t−1
∥∥βH(G−H−1X )(G−H−1X )ᵀHᵀβᵀ

∥∥
MAX

≤r4t−1 ‖β‖2MAX ‖H‖
2
∥∥G−H−1X

∥∥2

≤Op(∆n log d+ d−1m2
d),

2t−1
∥∥βH(G−H−1X )X ᵀβᵀ

∥∥
MAX

≤r3 ‖β‖2MAX ‖H‖
∥∥G−H−1X

∥∥ ‖X‖
≤Op

(
(∆n log d)1/2 + d−1/2md

)
,∥∥β(t−1XX ᵀ − E)βᵀ

∥∥
MAX

≤r2 ‖β‖MAX

∥∥t−1XX ᵀ − E
∥∥

MAX

≤Op
(

(∆n log d)1/2
)
.

Combining the above inequalities concludes the proof.

Proof of Theorem 3. Note that

Σ̂S = d−1FΛF ᵀ + Γ̂S = t−1FGGᵀF ᵀ + Γ̂S .

By Lemma 3, we have ∥∥∥Γ̂S − Γ
∥∥∥

MAX
= Op

(
(∆n log d)1/2 + d−1/2md

)
.

By the triangle inequality, we have∥∥∥Σ̂S − Σ
∥∥∥

MAX
≤
∥∥d−1FΛF ᵀ − βEβᵀ

∥∥
MAX

+
∥∥∥Γ̂S − Γ

∥∥∥
MAX

Therefore, the desired result follows from Lemmas 3 and 4.

Appendix A.4 Proof of Theorem 4

Lemma 5. Under Assumptions 1 - 4, d−1/2md = o(1), and ∆n log d = o(1), we have∥∥∥Γ̂S − Γ
∥∥∥ = Op

(
md(∆n log d)1/2 + d−1/2m2

d

)
. (A.12)

Moreover, if in addition, d−1/2m2
d = o(1) and md(∆n log d)1/2 = o(1) hold, then λmin

(
Γ̂S
)
is bounded

away from 0 with probability approaching 1, and∥∥∥∥(Γ̂S
)−1
− Γ−1

∥∥∥∥ = Op

(
md(∆n log d)1/2 + d−1/2m2

d

)
.

Proof of Lemma 5. Note that since Γ̂S − Γ is symmetric,

∥∥∥Γ̂S − Γ
∥∥∥ ≤ ∥∥∥Γ̂S − Γ

∥∥∥
∞

= max
1≤l≤d

d∑
k=1

∣∣∣Γ̂Slk − Γlk

∣∣∣ ≤ md max
1≤l≤d,1≤k≤d

∣∣∣Γ̂Slk − Γlk

∣∣∣
By Lemma 3, we have∥∥∥Γ̂S − Γ

∥∥∥ ≤ md

∥∥∥Γ̂S − Γ
∥∥∥

MAX
= Op

(
md(∆n log d)1/2 + d−1/2m2

d

)
.
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Moreover, since λmin(Γ) > K for some constant K and by Weyl’s inequality, we have λmin(Γ̂S) >

K − op(1). As a result, we have∥∥∥∥(Γ̂S
)−1
− Γ−1

∥∥∥∥ =

∥∥∥∥(Γ̂S
)−1 (

Γ−
(

Γ̂S
))

Γ−1

∥∥∥∥ ≤ λmin(Γ̂S)−1λmin(Γ)−1
∥∥∥Γ− Γ̂S

∥∥∥
≤Op

(
md(∆n log d)1/2 + d−1/2m2

d

)
.

Proof of Theorem 4. First, by Lemma 5 and the fact that λmin(Σ̂S) ≥ λmin(Γ̂S), we can establish

the first two statements.

To bound
∥∥∥(Σ̂S)−1 − Σ−1

∥∥∥, by the Sherman - Morrison - Woodbury formula, we have(
Σ̂S
)−1
−
(

Σ̃
)−1

=
(
t−1FGGᵀF ᵀ + Γ̂S

)−1
−
(
t−1βHH−1XX ᵀ(H−1)ᵀHᵀβᵀ + Γ

)−1

=
(

(Γ̂S)−1 − Γ−1
)
−
(

(Γ̂S)−1 − Γ−1
)
F
(
dΛ−1 + F ᵀ(Γ̂S)−1F

)−1
F ᵀ(Γ̂S)−1

− Γ−1F
(
dΛ−1 + F ᵀ(Γ̂S)−1F

)−1
F ᵀ
(

(Γ̂S)−1 − Γ−1
)

+ Γ−1(βH − F )
(
tHᵀ (XX ᵀ)−1H +HᵀβᵀΓ−1βH

)−1
HᵀβᵀΓ−1

− Γ−1F
(
tHᵀ (XX ᵀ)−1H +HᵀβᵀΓ−1βH

)−1
(F ᵀ −Hᵀβᵀ)Γ−1

+ Γ−1F

((
tHᵀ (XX ᵀ)−1H +HᵀβᵀΓ−1βH

)−1
−
(
dΛ−1 + F ᵀ(Γ̂S)−1F

)−1
)
F ᵀΓ−1

=L1 + L2 + L3 + L4 + L5 + L6.

By Lemma 5, we have

‖L1‖ = Op

(
md(∆n log d)1/2 + d−1/2m2

d

)
.

For L2, because ‖F‖ = Op(d
1/2), λmax

(
(Γ̂S)−1

)
≤
(
λmin(Γ̂S)

)−1
≤ K + op(1),

λmin

(
dΛ−1 + F ᵀ(Γ̂S)−1F

)
≥ λmin

(
F ᵀ(Γ̂S)−1F

)
≥ λmin (F ᵀF )λmin

(
(Γ̂S)−1

)
≥ m−1

d d,

and by Lemma 5, we have

‖L2‖ ≤
∥∥∥((Γ̂S)−1 − Γ−1

)∥∥∥ ‖F‖ ∥∥∥∥(dΛ−1 + F ᵀ(Γ̂S)−1F
)−1

∥∥∥∥∥∥∥F ᵀ(Γ̂S)−1
∥∥∥

= Op

(
m2
d(∆n log d)1/2 + d−1/2m3

d

)
.

The same bound holds for ‖L3‖. As for L4, note that ‖β‖ = Op(d
1/2), ‖H‖ = Op(1),

∥∥Γ−1
∥∥ ≤

(λmin(Γ))−1 ≤ K, and ‖βH − F‖ ≤
√
rd ‖βH − F‖MAX = Op(d

1/2(∆n log d)1/2 +md), and that

λmin

(
tHᵀ (XX ᵀ)−1H +HᵀβᵀΓ−1βH

)
≥ λmin

(
HᵀβᵀΓ−1βH

)
≥ λmin(Γ−1)λmin(βᵀβ)λmin(HᵀH)
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> Km−1
d d,

hence we have

‖L4‖ ≤
∥∥Γ−1

∥∥ ‖(βH − F )‖
∥∥∥∥(tHᵀ (XX ᵀ)−1H +HᵀβᵀΓ−1βH

)−1
∥∥∥∥ ‖Hᵀβᵀ‖

∥∥Γ−1
∥∥

= Op(md(∆n log d)1/2 + d−1/2m2
d).

The same bound holds for L5. Finally, with respect to L6, we have∥∥∥∥(tHᵀ (XX ᵀ)−1H +HᵀβᵀΓ−1βH
)−1
−
(
dΛ−1 + F ᵀ(Γ̂S)−1F

)−1
∥∥∥∥

≤Kd−2m2
d

∥∥∥(tHᵀ (XX ᵀ)−1H +HᵀβᵀΓ−1βH
)
−
(
dΛ−1 + F ᵀ(Γ̂S)−1F

)∥∥∥ .
Moreover, since we have∥∥tHᵀ(XX ᵀ)−1H − dΛ−1

∥∥ =
∥∥Λ−1F ᵀ(βH − F )

∥∥ = Op

(
(∆n log d)1/2 + d−1/2md

)
and ∥∥∥HᵀβᵀΓ−1βH − F ᵀ(Γ̂S)−1F

∥∥∥
≤
∥∥(Hᵀβᵀ − F ᵀ)Γ−1βH

∥∥+
∥∥F ᵀΓ−1(βH − F )

∥∥+
∥∥∥F ᵀ (Γ−1 − (Γ̂S)−1

)
F
∥∥∥

=Op

(
dmd(∆n log d)1/2 + d1/2m2

d

)
,

combining these inequalities yields

‖L6‖ = Op

(
m3
d(∆n log d)1/2 + d−1/2m4

d

)
.

On the other hand, using the Sherman - Morrison - Woodbury formula again,∥∥∥Σ̃−1 − Σ−1
∥∥∥

=
∥∥∥(t−1βXX ᵀβᵀ + Γ

)−1 − (βEβᵀ + Γ)−1
∥∥∥

≤
∥∥Γ−1

∥∥2 ‖βH‖2
∥∥∥∥((tHᵀ (XX ᵀ)−1H +HᵀβᵀΓ−1βH

)−1
−
(
HᵀE−1H +HᵀβᵀΓ−1βH

)−1
)∥∥∥∥

≤Kd
∥∥∥tHᵀ (XX ᵀ)−1H +HᵀβᵀΓ−1βH

∥∥∥−1 ∥∥HᵀE−1H +HᵀβᵀΓ−1βH
∥∥−1

∥∥∥t (XX ᵀ)−1 − E−1
∥∥∥

=Op

(
md(∆n log d)1/2

)
.

By the triangle inequality, we obtain∥∥∥(Σ̂S)−1 − Σ−1
∥∥∥ ≤ ∥∥∥(Σ̂S)−1 − Σ̃−1

∥∥∥+
∥∥∥Σ̃−1 − Σ−1

∥∥∥ = Op

(
m3
d(∆n log d)1/2 + d−1/2m4

d

)
.

Appendix A.5 Proof of Theorem 5

Proof of Theorem 5. This have been established by Lemma 2.
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