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Revisiting Identification in Structural VARMA Models
Abstract

The basic assumption of a structural VARMA model (SVARMA) is that
it is driven by a white noise whose components are uncorrelated (or indepen-
dent) and can be interpreted as economic shocks, called ”structural” shocks.
These models have to face two kinds of identification problems. The first
identification problem is ”static” and is due to the fact that there is an in-
finite number of linear transformations of a given random vector making its
components uncorrelated. The second identification problem is ”dynamic”
and is a consequence of the fact that the SVARMA process may have a non
invertible AR and/or MA matrix polynomial but, still, has the same second
order properties as a VARMA process in which both the AR and MA ma-
trix polynomials are invertible (the fundamental representation). Moreover
the standard Box-Jenkins approach automatically estimates the fundamen-
tal representation and, therefore, may lead to misspecified Impulse Response
Functions.

The aim of this paper is to explain that these difficulties are mainly due
to the Gaussian assumption underlying the Box-Jenkins type approaches,
and that both identification challenges are solved in a non Gaussian frame-
work. We also develop simple new parametric and semi-parametric estima-
tion methods when there is nonfundamentalness in either the moving-average,
or the autoregressive dynamics, and discuss the derivation of impulse re-
sponse functions.

Keywords : Structural VAR, Fundamental Representation, Noncausal Pro-
cess, Shock, Impulse Response Function, Incomplete Maximum Likelihood,
Pseudo-Maximum Likelihood.
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1 Introduction

The basic assumption of a structural VARMA model (SVARMA) is that it is
driven by a white noise whose components are uncorrelated (or independent)
and are interpreted as economic shocks3, called ”structural” shocks. These
models have to face two kinds of identification problems.

First the components of the white noise appearing in the reduced form
VARMA are instantaneously correlated and the shock vector must be derived
from this white noise by a linear transformation eliminating these instanta-
neous correlations. The snag is that this can be done in an infinite number of
ways and there is a huge literature trying to solve this ”static” identification
problem by adding restrictions on the short run impact of a shock [see e.g.
Bernanke (1980), Sims (1986), Rubio-Ramirez, Waggoner, Zha (2010)], or on
the long run impact [see e.g. Blanchard, Quah (1989), Faust, Leeper (1997),
Erceg, Guerrieri, Gust (2005), Christiano, Eichenbaum, Vigfusson (2006)],
as well as on the sign of some impulse response functions [see e.g. Uhlig
(2005), Chari, Kehoe, McGrattan (2008), Mountford, Uhlig (2009)].

A second identification problem comes from the fact that the stationary
SVARMA process may feature a non-invertible autoregressive (AR) or, more
often, a non-invertible moving average (MA) matrix polynomial. The lat-
ter situation, called nonfundamentalness may occur, for instance, when the
SVARMA is deduced from business cycle models [see e.g. Kydland, Prescott
(1982), Francis, Ramey (2005), Gali, Rabanal (2005)], or from log-linear
approximations of Dynamic Stochastic General Equilibrium (DSGE) mod-
els involving rational expectations [see e.g. Hansen, Sargent (1991), Smet,
Wouters (2003), Christiano, Eichenbaum, Vigfussen (2007), Leeper, Walker,
Yang (2013)]. Typically the matrix MA polynomial is not invertible and the
shock vector is not simply linearly linked to the (linear) innovation of the
process [see e.g. Lippi, Reichlin (1993), (1994)]. Moreover the nonfunda-
mental SVARMA process has exactly the same second-order properties as
another VARMA process with an invertible MA part (the fundamental rep-
resentation) and, in the Gaussian case, both processes are observationally
equivalent. This creates a dynamic identification problem, which is exarcer-
bated by the fact that the standard Box-Jenkins approach (i.e. the Gaus-
sian Pseudo Maximum Likelihood method based on a VAR approximation

3Our paper will not consider the debate about how structural are the parameters and
the shocks in SVARMA models [see e.g. Pesaran, Smith (2011) and the reference therein].
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of the VARMA process obtained by inverting the MA part) [Box, Jenkins
(1970)] provides a consistent estimation of the fundamental representation
and, therefore, may lead to misspecified Impulse Response Functions.

The aim of this paper is to explain that these difficulties are due to the
Gaussian assumption underlying the Box-Jenkins (BJ) type approaches, and
that these identification issues are solved in a non Gaussian framework. We
also introduce simple semi-parametric and parametric estimation approaches
when there is nonfundamentalness either in the moving-average, or in the
autoregressive dynamics and discuss the derivation of impulse response func-
tions.

In Section 2, we consider a vector autoregressive moving average process,
with roots of the autoregressive and/or moving average polynomials that are
not necessarily outside the unit circle. We focus on its two-sided moving av-
erage and autoregressive representations and on the fact that the economic
shocks are not necessarily interpretable in terms of causal linear innovations4.
We review the different types of nonfundamental representations in the mov-
ing average dynamics given in the literature. We also explain that ill-located
roots can arise in the autogressive dynamics, when rational expectations are
included in the model. In particular we show that there exists an infinite
number of stationary solutions in any rational expectation model, if we do
not impose these solutions to have a finite variance. Some of these solutions
have noncausal stationary components. Next we discuss the identification
issue in the Gaussian case and explain why the standard Box-Jenkins ap-
proach based on Gaussian pseudo-likelihood suffers from these identification
issues.

Section 3 is the core of the paper. We consider the case of non Gaus-
sian observable SVARMA processes, based on the recent literature on the
so-called noncausal processes [see e.g. Brockwell, Davis (1991), Rosenblatt
(2000) for an introduction]. We explain that the standard static and dynamic
identification problems encountered in the SVARMA analysis disappear when
the shocks are not Gaussian. In Section 4 we suggest new semi-parametric
estimation methods to improve the standard SVAR methodology. We first
consider a semi-parametric SVARMA with nonfundamental representation
in the moving average dynamics only and introduce a two step moment ap-
proach to estimate the autoregressive and moving average parameters as well
as the distributions of the errors. Then we consider a SVAR model with pos-

4See Appendix 1 for precise definitions of the different notions of innovations.
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sibly ill-located roots in the AR lag polynomial and explain how the AR
parameters can be consistently estimated by covariance estimators.

The construction of Impulse Response Functions (IRF) is discussed in
Section 5. We emphasize the significant differences in these constructions
when the ill-located roots concern the MA and the AR dynamics, respec-
tively. In particular nonlinear IRF have to be considered for ill-located roots
in the AR component. Section 6 concludes. Some complements are gath-
ered in appendices. In particular we introduce and study new parametric
estimation approaches of SVARMA models with nonfundamentalness, that
are the Incomplete Maximum Likelihood (IML) and the Simulated Pseudo
Maximum Likelihood (SPML) approaches, respectively.

2 Dynamic Linear Model and Nonfundamen-

talness

2.1 The dynamic model

Despite the standard Vector Autoregressive (VAR) terminology, the linear
dynamic models deduced from structural models may have both autoregres-
sive and moving average dynamics. The VARMA model is the following :

Φ(L)Yt = Θ(L)εt, (2.1)

where Yt is the n-dimensional vector of observations at date t, εt is the n-
dimensional vector of errors,

Φ(L) = Id− Φ1L− . . .− ΦpL
p,Θ(L) = Id−Θ1L− . . .−ΘqL

q, (2.2)

and the matrix autoregressive and moving average lag-polynomials are of
degree p and q, respectively. 5

Let us now introduce the following assumptions on model (2.1)-(2.2) :

5The underlying structural model may include state variables, which are not necessarily
observable. This explains why the number of shocks m, corresponding to the number of
state variables might be larger than the number of observed variables Y , even if models
considered in practice are often such that n = m [See e.g. Hansen, Sargent (1991), p83,
Lippi, Reichlin (1994), Giannone, Reichlin (2006), p457, Fernandez-Villaverde et al. (2007)
Section C, for this assumption].
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a.1 : Assumption on errors

i) The errors εt are independently and identically distributed. They have
some moments : ∃s > 0, E(‖εt‖s) <∞.

ii) They can be written as εt = Cηt ⇔ ηt = C−1εt, where the components
of ηt are mutually independent.

Assumption a.1 i) on the errors is standard in the literature. For instance
for s = 2, the existence of second-order moments underlies the Box-Jenkins
methodology. We extend the set of possible errors to allow for errors with in-
finite variance, or even no mean, in line with the financial literature. This will
also allow for considering stationary solutions of rational expectation models
containing explosive speculative bubbles (see Section 2.3). Assumption a.2
ii) is needed for allowing separate shocks on the system when defining the
impulse response functions.

a.2 : Assumption of left coprimeness on the lag-polynomials

If Φ(L) and Θ(L) have a left common factor C(L), say, such that : Φ(L) =
C(L)Φ̃(L),Θ(L) = C(L)Θ̃(L), then detC(L) is independent of L.

This condition ensures that the VARMA representation is minimal in the
sense that all possible simplifications have been already done [see Hannan,
Deistler (1988), Chap 2 for more details]. This condition will greatly simplify
the discussions in the next sections. It is often forgotten in structural settings
and it might be necessary to test for the minimality of the representation.
This is clearly out of the scope of this paper.6

a.3 : Assumption on the observable process
All the roots of det Φ(L) have a modulus different from 1 and process

(Yt) is strongly stationary.

Under Assumptions a.1 - a.3, the linear dynamic system (2.1)-(2.2) has
a unique strongly stationary solution, such that E‖Yt‖s) < ∞ [see e.g. the
discussion in Gourieroux, Zakoian (2014) a,b].

When all the roots of det Φ(z) lie outside the unit circle, it is easy to

6See Deistler, Schrader (1979) for a study of identifiability without coprimeness, and
Gourieroux, Monfort, Renault (1989) for the test of coprimeness, i.e. common roots, for
one-dimensional ARMA processes.

5



derive the inverse of the polynomial operator Φ(L) as a convergent one-sided
series in the lag operator L :

Φ(L)Yt = Θ(L)εt

⇐⇒ Yt = Φ(L)−1Θ(L)εt ≡
∞∑
j=0

AjL
jεt =

∞∑
j=0

Ajεt−j. (2.3)

Similarly when all the roots of det Θ(z) lie outside the unit circle, Yt has
a one-sided autoregressive representation :

Θ−1(L)Φ(L)Yt ≡
∞∑
j=0

BjL
jYt =

∞∑
j=0

BjYt−j = εt.

From the macroeconomic literature we know that SVARMA models do
not always have roots of the moving average or autoregressive operators
located outside the unit circle (see Sections 2.2 and 2.3). In that case, it
is still possible to invert the autoregressive polynomial operator to get a
two-sided moving average representation as the stationary solution :

Yt =
+∞∑
j=−∞

Ajεt−j. (2.4)

Similarly, if det Θ(z) has no roots on the unit circle, we get a two-sided
autoregressive representation :

∞∑
j=−∞

BjYt−j = εt.

Let us now study the consequences of ill-located roots of det Θ(z). For
expository purpose, we consider a one-dimensional ARMA (1,1) process :

(1− ϕL)yt = (1− θL)εt, (2.5)

where |ϕ| < 1 and |θ| > 1. Thus the root of det Θ(z) is ill-located, that is
inside the unit circle. To get the (infinite) pure autoregressive representation
of process yt, we have to invert (1− θL). We get :
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(1− ϕL)yt = (1− 1

θ
L−1)(−θLεt)

⇔ (1− 1

θ
L−1)−1(1− ϕL)yt = −θLεt. (2.6)

This formula reveals that :

i) the process has a two-sided autoregressive representation;

ii) the error appropriate for a mathematical analysis of the dynamics is
rather the time shifted process ε̃t = −θLεt = −θεt−1 [see e.g. Lanne,
Saikkonen (2013), Gourieroux, Jasiak (2014)], than εt itself. Equation
(2.6) becomes :

yt − ϕyt−1 = −1

θ
ε̃t+1 + ε̃t, with a future value of process ε̃ on the right

hand side.

iii) The error term εt is not the causal innovation of process yt (see Appendix
1), i.e.

εt 6= yt − E[yt|yt−1, yt−2, . . .], if this conditional expectation exists.

To summarize, under Assumptions a.1-a.3, the error term in the VARMA
representation is equal to the causal innovation of the process if the roots of
det Φ(z) and det Θ(z) are all outside the unit circle. Under this condition, we
say that process Yt has a fundamental (causal) VARMA representation [see
e.g. Hansen, Sargent (1980), p18, (1991), p79, and Lippi, Reichlin (1994) for
the introduction of this terminology in the macroeconometric literature].7

Otherwise, εt is not equal to the causal innovation and future values are
involved in either the pure moving average, or the pure autoregressive rep-
resentation of the process. It is a nonfundamental VARMA representation.
As noted in Lanne, Saikkonen (2011) ”nonfundamental solutions have typ-
ically been represented by noninvertible moving average models. However,
noncausal autoregressive and noninvertible moving average models closely

7The term ”fundamental” is likely due to Kolmogorov and appears in Rozanov (1960),
p367, (1967), p56, to define the ”fundamental process”, that is the second-order white
noise process involved in the Wold decomposition of a weak stationary process. At any
date t, the information contained in the current and past values of the fundamental process
coincides with the information contained in the current and past values of the observations.
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approximate each other”.8 Thus the nonfundamentalness has to be consid-
ered in a more symmetric way in both the AR and MA polynomials defining
the dynamics.

The macroeconometric specific terminology fundamental vs nonfunda-
mental representation must be related to other standard time series termi-
nologies. In time series a (linear) process is causal (resp. invertible), if it
admits a one-sided moving average representation (resp. a one-sided autore-
gressive representation). For a VARMA model with n = m, satisfying the left
coprimeness assumption, the process is causal (resp. invertible) if det Φ(z)
(resp. det Θ(z)) has all its roots outside the unit circle. Thus the VARMA
representation is fundamental if it is both causal and invertible. 9

2.2 Non-inversibility

There exist different sources of non-inversibility in SVARMA models, that is
of ill-located roots of the moving average polynomial [see the discussion in
Alessi, Barigozzi, Capasso (2011)].

i) Lagged impact Some are due to the dynamics of exogenous variables
in the system. A well-known example appears in the comment of the Blan-
chard, Quah model [Blanchard, Quah (1989)] by Lippi, Reichlin (1993). The
productivity, yt, can be written as :

yt = εt + θεt−1,

where εt denotes the shock on productivity. It may be realistic to assume
that the impact of the productivity shock is not instantaneous and is maximal
with a lag, i.e. that θ > 1. This is the learning-by-doing hypothesis.

ii) Non-observability Non-inversibility can also arise from a lack of
observability. Fernandez-Villaverde et al. (2007) give the example of a

8Indeed, when |θ| > 1, the truncated version of [1−1/θL−1]−1 is equal to 1+1/θL−1 +
. . . + (1/θ)pL−p, with also all roots in L inside the unit circle, with the same modulus
1/|θ|.

9The terminology fundamental can be misleading, in particular since fundamental shock
and structural shock are often considered as equivalent notions [see e.g. the description
of the scientific works of Nobel prizes Sargent and Sims in Economic Sciences Prize Com-
mittee (2011), or Evans, Marshall (2005)]. Moreover a fundamental shock may also be
defined as the non bubble component of a structural shock, i.e. the component with a
permanent effect on the economy in Velinov, Chen (2013).
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state space representation of the surplus in a permanent income consump-
tion model [see Lof (2013), Section 3, for another example]. The state space
model is of the following type :

ct = act−1 + (1− 1/R)εt, 0 < a < 1,

yt = −act−1 + 1/Rεt,

where ct (resp. yt) denotes the consumption (resp. the surplus), R > 1 a
constant gross interest rate on financial assets, and εt is an i.i.d. labor income
process. From the first equation, we deduce :

ct =
(1− 1/R)

1− aL
εt,

and by substituting in the second equation, we get the dynamics of yt as :

yt = [1/R− aL(1− 1/R)

1− aL
εt =

R−1 − aL
1− aL

εt.

Thus the root of the moving-average lag-polynomial is equal to 1/aR. It
is smaller than one when aR > 1. 10

iii) Rational expectation Other sources of non-inversibility are the
rational expectations introduced in the models. In the simple example of
Hansen, Sargent (1991) the economic variable yt, is defined as :

yt = Et(
∞∑
h=0

βhwt+h), with wt = εt − θεt−1, 0 < β < 1, |θ| < 1.

and if the information set available at date t is It = (εt, εt−1, . . .), we get :

yt = (1− βθ)εt − θεt−1.

The root of the moving average polynomial is (1− βθ)/θ. This root can
be larger or smaller than 1, depending on the values of β and θ.

10This reasoning does not hold for a = 1, which was precisely the case considered
in Fernandez-Villaverde et al. (2007), where ct and yt are nonstationary co-integrated
processes. Indeed their equation (5) assumes the stationarity of the y process and is not
compatible with the assumption of a cointegrated model.
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iv) Rational expectation and lagged impact Non-inversibility may
also occur when the economic agent and econometrician information sets are
not aligned. The literature on information flows applied, for instance, to fiscal
foresight or productivity belongs to this category [see e.g. Feve, Matheron,
Sahuc (2009), Feve, Jihoud (2010), Forni, Gambetti (2010), Leeper, Walker,
Yang (2013)]. A stylized model is [see Feve, Matheron, Sahuc (2009)] :

yt = aEtyt+1 + xt,

xt = εt−q,

where εt is a white noise.
If |a| < 1 the forward solution is easily seen to be :

yt =

q∑
i=0

aq−iεt−i. (2.7)

The roots of Θ(L) = aq
q∑
i=0

a−iLi = aq
1− (a−1L)q+1

1− a−1L
are

a exp(2ikπ/(q + 1)), k = 1, . . . , q, with common modulus |a| < 1. There-
fore Θ(L) is noninvertible and the MA polynomial is nonfundamental.

v) Prediction error When the variable of interest can be interpreted
as a prediction error, non-inversibility may also appear [see Hansen, Hodrick
(1980)]. For instance if yt is the price of an asset at t, Et−2yt can be inter-
preted as the futures price at t− 2 (if the agents are risk-neutral) and, also
as the forward price (if, moreover, the interest rates are zero). The spread
between the spot price and the futures price is st = yt − Et−2yt and, if yt
is an invertible MA(2) process yt = εt + θ1εt−1 + θ2εt−2 = Θ(L)εt, we get
st = εt + θ1εt−1 = Θ1(L)εt, which is not necessarily invertible. For example
if Θ(L) = (1 − θL)2 with |θ| < 1, we have Θ1(L) = 1 − 2θL, which is not
invertible as soon as |θ| > 1/2.

2.3 Noncausal process

The presence of rational expectations can also imply ill-located roots in the
autoregressive dynamics, that is, a process with noncausal components. Let
us consider again the univariate linear expectation model for prices à la
Taylor (1977), Diba, Grossmann (1988) :
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yt = aEt(yt+1) + zt, a > 0, (2.8)

where zt is an exogenous variable.
Since the equilibrium equation is obtained by matching the demand and

supply, the information set as well as the endogenous and exogenous variables
yt, zt depend on the structural shocks to the demand and supply. Therefore
there are two underlying shocks εt and wt, say. Let us assume that these
shocks are independent and square integrable. For expository purpose we
assume that zt = εt is a strong white noise. It is well known that the set of
square integrable stationary equilibrium prices depends on coefficient a [see
e.g. Blanchard (1978), Gourieroux, Laffont, Monfort (1982)]. If a < 1, there
is a unique solution y0

t = εt. If a > 1, there is an infinite number of solutions
obtained by considering the convex combinations of the forward solution y0

t

and of the perfect foresight or backward solution :

y1
t = ay1

t+1 + εt ⇐⇒ y1
t =

L

L− a
εt.

In fact this dynamic rational expectation equilibrium model has
many more stationary solutions, if we do not restrict the stationary
equilibrium price to be square integrable. In order to reveal other
solutions, let us first recall the properties of the noncausal stable AR(1)
process [see Gourieroux, Zakoian (2014), a].

A noncausal stable AR(1) process is a strongly stationary process satis-
fying the noncausal autoregression :

y∗t = ρy∗t+1 + ε∗t , |ρ| < 1, (2.9)

where the ε∗t are i.i.d. variables with a stable distribution with stability
index s, 0 < s < 1. This process is also a Markov process in calendar time
and admits a nonlinear autoregressive representation [see e.g. Rosenblatt
(2000) and Appendix 1] :

y∗t = g(y∗t−1, ηt; s, ρ), (2.10)

where (ηt) is a strong Gaussian white noise. The noise ηt is in a one-to-one
increasing relationship with y∗t given y∗t−1.
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Since ε∗t has fat tails the process y∗t admits neither first, nor second-order
unconditional finite moments, nor first and second-order moments condi-
tional on the future. Nevertheless, it is shown in Gourieroux, Zakoian (2014)a
that this process has a first-order conditional moment given the past and that
this conditional expectation is given by :

E(y∗t+1|y∗t ) = |ρ|(s−1)y∗t , (2.11)

where the autoregressive coefficient |ρ|(s−1) is larger than 1.

Let us now consider again rational expectation model (2.9), assume that
the additional shock wt is standard Gaussian and consider the noncausal
stable AR(1) process defined by :

y∗t (s, ρ) = g[y∗t−1(s, ρ), wt; s, ρ] (2.12)

⇔ y∗t (s, ρ) = ρy∗t+1(s, ρ) + ε∗t (s). (2.13)

We see that the process :

yt(s, ρ) = y∗t (s, ρ) + εt, (2.14)

is a solution to dynamic rational expectation model (2.9), whenever

|ρ| = a1/(1−s), (2.15)

since

Et(yt+1) = Ety
∗
t+1 = |ρ|s−1y∗t =

1

a
y∗t =

1

a
(yt − εt).

This implies that, even in the case a < 1, the RE equilibrium model
(2.9) has an infinite number of stationary solutions. Indeed, the
stability index s can be chosen arbitrarily and by taking linear combinations,
we find that any process of the type :

yt = Σsλ(s)y∗t [s, a
1/(1−s)] + εt,
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is a stationary solution 11, since Etyt+1 =
1

a
Σsλ(s)y∗t [s, a

1|(1−s)].

Equations (2.13)-(2.14) imply :

yt(s, ρ) =
ε∗t (s, ρ)

1− ρL−1
+ εt

⇔ (L− ρ)yt(s, ρ) = Lε∗t (s) + (L− ρ)εt. (2.16)

and the VARMA representation of (yt, zt) with zt = εt, that is the system :
(L− ρ)yt(s, ρ)− (L− ρ)zt = Lε∗t (s),

zt = εt,

is such that one root of the autoregressive polynomial is inside the unit circle.
Such solutions are interesting, since y∗t (s, ρ) is a stationary speculative bubble
component [see Gourieroux, Zakoian (2014) a]. Note that the two noises (εt)
and (ε∗t (s)) are independent. Indeed by (2.13) y∗t (s, ρ) is a nonlinear function
of the current and lagged values of wt. In particular the process [y∗t (s, ρ)] is
independent of (εt), as well as the process [ε∗t (s)] by (2.13).

Also note that the standard Box-Jenkins approach applied to the bivari-
ate series [yt(s, ρ), zt] is unable to find the underlying shocks ε∗t (s). First
the Box-Jenkins method assumes the square integrability of yt(s, ρ) whereas
this process has no mean. Second the Box-Jenkins approach is a linear ap-
proach, which cannot accommodate the nonlinear innovation wt in (2.12).
However, it will be seen in Section 3, if both process yt and zt are observ-
able, it is possible to identify the errors (εt, ε

∗
t (s)) of the nonfundamental

VARMA representation of yt, and by using the link between the causal and
noncausal representations of yt to recover the economic shocks (εt, wt) them-
selves (see Section 5). Thus, contrary to a common belief [see e.g. Lanne,
Saikkonen (2011), p1], ”the presence of noncausality ”(does not)” necessar-
ily indicate that the agents are able to forecast a part of the future values
of the economic variable in question by information unknown to the econo-
metrician”. Indeed we have to focus on economic shocks (εt, wt), and the

11It is usual to select the forward solution as if it were the unique solution of the rational
expectation model in the case a < 1. This practice neglects all stationary solutions with
speculative bubbles [see e.g. Pesaran, Smith (2011), p7, Leeper et al. (2013), eq. (4) and
eq. (17) for recent examples of this practice].

13



shocks [ε∗t (s), εt], are just convenient tools for estimation purpose. In partic-
ular the impulse response functions 12 have to be derived by applying shocks
to (εt, wt), and not to nonfundamental forecast errors [ε∗t (s), εt]. The mul-
tipliers are not derived from the nonfundamental VARMA representation,
but from the associated nonlinear causal autoregressive representation [see
Koop, Pesaran, Potter (1996), Gourieroux, Jasiak (2005), for the definition
of impulse response functions in a general framework and Section 5].

2.4 The limits of the Gaussian approach

The Box-Jenkins methodology is based on the assumption of Gaussian er-
rors. Let us first discuss the identification issue for a Gaussian VAR. The
results are similar for a Gaussian VARMA. The observable process satisfies
the autogressive dynamics :

Φ(L)Yt = Cηt, ηt ∼ IIN(0, Id), (2.17)

where Φ(L) = Id − Φ1L . . . − ΦpL
p. The joint distribution of the process

depends on parameters C,Φ1, . . . ,Φp through the first and second-order mo-
ments of the process, or equivalently through the matrix spectral density :

f(w) =
1

2π
Φ(exp iw)CC ′Φ(exp(−iw))′. (2.18)

Several pairs Φ(L), C yield the same spectral density, and, therefore, ob-
servationally equivalent Gaussian processes, leading to static and dynamic
identification issues.

i) static identification issue : CC ′ can be identified, but not C itself.

ii) dynamic identification issue : The different polynomials in Φ(L)
are deduced from the fundamental solution (i.e. such that the roots of
det Φ(z) are outside the unit circle) by an appropriate use of Blaschke ma-
trices [see e.g., Hansen, Sargent (1981), Lippi, Reichlin (1994)].

The Box-Jenkins approach consists in estimating parameters Ω = CC ′,Φ1, . . . ,Φp

by maximizing the Gaussian log-likelihood (if ηt is Gaussian), or the pseudo
log-likelihood (if ηt is non-Gaussian) :

12The impulse response analysis describes how structural shocks propagate through the
macroeconomy.
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(Φ̂, Ω̂) = arg max
Φ,Ω

T∑
t=1

{−n
2

log 2π − 1

2
log det Ω− [Φ(L)Yt]

′Ω−1[Φ(L)Yt)]

2
}.

(2.19)
In other words Φ̂ is obtained from the O.L.S. estimators equation by

equation, and Ω̂ is the empirical variance-covariance matrix of the associated
residuals.

These (pseudo) maximum likelihood estimators converge when T tends to
infinity, and the estimated autoregressive polynomial Φ̂(L) converges to the
fundamental solution 13 associated with Φ(L) (i.e. by inverting in an appro-
priate way the ill-located roots through Blaschke matrices and orthonormal
transformations 14). Therefore, it is not consistent whenever the true VAR
defined in (2.18) features nonfundamentalness.

To adjust for this lack of consistency, it is proposed in the literature to
deduce all the remaining solutions by applying the Blaschke matrices 15 [see
Lippi, Reichlin (1991)]. This approach is computationally demanding and
does not solve the dynamic identification issue.

3 The identification issues in the non Gaus-

sian SVARMA

Let us consider the VARMA model,

Φ(L)Yt = Θ(L)Cηt, (3.1)

where : Φ(L) = Id−Φ1L− . . .−ΦpL
p,Θ(L) = Id−Θ1L− . . .−ΘqL

q, (3.2)

and the components η1t, . . . , ηn,t of the error term are independent (and also
serially independent by Assumption a.1).

13This result is well-known, if the errors have finite variance. It is also valid for errors
with fat tails [see Davis, Resnick (1986)].

14A Blaschke matrix is a square matrix of the lag operator B(L) such that [B(L)]−1 =
B∗(L−1), where B∗(.) is obtained from B(.) by transposing and taking conjugate coeffi-
cients.

15See Leeper et al. (2013), p1123-1124 for a practical example of the use of Blaschke
matrices.
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This additional cross-sectional independence assumption is needed for im-
pulse response analysis. Let us for instance assume that η1t has an economic
interpretation, such as a technological shock. To ensure that a change in η1t

captures only the effect of this shock, it is necessary to eliminate any link
between η1t and the other components, i.e. to assume their independence.

In this respect we follow the structural VARMA literature by assum-
ing that all structural shocks are serially and mutually orthogonal. But we
emphasize that the appropriate notion of ”orthogonality” is independence.
Indeed the absence of correlation usually considered in the SVARMA lit-
erature is not sufficient for deriving the impulse response function and its
confidence intervals. It is also insufficient for comparing the impulse re-
sponse functions deduced from a nonlinear DSGE and from its SVARMA
approximation, or for applying Bayesian techniques à la Sims-Litterman .
Distributional assumptions are required. 16 We point out below that both
static and dynamic identification challenges are solved when the errors are
independent, with at most one Gaussian error. We discuss first the static
case, then the dynamic case.

3.1 How to orthogonalize the shocks

Let us first consider a static framework. When the noise is Gaussian
ηt ∼ N(0, Id), we cannot identify C and ηt given the knowledge of Cηt.
Indeed we have :

Cηt = C∗η∗t ,with η∗t ∼ N(0, Id),

as soon as :

C∗ = CQ and η∗t = Q′ηt,

where Q is an orthogonal matrix : QQ′ = Id.
Thus, in a Gaussian framework, there are several ways of selecting the

η′s and thus of ”orthogonalizing” the shocks. These different possibilities
underlie the recursive identification scheme proposed by Sims (1980), (1989).

16For all these problems, the shocks are implicitly assumed Gaussian, but the Gaussian
hypothesis is never tested in practice. This assumption is even explicit in some papers
[see e.g. Forni et alii (2013)].
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17 Additional structural short run restrictions [see e.g. Bernanke (1980),
Sims (1986), Rubio-Ramirez, Waggoner, Zha (2010)], and long run restric-
tions 18 are sometimes introduced in the applied literature to reduce the
set of possibilities [see e.g. Blanchard, Quah (1989), Faust, Leeper (1997),
Erceg, Guerrieri, Gust (2005), Christiano, Eichenbaum, Vigfusson (2007)],
as well as sign restrictions [Uhlig (2005), Chari, Kehoe, McGrattan (2008),
Mountford, Uhlig (2009)].19 These ”restrictions imposed in the usual style of
identification are neither essential to constructing a model, nor innocuous”,
(since they can introduce misspecifications) [Sims (1980)].

Indeed there is no identification problem in a non Gaussian framework
as shown in the following Proposition [see Comon (1994), Theorem 11 for
square integrable variable, Eriksson, Koivunen (2004), Theorem 3 ii) and
the references therein, for variables with fat tails] :

Proposition 1 : Let us consider two vectors ηt, η
∗
t of the same size n, with

independent components, with continuous distributions and satisfying a lin-
ear relationship : η∗t = Mηt, where M is invertible. Then, these components
are such that η∗i,t = σiηπ(i),t, i = 1, . . . , n, where π is a permutation of
{1, . . . , n}, and σi a scale parameter, possibly negative, whenever at most
one component of ηt is Gaussian.

The proof is a direct consequence of the Darmois, Skitovich characteriza-
tion of the multivariate normal distribution [see Darmois (1953), Skitovich
(1953), Ghurye, Olkin (1961), Theorem p 533, Kagan, Linnik, Rao (1973),
Th 10.3.1]. This identification result underlies independent component anal-
ysis (ICA), which is the analogue of the principal component analysis (PCA)
when components are required to be independent rather than being simply
uncorrelated [see e.g. Hyvarinen, Karhunen, Oja (2001)]. In practice consis-
tent estimators of matrix C are obtained by considering cross-moment condi-
tions, or tail properties or Pseudo-Maximum Likelihood approach [Gourier-
oux, Monfort (2015)].

17See also Klein (2000).
18Typically permanent shocks to output are associated with technology shocks.
19An alternative consists in leaving the linear dynamic framework by considering Markov

Switching SVAR [see Lanne, Lutkepohl, Maciejowska (2010), Lutkepohl (2013), Herwatz,
Lutkepohl (2014), Velinov, Chen (2013)]. This extended framework allows to test the
identification restrictions. In this note we will stay in a pure SVARMA framework.
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An important consequence of Proposition 1 is the following : Let us con-
sider the error terms εt = Cηt in the VARMA model (3.1), with independent
components for the ηt, at most one Gaussian component and a lower trian-
gular matrix T (not diagonal). Then the components of Tεt cannot be mu-
tually independent except in a very special case. Indeed the random vectors
η∗t = Tεt and ηt satisfy a one-to-one linear relationship η∗t = TCηt. Thus by
Proposition 1, we deduce that : TC = ∧P , where ∧ is a diagonal matrix and
P a permutation matrix. Thus matrix C must be the product of a triangular
matrix by a permutation matrix, which is a very specific situation. This
implies that, in a non-Gaussian framework, the recursive scheme
proposed by Sims can be used to find uncorrelated components,
but not, in general, independent components.

3.2 Identification of the relevant nonfundamental rep-
resentation

We have seen in Section 3.1 above that, in a non-Gaussian framework, there
is no real identification problem for the ”static” part of the SVARMA model.
What can be said about the identification of its dynamic part? The question
concerns the uniqueness of the two-sided moving average representation :

Yt =
+∞∑
j=−∞

Ajηt−j, with
+∞∑
j=.∞

||Aj|| <∞, (3.3)

where the components of ηt are mutually independent. The following result
(Chan, Ho, Tong (2006), Theorem 1) extends the Darmois, Skitovich result
to Gaussian processes 20 and is valid under the assumption of non-degenerate
transfer function :

Assumption a.4 : The determinant of the transfer function

Ã(w) =
+∞∑
j=−∞

A(j) exp(−ijw) is not zero almost everywhere on the inter-

val (−π, π).

This assumption is introduced to avoid linear dependence between the
columns of matrix polynomial A(L). If, for instance Yt = A1(L)η1t+A2(L)η2t,

20See Findley (1986), Cheng (1992) for the one-dimensional case n = m = 1.
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say, with A2(L) = λA1(L), we can write yt = A1(L)(η1t + λη2t), and replace
the bidimensional noise (η1t, η2t) by the one dimensional noise η1t + λη2t.

Proposition 2 : Under Assumption a.4 of non-degenerate transfer function,
let us consider two moving average representations of a non Gaussian process
(Yt) :

Yt =
+∞∑
j=−∞

Ajηt−j =
+∞∑
j=−∞

A∗jη
∗
t−j, ∀t.

Then

η∗i,t−m(i) = σiηπ(i),t, A
∗
i,j =

1

σi
Ai,j+m(i)

where ηi,t is the ith-component of ηt and Ai,j the ith-column of Aj,
for some scalars σi, possibly negative, integers m(i) and permutation π of
the set {1, 2, . . . ,m}, if one of the two following conditions is satisfied :
Condition C1 : the components of ηt are identically distributed.
Condition C2 : each component of ηt has a nonzero rth cumulant, with r ≥ 3,
and a finite moment of order s where s is an even integer greater than21 r.

Thus, the two-sided moving average representation is unique up to a
permutation, a change of scale and a time shift, possibly depending on the
component.

To understand how Proposition 2 solves the dynamic identification issue,
let us consider a bivariate MA(1) model :

y1t = η1t − θ1,1η1,t−1 − θ1,2η2,t−1,

y2t = η2t − θ2,1η1,t−1 − θ2,2η2,t−1,

where η1,t, η2,t, t varying, are identically distributed and non-Gaussian. Then
the other moving average representations with i.i.d. components of the error
terms are either of the type22 :

21Condition C2 implies that all the components of ηt are not Gaussian.
22The equalities below are in distribution.
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
y1t = η1,t−m(1) − θ1,1η1,t−1−m(1) − θ1,2η2,t−1−m(2),

y2t = η2,t−m(2) − θ2,1η1,t−1−m(1) − θ2,2η2,t−1−m(2),

or of the type :
y1t = η2,t−m(2) − θ1,1η2,t−1−m(2) − θ1,2η1,t−1−m(1),

y2t = η1,t−m(1) − θ2,1η2,t−1−m(2) − θ1,2η2,t−1−m(2).

Thus they differ only by a redenomination of the errors.
A similar identification result has been recently derived when the compo-

nents of ηt have fat tails [see Gourieroux, Zakoian (2014)b], and is applicable
for rational expectation models with non square integrable solutions [see Sec-
tion 2.3 iii)].23

Proposition 2 has far reaching consequences. In particular if a non-
Gaussian stationary process has a VARMA representation with
serially independent errors, this representation is unique and all the
second order equivalent representations have serially uncorrelated,
but not independent, errors.

4 Semi-parametric estimation of models with

nonfundamentalness or noncausal compo-

nent.

Proposition 2 suggests better semi-parametric estimation methods24 than the
Gaussian pseudo-maximum likelihood used in the Box-Jenkins methodology.
These alternative methods will provide consistent estimators of the true two-
sided moving average polynomial A(L) [or equivalently the true Φ(L),Θ(L)

23Note that the identification result in Chen, Choi, Escanciano (2012), Theorem 1, is
much less powerful. This result provides conditions to check if the fundamental representa-
tion is the right one, but cannot be used to find the correct nonfundamental representation,
otherwise.

24Parametric estimation methods are introduced and discussed in Appendices 2 and 3.
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in the VARMA representation]. They also provide consistent nonparametric
estimators of the distribution of the components of the error term.

We consider successively a SVARMA causal model with nonfundamen-
talness in the moving average dynamics and a SVAR model with noncausal
components. In both cases we introduce appropriate moment methods, based
on moment restrictions deduced from the independence assumption on the
components of error η. These estimation methods are consistent. The deriva-
tion of their asymptotic properties is out of the scope of this paper, but
their finite sample properties are easily derived by bootstrap [see Gourier-
oux, Jasiak (2015) for simulating trajectories of a mixed causal/noncausal
VAR(1) process].

4.1 Semi-parametric estimation of a SVARMA model
with nonfundamentalness

For expository purpose, let us consider a SVARMA (1,1) model :

Yt = ΦYt−1 + C0ηt + C1ηt−1, (4.1)

where the components of ηt are both serially and cross-sectionally indepen-
dent with E(ηt) = 0, V (ηt) = Id. We assume that the roots of the deter-
minant of the autoregressive polynomial are well- located, but make no as-
sumption on the roots of the moving average. We denote by fj the common
probability density function of the ηj,t, t = 1, . . . , T . We have to consis-
tently estimate the parameters Φ, C0, C1 as well as the functional parameters
fj, j = 1, . . . , n.

i) Pure moving average process

Let us first consider the case Φ = 0, that is, a pure moving average process
and focus on the estimation of the moving average matrix coefficients C0, C1.

The Laplace transform of Yt, Yt−1 is :

E[exp(u′Yt + v′Yt−1)]

= E{exp[u′(C0ηt + C1ηt−1) + v′(C0ηt−1 + C1ηt−2)]}
= E[exp(u′C0ηt)]E{exp[u′C1 + v′C0)ηt−1]}E[exp(v′C1ηt−2]

= Πn
j=1E[exp(u′C0,jηjt)]Π

n
j=1E[exp[(u′C1j + v′C0j)ηj,t−1]Πn

j=1E[exp(v′C1jηj,t−2)],
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by using the independence assumptions.
The expression of this joint Laplace transform can be used to compute

the expressions of the first, second, third (fourth) cross-moments of Yt as
functions of C0, C1 and of the first, second, third (fourth) marginal moments
of the errors ηj,t.

25

By focusing on the first and second moments only, we know that the
corresponding GMM estimators will not provide consistent results (see the
discussion in Section 2.4). But the identification of parameters and then the
consistency of associated moments methods are generally achieved if we also
consider higher order moments.

For instance, let us consider moments up to order 3, with data preliminary
demeaned; the ”observable” second and third order moments are :

E(yj,tyk,t), j, k = 1, . . . , n,

E(y3
j,t), j = 1, . . . , n,

E(y2
j,tyk,t−1), j, k = 1, . . . , n

E(yj,ty
2
k,t−1), j, k = 1, . . . , n.

Thus we have n(n+ 1)/2 + n+ 2n2 observable moments.
The number of unknown parameters to estimate are the elements of C0, C1

and the third-order moments of the ηj,t, j = 1, . . . , n (since their first and
second-order moments are already known and their cross third-order mo-
ments are equal to zero because of the cross-sectional independence). Thus
this number of parameters is n + 2n2. Therefore the order condition for
identification, that is,

n(n+ 1)/2 + n+ 2n2 > n+ 2n2, is satisfied.

ii) The general case

Let us now consider the general specification (4.1). Since the process is
causal, ηt and ηt−1 are independent from Yt−2. Thus we can estimate the
autoregressive matrix coefficient by projecting Yt on Yt−1, with instruments
Yt−2. The corresponding instrumental variable (IV) estimator of Φ is :

25When their moments exist. If the errors have fat tails the expression of the Laplace
transform can be used for pure imaginary arguments u and v.
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Φ̂ = (ΣYtY
′
t−2)(ΣYt−1Y

′
t−2)−1. (4.2)

Once Φ has been estimated, we deduce the associated IV residuals :

Ẑt ≡ Yt − Φ̂Yt−1, (4.3)

which are consistent approximations of Zt = C0ηt + C1ηt−1.
Then in a second-step we can apply to observations Ẑt the estimation

method for pure MA process introduced in the subsection above and deduce
consistent estimates of C0, C1.26

Example : In the one-dimensional case :

yt = ϕyt−1 + cηt − cθηt−1, say.

the estimators of the parameters are :

ϕ̂ = (Σtytyt−2/(Σtyt−1yt−2),

θ̂ = −(Σy2
t yt−1)/(Σyty

2
t−1), [see Appendix 4 iii)]

ĉ =
1

T
Σtη̂

∗2
t ,

where η̂∗t =
1− ϕ̂L
1− θ̂L

yt,

and the inverse (1− θ̂L)−1 is computed by a backward expansion if |θ̂| < 1,
by a forward expansion, otherwise.

iii) Estimation of the error distribution

Once Φ, C0, C1 have been estimated, we deduce consistent approximations
of the errors :

η̂t = (Ĉ0 + Ĉ1L)−1(Id− Φ̂L)Yt, (4.4)

26If C1 = 0, C0 can be directly estimated by ICA [see e.g. Chen, Choi, Escanciano
(2012)].
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where the inverse (Ĉ0 + Ĉ1L)−1 has to be computed carefully, with backward
expansions for roots larger than one, forward expansions, otherwise.

Then the p.d.f. fj is estimated by a kernel density estimator applied to
the η̂j,t, t = 1, . . . , T .

4.2 Semi-parametric estimation of a SVAR model with
noncausal component.

For expository purpose, let us consider a SVAR(1) model :

Yt = ΦYt−1 + εt, (4.5)

with i.i.d. non Gaussian error terms, with zero mean. This process can
always be written as :

Yt = A1Y
∗

1t + A2Y
∗

2t,

where Y ∗1t is a pure autoregressive causal process of order 1 and dimension
K and Y ∗2t a pure noncausal autoregressive process of order 1 and dimension
n−K [see Gourieroux, Jasiak (2015)]. Thus this process generally contains
causal as well as noncausal components.

The Box-Jenkins approach, based on a Gaussian pseudo-likelihood, es-
timates the Seemingly Unrelated Regression model (4.14) by ordinary least
squares, or equivalently by an instrumental variable approach with instru-
ment Yt−1. This method is valid if Yt−1 and εt are uncorrelated, that is, if all
the roots of det Φ(z) are outside the unit circle. It is not valid if some roots
are inside the unit circle, since Yt has a two-sided moving average represen-
tation that creates correlation between Yt−1 and εt.

However the serial independence between the errors implies moment re-
strictions of the type :

Cov[a(Yt − ΦYt−1), b(Yt−h − ΦYt−h−1)] = 0, (4.6)

for any lag h, and any square integrable functions a and b.27 These restric-
tions can be the basis for covariance estimators. In particular, for a square
integrable process Yt−1, we have :

27When the process has fat tails as in the case of explosive bubble solutions of rational
expectation models in Section 2.3, we have to select a and b functions, such as a(y) =
exp(ia′y), b(y) = exp(ib′y), say, to ensure the existence of the covariance in (4.6).
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E[(Yt − ΦYt−1)b(Yt−1 − ΦYt−2)] = 0, for any square integrable function b.
(4.7)

In other words, the variables b(Yt−1−Φ0Yt−2), where Φ0 is the true value
of the autoregressive matrix, are valid instruments for the SVAR model (4.5),
and the moment conditions (4.6) are used to estimate jointly Φ and these
instruments.

In practice a set of functions b has to be selected to apply the Generalized
Method of Moments (GMM). When choosing only the identity function, we
consider second-order moments only and the dynamic identification issue is
not solved. Other functions, such as polynomial functions of degree 2, 3,
have to be added to identify which representation is the right one28,

The GMM can be applied in several steps.

i) Step 1 : Consistent estimation.

First select sets of functions a and b, and calibrate parameter Φ from the
associated moment conditions without trying to introduce optimal weights.
The corresponding estimator Φ̃ is consistent and can be used to deduce ap-
proximated instrumental variables b̃(Yt−1 − Φ̃Yt−2), where the set of b̃ func-
tions can be larger than the initial set of functions b.

ii) Step 2 : Efficiency improvement.
Apply to the model :

Yt = ΦYt−1 + εt,

a Two Stage Instrumental Variable (2SIV) approach based on instruments
b̃(Yt−1− Φ̃Yt−2). This second step provides closed form estimators once Φ̃ has
been derived and avoids an additional nonlinear optimization.

iii) Step 3 : Diagnostic tools for serial independence.

28In the univariate case, it is easily seen, taking the identity function for a and b, that ϕ
satisfies the second-order equation ϕ0 − ϕ(1 + ϕ2

0) + ϕ2ϕ0 = 0, where ϕ0 is the true value
of ϕ and this equation has two solutions ϕ0 and 1/ϕ0. Moreover, adding the condition
E[(yt − ϕyt−1) (yt−1 − ϕyt−2)2] = 0, we get a third order equation in ϕ, which admits ϕ0

as a solution, but not 1/ϕ0, in general.
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Let us denote ε̂t = Yt − Φ̂Yt−1, the associated residuals, where Φ̂ denotes
the 2SIV estimator. We have to check if the vectors εt are serially indepen-
dent. We can perform tests of serial independence, based for instance on
power cross-moments at any lag, for all these estimated shocks. The stan-
dard analysis of ACF and cross ACF of the Box-Jenkins approach has to be
completed by considering the ACF and cross ACF on nonlinear transforms of
the ε̂t . Typically square ACF and square cross ACF have to be considered
to detect possible ARCH effects creating nonlinear dependence, or cross ACF
between ε2

t and εt−h to detect leverage effects, and so on.29

If the serial independence hypothesis is rejected, the SVAR model cannot
be used for computing impulse response functions. Otherwise, we have still
to check if the vector of errors linearly depends on independent ”structural”
shocks.

iv) Step 3 : Analysis of mutual independence.
The hypothesis of mutual independence can be written as :

H0 = {∃ C: εt = Cηt, the components of ηt being independent }.

The test of this hypothesis and the estimation of matrix C if the hypothe-
sis is not rejected can be done by applying Independent Component Analysis
[see e.g. Hyvarinen, Karhunen, Oja (2001), Hyvarinen et al. (2008), Moneta
et al. (2013), Gourieroux, Monfort (2015)].

5 Shocks and Impulse Response Functions

There exist two ways to construct Impulse Response Functions, either by
introducing shocks on errors, or shocks on parameters. We will focus on the
first approach, which is the most frequently used by macroeconomists [see
e.g. Borovicka, Hansen, Scheinkman (2014) for the second approach].

There are minimal requirements on the errors to be shocked.

i) They have to be serially and cross-sectionally independent (like the η′ts in
the models of the previous sections).30

29The generalized spectrum approach proposed in Hong (1999), Chen et al. (2012)
considers complex exponential transforms exp(ia′ε̂t) and exp(ib′ε̂t−h), say.

30Cross-sectional no correlation is not sufficient as shown by the following example. Let
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ii) The observable macrovariables have to be functions of the current and
lagged values of these errors.

iii) These errors need clear economic interpretations. In this respect the
overidentifying restrictions of causality, long run behaviour, nonfunda-
mentalness, play a crucial role.

For a causal SVARMA model with possibly non-invertible moving average
the derivation of the IRF are standard. We just recall these derivations with
special emphasis on dynamic and stochastic shocks.

The case of SVAR model with noncausal components is significantly dif-
ferent, since linear noncausal components have first to be transformed into
nonlinear causal components before applying the shock. As a consequence
nonlinear IRF have to be considered.

5.1 IRF for a SVARMA model with non-invertible mov-
ing average

Let us consider the model :

Yt = ΦYt−1 + C0ηt + C1ηt−1, (5.1)

where the roots of the determinant of the autoregressive polynomial are well-
located and the components of the errors are independent, with distributions
fj, j = 1, . . . , n, respectively.

i) The traditional IRF

The standard practice consists in considering deterministic shocks on a
component of ηt, η1t say, and in deriving the impact on the future expected
values of the macrovariables. This error-shock methodology has been put
forth in Sims (1980). For such a transitory shock at date T , denoted by
δη1T , the impacts on the YT+h, denoted by δYT+h,, are computed recursively
by :

δYT+h = Φ̂δYT+h−1 + Ĉ0δηT+h + Ĉ1δηT+h−1, h ≥ 0, (5.2)

us consider the two errors ε1,t, ε2,t = ε21,t − 1, where ε1,t ∼ N(0, 1). These errors are
uncorrelated : Cov (ε1,t, ε2,t) = E(ε31,t)− E(ε1,t) = 0, but in a deterministic relationship.
Thus a shock on ε1,t has a deterministic impact on ε2,t.
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where :

δYT−1 = 0, δηT−1 = 0, δηT =

(
δη1,T

0

)
, δηT+h = 0, h ≥ 1. (5.3)

and the parameters are replaced by their estimates.

This practice has at least two limits.

• The shock on error η1t is very specific, since it corresponds to a drift
on the distribution f1 on η1t. In other words the other characteristics of the
distribution, like its variance, skewness, or tails have not been changed.

• By focusing on the effect on the expected future values, that is on the
conditional mean profile, we have no information on the uncertainty of these
impacts.31

ii) Stochastic shocks

The standard practice can be improved as follows. The transitory shock
of interest is defined by means of some change on distribution f1, passing
from f1 to g1, say, or after substitution of the estimate from f̂1 to ĝ1.

Then we can simulate future values of the errors without and with shocks.
Without shocks, simulated errors denoted by ηsT , . . . , η

s
T+h are drawn inde-

pendently in the distribution ⊗j f̂j. With transitory shocks, the simulated

errors denoted by η̃sT , . . . , η̃
s
T+h are drawn independently in ĝ1⊗ (⊗j 6=1f̂j) for

η̃sT , in ⊗j f̂j, for η̃sT+h, h ≥ 1.

Then we deduce the simulated paths of macrovariables with and without
shocks Ỹ s

T+h and Y s
T+h, respectively, by applying recursively equation (5.1)

with the shocked and unshocked simulated errors, respectively, after having
replaced the parameters by their estimated counterparts and ηT−1 by its
predicted value η̂T−1.

This approach can be replicated S times and used to derive the shocked
and unshocked predictive distributions of the YT+h. In particular, this ap-
proach is appropriate for deriving the impact of the stochastic shocks on the

31We discuss below the uncertainty due to the dynamic shocks, not the uncertainty due
to the replacement of the parameters by their estimates [see e.g. Runkle (1987), Lutkepohl
(1990), Sims, Zha (1999)] for this second type of uncertainty].
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quantiles of the predictive distribution of any component Yj,T+h, j = 1, . . . , n,
for instance on the term structure of the Values-at-Risk.

5.2 IRF for a SVAR model with noncausal component

The approach to compute the IRF described in Section 5.1 cannot be used
for a process with noncausal components. Indeed some errors of the VAR
specification are interpretable as innovations in reverse time and depend on
the future of the process of interest. They cannot be directly shocked [see
the minimal requirement ii) at the beginning of Section 5]. To show how to
proceed, let us consider the RE equilibrium model discussed in Section 2.3.

Under the assumptions of Section 2.3, we get a bivariate VAR (1) model :
(L− ρ)yt − (L− ρ)zt = Lε∗t ,

zt = εt,
(5.4)

where the two strong white noises (εt) and (ε∗t ) are independent. However
the two underlying structural errors are the errors on demand and supply εt
and ωt, not directly εt and ε∗t . Thus the IRF has to be deduced from shocks
on εt and wt. The solution of this RE equilibrium model can be rewritten as
[see eq (2.13)-(2.15)] : 

yt = y∗t + εt,

zt = εt,
(5.5)

where y∗t = g(y∗t−1, wt; s, ρ). (5.6)

System (5.5)-(5.6) is causal, since (εt, wt) is independent of the lagged
values of yt and zt, but is nonlinear due to the autoregressive equation (5.6).

IRF can be deduced from stochastic shocks on the structural errors εt, wt,
by applying the nonlinear recursive scheme (5.5)-(5.6) [see Koop et al. (1996),
Gourieroux, Jasiak (2005) for nonlinear IRF].

6 Concluding remarks

We have shown in this paper that the static and dynamic identification diffi-
culties encountered in the analysis of SVARMA models are due to the poor
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performance of the estimation method used in the Box-Jenkins methodology,
namely the Gaussian pseudo maximum likelihood approach. This approach
suffers from the lack of identification existing in the Gaussian SVARMA.
Whenever the shocks are not Gaussian, the SVARMA becomes identified up
to change of scale, drift on time, and permutation of equations.

In fact a dynamic model constructed to derive impulse response functions
requires much more structural assumptions on the error terms (i.e. indepen-
dence) than a pure forecast model for which uncorrelated errors may be
sufficient. In this respect the conventional econometric toolboxes available
for macroeconomists have been conceived for a forecast purpose and are not
appropriate for the analysis of policy shocks.

Moreover it is important to keep the structural VARMA dynamics and
not to replace it by a VAR model with higher lags. Indeed simple consistent
estimation methods can be introduced for nonfundamental representation
in the moving average dynamics, and are rather different from the IV ap-
proaches used when the nonfundamental representation concerns the autore-
gressive dynamics. Similarly the methods to simulate a path of the process
and to derive the impulse response function are very different if the autore-
gressive dynamics is causal or not. In particular nonlinear impulse response
functions may have to be used when there is a nonfundamentalness in the
autoregressive dynamics.

Because it focuses on the second-order properties the SVARMA literature
often introduces ”incredible” identification assumptions that entail misspec-
ification and naive interpretations of VARMA residuals. To paraphrase Sims
(1980) : ”Nonlinear analysis is getting easier, both because of improved
techniques and because of better computational hardware. This weakens the
excuse that second-order analysis has to be followed just since it is simple”.
Misspecified analysis could not serve as a useful tool for economic policy,
nevertheless, as shown in the parametric and semi-parametric analysis de-
veloped in Section 4, SVARMA and SVAR can still be useful for economic
policy, provided that the independence assumptions required for impulse re-
sponse analysis are tested and the appropriate estimation methods are used.

The methods developed in this paper can be extended in several direc-
tions. First the asymptotic Gaussian distributions of the various estimators
proposed can be derived and testing procedures, in particular tests of fun-
damentalness, can be obtained. Second, the identification and estimation
results might be extended to the case of more errors than observables. In-
deed identification results exist when the errors are not Gaussian [see e.g. Th
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3.1. in Eriksson, Köıvunen (2004) in the static case, Gourieroux, Zakoian
(2014)b for stable multivariate processes, or Gagliardini-Gourieroux (2015)
for a non Gaussian factor model]. This possibility to identify the dynamics
when m > n and the errors are not Gaussian would be important in the
discussion of the effect of omitted variables [see Giannone, Reichlin (2006),
Lütkepohl (2014)].
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Appendix 1

What is an innovation ?

The term ”innovation” is largely used in the applied macroeconomic lit-
erature, but often with different meanings and underlying assumptions. The
aim of this appendix is to discuss this (these) notion (s). For expository
purpose we consider a Markov process Yt.

i) Definitions for a square integrable process.

Two notions of innovations are considered in practice :

The weak linear innovation is : ut = Yt−EL(Yt|Yt−1), where EL(Yt|Yt−1)
is the best mean square approximation of Yt by an affine function of Yt−1.

The strong linear innovation is : ut = Yt − E(Yt|Yt−1), where E(Yt|Yt−1)
denotes the conditional expectation of Yt given Yt−1.

ii) Definition for an infinite variance process

In this case the notion of weak innovation has no meaning. But the
notion of strong innovation still exists if the conditional distribution of Yt
given Yt−1 admits a first-order moment. This can occur when the process Yt
admits a first-order unconditional moment, but also sometimes for a process
without a first-order unconditional moment, as shown with the example of
the noncausal stable AR(1) process (see Section 2.3).

iii) Nonlinear innovation

The previous notions of innovation provide information on the accuracy
of a prediction of Yt, but no information when our interest is to predict
a nonlinear transform of Yt. A more appropriate notion is the nonlinear
innovation εt, say, such that :

Yt = g(Yt−1, εt),

where the εt variables are i.i.d. standard normal and in an increasing rela-
tionship with Yt for given Yt−1.
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This nonlinear autoregressive model is obtained as follows. Let us con-
sider for expository purpose a one-dimensional process Yt and denote F (y|Yt−1)
the conditional cdf of Yt given Yt−1. It is well-known that the variable :

Ut = F (Yt|Yt−1)

follows a uniform distribution on [0, 1] for any Yt−1 and, in particular, Ut is
independent of Yt−1. By inverting the conditional cdf, we get :

Yt = F−1(Ut|Yt−1),

and by defining εt = Φ−1(Ut), where Φ is the cdf of the standard normal, we
get :

Yt = F−1[Φ(εt)|Yt−1],

Yt = g(Yt−1, εt). (say),

where g is strictly increasing in εt.

This notion of nonlinear innovation has three advantages :

• It can be used to evaluate the accuracy of the strong prediction of any
nonlinear transform of Yt.

• The ε′ts are serially independent, whereas the weak and strong linear inno-
vations are serially uncorrelated, but in general dependent. Thus, the
weak and strong linear innovations cannot be used in general to model
the errors at the basis of impulse response analysis.

• By recursive substitutions, we deduce a nonlinear moving average repre-
sentation of Yt as function of independent innovations εt, εt−1... and
by series expansion the Volterra representation of the Markov process
(which generally differs from its Wold representation).

Appendix 2

Parametric estimation of noncausal SVAR: the main steps of the
ML and Bayes procedures
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When the distribution of the error term is parametrically specified, max-
imum likelihood approaches 32 and appropriate Bayesian approaches can
be used, even with ill-located roots in either the autoregressive and/or the
moving average dynamics [see e.g. Andrews, Breidt, Davis (2006), Lanne,
Saikkonen (2013), Davis, Song (2012), Gourieroux, Jasiak (2014) for ML ap-
proach, Lanne, Luoma, Luoto (2012) for Bayesian approach] .However, these
approaches require to compute the likelihood functions in each regime of
ill-located roots.33 We discuss below these approaches for SVAR models.

i) The ML procedure

Let us detail the ML procedure for a SVAR model :

Yt − Φ1Yt−1 . . .− ΦpYt−p = Cηt, (A.1)

say, where the η′ts are i.i.d, with i.i.d. components. The common non-
Gaussian distribution of the ηj,t can be parametrized. For instance, this
might be a Student distribution parametrized by the degree of freedom ν.

For disentangling the causal and noncausal components of the stationary
solution of (A.1), we have to consider the roots of det Φ(z). For stationarity
we assume that there are no roots on the unit circle (Assumption a.3).

r roots are well-located and s = np− r ones are ill-located.

The expression of the likelihood function of model (A.1) depends on the
number of ill-located roots and this number s depends on the parameters of
the model : s = s(Φ), say. Thus the log-likelihood function can be written
as :

32Called approximate maximum likelihood (AML) in the literature on noncausal time
series.

33The need for distinguishing the different regimes is not specific to linear dynamic
models, but also arises in nonlinear autoregressive models, say, whenever the process of
interest is assumed strictly stationary. As an illustration let us consider a one dimensional
autoregressive model : yt = a(yt−1, εt), say, where a is invertible with respect to yt−1. So
we can also write yt−1 = b(yt, εt), with b = a−1. By recursive substitution we can write
yt function of εt, εt−1, εt, yt−k−1, or yt function of εt+1, . . . , εt+h, yt+h. By considering a
large value of h, only one of the two nonlinear moving-average representations of yt will
exist. Thus the backward or forward expressions of the stationary solution (Yt) depends
on the stability properties of functions a and b = a−1.

43



L(Φ, C, ν) =

np∑
s=0

{Ls[Φ, C, ν]1ls(Φ)=s}, (A.2)

where Ls(Φ, C, ν) is the expression of the log-likelihood function in regime s.
Since there are no roots on the unit circle, the subsets of parameters Φ

such that s(Φ) = s are disjoint open sets. Moreover, due to the identifiability
of the MA representation, there exists no distribution of process y belonging
to two different regimes, and the standard ML theory applies.

The ML approach can be implemented along the following steps,

step 1 : Estimate the autoregressive order p by the standard BJ methodol-
ogy, which provides a consistent estimation of the causal SVAR repre-
sentation of the process (which is a weak representation if the roots of
det Φ(L) are not all outside the unit circle).

step 2 : Then maximize the log-likelihood function (A.2). Since the likeli-
hood function is not differentiable due to the regimes, this has to be
done by first maximizing the regime specific log-likelihoods Ls under
the constraints s(Φ) = s, and then by selecting the regime s with the
largest value of the regime specific log-likelihood function.

From a practical point of view, the difficulties come from :

i) the number of admissible regimes (but this number can be significantly
diminished under structural restrictions).

ii) the derivation of closed form expressions of the regime specific log-
likelihoods [see e.g. Davis, Song (2012), or Lanne, Saikkonen (2013), in
special cases].

ii) The Bayes procedure

The standard Bayesian analysis of a SVAR(1) model, say, considers the
likelihood function corresponding to the fundamental solution, that is,

l(Φ, c, ν) = ΠT
t=1

1

|detC|
g[C−1(yt − Φyt−1), ν],
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where g(., ν) denotes the joint pdf of independent variables with identical Stu-
dent distributions, say, and in completing by a prior on parameters Φ, C, ν.
Usually this prior distribution attributes positive weights on values of Φ such
that some roots of det(Id− Φz) are ill-located. This standard Bayesian ap-
proach will lead to inconsistent estimators for large T . Indeed, when some
roots are ill-located, the Bayesian model assumes that (Yt) may be non-
stationary whereas the process is assumed strictly stationary in each regime
in our framework.

Thus an appropriate Bayesian analysis has also to disentangle the different
regimes as it is done in the ML approach. More precisely, the joint p.d.f. has
to be written as :

l(Φ, C, ν) = expL(Φ, C, ν),

where L(Φ, C, ν) is given in (A.2), before specifying a prior, which can weight
all the regimes.

Appendix 3

Incomplete Maximum Likelihood and Simulated
Pseudo-Maximum Likelihood for nonfundamental SVARMA

models.

We have noted in Appendix 2 the difficulty in implementing maximum
likelihood or Bayesian approaches, for noncausal SVAR models. Indeed the
(approximated) log-likelihood has different expressions according to the lo-
cation of the roots of the determinant of the autoregressive polynomials (see
however the discussion in Appendix A.4.1).

In this section we introduce new parametric consistent estimation meth-
ods which circumvent the regimes of ill-located roots in the moving average
dynamics of a SVARMA process. We assume well-located roots for the au-
toregressive component. We try to get simple estimation methods by avoid-
ing nonlinear optimizations with respect to a large number of parameters.
This explains why we focus on multistep approaches and use when possible
instrumental variable approaches. The cost of simplicity is a reasonable loss
of efficiency.
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To introduce the estimation approach, we first discuss the case of a one-
dimensional MA(1) process before considering the general framework of a
SVARMA process.

A.3.1 The one-dimensional MA(1) process

Let us consider a one-dimensional MA(1) process :

yt = εt − θεt−1, (A.3)

where the ε′ts are independent.
Suppose that we observe y1, . . . , yT . If the common distribution of the

ε′ts is N(0, σ2), the model is not identifiable. Indeed the distribution of
(y1, . . . , yT ) is multivariate normal, with zero mean and a variance-covariance
matrix defined by V (yt) = σ2(1+θ2), cov(yt, yt−1) = −σ2θ, and cov(yt, yt−h) =

0,∀h ≥ 2. Obviously the two sets of parameters (θ, σ2) and (
1

θ
, σ2θ2) give the

same distribution.

If εt is not Gaussian, Proposition 2 shows that the model is identifiable34.
Let us denote by g(ε; γ) the common p.d.f. of the ε′ts, where γ is an unknown
parameter.

i) When |θ[< 1, we can invert equation (A.3) in the standard way in order
to get εt as a function of current and lagged values of process Y as :

εt =
∞∑
h=0

θhyt−h. (A.4)

Then the log-likelihood function is approximated by :

La1(θ, γ) =
T∑
t=1

log g(
t−1∑
h=0

θhyt−h; γ), (A.5)

where the infinite sums are truncated to be compatible with the observed
y1, . . . , yT .

ii) When |θ| > 1, equation (A.3) can still be inverted, but in reversed
time. We get :

34See Appendix 4 for a more detailed discussion of non-identifiability of a MA(1) process
and the links with reversibility.
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yt = εt − θεt−1

⇔ −yt+1

θ
= εt −

1

θ
εt+1

⇔ εt = −
∞∑
h=0

1

θh+1
yt+h+1.

(A.6)

The log-likelihood function is approximated by :

La2(θ, γ) =
T∑
t=1

log

{
1

|θ|
g(−

T−t−1∑
h=0

1

θh+1
yt+h+1; γ)

}
, (A.7)

where the sums are now truncated to account for the most recent observations
and factor 1/|θ| comes from the Jacobian formula.

iii) Simple formulas do not exist when |θ| = 1.

Then the practice of ARMA modelling consists in assuming |θ| 6= 1, and
in considering the approximated log-likelihood function :

La(θ, γ) = La1(θ, γ)1l|θ|<1 + La2(θ, γ)1l|θ|>1. (A.8)

The optimization is performed in two steps :
First step : we optimize separately the log-likelihood on each regime to

get :

(θ̂1, γ̂1) = arg maxθ,γ,|θ|<1 L
a
1(θ, γ),

(θ̂2, γ̂2) = arg maxθ,γ,|θ|>1 L
a
2(θ, γ).

Second step : the approximated ML estimator is :

(θ̂, γ̂) = (θ̂1, γ̂1), if L̂a1 = La1(θ̂1, γ̂1) > L̂a2 = La2(θ̂2, γ̂2),

= (θ̂2, γ̂2), otherwise.

The approach above has at least three drawbacks.

i) First, we do not know how to simply approximate the log-likelihood func-
tion in the case |θ| = 1.
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ii) Second, this approach is difficult to implement in the multidimensional
case, since the number of regimes for ill-located roots increases and the ex-
pressions of εt as two sided autoregressive functions of yt have to be derived.

iii) Third, the focus on the regimes when approximating the log-likelihood
function gives the misleading impression of a lack of continuity of the exact
log-likelihood function w.r.t. θ at |θ| = 1, whereas this exact log-likelihood
is continuous.35 Let us derive it for the discussion. We get :

ε1 = y1 + θε0, ε2 = y2 + θy1 + θ2ε0, . . . , εT = yT + θyT−1 + . . .+ θT−1y1 + θT ε0.

Thus the joint p.d.f. of y1, . . . , yT given ε0 is :

ΠT
t=1g(

t−1∑
h=0

θhyt−h + θtε0; γ),

and the exact log-likelihood is :

L(θ, γ) = log{
∫

ΠT
t=1g(

t−1∑
h=0

θhyt−h + θtε; γ)g(ε; γ)dε.} (A.9)

The exact log-likelihood is generally a differentiable function of θ. How-
ever, its expression is not appropriate for deriving the asymptotic properties
of the ML estimators. For such a derivation, it is usually shown that it can
be approximated by appropriate sums, [La1(θ, γ), or La2(θ, γ) in our example]
for which the standard asymptotic theories apply [see e.g. Lanne, Saikkonen
(2013) for this approach applied to VAR models with noncausal components].

The approaches proposed in the next subsection are based on optimization
criteria decomposed into sums which are appropriate for applying standard
asymptotic theory and these criteria are sufficiently regular to avoid the
introduction of the different regimes of ill-located roots.

A.3.2 Incomplete Maximum Likelihood (IML), PML and SPML
approaches

i) Principle of the IML approach

35Such an exact log-likelihood is for instance used in the Gaussian case, with |θ| < 1
by Chen, Davis, Song (2011) to analyze the properties of the ML estimator of a moving-
average parameter close to non-inversibility.
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The principle of Incomplete Maximum Likelihood (IML) is easily ex-
plained for the MA(1) process discussed above.

Let us separate the observations by throwing away an observation every
third observation. The set of observations becomes :

y1, y2, y4, y5, . . . , y3j−1, y3j−2, . . .

We have a loss of information since observations y3, y6, . . . , y3j, . . . are
not taken into account with the advantage that the pairs of observations
(y3j−1, y3j−2), j varying, are i.i.d.. Thus the exact log-likelihood function
corresponding to these incomplete observations is easily computed, naturally
expressed as a sum and the standard asymptotic theory will apply.

ii) IML and PML approaches

Let us now describe how the IML approach can be adapted to the mul-
tidimensional framework. For expository purpose, we consider a VARMA
(1,1) model :

Yt − ΦYt−1 = εt −Θεt−1, (A.10)

where the errors εt are serially i.i.d., not Gaussian, with p.d.f. g(ε,Γ). The
joint distribution of the errors is chosen such that :

εt = Cηt, say,

where the ηt are serially independent, with a same distribution with param-
eter γ, say; thus Γ = (C, γ). Such a choice of the joint distribution of the
components of εt is required in order to get mutually independent shocks
when defining the impulse response functions. 36

36It is often assumed that the distribution of the error term εt of the VAR belongs to
the standard multivariate Student family, but this assumption is not appropriate for the
analysis of impulse responses since this family does not include the case of independent
components. We can assume, for instance, that the ith component of ηt, follows a univari-
ate Student distribution with ν(i) degrees of freedom. Additional identification restrictions
can be introduced to fix the denomination of the errors, i.e. to solve the problem of mul-
tiplicity by change of scale and permutations. For instance, a permutation is excluded, if
we impose either that the degrees of freedom ν(i) are in an increasing order, or that the
elements of the first row of matrix C are in an increasing order. The second condition is
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The roots of det Φ(z) are assumed to be outside the unit circle, but the
roots of det Θ(z) can be anywhere, inside, outside, or even on the unit circle.

Model (A.10) is a Seemingly Unrelated Regression (SUR) model :

Yt = ΦYt−1 + vt, (A.11)

and the autoregressive matrix Φ can be estimated by instrumental variable
(IV), using as instruments Yt−2 (Yt−3, Yt−4, . . .), which are uncorrelated with
vt. Let us denote Φ̂ the corresponding IV estimator.

Next, let us consider the joint p.d.f. of vt = εt−Θεt−1, vt−1 = εt−1−Θεt−2.
This p.d.f. is given by :

h(vt, vt−1; Θ,Γ) =

∫
g(vt + Θvt−1 + Θ2ε; Γ)g(vt−1 + Θε; Γ)g(ε; Γ)dε. (A.12)

The two step IML estimator of (Θ,Γ) is the solution of :

(Θ̂, Γ̂) = arg max
Θ,Γ

J=(T/3)∑
j=1

log h(Y3j−1,−ΦY3j−2, Y3j−2 − Φ̂Y3j−3; Θ,Γ).

The two step IML estimator has standard asymptotic properties, irre-
spective of the location of the roots of det Θ(z). It is in particular consistent,
asymptotically normal, and its asymptotic variance-covariance matrix can be
derived.

All the observations of (yt) are used if Φ 6= 0, but in a non optimal way.
Other consistent estimators as simple to implement and using observations
in a more efficient way can be based on the same idea.

We can consider the estimator solution of :

(Θ̃, Γ̃) = arg max
Θ,Γ

T∑
t=2

log h(Yt − Φ̂Yt−1, Yt−1 − Φ̂Yt−2; Θ,Γ). (A.13)

preferable, since it is compatible with the limiting case of equal degrees of freedom.
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This two step Pseudo Maximum Likelihood (PML) estimator is using the
information on all the v′ts [see e.g. Gourieroux, Monfort, Trognon (1985)].
It is also consistent, asymptotically normal, but the asymptotic variance-
covariance matrix is now computed by a sandwich formula involving a general
central limit theorem.

iii) SPML approach

The IML and PML likelihood functions depend on integrals of the same
dimension as the VARMA system. We can approximate the integral in func-
tion h by simulation to get a two-step Simulated Pseudo Maximum Likeli-
hood (SPML) estimator. The numerical optimization of the approximated
PML criterion is :

(Θ∗,Γ∗) = arg max
Θ,Γ

T∑
t=1

log ĥ(Yt − Φ̂Yt−1, Yt−1 − Φ̂Yt−2; Θ,Γ), (A.14)

where :

ĥ(vt, vt−1; Θ,Γ) =
1

S

S∑
s=1

{g(vt+Θvt−1+Θ2εs(Γ), g(vt−1+Θεs(Γ); Γ)}, (A.15)

and the εs(Γ) are drawn independently in distribution g(ε; Γ).37

When the number S of simulations tends to infinity sufficiently fast w.r.t.
the number T of observations, the SPML estimator has the same asymptotic
properties as the PML estimator itself [see Gourieroux, Monfort (1996) for a
general presentation of Simulation Based Estimation Methods].

iv) Remarks

Remark 1 : The objective functions used in the IML or PML approaches are
well-specified and misspecified log-likelihood functions, respectively. They
can be used to develop Bayesian approaches [see Muller (2013) for Bayesian
approaches with misspecified models].

37As usual the same basic drawings must be kept when Γ is modified in the optimization
algorithm.
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Remark 2 : The IML , PML, SPML approaches provide subefficient con-
sistent estimators. Even if the lack of efficiency is expected reasonable, we
can look for more efficient estimators. This can be done as follows:

First step : Apply a IML (PML, SPML) approach. This provides a con-
sistent estimator Θ̂ of Θ and of the true regime of nonfundamentalness. Then
we can derive the expression of the (approximated) log-likelihood function
Las(Φ,Θ,Γ) corresponding to this regime s. In a second step, we maximize
this approximated Las to derive the efficient ML estimator. The advantage of
this two-step approach compared to the first step ML approach is to focus on
a single regime instead of a large number. This two step approach is a kind
of pre-test estimation approach, in which the one step IML (PML, SPML) is
used to detect the right regime of ill-located roots.

Remark 3 : Why not consider a simulated maximum likelihood (SML)
approach ? The SML estimators would be defined as :

(
ˆ̂
Θ,

ˆ̂
Γ) = arg max

Θ,Γ
log{ 1

S

S∑
s=1

ΠT
t=1g(

t−1∑
h=0

Θh(Yt−h − Φ̂Yt−h−1) + Θtεs(Γ); Γ)}.

However, the expression of the objective function has been derived back-
ward, which implies terms like Θtεs(Γ). If the true representation is nonfun-
damental and T is rather large, Θt will have exploding components when t
is increasing. Thus the SML estimator will be very sensitive to drawings of
simulated ε in the tail and not robust. The IML approach and its extensions
do not have this drawback.

Appendix 4

Identifiability, reversibility and estimation in a MA(1) process

The aim of this appendix is to illustrate some of the general results of the
paper by considering the example of the one-dimensional MA(1) process :
yt = εt− θεt−1, where the ε′ts are independent. We first consider the asymp-
totic behaviour of the approximated maximum likelihood approach. Then
we illustrate the reason of identifiability in a non Gaussian case, and consider
a moment estimation method.

i) Limit optimization problem in the approximate ML method
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We assume that the p.d.f. of the ε′ts belongs to the family g(ε; γ).
The approximate log-likelihood function is :

LT (θ, γ) = 1l|θ|<1

T∑
t=1

log{g(
t−1∑
h=0

θhyt−h; γ)}

+ 1l|θ|>1

T∑
t=1

log{ 1

|θ|
g(−

T−t−1∑
h=0

1

θh+1
yt+h+1; γ)}.

When T goes to infinity
1

T
LT converges to the limit function:

L∞(θ, γ) = 1l|θ|<1E0 log g(
∞∑
h=0

θhyt−h; γ)

+ 1l|θ|>1E0[log
1

|θ|
g(−

∞∑
h=0

1

θh+1
yt+h+1; γ),

where E0 is the expectation with respect to the true distribution of the
process. We also have :

L∞(θ, γ) = 1l|θ|<1E0 log g[yt − Eθ(yt|yt−1
−∞), γ]

+ 1l|θ|>1E0{−
1

2
log θ2 + log g[−1

θ
(yt+1 − Eθ(yt+1|y∞t+2); γ]}

with Eθ(yt|yt−1
−∞) = −

∞∑
h=1

θhyt−h and Eθ(yt+1|y∞t+2) = −
∞∑
h=1

1

θh+1
yt+h+1

In the Gaussian case, where the distribution of εt is N(0, σ2), we get :

L∞(θ, σ2) = 1l|θ|<1E0[−1

2
log σ2 − 1

2σ2
(yt − Eθ(yt|yt−1

−∞))2]

+ 1l|θ|>1E0{−
1

2
log(θ2σ2)− 1

2σ2
[

1

θ2
(yt+1 − Eθ(yt+1|y∞t+2))]2}

The limit optimization problem is :

min
(θ,σ2)

[1l|θ|<1L
a
1(θ, σ2) + 1l|θ|>1L

a
2(θ, σ2)]
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with La1(θ, σ2) = log σ2 +
1

σ2
E0(yt − Eθ(yt|yt−1

−∞))2,

La2(θ, σ2) = log(θ2σ2) +
1

θ2σ2
E0(yt+1 − Eθ(yt+1|y∞t+2)2).

Due to the reversibility of the Gaussian process the true distribution
of yt+1 − Eθ(yt+1|y∞t+2) if |θ| > 1 is the same as the true distribution of
yt+1 − E1/θ(yt+1|yt−∞).

Let us first assume that |θ0| < 1 and let us consider the solutions of the
limit optimization problem.

In order to minimize L1(θ, σ2) on |θ| < 1, we can concentrate with respect
to σ2 and get :

min
θ

logE0[yt − Eθ(yt|yt−1
−∞)]2 + 1.

The minimum is reached for θ = θ0 and the value at the minimum is :
log σ2

0 + 1.
In order to minimize L2(θ, σ2) on |θ| > 1, we can put θ2σ2 = σ̃2 we get :

min
θ

logE0[yt+1 − E1/θ(yt+1|yt−∞)] + 1.

The minimum is reached for θ =
1

θ0

and the minimum is again log σ2
0 + 1.

When |θ0| is larger than 1, we can see that L1(θ, σ2) is optimal for
1

θ0

and L2(θ, σ2) for θ0 and we still have two inverse values of θ giving the same
optimum namely log(θ2

0σ
2
0) + 1. The model is not asymptotically identifiable.

Note however that, in finite sample, the optimal values of La1 and La2 are
different, even in the Gaussian case. Thus the approximated ML approach
will provide a unique solution, not necessarily well-located.

ii) Identification in the non-Gaussian case

Let us consider the joint distribution of (yt, yt−1). The characteristic
function of this distribution is :
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ψ(u, v) = E exp[i(uyt + vyt−1)]

= E exp(iuεt)E exp[i(v − uθ)εt−1]E[exp(−ivθεt−2)].

Let us for instance assume that εt follows a stable distribution, we get :

ψ(u, v) = exp[−c(|u|α + |v − uθ|α + |vθ|α)]

Is this function of (c, θ) injective ?
If α = 2, i.e. in the Gaussian case, we verify that :

c[u2 + (v − uθ)2 + v2θ2] = c[(u2 + v2)(1 + θ2)− 2uvθ]

takes the same value for (c, θ) and (cθ2,
1

θ
) and we do not have identifiability.

On the contrary for α 6= 2, we see, for instance, that ψ(u, v) is not differen-
tiable on the lines u = 0, v = 0 and v − uθ = 0. The latter condition implies
the identifiability of θ.

iii) Moment method

If we do not want to make a parametric assumption about the distribution
of εt we can use a moment method based on higher order cross moments (see
Section 4.1).

Let us consider again the one-dimensional MA(1) process. We have :

E(yty
2
t−1) = −θEε3

t , E(y2
t yt−1) = θ2Eε3

t ,

and therefore :

θ = −E(y2
t yt−1)

E(yty2
t−1)

,

whenever εt has a skewed distribution, i.e. E(ε3
t ) 6= 0. Thus the location of

|θ| w.r.t. 1 is identified from the lack of time reversibility of the process.
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